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Abstract

Let X and Y be finite alphabets and PXY a joint distribution over them, with PX and PY representing
the marginals. For any ε > 0, the set of n-length sequences xn and yn that are jointly typical [1] according
to PXY can be represented on a bipartite graph. We present a formal definition of such a graph, known
as a typicality graph, and study some of its properties.

I. INTRODUCTION

The concept of typicality and typical sequences is central to information theory. It has been used to
develop computable performance limits for several communication problems.

Consider a pair of correlated discrete memoryless information sources X1 and Y characterized by a
generic joint distribution pXY defined on the product of two finite sets X ×Y . An length n X-sequence xn

is typical if the empirical histogram of xn is close to pX . A pair of length n sequences (xn, yn) ∈ Xn×Yn

is said to be jointly typical if the empirical joint histogram of (xn, yn) is close to the joint distribution
pXY . The set of all jointly typical sequence pairs is called the typical set of pXY .

Given a sequence length n, the typical set can be represented in terms of the following undirected,
bipartite graph. The left vertices of the graph are all the typical X-sequences, and the right vertices are
all the typical Y -sequences. From well-known properties of typical sets, there are (approximately) 2nH(X)

left vertices and 2nH(Y ) right vertices. A left vertex is connected to a right vertex through an edge if the
corresponding X and Y -sequences are jointly typical. From the properties of joint typicality, we know that
the number of edges in this graph is roughly 2nH(X,Y ). Further, every left vertex (a typical X-sequence)
has degree roughly equal to 2nH(Y |X), i.e., it is jointly typical with 2nH(Y |X) Y -sequences. Similarly, each
right vertex has degree roughly equal to 2nH(X|Y ).

In this paper we formally characterize the typicality graph and look at some subgraph containment
problems. In particular, we answer three questions concerning the typicality graph:

1We use the following notation throughout this work. Script capitals U , X , Y , Z ,. . . denote finite, nonempty sets. To show the
cardinality of a set X , we use |X |. We also use the letters P , Q,. . . for probability distributions on finite sets, and U , X , Y ,. . . for
random variables.
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• When can we find subgraphs such that the left and right vertices of the subgraph have specified
degrees, say R′

X and R′
Y , respectively ?

• What is the maximum size of subgraphs that are complete, i.e., every left vertex is connected to
every right vertex? One of the main contributions of this paper is a sharp answer to this question.

• If we create a subgraph by randomly picking a specified number of left and right vertices, what is
the probability that this subgraph has far fewer edges than expected?

These questions arise in a variety of multiuser communication problems. Transmitting correlated in-
formation over a multiple-access channel (MAC) [2], and communicating over a MAC with feedback [3]
are two problems where the first question plays an important role. The techniques used to answer the
second question have been used to develop tighter bounds on the error exponents of discrete memoryless
multiple-access channels [4], [5], [6]. The third question arises in the context of transmitting correlated
information over a broadcast channel [7]. Moreover, the evaluation of performance limits of a multiuser
communication problem can be thought of as characterizing certain properties of typicality graphs of
random variables associated with the problem.

The paper is organized as follows. Some preliminaries are introduced in section II. In section III, the
typicality graphs are formally defined and some properties about the number vertices, edges, and degree
conditions are obtained. The main result of the paper which is obtained in section IV.

II. PRELIMINARIES

In this section, we provide a concise review of some of the results available in the literature on the
typical sequences, δ-typical sets and their properties [1].

Definition 1: A sequence xn ∈ Xn is X-typical with constant δ if

1) | 1nN(a|xn)− PX(a)| ≤ δ, ∀a ∈ X
2) No a ∈ X with PX(a) = 0 occurs in xn.

The set of such sequences is denoted Tn
δ (PX) or Tn

δ (X), when the distribution being used is unambiguous.
Definition 2: Given a conditional distribution PY |X , a sequence yn ∈ Yn is conditionally PY |X -typical

with xn ∈ Xn with constant δ if

1) | 1nN(a, b|xn, yn)− 1
nN(a|xn)PY |X(b|a)| ≤ δ, ∀a ∈ X , b ∈ Y.

2) N(a, b|xn, yn) = 0 whenever PY |X(b|a) = 0.

The set of such sequences is denoted Tn
δ (PY |X |xn) or Tn

δ (Y |xn), when the distribution being used is
unambiguous.
We will repeatedly use the following results, which we state below as facts:

Fact 1 [1, Lemma 2.10]: (a) If xn ∈ Tn
δ (X) and yn ∈ Tn

δ′(Y |xn), then (xn, yn) ∈ Tn
δ+δ′(X, Y ) and

yn ∈ Tn
(δ+δ′)|X |(Y ). 2

(b) If xn ∈ Tn
δ (X) and (xn, yn) ∈ Tn

ε (X, Y ), then yn ∈ Tn
δ+ε(Y |xn).

2The typical sets are with respect to distributions PX , PY |X and PXY , respectively.
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Fact 2 [1, Lemma 2.13] 3: There exists a sequence εn → 0 depending only on |X | and |Y| such that for
every joint distribution PX · PY |X on X × Y ,∣∣∣∣ 1

n
log |Tn(X)| −H(X)

∣∣∣∣ ≤ εn∣∣∣∣ 1
n

log |Tn(Y |xn)| −H(Y |X)
∣∣∣∣ ≤ εn, ∀xn ∈ Tn(X).

(1)

The next fact deals with the continuity of entropy with respect to probability distributions.
Fact 3 [1, Lemma 2.7] If P and Q are two distributions on X such that∑

x∈X
|P (x)−Q(x)| ≤ ε ≤ 1

2

then
|H(P )−H(Q)| ≤ −ε log

ε

|X |

III. TYPICALITY GRAPHS

Consider any joint distribution PX · PY |X on X × Y .
Definition 3: For any ε1n, ε2n, λn → 0, the sequence of typicality graphs Gn(ε1n, ε2n, λn) is defined as

follows. For every n, Gn is a bipartite graph, with its left vertices consisting of all xn ∈ Tn
ε1n

(X) and the
right vertices consisting of all yn ∈ Tn

ε2n
(Y ). A vertex on the left (say x̃n) is connected to a vertex on the

right (say ỹn) iff (x̃n, ỹn) ∈ Tn
λn

(X, Y ).
Remark. Henceforth, we will assume that the sequences ε1n, ε2n, λn satisfy the ‘delta convention’ [1,

Convention 2.11], i.e.,
ε1n → 0,

√
n · ε1n →∞ as n →∞

with similar conditions for ε2n and λn as well. The delta convention ensures that the typical sets have
‘large probability’.

