# LLM-Systems Basics EECS 598

Jiachen Liu

2024/1



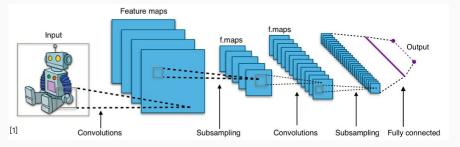


#### Agenda

- 1. Why Transformer and What is Transformer ?
- 2. Why LLM is unique in terms of System Design?
- 3. How can we better improve the system performance of LLM?

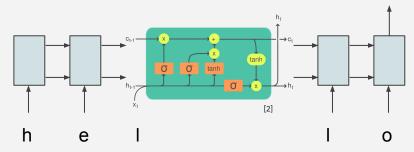
## **Computer Vision**

#### Convolutional NNs (+ResNets)



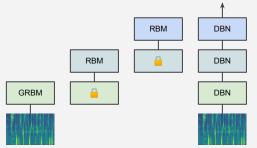
## Natural Lang. Proc.

Recurrent NNs (e.g. LSTMs)



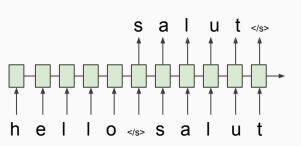
Speech

Deep Belief Nets (+non-DL)



Translation

Seq2Seq



RL

#### **BC/GAIL**

Algorithm 1 Generative adversarial imitation learning

Input: Expert trajectories τ<sub>E</sub> ~ π<sub>E</sub>, initial policy and discriminator parameters θ<sub>0</sub>, w<sub>0</sub>
 for i = 0, 1, 2, ... do

3: Sample trajectories  $\tau_i \sim \pi_{\theta_i}$ 

4: Update the discriminator parameters from  $w_i$  to  $w_{i+1}$  with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$
(17)

 Take a policy step from θ<sub>i</sub> to θ<sub>i+1</sub>, using the TRPO rule with cost function log(D<sub>wi+1</sub>(s, a)). Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s)Q(s,a) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where  $Q(\bar{s},\bar{a}) = \hat{\mathbb{E}}_{\tau_i} \left[ \log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a} \right]$ 
(18)

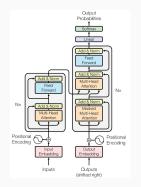
6: end for

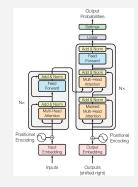
CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical\_cnn.png
 RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The\_LSTM\_Cell.svg

