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Multi-Species Multi-Reaction Model: The-
ory and Applications

Learning Objectives:

• Derive OCV model of MSMR

• Application of MSMR to aging

Key Concepts:

Gibbs Free Energy as Maximum Non-expansion work, Chemical Po-
tential, Open-Circuit Voltage, Activity Coefficient, Multi-Species Multi-
Reactions, dQdV, dVdQ
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Before diving into the Multi-Species Multi-Reaction model, we need
to derive several theorems.

The Maximum Non-Expansion Work

Define Gibbs free energy as

G = U − TS + pV

Gibbs free energy has a clear meaning, which is the maximum non-
expansion work under constant pressure constant temperature (isobaric
& isothermo) condition.

The justification is as follows:

dG = dU − d(TS) + d(pV )

= dW + dQ − TdS − SdT + d(pV )
(1)

First equality is because of the definition of Gibbs free energy G =

U − TS + pV . The second equality is the first law of thermodynamics
dU = dW + dQ. Because of constant temperature, dT = 0. Now, if the
whole process is reversible, we have dW = dWrev and dQ = dQrev =

TdS, so
dG = dW + d(pV ) (2)

The work dW can be separated into 2 parts: expansion work −pdV ,
and non-expansion work dWne (for example electric work, etc.): dW =

dWne + (−pdV ). Therefore

dG = dWne + (−pdV ) + d(pV )

= dWne − pdV + pdV + V dp
(3)

Under constant pressure, dp = 0, therefore we have dG = dWne.

Gibbs–Duhem equation

We have

dG = V dp − SdT + µ1dn1 + µ2dn2 + ...µndnn

And by the definition of chemical potential of species i µi =
(

∂G
∂ni

)
P ,T ,nj ̸=i

,

we have G =
∑

j µjnj , therefore

dG =
∑

j

µjdnj + njdµj

The two equations must be equal, therefore we have

V dp − SdT =
∑

j

njdµj

At constant pressure and constant temperature, this becomes

0 =
∑

j

njdµj
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Chemical Potential As A Function of Pressure

We have

dG = dU − d(TS) + d(pV ) = TdS − pdV − TdS − SdT + pdV + V dp

= V dp − SdT

(4)
Under constant temperature, i.e. dT = 0, we have dG = V dp. Integrate
to have

G(p1) = G(p0) +

∫ p1

p0

V dp

For ideal gas system, we have pV = nRT , plug-in to have

G(p1) = G(p0) + nRT

∫ p1

p0

1
p

dp = G(p0) + nRT log p1
p0

i.e. if we define p−◦ = p0 , then

G(p) = G(p−◦ ) + nRT log p

p−◦

For a pure system, the molar gibbs free energy is the chemical potential,
therefore we have

µ(p) = µ(p−◦ ) + RT log p

p−◦

Chemical Potential of Liquids

Figure 1: At equilibrium, the chemi-
cal potential of the gaseous form of a
substance A is equal to the chemical
potential of its condensed phase. The
equality is preserved if a solute is also
present. Because the chemical poten-
tial of A in the vapour depends on its
partial vapour pressure, it follows that
the chemical potential of liquid A can
be related to its partial vapour pres-
sure.

Denote the pressure of a pure substance A as p∗
A, the chemical potential

of pure A (nothing else presents in the system) as µ∗
A.

Now, we assume pure A is contained in a container in two differ-
ent phases, the liquid phase and gas phase, as Figure 11 shows. The

1 Peter Atkins, Peter William Atkins,
and Julio de Paula. Atkins’ physi-
cal chemistry. Oxford university press,
2014

equilibrium enforces that

µ∗
A,liq = µ∗

A,gas = µ−◦
A + RT log

p∗
A

p−◦ (5)

We use the superscript * to denote pure substance.
Now, assume that there’s another substance B coming in as a solute

into A. The chemical potential of A at gas phase changes as a conse-
quence of B coming in:

µA,liq = µA,gas = µ−◦
A + RT log pA

p−◦ (6)

Using Equation 5 to eliminate µ−◦
A:

µ−◦
A = µ∗

A,gas − RT log
p∗

A

p−◦

Plug-in to Equation 6:

µA,liq = µA,gas = µ∗
A,gas + RT log pA

p∗
A
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Now, according to Raoult’s law, for an ideal solution, we have the
ratio of the partial vapour pressure of each component to its vapour
pressure as a pure liquid is equal to the mole fraction of itself in the
liquid phase (solution):

pA

p∗
A

= xA (7)

Therefore we have for a substance A in solution, we have its chemical
potential to be

µA = µ∗
A + RT log xA (8)

Usually, for a real solution, we have instead

µA = µ∗
A + RT log aA (9)

where aA is the activity of substance A to account for the non-ideal
behavior of real solution compared with ideal solution. The non-ideality
is essentially the interaction between molecules, which is neglected in
ideal solution.

Change of Gibbs Free Energy of a Reaction

Define the change of a species i in a chemical reaction to be νi (i.e. the
stoichiometry number). For example, for the intecalation reaction

A + 2 B −−⇀↽−− 3 C + 4 D (10)

We can re-write it as

3 C + 4 D − A − 2 B−−0 (11)

Therefore νA = −1, νB = −2, νC = 3, νD = 4.
Now, for a reaction that moved along the reaction coordinate for an

infinitely small step, we have the change of Gibbs free energy to be

∆Gr =
∑

i

νiµi

=
∑

i

νi(µ
∗
i + RT log xi)

=
∑

i

νiµ
∗
i + RT log

∏
i

xνi
i

(12)

Define ∆Gr,0 =
∑

i νiµ
∗
i , Q =

∏
i xνi

i , we have

∆Gr = ∆Gr,0 + RT log Q (13)

Nernst Equation

Now, we want to relate the maximum non-expansion work of a system
outputs to concentration (mole fraction) of reaction species. Let’s say
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we have a battery. According to the meaning of Gibbs free energy to be
the maximum non-expansion work (proved in earlier sections), we have

∆Gr = −nFU

where U is the open-circuit voltage, n is the number of electron trans-
ferred. According to Equation 13, we have

U = − 1
nF

∆Gr

= −
∆Gr,0

nF
− RT

nF
log Q

(14)

Define U0 = − ∆Gr,0
nF , we have the Nernst Equation as

U = U0 − RT

nF
log Q (15)

For the intercalation reaction Li+ + HM−−−−Li−HM, we have Q =
cLi−HM

cHM
, therefore we have

U = U0 +
RT

F
log cHM

cLi−HM
= U0 +

RT

F
log 1 − x

x

where x is the filling fraction of Li.

Description of OCV in the framework of multi-species
multi-reaction

When deriving

U = U0 +
RT

F
log cHM

cLi−HM
= U0 +

RT

F
log 1 − x

x

we assumed ideality, i.e. non-interaction between atoms. To account
for the non-ideality (which usually has great impact), we need to use
activity coefficient instead of concentration or molar fraction:

U = U0 +
RT

F
log aHM

aLi−HM

Verbugge et al 2, in their Multi-species multi-reaction (MSMR) model, 2 Mark Verbrugge, Daniel Baker, Brian
Koch, Xingcheng Xiao, and Wentian
Gu. Thermodynamic model for substi-
tutional materials: application to lithi-
ated graphite, spinel manganese ox-
ide, iron phosphate, and layered nickel-
manganese-cobalt oxide. Journal of
The Electrochemical Society, 164(11):
E3243, 2017

suggested that instead of using activity, we can instead use an adjustable
parameter ω to account for the non-ideality and still use the mole frac-
tion,

U = U0 + ω
RT

F
log cHM

cLi−HM
= U0 + ω

RT

F
log 1 − x

x

Correspondingly, we can also write Li filling fraction x as a function of
U :

x =
1

1 + exp F
ωRT (U − U0)
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The key insight of MSMR is that for an intercalation reac-
tion of battery electrodes Li + HM = Li − HM , it is assumed
that there are n different collections of Li-intercalation sites
(i.e. the so-called "Multi-species") in the host material (elec-
trode) HM , and for each collections of sites, the reaction (i.e.
the so-called "Multi-reaction") is

Li + HMj = Li − HMj

for each of these n reactions, according to the previous derivation, we
have

U = U0 +
RT

F
log

aHMj

aLi−HMj

, ∀j ∈ [1, 2, ...n]

and as Verbugge et al suggested, instead of using activity of HMj and
Li − HMj , we use ωj instead to quantify the non-ideality of reaction j:

Uj = U0j + ωj
RT

F
log

cHMj

cLi−HMj

= U0j + ωj
RT

F
log

Xj − xj

xj

where xj means the filling fraction of Li within the j-th collection of sites,
Xj is the fraction of j-th collection of sites within all Li sites. Obviously
0 ≤ xj ≤ Xj , and

∑
j Xj = 1. The total filling fraction of the host

material HM , i.e. LixHM , is given by x =
∑

xj . Equilibrium enforces

Uj = U , ∀j ∈ [1, 2, ...n]

. Therefore for the whole electrode, we have

x =
∑

xj =
∑

j

Xj

1 + exp F
ωjRT (U − U0j)

Instead of expressing OCV U as a function of x, the MSMR OCV model
expresses x as a function of U .

Figure 2: Open-circuit potential for the
various reactions j of lithiated graphite.
Reactions 1, 2, and 5 have two-phase
character and substantially flat ocv

Figure 3: Experimental measured OCV
value of graphite. There are 3 plateaus
at 0.214V, 0.128V and 0.088V respec-
tively.

A beauty of this OCV expression is that it captures the multi-phase
behavior of phase-changing electrode materials through the multi species
and multiple collection of sites. As an example, let us look at the MSMR
OCV model for graphite, shown in Figure 2. The model parameters are
shown in Table 1.

j U0j(V ) Xj ωj

1 0.08843 0.43336 0.08611
2 0.12799 0.23963 0.08009
3 0.14331 0.15018 0.72469
4 0.16984 0.05462 2.53277
5 0.21446 0.06744 0.09470
6 0.36325 0.05476 5.97354

Table 1: MSMR OCV Model parame-
ters for graphite.

The open-circuit potential for the 6 reactions j of lithiated graphite are
drawn in figure 2, and the experimental measured OCV value of graphite
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is shown in figure 3. Note that reaction 1, 2, and 5 (all of which have
ωj value less than 0.1) have flat OCV curves, which correspond to the
3 miscibility gaps of lithiated graphite at 0.214V, 0.128V and 0.088V
respectively. Other reactions show more variation in xj(U), consistent
with single-phase behavior.

The MSMR model is implemented in open-sourced software PyBaMM.
3 3 PyBaMM Develop Team.

Multi-Species Multi-Reaction
model. https://github.com/
pybamm-team/PyBaMM/blob/
d88b7ddcfa6f563100d92c11cdc97b50f261629b/
docs/source/examples/notebooks/
models/MSMR.ipynb#L38. Accessed:
2023-11-15

The Thermodynamic Origin of ωj

ωj as activity

Nernst equation states that

Uj = U0j +
RT

F
log

aHMj

aLi−HMj

The MSMR OCV model states that

Uj = U0j + ωj
RT

F
log

xHMj

xLi−HMj

= U0j +
RT

F
log

x
ωj

HMj

x
ωj

Li−HMj

Therefore we have
aHMj

= x
ωj

HMj

aLi−HMj
= x

ωj

Li−HMj

As stated in the previous section, ωj is another way to quantify the
non-ideality, besides activity.

If we define activity coefficient γj as aj = γjxj , then we have

γHMj
= x

ωj−1
HMj

γLi−HMj
= x

ωj−1
Li−HMj

Therefore, the following expressions of chemical potential of species j
are equal under the MSMR framework:

µj = µj0 + RT log aj = µj0 + ωjRT log xj

Single or Double Phase

For each collection of sites, we can write the Gibbs free energy for the
collection of site as
Gj = xjµLi−HMj

+ (Xj − xj)µHMj

= xj(µ
0
Li−HMj

+ RT log aLi−HMj
) + (Xj − xj)(µ

0
HMj

+ RT log aHMj
)

= xj(µ
0
Li−HMj

+ ωjRT log xj) + (Xj − xj)(µ
0
HMj

+ ωjRT log(Xj − xj))

= xj(ωjµ0
Li−HMj

+ ωjRT log xj) + (Xj − xj)(ωjµ0
HMj

+ ωjRT log(Xj − xj)) + (1 − ωj)(xjµ0
Li−HMj

+ (Xj − xjµ0
HMj

)