We will use the notation VX(.), VY (.) to denote the vertex sets of any bipartite graph. Some properties
of the typicality graph:

1) From Fact 2, we know that for any sequence of typicality graphs {Gn(ε1n, ε2n, λn)}, the cardinality
of the vertex sets satisfies∣∣∣∣ 1

n
log |VX(Gn)| −H(X)

∣∣∣∣ ≤ εn,

∣∣∣∣ 1
n

log |VY (Gn)| −H(Y )
∣∣∣∣ ≤ εn (2)

for some sequence εn → 0.
2) The degree of each each vertex i ∈ VX(Gn) and j ∈ VY (Gn) satisfies

degree(xn) ≤ 2n(H(Y |X)+εn), ∀xn ∈ VX(Gn); degree(yn) ≤ 2n(H(X|Y )+εn), ∀yn ∈ VY (Gn)
(3)

for some εn → 0.

3The constants of the typical sets for each n, when suppressed, are understood to be some δn with δn → 0 and
√

n · δn → ∞
(delta convention).
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Proof: If xn ∈ Tn
ε1n

(X) and (xn, yn) ∈ Tn
λn

(X, Y ), then from Fact 1(b), yn ∈ Tn
ε1n+λn

(Y |xn). From
the second part of Fact 2, we know that there exists a sequence εn → 0 such that∣∣Tn

ε1n+λn
(Y |xn)

∣∣ ≤ 2n(H(Y |X)+εn) (4)

From this we conclude that degree(xn) ≤ 2n(H(Y |X)+εn),∀xn ∈ VX(Gn). An identical argument
yields degree(yn) ≤ 2n(H(X|Y )+εn),∀yn ∈ VY (Gn).

Property 2 gives upper bounds on the degree of each vertex in the typicality graph. Since we have
not imposed any relationships between the typicality constants ε1n, ε2n and λn, in general it cannot be
said that the degree of every X-vertex (resp. Y -vertex) is close to 2NH(Y |X) (resp. 2NH(X|Y )). However,
such an assertion holds for almost every vertex in Gn . Specifically, we can show that the above degree
conditions hold for a subgraph with exponentially the same size as Gn.

Proposition 1: Every sequence of typicality graphs Gn(ε1n, ε2n, λn) has a sequence of subgraphs An(ε1n, ε2n, λn)
satisfying the following properties for some δn → 0.

1) The vertex set sizes |VX(An)| and |VY (An)|, denoted θn
X and θn

Y , respectively, satisfy∣∣∣∣ 1
n

log θn
X −H(X)

∣∣∣∣ ≤ δn,

∣∣∣∣ 1
n

log θn
Y −H(Y )

∣∣∣∣ ≤ δn ∀n

2) The degree of each X-vertex xn, denoted θ
′n(xn) satisfies∣∣∣∣ 1

n
log θ

′n(xn)−H(Y |X)
∣∣∣∣ ≤ δn ∀xn ∈ VX(An).

3) The degree of each Y -vertex yn, denoted θ
′n(yn), satisfies∣∣∣∣ 1

n
log θ

′n(yn)−H(X|Y )
∣∣∣∣ ≤ δn ∀yn ∈ VY (An).

Proof: The vertex sets VX(Gn) and VY (Gn) are the ε1n-typical and ε2n-typical sets of PX and PY ,
respectively. To define the subgraphs An, we would like to choose the sequences with type PX and PY ,
respectively as the vertex sets of the subgraph, with an edge connecting two sequences if they have joint
type PXY . However, the values taken by the joint pmfs PXY , PX , PY may be any real number between 0
and 1, whereas the joint type of two n-sequences is always a rational number(with denominator n). So
we choose the subgraph An as follows:

• For each n, approximate the values of PXY to rational numbers with denominator n to obtain pmf
P̃XY , respectively. Clearly P̃XY is a valid joint type of length n and the maximum approximation
error is bounded by 1

n . In fact, ∀(x, y), we have for all sufficiently large n:

|PXY (x, y)− P̃XY (x, y)| < 1
n

<<
1√
n

< λn, (5)

where the last inequality follows from the delta convention. Using Fact 1, we also have

|PX(x)− P̃X(x)| < |Y| · 1
n

<<
1√
n

< ε1n (6)

|PY (y)− P̃Y (y)| < |X | · 1
n

<<
1√
n

< ε2n (7)

• The left vertex set of An is Tn
0 (P̃X), i.e., the set of xn sequences with type P̃X . The right vertex set

of An is Tn
0 (P̃Y )- the set of yn sequences with type P̃Y . A vertex in VX(An), say an is connected to
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a vertex in VY (An), say bn iff (an, bn) ∈ Tn
0 (P̃X,Y ), i.e., (an, bn) have joint type P̃XY .

From (5),(6) and (7), we have

Tn
0 (P̃X) ⊂ Tn

ε1n
(PX), Tn

0 (P̃Y ) ⊂ Tn
ε2n

(PY ) and

Tn
0 (P̃X,Y ) ⊂ Tn

λn
(PX,Y ).