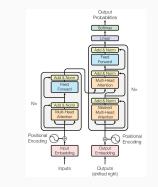
#### Computer Vision

#### Natural Lang. Proc.

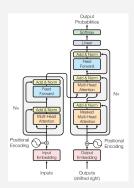
#### Reinf. Learning



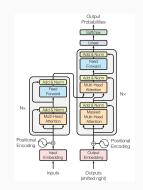




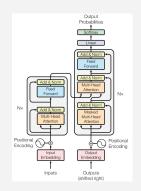
Speech



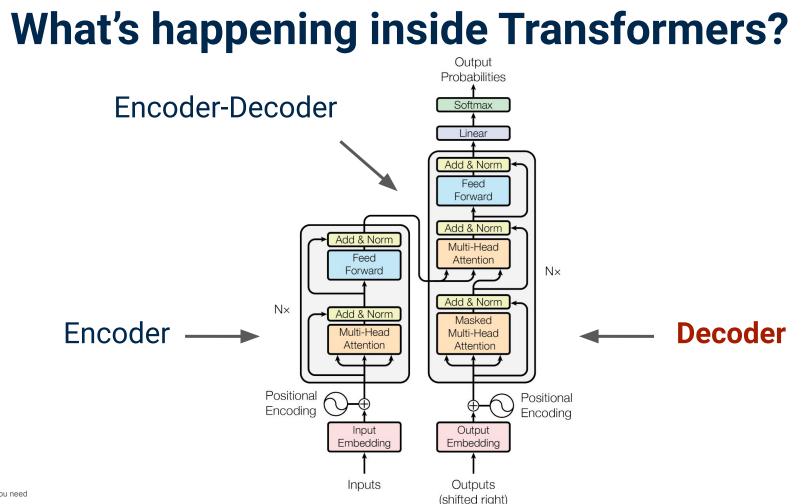
Translation



#### Graphs/Science



Transformer image source: "Attention Is All You Need" paper



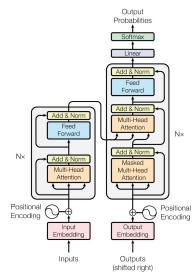
## Decoder-only Encoder-only GPT BERT

## Enc-Dec T5

Das ist gut.

A storm in Attala caused 6 victims.

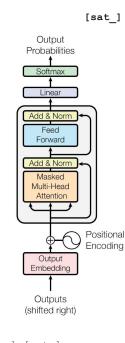
This is not toxic.

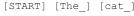


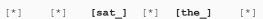
Translate EN-DE: This is good.

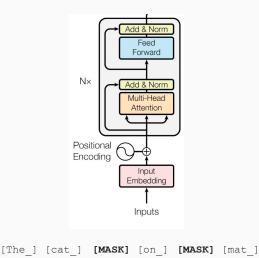
Summarize: state authorities dispatched ...

Is this toxic: You look beautiful today!

