Large parameter asymptotic of rational solutions of Painlevé III (D6) equation near zero.

Andrei Prokhorov

Joint work with Ahmad Barhoumi, Oleg Lisovyy and Peter Miller

University of Michigan

IMACS 2022

March 31st, 2022

< (17) > < (17) > <

3 Rational solutions near zero

< □ > < 同 > < 三</p>

Painlevé III (D6) equation

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Painlevé III (D6) equation

Painlevé III equation

$$u'' = \frac{(u')^2}{u} - \frac{u'}{x} + \alpha \frac{u^2}{x} + \frac{\beta}{x} + \gamma u^3 + \frac{\delta}{u}.$$

Painlevé III (D6)

$$\gamma \neq \mathbf{0}, \quad \delta \neq \mathbf{0}.$$

• After scaling transformation $u(x)
ightarrow c_1 u(c_2 x)$ we can assume that

$$\alpha = 4\lambda + 4m, \quad \beta = 4\lambda - 4m, \quad \gamma = 4, \quad \delta = -4,$$

• Denote the solution of such equation $u_{\lambda}(x,m)$

イロト 不得 トイヨト イヨト 二日

Bäcklund transformation

• Given $u_n(x, m)$ one can consider the following expressions

$$u_{\lambda+1}(x) = \frac{1}{u_{\lambda}(x)} - \frac{2(2\lambda - 2m + 1)}{xu_{\lambda}'(x) + 2xu_{\lambda}^{2}(x) + 2x + (2\lambda - 2m + 1)u_{\lambda}(x)}$$
$$u_{\lambda-1}(x) = u_{\lambda}(x) - \frac{2(2\lambda + 2m - 1)u_{\lambda}^{2}(x)}{xu_{\lambda}'(x) - 2xu_{\lambda}^{2}(x) - 2x + (2\lambda + 2m - 1)u_{\lambda}(x)}$$

• They satisfy the Painlevé III (D6) equation with shifted parameter $\lambda \to \lambda \pm 1.$

< □ > < □ > < □ > < □ > < □ > < □ >

Discrete Painlevé equations

• Eliminating the derivative one can obtain the discrete equation associated to Painlevé-III (D6)

$$\frac{2\lambda+1}{u_{\lambda+1}u_{\lambda}-1} + \frac{2\lambda-1}{u_{\lambda}u_{\lambda-1}-1} + 2m + 2\lambda + 2x\left(u_{\lambda} + \frac{1}{u_{\lambda}}\right) = 0$$

• It has symmetry type $2A_1^{(1)}$ and the surface type $D_6^{(1)}$ in the Sakai's classification.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

æ

イロト イヨト イヨト イヨト

Painlevé III (D6) solutions

- For $\lambda = 0$ there is a solution $u_0(x, m) = 1$. Iterating it one obtains rational solutions $u_n(x, m)$ of discrete and continuous Painlevé equation.
- For $\lambda = \frac{1}{2}$ there is a Bessel solution $u_{\frac{1}{2}}(x, m) = -\frac{J_{m-\frac{1}{2}}(2z)}{J_{m+\frac{1}{2}}(2z)}$. Iterating it one obtains special functions solutions $u_{n+\frac{1}{2}}(x, m)$ of discrete and continuous Painlevé equation.
- For general λ solutions can't be expressed in terms of elementary functions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Poles and zeroes of $u_{\frac{5}{2}}(x, -5)$

Red circles indicate zeroes, blue circles indicate poles.

(A) → (A

Plot of poles and zeroes for $u_{20}(x, 0.25)$

Red circles indicate zeroes, blue circles indicate poles.

Rational solutions of Painlevé III

March 31st, 2022 10 / 27

Plot of poles and zeroes for $u_{20}(x, 2.5)$

Red circles indicate zeroes, blue circles indicate poles.

- ∢ /⊐ >

Works on rational solutions of Painlevé III (D6) equation

- Clarkson, 2003
- Bothner, Miller, Sheung, 2018
- Bothner, Miller, 2020

Rational solutions near zero

2

メロト メポト メヨト メヨト

Behaviour near zero

• Denote $v_n(x,m) = u_n\left(\frac{x}{n},m\right)$. It satisfies the equation

$$v_n'' = \frac{(v_n')^2}{v_n} - \frac{v_n'}{z} + \frac{\alpha_n v_n^2}{z} + \frac{\beta_n}{z} + \gamma_n v_n^3 + \frac{\delta_n}{v_n},$$
 (1)

where

$$\alpha_n := 4 + \frac{4m}{n}, \quad \beta_n := 4 - \frac{4m}{n}, \quad \gamma_n := \frac{4}{n^2}, \quad \delta_n := -\frac{4}{n^2}.$$
 (2)