Hence An is a subgraph of Gn, as required.
From [1, Lemma 2.3], we have∣∣∣∣ 1

n
log |Tn

0 (P̃X)| −H(P̃X)
∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1
n

log |Tn
0 (P̃Y )| −H(P̃Y )

∣∣∣∣ ≤ δ2n ∀n, (8)

where δ1n = (n + 1)−|X| and δ2n = (n + 1)−|Y|. Fact 3 establishes the continuity of entropy with respect
to the probability distribution. Using Fact 3 along with (5),(6) and (7), we obtain∣∣∣∣ 1

n
log |Tn

0 (P̃X)| −H(PX)
∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1
n

log |Tn
0 (P̃Y )| −H(PY )

∣∣∣∣ ≤ δ2n ∀n, (9)

where we have reused δ1n, δ2n with some abuse of notation. This proves the first property.
We now note that xn ∈ VX(An) = Tn

0 (P̃X) and yn ∈ Tn
0 (P̃Y |X |xn) implies a)(xn, yn) ∈ Tn

0 (P̃X,Y ) and
b)yn ∈ Tn

0 (P̃Y ) = VY (An) (Fact 1). This implies

degree(xn) ≥ |Tn
0 (P̃Y |X |xn)|,∀xn ∈ VX(An). (10)

From [1, Lemma 2.5], we know that

|Tn
0 (P̃Y |X)| ≥ 2n(H(P̃Y |X)−δ3n) (11)

where δ3n = |X ||Y| log(n+1)
n . In the above, H(P̃Y |X) stands for H(Y |X) computed under the joint distri-

bution P̃XY . Combining this with (10), we get a lower bound on the degree of each xn ∈ VX(An):

degree(xn) ≥ 2n(H(P̃Y |X)−δ3n) (12)

From (5) and (6), one can deduce that ∀x, y

|PY |X(y|x)− P̃Y |X(y|x)| < γn

for some γn → 0. Combining this with Fact 3, (12) can be written as

degree(xn) ≥ 2n(H(PY |X)−δ3n), (13)

where we reuse the symbol δ3n.
Further, (3) gives an upper bound on the degree of each vertex in Gn. Hence we have∣∣∣∣ 1

n
log θ

′n(xn)−H(Y |X)
∣∣∣∣ ≤ max(δ3n, εn) ∀xn ∈ VX(An) (14)

Similarly, we can bound the degree of each vertex in VY (An) as∣∣∣∣ 1
n

log θ
′n(yn)−H(X|Y )

∣∣∣∣ ≤ max(δ4n, εn) ∀yn ∈ VY (An) (15)

Finally, we can set δn = max(δ1n, δ2n, δ3n, δ4n, εn) to complete the proof of the proposition.
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IV. SUB-GRAPHS CONTAINED IN TYPICALITY GRAPHS

In this section, we study the subgraphs contained in a sequence of typicality graphs.

A. Subgraphs of general degree

Definition 4: A sequence of typicality graphs Gn(ε1n, ε2n, λn) is said to contain a sequence of subgraphs
Γn of rates (RX , RY , R′

X , R′
Y ) if for each n, if there exists a sequence δn → 0 such that

1) The vertex sets of the subgraphs have sizes (denoted ∆n
X and ∆n

Y ) that satisfy∣∣∣∣ 1
n

log ∆n
X −RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1
n

log ∆n
Y −RY

∣∣∣∣ ≤ δn, ∀n.

2) The degree of each vertex xn in VX(Γn), denoted ∆
′n(xn) satisfies∣∣∣∣ 1

n
log ∆

′n(xn)−R′
Y

∣∣∣∣ ≤ δn, ∀xn ∈ VX(Γn), ∀n.

3) The degree of each vertex yn in the VY (Γn), denoted ∆
′n(yn) satisfies∣∣∣∣ 1

n
log ∆

′n(yn)−R′
X

∣∣∣∣ ≤ δn, ∀yn ∈ VY (Γn), ∀n.

The following proposition gives a characterization of the rate-tuple of a sequence of subgraphs in the
sequence of typicality graphs of PXY .

Proposition 2: Let Gn(ε1n, ε2n, λn) be a sequence of typicality graphs of PXY . Define

R , {(RX , RY , R′
X , R′

Y ) : Gn(ε1n, ε2n, λn) contains subgraphs of rates (RX , RY , R′
X , R′

Y )}

Then

R ⊇ {(RX , RY , R′
X , R′

Y ) : RX ≤ H(X|U), RY ≤ H(Y |U), R′
X ≤ H(Y |XU), R′

Y ≤ H(Y |XU) for some PU |XY .}
(16)

Proof:
Definition of Γn. Consider any conditional distribution PU |XY . This fixes the joint distribution PXY U =

PXY PU |XY . We construct Γn as follows.

• For each n, approximate the values of PUXY to rational numbers with denominator n to obtain pmf
P̃UXY , respectively. Clearly P̃UXY is a valid joint type of length n and the maximum approximation
error is bounded by 1

n . Marginalizing the joint pmf, we also have ∀x, y

|PXY (x, y)− P̃XY (x, y)| < |U| · 1
n

<<
1√
n

< λn, (17)

|PX(x)− P̃X(x)| < |Y| · |U| · 1
n

<<
1√
n

< ε1n (18)

|PY (y)− P̃Y (y)| < |X | · |U| · 1
n

<<
1√
n

< ε2n, (19)

where the last inequality in each equation follows from the delta convention. Further ∀u

|PU (u)− P̃U (u)| < |Y| · |X | · 1
n

. (20)

• Pick any length n sequence un with type P̃U , i.e., un ∈ Tn
0 (P̃U ). Consider a bipartite graph Γn with

X-vertices consisting of all xn ∈ Tn
0 (P̃X|U |un), Y -vertices consisting of all yn ∈ Tn

0 (P̃Y |U |un). In other
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words, having fixed un, the X-vertex sets and Y -vertex sets consist of all length n sequences having
conditional type P̃X|U and P̃Y |U , respectively. Vertices xn ∈ VX(Γn) and yn ∈ VY (Γn) are connected
in Γn iff (xn, yn) ∈ Tn

0 (P̃XY |U |un), i.e., if they have the conditional joint type PXY |U given un.