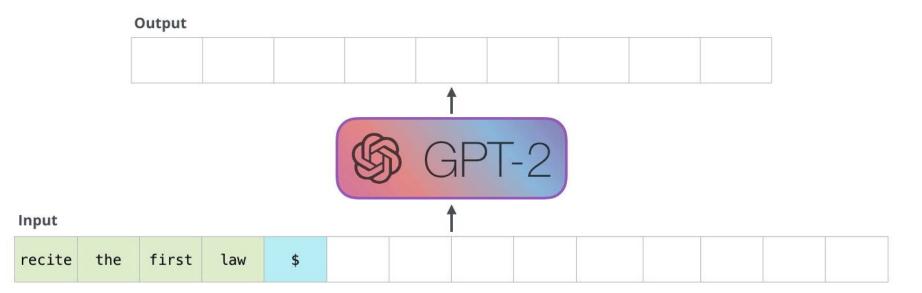






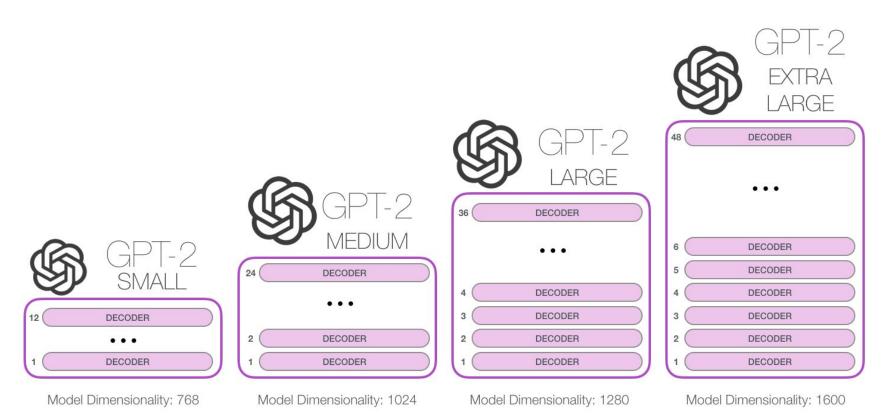


#### **High-level Workflow of GPT Inference**



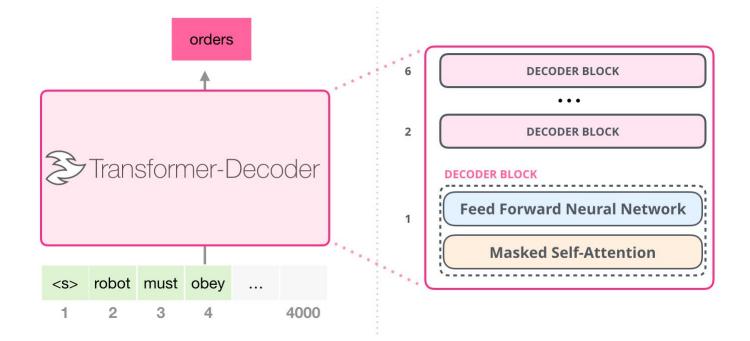
#### Auto-Regressive Decoding

#### **Zoom in GPT**

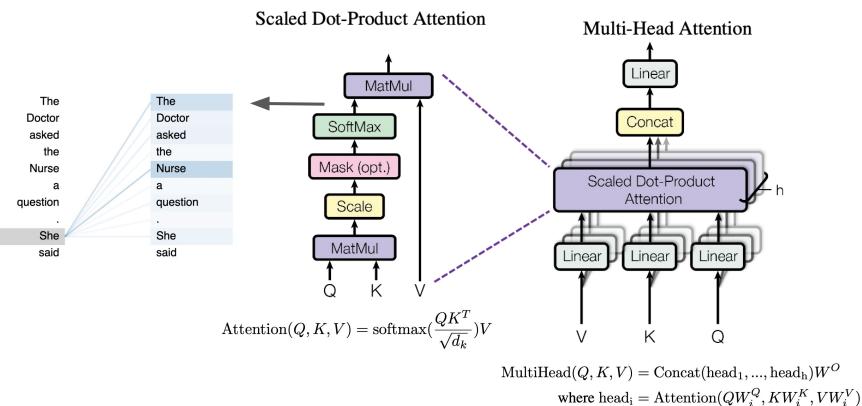


https://jalammar.github.io/illustrated-gpt2/

#### **Zoom in the Decoder Layer**

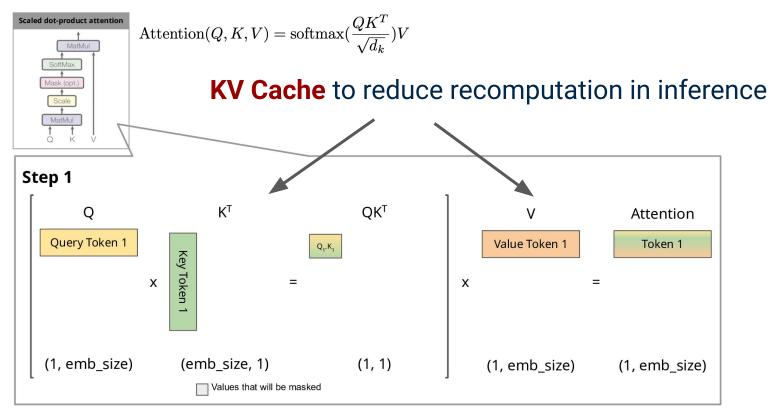


#### **Zoom in the Masked Self-Attention**

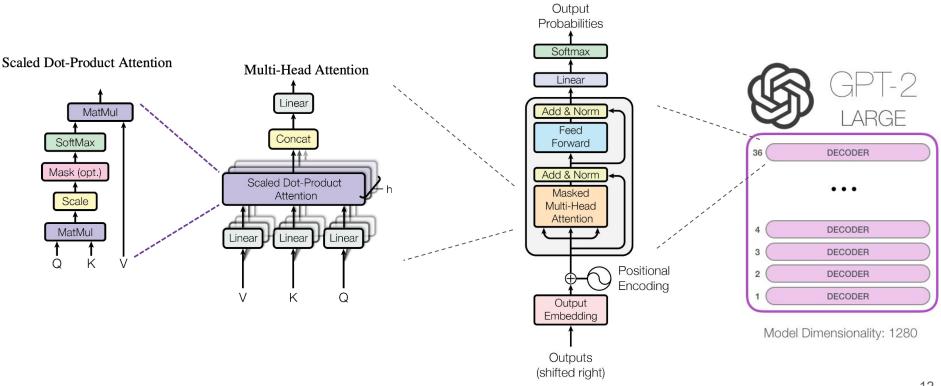


10

### **Zoom in Scaled Dot Product Attention**



### **Recap: Transformer Architecture**



## How did the Deep Learning community end up with Transformers?

Advantage

- Highly Paralizable / Scalable
- Long Term Memory

Disadvantage

- Sensitive to Data Quality and Quantity
- High Computational Demand

## **Computation Resources Needed For LLMs**

#### Training

- Model: GPT-3 175 B.
  - 350GB model weight for half-precision training
  - 350GB activation, gradient, per optimizer state
- Resources: V100 w/ 32GB GPU memory
- Time: 355 GPU years over 300 Billion tokens
- Cost: > **\$4.6M** for V100