= ωjGideal
j + (1 − ωj)(xjµ0

Li−HMj
+ (Xj − xj)µ

0
HMj

)

(16)

https://github.com/pybamm-team/PyBaMM/blob/d88b7ddcfa6f563100d92c11cdc97b50f261629b/docs/source/examples/notebooks/models/MSMR.ipynb##L38
https://github.com/pybamm-team/PyBaMM/blob/d88b7ddcfa6f563100d92c11cdc97b50f261629b/docs/source/examples/notebooks/models/MSMR.ipynb##L38
https://github.com/pybamm-team/PyBaMM/blob/d88b7ddcfa6f563100d92c11cdc97b50f261629b/docs/source/examples/notebooks/models/MSMR.ipynb##L38
https://github.com/pybamm-team/PyBaMM/blob/d88b7ddcfa6f563100d92c11cdc97b50f261629b/docs/source/examples/notebooks/models/MSMR.ipynb##L38
https://github.com/pybamm-team/PyBaMM/blob/d88b7ddcfa6f563100d92c11cdc97b50f261629b/docs/source/examples/notebooks/models/MSMR.ipynb##L38
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When ωj = 1, the collection of site is an ideal, single-phase system.
When ωj = 0, the collection of site is a two-phase system, with the free
energy dependent only on the chemical potentials of the two pure species,
µ0

HMj
and µ0

Li−HMj
, no compositional dependence is seen. However, it

should be noted that ωj , in principle, is still a fitted parameter, it can
have value larger than 1 (as seen in the parameter value for graphite),
when no clear physical meaning is known.

Description of Diffusion in the Framework of Multi-
Species Multi-Reaction

What lies at the central of diffusion model is ∇µ, which is then connected
to flux as J = − D

RT x∇µ (where x is the concentration, not coordinate)
as Fick’s law describes, then finally mass conservation ∂x

∂t = −∇ · J . In
this section, we will derive ∇µ. Fick’s law can actually also be derived
with atomistic pictures, see refs4. 4 Ling Zhang. Lecture 3: Diffusion:

Fick’s first law. https://my.eng.utah.
edu/~lzang/images/lecture-3.pdf.
Accessed: 2023-11-15

Define the chemical potential of lithiated host material Li − HM as
µ, the chemical potential of filled sites within j-th collection of sites as
µLi−HMj

, the chemical potential of unlithiated host material HM as
µHM , the chemical potential of unfilled sites within j-th collection of
sites as µHMj

, the change of total lithium filling fraction as dx, the
change of lithium filling fraction of j-th collection of site as dxj . We
have

µdx =
∑

j

µLi−HMj
dxj

dxHM = −dx

dxHMj
= −dxj

µHM dxHM =
∑

j

µHMj
dxHMj

µHM dx =
∑

j

µHMj
dxj

µHM =
∑

j

µHMj

dxj

dx
=

∑
j

µHMj

dxj

dU
dx
dU

µ =
∑

j

µLi−HMj

dxj

dx

Then we plug-in the expression of µ and µHM , and will have

µ − µHM =
∑

j

(µLi−HMj
− µHMj

)
dxj

dx

Remember for each reaction Li + HMj = Li−HMj we have

−FU = µLi−HMj
− µLi − µHMj

https://my.eng.utah.edu/~lzang/images/lecture-3.pdf
https://my.eng.utah.edu/~lzang/images/lecture-3.pdf
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i.e.
µLi − FU = µLi−HMj

− µHMj

plug-in to have
µ − µHM =

∑
j

(µLi − FU)
dxj

dx

= (µLi − FU)
∑

j

dxj

dx

= (µLi − FU)

(17)

Therefore
µ − µHM = (µLi − FU)

and subsequently
dµ − dµHM = −FdU (18)

. From Gibbs-Duhem euqation and under constant temperature and
pressure, we have

xdµ + (1 − x)dµHM = 0

therefore
dµHM = − x

1 − x
dµ

plug-in to Equation 18, we have

dµ +
x

1 − x
dµ =

1
1 − x

dµ = −FdU

therefore for a coordinate system r, we have

∇µ =
dµ

dr
= −F (1 − x)

dU

dr
= −F (1 − x)

dU

dx

dx

dr
= −F (1 − x)

dU

dx
∇x

Note that here x is the concentration (usually expressed as c in litera-
ture), r is the coordination, d operates on x and ∇ operates on r. Now
plug-in the expression of ∇µ to Fick’s law, we have