Let us verify that Γn is a subgraph of Gn. From Fact 1, if un ∈ Tn
0 (P̃U ) and xn ∈ Tn

0 (P̃X|U |un), then
(xn, un) ∈ Tn

0 (P̃X,U ). Consequently, xn ∈ Tn
0 (P̃X). Similarly, all yn ∈ Tn

0 (P̃Y |U |un) belong to Tn
0 (P̃Y ). On

the same lines, if un ∈ Tn
0 (P̃U ) and (xn, yn) ∈ Tn

0 (P̃XY |U |un), then (xn, yn, un) ∈ Tn
0 (P̃X,Y,U ). This implies

(xn, yn) ∈ Tn
0 (P̃X,Y ). Further, from (17),(18) and (19), we know

Tn
0 (P̃X) ⊂ Tn

ε1n
(PX) = VX(Gn), Tn

0 (P̃Y ) ⊂ Tn
ε2n

(PY ) = VY (Gn) and

Tn
0 (P̃X,Y ) ⊂ Tn

λn
(PX,Y ).

Hence for all sufficiently large n, Γn is a subgraph of the typicality graph Gn.
Properties of Γn. From [1, Lemma 2.3], we have∣∣∣∣ 1

n
log |Tn

0 (P̃X|U |un)| −H(P̃X|U )
∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1
n

log |Tn
0 (P̃Y |U |un)| −H(P̃Y |U )

∣∣∣∣ ≤ δ2n ∀n, (21)

where δ1n = (n + 1)−|X||U| and δ2n = (n + 1)−|Y||U|. Using (18), (19) with (20), we know that P̃X|U , P̃Y |U

are close to PX|U , PY |U , respectively. Using Fact 3, we know that the entropies H(P̃X|U ),H(P̃Y |U ) must
close to H(PX|U ),H(PY |U ), respectively. Thus we can write (21) as (reusing δ1n, δ2n)∣∣∣∣ 1

n
log |Tn

0 (P̃X|U |un)| −H(PX|U )
∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1
n

log |Tn
0 (P̃Y |U |un)| −H(PY |U )

∣∣∣∣ ≤ δ2n ∀n, (22)

Thus, the vertex sets of Γn have rates RX = H(X|U) and RY = H(Y |U), as required.
Using Fact 1, for any xn ∈ VX(Γn), every yn ∈ Tn

0 (P̃Y |XU |xn, un) will satisfy a) (xn, yn) ∈ Tn
0 (P̃X,Y |U |un)

and b) yn ∈ Tn
0 (P̃Y |U |un). Hence

degree(xn) ≥ |Tn
0 (P̃Y |XU |xn, un)| ≥ 2n(H(P̃Y |XU )−δ3n), (23)

where δ3n = |X ||Y||U| log(n+1)
n . We can also upper bound the degree of xn by noting that xn ∈ Tn

0 (P̃X|U |un)
and (xn, yn) ∈ Tn

0 (P̃X,Y |U |un) implies yn ∈ Tn
0 (P̃Y |XU |xn, un). From [1, Lemma 2.5],

|Tn
0 (P̃Y |XU |xn, un)| ≤ 2nH(P̃Y |XU ).

Combining this with (23), we have∣∣∣∣ 1
n

log ∆
′n(xn)−H(P̃Y |XU )

∣∣∣∣ ≤ δ3n, ∀xn ∈ VX(Γn), ∀n. (24)

In a similar fashion, we can show that∣∣∣∣ 1
n

log ∆
′n(yn)−H(P̃X|Y U )

∣∣∣∣ ≤ δ4n, ∀yn ∈ VY (Γn), ∀n. (25)

Since the distributions P̃Y |XU and P̃X|Y U are close to PY |XU and PX|Y U , respectively, Fact 3 enables us
to replace H(P̃Y |XU ),H(P̃X|Y U ) with H(PY |XU ),H(PX|Y U ), respectively in the two preceding equations.

Taking δn = max(δ1n, δ2n, δ3n, δ4n), we have shown the existence of a sequence of subgraphs Γn with
rates (H(X|U),H(Y |U),H(Y |XU),H(X|Y U)). Since we can simply exclude edges from Γn to obtain
subgraphs with smaller rates, it is clear that all rate tuples characterized by

(RX , RY , R′
X , R′

Y ) : RX ≤ H(X|U), RY ≤ H(Y |U), R′
X ≤ H(Y |XU), R′

Y ≤ H(Y |XU)

October 6, 2010 DRAFT



8

are achievable for every conditional distribution PU |XY .

B. Nearly complete subgraphs

A complete bipartite graph is one in which each vertex of the first set is connected with every vertex
on the other set. We next consider a specific class of subgraphs, namely nearly complete subgraphs. For
this class of subgraphs, we have a converse result that fully characterizes the set of nearly complete
subgraphs present in any typicality graph.

Definition 5: A sequence of typicality graphs Gn(ε1n, ε2n, λn) is said to contain a sequence of nearly
complete subgraphs Γn(ε1n, ε2n, λn) of rates (RX , RY ) if for each n, if there exists a sequence δn → 0
such that

1) The sizes of the vertex sets of the subgraphs, denoted ∆n
X and ∆n

Y , satisfy∣∣∣∣ 1
n

log ∆n
X −RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1
n

log ∆n
Y −RY

∣∣∣∣ ≤ δn, ∀n.

2) The degree of each vertex xn in the X-set, denoted ∆
′n(xn) satisfies

1
n

log ∆
′n(xn) ≥ RY − δn, ∀xn ∈ VX(Γn), ∀n.

3) The degree of each vertex j in the Y -set, denoted ∆
′n
j satisfies for all n

1
n

log ∆
′n(yn) ≥ RX − δn, ∀yn ∈ VY (Γn), ∀n.