#### Inference

- Model: GPT-3 175 B.
  - 350GB model weight
  - ~700 GB KV Cache for 100 concurrent sequences with context length 1000
  - Energy consumption



## **Characteristics of Transformers - Training**

- 1. Huge Model Size
  - a. Need efficient parallelism for computation and communication
- 2. Long training time
  - a. Need efficient fault tolerance systems

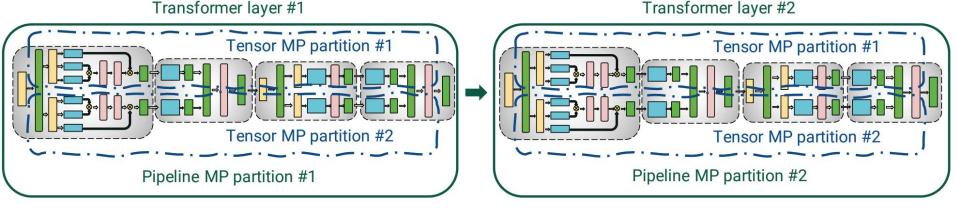
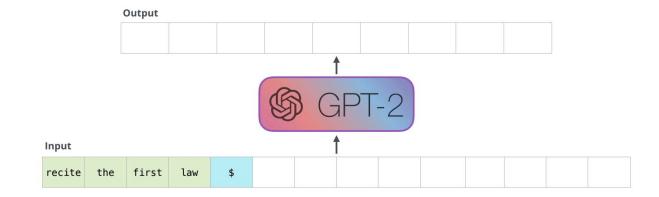
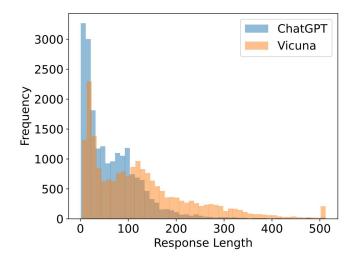


Figure 2: Combination of tensor and pipeline model parallelism (MP) used in this work for transformer-based models.

- 1. Auto-regressive decoding
  - The model generates one token at a time, taking into account previous token

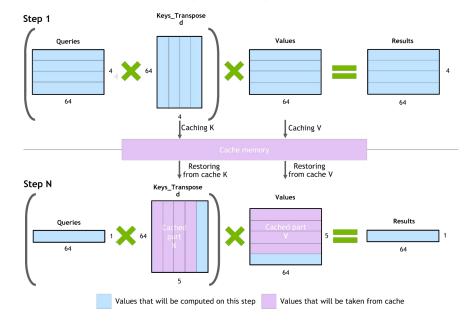


2. Unknown response length  $\rightarrow$  Unknown inference latency



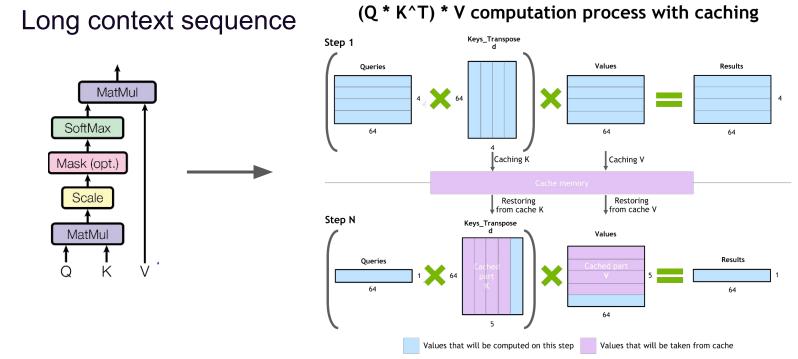
(a) Response length distribution of 10k instructions from ChatGPT and Vicuna. Response lengths larger than 512 are truncated.