∂x

∂t
= −∇ · J

= −∇ · (− D

RT
x∇µ)

= −∇ · (D F

RT
x(1 − x)

dU

dx
∇x)

(19)

Figure 4: Open circuit potential and
differential voltage curves of comparing
optimized computed (orange) to exper-
imental (blue) data for fresh cells (a),
(b), cells that have been aged over 300
cycles (c), (d), and cells that have been
aged over 600 cycles (e), (f), with their
reported mean absolute values. Over-
all, DV can detect minor differences,
while such difference is hard to find in
V vs Q plots.

Application of MSMR: Aging Analysis

Before walking through an application of MSMR, we shall first get some
background knowledge which helps us understand things better.

The voltage changes associated with a change in electrode balance
and/or a change in the electrode signature (e.g. phase change) are in
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most cases small, e.g. a few mV, and are therefore difficult to visu-
alise and quantify on the classic voltage (V) vs. capacity (Q) curve in
which the voltage range typically spans approximately 2 V, see Figure
4 for example 5. Therefore you want some plots more sensitive to these 5 Anup Barai, Kotub Uddin, Matthieu

Dubarry, Limhi Somerville, Andrew
McGordon, Paul Jennings, and Ira
Bloom. A comparison of methodologies
for the non-invasive characterisation of
commercial li-ion cells. Progress in En-
ergy and Combustion Science, 72:1–31,
2019; and Victor W Hu and Daniel T
Schwartz. Low error estimation of half-
cell thermodynamic parameters from
whole-cell li-ion battery experiments:
Physics-based model formulation, ex-
perimental demonstration, and an open
software tool. Journal of The Electro-
chemical Society, 169(3):030539, 2022

changes. The incremental capacity (IC) analysis, or dQ/dV (or equiv-
alently dx/dU), as shown in Figure 5 (b), and the differential voltage
analysis, or dV/dQ (or equivalently dU/dx), as shown in Figure 5(c),
are two powerful tools. It can be seen that for the dQ/dV curve, the
peaks indicates phase changes. For dV/dQ curves, peaks indicate solid
solutions.

Figure 5: Relationship between (a)
voltage curve and derivative curves (b)
IC and (c) DV

The best part of dV/dQ curves is they are additive. For a battery,
its open-circuit voltage is

V = Upos(Qpos) − Uneg(Qneg)

where Qpos = Qpos,ref +Q is the amount of charge in positive electrode,
Qneg = Qneg,ref − Q is the amount of charge in negative electrode, Q

is the total amount of usable charge capacity (which might change after
many cycles, i.e. aging). Therefore,

dV

dQ
=

∂Upos

∂Qpos

∂Qpos

∂Q
−

∂Uneg

∂Qneg

∂Qneg

∂Q
=

dUpos

dQpos
+

dUneg

dQneg

which means the dV/dQ curve of the whole cell is weighted sum of
dV/dQ (e.g. dU/dx) curves of individual electrodes.

In the MSMR framework, the dx/dU (i.e. dQ/dV) is

dxj

dU
= −

Xj

ωj

f exp f(U − U0j/ωj)

(1 + exp f(U − U0j/ωj))2

dx

dU
=

∑
j

dxj

dU

Figure 6: Relationship between (a)
voltage curve and (b) DV

Capacity loss can be associated with changes in the solid state in-
sertion electrodes and/or faradaic inefficiencies on one electrode or the
other. Most forms of degradation lead to slippage in the electrodes,
meaning that the utilization window over which the electrodes are cy-
cling shifts as the battery is being degraded. In differential voltage data,
these phenomena can lead to an changes in peak heights in the differ-
ential voltage and peak location shifts along the voltage axis associated
with voltage slippage.

Figure 7: Example of qualitative ap-
plication of EVS for accelerated aging.
Protocols A, B, and C are different hy-
pothetic protocols (i.e. different cur-
rents, temperatures, SoC ranges. . . ).
IC helps detecting different degrada-
tion mechanisms.
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