Proposition 3: Let Gn(ε1n, ε2n, λn) be a sequence of typicality graphs for PXY . Define

R , {(RX , RY ) : Gn(ε1n, ε2n, λn) contains nearly complete subgraphs of rates (RX , RY )}

Then

1)
R ⊇ {(RX , RY ) : RX ≤ H(X|U), RY ≤ H(Y |U) for some PU |XY s.t. X − U − Y }4 (26)

2) For all sequences of nearly complete subgraphs of Gn such that the sequence δn (in Definition 5)
converges to 0 faster than 1/ log n (more precisely, δn = o( 1

log n ) or limn→∞ δn log n = 0), the rates of
the subgraph (RX , RY ) satisfy

RX ≤ H(X|U), RY ≤ H(Y |U) for some PU |XY s.t. X − U − Y

Proof: The first part of the proposition follows directly from Proposition 2 by choosing PU |XY such
that X −U − Y form a Markov chain. We now prove the converse under the stated assumption that the
sequence δn satisfies limn→∞ δn log n = 0.

4X, U, Y form a Markov chain, in that order.
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Suppose that a sequence of typicality graphs Gn(ε1n, ε2n, λn) contains nearly complete subgraphs Γn

of rates RX , RY . The total number of edges in Γn can be lower bounded as

|Edges(Γn)| ≥ ∆n
X · minimum degree of a vertex in VX(Γn)

≥ ∆n
X · 2n(RY −δn)

≥ ∆n
X · 2n(RY −δn)∆n

Y · 2−n(RY +δn)

= ∆n
X ·∆n

Y · 2−2nδn .

(27)

Each of these edges represent a pair (xn, yn) that is jointly λn-typical with respect to the distribution
PXY . In other words, each of these pairs (xn, yn) belongs to a joint type[1] that is ‘close’ to PXY . Since
the number of joint types of a pair of sequences of length n is at most (n + 1)|X ||Y|, the number of edges
belonging to the dominant joint type, say P̄XY satisfies

|Edges(Γn) having joint type P̄XY | ≥
∆n

X ·∆n
Y 2−2nδn

(n + 1)|X ||Y|
. (28)

Define a subgraph An of Γn consisting only of the edges having joint type P̄XY . A word about the
notation used in the sequel: We will use i, j to index the vertices in VX(Γn), VY (Γn), respectively. Thus
i ∈ {1, . . . ,∆n

X} and j ∈ {1, . . . ,∆n
Y }. The actual sequences corresponding to these vertices will be denoted

xn(i), yn(j) etc. Using this notation,

An , {(i, j) : i ∈ VX(Γn), j ∈ VY (Γn) s.t. (xn(i), yn(j)) has joint type P̄XY (29)

From (28),

|An| ≥
∆n

X ·∆n
Y 2−2nδn

(n + 1)|X ||Y|
(30)

We will prove the converse result using a series of lemmas concerning An. Some of the lemmas are
similar to those required to prove in [4, Theorem 1]. We only sketch the proofs of such lemmas, referring
the reader to [4] for details.

Define random variables X ′n, Y ′n with pmf

Pr((X ′n, Y ′n) = (xn(i), yn(j)) =
1

|An|
, if (i, j) ∈ An. (31)

Lemma 1: I(X ′n;Y ′n) ≤ 2nδn + |X ||Y| log(n + 1).
Proof: Follow steps similar to the proof of [4, Lemma 1], using (30) to lower bound the size of An.

The next lemma is Ahlswede’s version of the ‘wringing’ technique. Roughly speaking, if it is known
that the mutual information between two random sequences is small, then the lemma gives an upper
bound on the per-letter mutual information terms (conditioned on some values).

Lemma 2: [8] Let An, Bn be RV’s with values in An, Bn resp. and assume that

I(An;Bn) ≤ σ

Then, for any 0 < δ < σ there exist t1, t2, ..., tk ∈ {1, ..., n} where 0 ≤ k < 2σ
δ such that for some

āt1 , b̄t1 , āt2 , b̄t2 , ..., ātk
, b̄tk

I(At;Bt|At1 = āt1 , Bt1 = b̄t1 , ..., Atk
= ātk

, Btk
= b̄tk

) ≤ δ for t = 1, 2, ..., n (32)
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and

Pr(At1 = āt1 , Bt1 = b̄t1 , ..., Atk
= ātk

, Btk
= b̄tk

) ≥ (
δ

|A||B|(2σ − δ)
)k. (33)

In our case, we will apply Lemma 2 to random variables X ′n and Y ′n. Lemma 1 indicates σ = 2nδn +
|X ||Y| log(n + 1), and δ shall be specified later. Hence we have that for some

k ≤ 2σ

δ
=

2(nδn + |X ||Y| log(n + 1))
δ

,

there exist x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk
, ȳtk

such that

I(X ′
t;Y

′
t |X ′

t1 = x̄t1 , Y
′
t1 = ȳt1 , ..., X

′
tk

= x̄tk
, Y ′

tk
= ȳtk

) ≤ δ for t = 1, 2, ..., n. (34)

We now define a subgraph of An consisting of all edges (X ′n, Y ′n) that have

X ′
t1 = x̄t1 , Y

′
t1 = ȳt1 , ..., X

′
tk

= x̄tk
, Y ′

tk
= ȳtk

The subgraph denoted as Ān is given by: 5

Ān , {(i, j) ∈ An : X ′
t1(i) = x̄t1 , Y

′
t1(j) = ȳt1 , ..., X

′
tk

(i) = x̄tk
, Y ′

tk
(j) = ȳtk

.} (35)

On the same lines as [4, Lemma 3], we have

|Ān| ≥ (
δ

|X ||Y|(2σ − δ)
)k|An|. (36)

Define random variables X̄n, Ȳ n on Xn resp. Yn by

Pr((X̄n, Ȳ n) = (xn(i), yn(j)) =
1

|Ān|
if (i, j) ∈ Ān. (37)

If we denote X̄n = (X̄1, ..., X̄n), Y n = (Ȳ1, ..., Ȳn), the Fano-distribution of the graph Ān induces a
distribution PX̄t,Ȳt

on the random variables X̄t, Ȳt, t = 1, . . . , n. One can show that

P (X̄t = x, Ȳt = y) = P (X ′
t = x, Ȳ ′

t = y|X ′
t1(i) = x̄t1 , Y

′
t1(j) = ȳt1 , ..., X

′
tk

(i) = x̄tk
, Y ′

tk
(j) = ȳtk

), ∀t. (38)

Using (38) in Lemma 2, we get the bound I(X̄t; Ȳt) < δ. Applying Pinsker’s inequality for I-divergences
[9], we have ∑

x,y

|Pr(X̄t = x, Ȳt = y)− Pr(X̄t = x)Pr(Ȳt = y)| ≤ 2δ1/2, 1 ≤ t ≤ n. (39)

Also define

C̄(i) = {(i, j) : (i, j) ∈ Ān, 1 ≤ j ≤ ∆n
Y }. (40a)

B̄(j) = {(i, j) : (i, j) ∈ Ān, 1 ≤ i ≤ ∆n
X}. (40b)

We are now ready to present the final lemma required to complete the proof of the converse.

5The heirarchy of subgraphs is Gn ⊃ Γn ⊃ An ⊃ Ān
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Lemma 3:

RX ≤ 1
n

n∑
t=1

H(X̄t|Ȳt) + δ1n

RY ≤ 1
n

n∑
t=1

H(Ȳt|X̄t) + δ2n

RX + RY ≤ 1
n

n∑
t=1

H(X̄tȲt) + +δ3n

for some δ1n, δ2n, δ3n → 0 and the distributions of the RV’s are determined by the Fano-distribution on
the codewords {(xn(i), yn(j)) : (i, j) ∈ Ān}.

Proof: We use a strong converse result for non-stationary discrete memoryless channels, found in [10].
Consider a DMC with input At and output Bt (t = 1, . . . , n), with average error probability λ(0 ≤ λ < 1).
The result states that the size of the message set M is upper-bounded as

log M <
n∑

t=1

I(At;Bt) +
3

1− λ
|A|n1/2, (41)

where the distributions of the RV’s are determined by the Fano-distribution on the codewords.
We apply the above result to three noiseless DMCs (Bt = At, λ = 0) as follows. Fix Ȳ n = yn(j) for

some j ∈ Ān and let the input be X̄t, t = 1, · · · , n. Then, from (41) we have

log |B̄(j)| ≤
n∑

t=1

H(X̄t|Ȳt = yt(j)) + 3|X |n1/2. (42)

Similarly,

log |C̄(i)| ≤
n∑

t=1

H(Ȳt|X̄t = xt(i)) + 3|Y|n1/2, (43)

log |Ān| ≤
n∑

t=1

H(X̄tȲt) + 3|X ||Y|n1/2. (44)

Noting that Pr(Ȳt = y) = |Ā|−1
∑

(i,j)∈Ān
1{yt(j),y}, we can sum both sides of (42) over all (i, j) ∈ Ān to

obtain

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| ≤
n∑

t=1

H(X̄t|Ȳt) + 3|X |n1/2. (45)

Define

B∗ ,
2−2nδn

n

∆n
X

(n + 1)|X ||Y|
(

δ

|X ||Y|(2σ − δ)
)k. (46)

October 6, 2010 DRAFT



12

Then,

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| = |Ān|−1
∑

j

|B̄(j)| log |B̄(j)|

≥ |Ān|−1
∑

j:|B̄(j)|≥B∗

|B̄(j)| log |B̄(j)|

≥ |Ān|−1 log(B∗)
∑

j:|B̄(j)|≥B∗

|B̄(j)|

≥ |Ān|−1 log(B∗)(|Ān| −∆n
Y B∗). (47)

Combining (36), (30) and the definition of B∗, we also have

∆n
Y B∗ ≤ 1

n
|Ān|. (48)

Using this in (47), we have

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| ≥ |Ān|−1 log(B∗)(|Ān| −
1
n
|Ān|)

= (1− 1
n

) log(
2−2nδn

n

∆n
X

(n + 1)|X ||Y|
(

δ

|X ||Y|(2σ − δ)
)k). (49)

Using (45) in the above we have

log ∆n
X ≤ n

n− 1
(

n∑
t=1

H(X̄t|Ȳt) + 3|X |n1/2) + 2nδn + log n + |X ||Y| log(n + 1) + k log(
|X ||Y|2σ

δ
) (50)

Analogously,

log ∆n
Y ≤ n

n− 1
(

n∑
t=1

H(Ȳt|X̄t) + 3|Y|n1/2) + 2nδn + log n + |X ||Y| log(n + 1) + k log(
|X ||Y|2σ

δ
) (51)

Next, we find an upper bound for log ∆n
X∆n

Y . From (36), we get

log |Ān| ≥ log |An|+ k log(
δ

|X ||Y|(2σ − δ)
)

≥ log |An|+ k log(
δ

|X ||Y|2σ
)

= log |An| − k log(
2σ

δ
)− k log(|X ||Y|)

(a)

≥ log(∆n
X∆n

Y )− |X ||Y| log(n + 1)− 2nδn − k log(
|X ||Y|2σ

δ
), (52)

where (a) is obtained by using (30). Using (44), the above inequality becomes

log(∆n
X∆n

Y ) ≤
n∑

t=1

H(X̄tȲt) + 3|X ||Y|n1/2 + |X ||Y| log(n + 1) + 2nδn + k log(
2σ

δ
) + k log(|X ||Y|) (53)
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Using the lower bounds on the sizes of ∆X ,∆Y from 5, we can rewrite (50),(51) and (53) as

RX − δn ≤
1

n− 1

n∑
t=1

H(X̄t|Ȳt) + 3|X | n1/2

n− 1
+ 2δn +

log n + |X ||Y| log(n + 1)
n

+
k

n
log(

2|X ||Y|σ
δ

) (54)

RY − δn ≤
1

n− 1

n∑
t=1

H(Ȳt|X̄t) + 3|Y| n1/2

n− 1
+ 2δn +

log n + |X ||Y| log(n + 1)
n

+
k

n
log(

2|X ||Y|σ
δ

) (55)

RX + RY − 2δn ≤
1
n

n∑
t=1

H(X̄tȲt) + 3|X ||Y| n1/2

n− 1
+ |X ||Y| log(n + 1)

n
+ 2δn +

k

n
log(

2|X ||Y|σ
δ

) (56)

For our proof we would like all the terms on the right hand side of the above equations (except the
entropies) to converge to 0 as n →∞. This will happen if

k

n
log(

2σ

δ
) → 0.

Recall from Lemma 1 that σ = 2nδn + |X ||Y| log(n + 1) and k < 2σ
δ . Hence we need to choose δ such that

2σ

nδ
log(

2σ

δ
) ∼

δn + log n
n

δ
(log(nδn + log n)− log δ) → 0. (57)

¿From our assumption in the beginning, we have δn log n → 0. Set

δ = (δn log n)1/2 (58)

We see that asymptotically, (57) becomes

δ
1/2
n

(log n)1/2

[
log(nδn + log n)− log(δ1/2

n )− log log n
]

(59)

We separately consider each of the terms in the equation above

1) If log(nδn + log n) ∼ log(nδn) for large n, then

δ
1/2
n

(log n)1/2
log(nδn + log n) ∼ δ

1/2
n

(log n)1/2
log(nδn) =

δ
1/2
n

(log n)1/2
[log n + log δn]

= (δn log n)1/2 +
δ
1/2
n log δn

(log n)1/2
→ 0, since δn → 0.

(60)

If log(nδn + log n) ∼ log(log n) for large n, then

δ
1/2
n

(log n)1/2
log(nδn + log n) ∼ δ

1/2
n

(log n)1/2
log(log n) → 0. (61)

2) δ1/2
n

(log n)1/2 log(δ1/2
n ) → 0 because x log x → 0 when x → 0.

3) δ1/2
n

(log n)1/2 log log n = (δn log n)1/2 log log n
log n → 0.

Hence the term in (59) converges to 0 as n →∞, completing the proof of the lemma.
We can rewrite Lemma 3 using new variables X̄, Ȳ , Q, where Q = t ∈ {1, 2, ..., n} with probability 1

n

and PX̄,Ȳ |Q=t = PX̄t,Ȳt
. So we now have (for all sufficiently large n),

RX ≤ H(X̄|Ȳ , Q) + δ1n (62)

RY ≤ H(Ȳ |X̄,Q) + δ2n (63)

RX + RY ≤ H(X̄, Ȳ |Q) + δ3n, (64)
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for some δ1n, δ2n, δ3n → 0.
Finally, using (39), we also have

|Pr(X̄ = x, Ȳ = y|Q = t)− Pr(X̄ = x|Q = t)Pr(Ȳ = y|Q = t)|

= |Pr(X̄t = x, Ȳt = y)− Pr(X̄t = x)Pr(Ȳt = y)|

≤ 2δ1/2 = 2(δn log n)1/4 → 0 as n →∞.

(65)

In other words, for all t, X̄t, Ȳt are almost independent for large n. Consequently, using the continuity of
mutual information with respect to the joint distribution, Lemma 3 holds with for any joint distribution
PQPX̄|QPȲ |Q such that the marginal on (X̄, Ȳ ) is PX̄,Ȳ . Recall that PX̄,Ȳ is the dominant joint type that
is λn-close to PX,Y . Using suitable continuity arguments, we can now argue that Lemma 3 holds with
for any joint distribution PQPX|QPY |Q such that the marginal on (X, Y ) is PX,Y , completing the proof
of the converse.

C. Nearly Empty Subgraphs

So far, we have discussed properties of subgraphs of the typicality graph Gn(ε1n, ε2n, λn) such as
the containment of nearly complete subgraphs and subgraphs of general degree. Now, we turn our
attention to the presence of nearly empty subgraphs in the typicality graph. Our approach towards
this problem differs slightly from the approach we took in Sections IV-A and IV-B. While in these
sections we characterized the subgraphs based on the degrees of their vertices, in this section we would
characterize nearly empty subgraphs by the total number of edges present in such graphs. To effect this
characterization, we take a different approach than the one used in previous sections and analyze the
probability that a randomly chosen subgraph of the typicality graph has far fewer edges than expected.
In particular, we focus attention on the case when the random subgraph has no edges.

Consider a pair (X, Y ) of discrete memoryless stationary correlated sources with finite alphabets X
and Y respectively. Suppose we sample 2nR1 sequences from the typical set Tn

ε1n
(X) of X independently

with replacement and similarly sample 2nR2 sequences from the typical set Tn
ε2n

(Y ) of Y . The underlying
typicality graph Gn(ε1n, ε2n, λn) induces a bipartite graph on these 2nR1 + 2nR2 sequences. We provide
a characterization of the probability that this graph is sparser than expected. This characterization is
obtained through the use of a version of Suen’s inequalities [11] and the Lovasz local lemma [12] listed
below.

Lemma 4: [11] Let Ii ∈ Be(pi), i ∈ I be a family of Bernoulli random variables. Their dependency graph
L is formed in the following manner. Denote the random variable Ii by a vertex i and join vertices i and
j by an edge if the corresponding random variables are dependent. Let X =

∑
i E(Ii) and Γ = E(X) =∑

i pi. Moreover, write i ∼ j if (i, j) is an edge in the dependency graph L and let Θ = 1
2

∑
i

∑
j∼i E(IiIj)

and θ = maxi

∑
j∼i pj . Then, Suen’s inequalities state that for any 0 ≤ a ≤ 1,

P (X ≤ aΓ) ≤ exp
{
−min

(
(1− a)2

Γ2

8Θ + 2Γ
, (1− a)

Γ
6θ

)}
(66)

Putting a = 0, this can be further tightened to

P (X = 0) ≤ exp
{
−min

(
Γ2

8Θ
,
Γ
2

,
Γ
6θ

)}
(67)

Lemma 5: [12] Let L be the dependency graph for events ε1, . . . , εn in a probability space and let E(L)
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be the edge set of L. Suppose there exists xi ∈ [0, 1], 1 ≤ i ≤ n such that

P (εi) ≤ xi

∏
(i,j)∈E(L)

(1− xj). (68)

Then, we have

P (∩n
i=1εi) ≥

n∏
i=1

(1− xi). (69)

Another version of the local lemma is as given below. Let φ(x), 0 ≤ x ≤ e−1 be the smallest root of the
equation φ(x) = exφ(x). With definitions of Γ and θ as in Lemma 4 and defining τ , maxi P (εi), we have

P (∩n
i=1εi) ≥ exp {−Γφ(θ + τ)} (70)

With these preliminaries, we are ready to state the main result of this section.
Proposition 4: Suppose X and Y are correlated finite alphabet memoryless random variables with joint

distribution p(x, y). Let ε1n, ε2n, λn satisfy the ‘delta convention’ and R1, R2 be any positive real numbers
such that R1 + R2 > I(X;Y ). Let CX be a collection of 2nR1 sequences picked independently and with
replacement from Tn

ε1n
(X) and let CY be defined similarly. Let U be the cardinality of the set

U , {(xn, yn) ∈ CX × CY : (xn, yn) ∈ Tn
λn

(X, Y )} (71)

Assume, without loss of generality that R1 ≥ R2. Then, for any γ ≥ 0, we have

lim
n→∞

1
n

log log
[
P

(
E(U)− U

E(U)
≥ e−nγ

)]−1

≥

{
R1 + R2 − I(X;Y )− γ if R1 < I(X;Y )

R2 − γ if R1 ≥ I(X;Y )
(72)

Setting γ = 0 in the above equation gives us

lim
n→∞

1
n

log log
1

P(U = 0)
≥ min (R2, R1 + R2 − I(X;Y )) (73)

This inequality holds with equality when R2 ≤ R1 ≤ I(X;Y ).
Proof: Let Xn(i) and Y n(j) denote the ith and jth codewords in the random codebooks CX and CY

respectively. For 1 ≤ i ≤ 2nR1 and 1 ≤ j ≤ 2nR2 , define the indicator random variables

Uij ,

{
1 if (Xn(i), Y n(j)) ∈ Tn

λn
(X, Y )

0 else
(74)

The cardinality of the set U is then

U =
2nR1∑
i=1

2nR2∑
j=1

Uij (75)

We derive upper bounds on the probability of the lower tail of U using Suen’s inequality. To do this, we
first set up the dependency graph of the indicator random variables Uij . The vertex set of the graph is
indexed by the ordered pair (i, j), 1 ≤ i ≤ 2nR1 , 1 ≤ j ≤ 2nR2 . From the nature of the random experiment,
it is clear that the indicator random variables Uij and Ui′j′ are independent if and only if i 6= i′ and
j 6= j′. Thus, each vertex (i, j) is connected to exactly 2nR1 + 2nR2 − 2 vertices of the form (i, j′), j′ 6= j or
(i′, j), i′ 6= i. If vertices (i, j) and (k, l) are connected, we denote it by (i, j) ∼ (k, l).

In order to estimate Γ,Θ and θ as defined in Lemma 4, define the following quantities. Let αij ,

P(Uij = 1) and β{ij}{kl} , E(UijUkl) where (i, j) ∼ (k, l). Using Facts 1 and 2, uniform bounds can be
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derived for these quantities as

α , 2−n(I(X;Y )+ε3n) ≤ αij ≤ 2−n(I(X;Y )−ε3n) , α
′

(76)

where ε3n is a continuous positive function of ε1n, ε2n and λn that goes to 0 as n → ∞. Similarly, a
uniform bound on β{ij}{kl} can be derived as

2−2n(I(X;Y )+2ε4n) ≤ β{ij}{kl} ≤ 2−2n(I(X;Y )−2ε4n) , β (77)

where ε4n is a continuous positive function of ε1n, ε2n and λn that goes to 0 as n →∞.
The quantities involved in Suen’s inequality can now be estimated.

Γ , E(U) ≥ 2n(R1+R2)α (78)

Θ ,
1
2

∑
(i,j)

∑
(k,l)∼(i,j)

E(UijUkl) ≤
1
2
2n(R1+R2)(2nR1 + 2nR2 − 2)β (79)

θ , max
(i,j)

∑
(k,l)∼(i,j)

E(Ukl) ≤ (2nR1 + 2nR2 − 2)α
′

(80)

Substituting these bounds into equations (67) and (66) proves the claims made in equations (72) and (73)
of Proposition 4.

A lower bound to the probability of the induced random subgraph being empty can be derived by
employing the Lovasz local lemma on the 2n(R1+R2) events {Uij = 1}, 1 ≤ i ≤ 2nR1 , 1 ≤ j ≤ 2nR2 .
Symmetry considerations imply that all xi can be set identically to x in Lemma 5. Then the local lemma
states that if there exists x ∈ [0, 1] such that α ≤ P (Uij = 1) ≤ x(1 − x)(2

nR1+2nR2−2), then P (U = 0) ≥
(1 − x)2

n(R1+R2)
. It is easy to verify that for such an x to exist, we need R2 ≤ R1 < I(X;Y ) and if so,

x = 2−nR1 satisfies the condition. Therefore, we have

P (U = 0) ≥ exp
(
−

(
2nR2 + 1

))
R2 ≤ R1 < I(X;Y ) (81)

We can derive a similar bound using the second version of the local lemma given in Lemma 5. While
Γ and θ are same as estimated earlier, τ = max(i,j) P (Uij = 1) is upper bounded by α

′
as defined in

equation (76). Hence,
P (U = 0) ≥ exp (−Γφ(θ + τ)) . (82)

Under the same assumption R2 ≤ R1 < I(X;Y ), θ + τ ≤ (2nR1 + 2nR2 − 2)α
′ → 0 as n → ∞ and hence

φ(θ + τ) → 1. Combining equations (81) and (82), taking logarithms and letting n →∞, we get

lim
n→∞

1
n

log log
1

P (U = 0)
≤ min (R2, R1 + R2 − I(X;Y )) . (83)

Comparing this to equation (73) shows that this expression is asymptotically tight in the regime R2 ≤
R1 < I(X;Y ).
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