- 3. Different computing phase
  - Prefill: digest prompt
  - Decode: predict next token



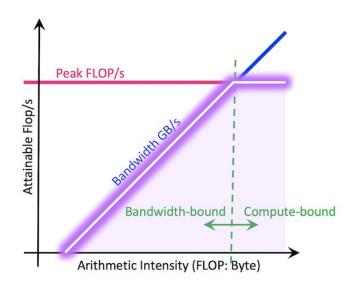
#### (Q \* K<sup>T</sup>) \* V computation process with caching

4. Memory capacity intensive due to KV Cache



#### 5. Memory IO Bounded

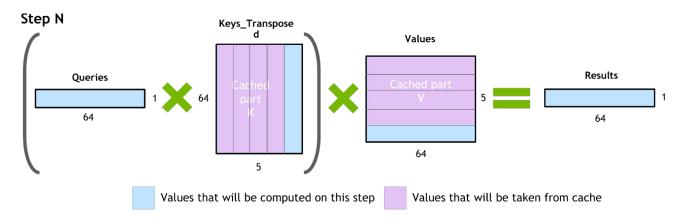
- GPU's performance is limited by the speed at which it can read from or write to its memory



| GPU  | Mem Bandwidth<br>(GB/s) | FLOPs (Tensor) | Arithmetic<br>Intensity |
|------|-------------------------|----------------|-------------------------|
| V100 | ~900 (HBM2)             | 125 TFLOPS     | ~140                    |
| A100 | ~1555 (HBM2)            | 312 TFLOPS     | ~200                    |

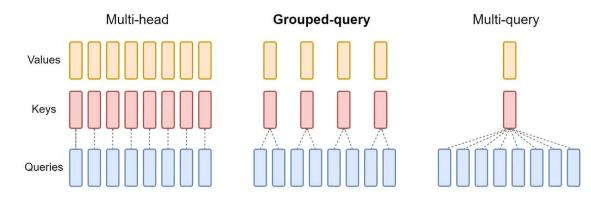
#### 5. Memory IO Bounded

- GPU's performance is limited by the speed at which it can read from or write to its memory
- Arithmetic intensity for
  - Vector matrix multiplication in Attention layer ≈ 2
  - Matmul in FFN layer ≈ 2 \* Batch Size



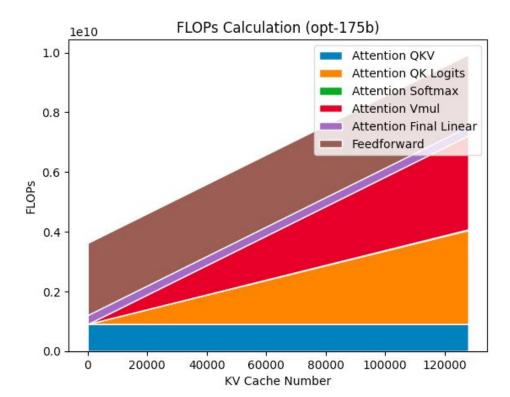
#### 5. Memory IO Bounded

- GPU's performance is limited by the speed at which it can read from or write to its memory
- Arithmetic intensity for
  - Vector matrix multiplication in Attention layer ≈ 2
  - Matmul in FFN layer ≈ 2 \* Batch Size
- Other attention structure with higher arithmetic intensity



### **Observation of Transformers - Inference**

#### 6. Inference FLOPs breakdown – Batch size = 1



## **Efficient LLM Inference System Solutions**

- 1. Compression, Quantization, Pruning
- 2. Parallel computation
- 3. Memory management
- 4. Request scheduling
- 5. Kernel optimization

Reference:

- 1. Efficient Large Language Models: A Survey
- 2. <u>https://github.com/AmberLJC/LLMSys-PaperList/</u>