• Painlevé III (D8) equation

$$w'' = \frac{(w')^2}{w} - \frac{w'}{x} + \frac{4w^2}{x} + \frac{4}{x}$$

• Reasonable expectation: $v_n(x,m) \xrightarrow[n \to \infty]{} w(x,m),$

イロト イポト イヨト イヨト 二日

Behaviour near zero

Conjecture(Bothner, Miller, Sheng, 2018)

$$v_{2j}(x,m) \mathop{
ightarrow}_{j
ightarrow \infty} w_1(x,m), \quad v_{2j+1}(x,m) \mathop{
ightarrow}_{j
ightarrow \infty} w_2(x,m),$$

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• Consider solution w(x, m) of Painlevé III (D8) holomorphic at zero with initial condition

$$w(0,m) = an\left(rac{\pi(2m+1)}{4}
ight)$$

Theorem (Barhoumi, Lisovyy, Miller, Prokhorov)

$$\lim_{j \to \infty} u_{2j}\left(\frac{x}{2j}, m\right) = w(x, m), \quad m \neq \frac{1}{2} + \mathbb{Z}$$
$$\lim_{j \to \infty} u_{2j+1}\left(\frac{x}{2j+1}, m\right) = -\frac{1}{w(x, m)}, \quad m \neq \frac{1}{2} + \mathbb{Z}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Numerics

w(x, 0.25), blue highlight=zeroes, yellow highlight=poles Code by Fasondini, Fornberg, Weidemann (2018)

Numerics

 $-(w(x, 0.25))^{-1}$, blue highlight=zeroes, yellow highlight=poles Code by Fasondini, Fornberg, Weidemann (2018)

Proof, Step 1: compute w(0, m).

Lemma (Clarkson, Law, Lin, 2018 (Corollary 4.2))

$$u_{2j}(0,m) = \frac{\prod_{k=1}^{j} ((m-\frac{1}{2})^2 - (2k-1)^2)}{\prod_{k=1}^{j} ((m+\frac{1}{2})^2 - (2k-1)^2)}.$$
$$u_{2j+1}(0,m) = \frac{(m-\frac{1}{2}) \cdot \prod_{k=1}^{j} ((m-\frac{1}{2})^2 - (2k)^2)}{(m+\frac{1}{2}) \cdot \prod_{k=1}^{j} ((m+\frac{1}{2})^2 - (2k)^2)}.$$

March 31st, 2022 21 / 27

-

3

• • • • • • • • • •

Proof

Proof, Step 1: compute w(0, m).

Using the classical product formulas

$$\sin(x) = x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 k^2} \right), \quad \cos(x) = \prod_{k=1}^{\infty} \left(1 - \frac{4x^2}{\pi^2 (2k-1)^2} \right)$$

we get

Corollary

$$\lim_{j\to\infty} u_{2j}(0,m) = \tan\left(\frac{\pi(2m+1)}{4}\right),$$
$$\lim_{j\to\infty} u_{2j+1}(0,m) = -\cot\left(\frac{\pi(2m+1)}{4}\right).$$

э

- ∢ ⊒ →

・ロト ・日ト ・ヨト

Proof

Proof, Step 2: derive the recurrence

• Because of the differential equation the coefficients of the Taylor series $v_n(x, m) = \sum_{k=0}^{\infty} c_k x^k$ satisfy the recurrence

0

$$c_{1} = \beta_{n} + \alpha_{n}c_{0}^{2},$$

$$c_{2} = \frac{1}{4c_{0}} \left(3\alpha_{n}c_{0}^{2}c_{1} + \beta_{n}c_{1} + \gamma_{n}c_{0}^{4} + \delta_{n} \right)$$

$$c_{k+1} = \frac{1}{c_{0}(k+1)^{2}} \left[\sum_{j=0}^{k+1} j(k+1-2j)c_{j}c_{k+1-j} + \alpha_{n}\sum_{j_{1}=0}^{k}\sum_{j_{2}=0}^{k-j_{1}} c_{j_{1}}c_{j_{2}}c_{k-j_{1}-j_{2}} + \beta_{n}c_{k} + \gamma_{n}\sum_{j_{1}=0}^{k-1}\sum_{j_{2}=0}^{k-1}\sum_{j_{3}=0}^{k-1-j_{1}-j_{2}} c_{j_{1}}c_{j_{2}}c_{j_{3}}c_{k-1-j_{1}-j_{2}-j_{3}} \right] = 0, k \ge 2.$$

Proof, Step 3: take the limit

- Taking the limit formally we obtain that the limiting coefficients satisfy the recurrence for Painlevé III (D_8) .
- To justify it we need uniform convergence with respect to n of the Taylor series for $v_n(x, m)$. It can be done following the book "From Gauss to Painlevé", Proposition 1.1.1, page 261 by Iwasaki, Kimura, Shimomura, Yoshida .

Remarks

- Monodromy data of the solution w(x, m) can be identified using the PhD thesis of David Niles, 2009.
- We have alternative proof of our main result using Riemann-Hilbert approach.

< □ > < □ > < □ > < □ > < □ > < □ >

Further questions

- Other interesting regimes allowing simultaneous grows of *m* and *n*.
- Large parameter asymptotic of $u_{\frac{1}{2}+n}(x,m)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト