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1 Introduction

In this set of notes, we present a write-up of material covered in our reading group in algebraic topology.

2 The Fundamental Group (January 27, 2020)

Speaking broadly, the Fundamental Group is what makes Algebraic Topology simultaneously ”Algebraic”
and ”Topological.” We’ll see that this group is indeed fundamental insofar as it can be used to solve group
theoretic problems topologically and topology problems group-theoretically. It is the building block of much
of the theory of Algebraic Topology.

2.1 Paths and Homotopy

In Hatcher, this section develops specifically the homotopy of paths. I’ll begin with the more general
definition because I personally find it more intuitive, and then move on to the specific case needed to build
a fundamental group.

Definition: HOMOTOPIC MAPS. Letting X and Y being topological spaces, continuous maps f, g :
X Ñ Y are homotopic (written f » gq provided that there exists a continuous map F : X ˆ I Ñ Y so that

@ x P X, F px, 0q “ fpxq & F px, 1q “ gpxq

We put the natural product topology on X ˆ I. Intuitively, we can think of homotopic f and g having
the property that one can be continuously deformed to another in a space of maps X Ñ Y , a space we
parametrize with I. The map F as defined above is referred to as a homotopy between f and g This concept
lends some structure to the set of continuous maps X Ñ Y . Observe, for instance, that homotopy defines
an equivalence relation on this set.
We wish to focus on homotopies of paths, which are defined as follows:

Definition: PATH. Given topological space X and letting I be the unit interval in R, a path is simply a
continuous map I Ñ X

In this, we can begin to talk about homotopy classes of paths. That is, homotopies between continuous maps
I Ñ X. A homotopy in this case is a family of functions ft : I Ñ X where t runs from 0 to 1. Hatcher also
enforces the requirement that all the paths have the same endpoints, which I can’t get to follow from the
more general definition. Either I’m missing something or, I expect, this is just to make the definition more
meaningful and make some of the machinery work. For instance:

Example: LINEAR HOMOTOPIES:. We can construct a homotopy between any two paths f1, f2 :
I Ñ Rn that share the same endpoints via f0pxq ` tpf1pxq ´ f0pxqq. The ”linear” in ”linear homotopy”
comes from the fact that for a fixed x P r0, 1s, this parametrizes the line segment between f0pxq and f1pxq.

We can now begin to build our algebraic structure on path homotopies. Let’s start with the following binary
operation on paths f and g with the property that fp1q “ gp0q:

f ˚ gpxq “

#

fp2xq if x P r0, 1{2s

gp2s´ 1q if x P r1{2, 1s

Note that if we have f0 » f1 and g0 » g1 with homotopies ft, gt, then ft » gt is defined for all t so long as
f0 ˚ g0 and f1 ˚ g1 are, and hence f0 ˚ g0 » f1 ˚ g1.
We now have two tools to use over paths f, g on a topological space: we can construct a path homotopy
provided that fp0q “ gp0q and fp1q “ gp1q and we can construct a product path provided that fp1q “ gp0q.
It follows that if we want to use both, we have to require both paths start and end on the same point. These
paths are called loops, and the point in question is called a basepoint .
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Definition: FUNDAMENTAL GROUP. The fundamental group of a topological space X about base-
point x0, written π1pX,x0q is the set of homotopy classes of loops about x0 under the composition law
defined above.

Proposition . The fundamental group works.

Proof. We have already observed that the product path respects homotopy classes. As an identity element,
we take the homotopy class of the ”constant path,” c. Looking at a specific path f, c ˚ f constitutes a
reparametrization of f , meaning f and c ˚ f have the same image in X, so they are trivially homotopic.
Meanwhile, the inverse path for f , defined f “ fp1´ xq defines a homotopy class that is inverse to rf s. For
further justification, see Hatcher Prop. 1.3.

Example: . What is π1pS, x0q when S is starlike about x0? Then, any loop is homotopic to the constant
loop via the linear homotopy. Thus, the funamental group is trivial. What if we pick a different base point,
x1? Well, since the set is starlike, we can fix a path h from x1 to x0, and consider its homotopy class.
Then, any loop about x1 is equivalent to a loop about x0 via conjugation by h. This conjugation defines the
change of basepoint map.

Theorem . If X is path-connected, then @ x0, x1 P X, π1pX,x0q – π1pX,x1q via the change of basepoint
map.

2.2 The Fundamental Group of the Circle

Definition: COVERING SPACE. Given topological space X, topological space X̃ is considered an X
covering space when there is a map p : X̃ Ñ X with the property that @ x P X D open Ux such that

p´1pUxq “
ğ

iPI

Oi

with each Oi Ă X̃ open and homeomorphic to Ux

Some covering space terminology: X is sometimes called the base space, p the covering map and for x P X,
p´1pxq is the fiber over x .

Definition: LIFT. A lift of a map f : Y Ñ X is a map f̃ : Y Ñ X̃ such that p ˝ f̃ “ f .

Lemma . Given a map F : Y ˆ I Ñ X and a map lifting F |Xˆt0u, there is a unique lift F̃ : Y ˆ I Ñ X̃
that restricts over X ˆ

Proof. Let ωnptq “ e2πint for 0 ď t ď 1. Let p : R Ñ S1 defined by x ÞÑ e2πix. Note that p gives
R as a covering space for S1. Note further that the ωn’s define paths on S1. In particular, note that
rω1s

n “ rωns P π1pS
1, p1, 0qq. We mean to show that any loop in S1 with that basepoint is homotopic to

some ωn. Fix f a loop in S1.

3 Category Theory (February 4, 2020)

This section aims to provide an introduction to category theory, assuming no prior knowledge of categories.
We hope to cover all necessary categorical background for the remainder of the algebraic topology topics
covered in these notes.
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3.1 What is a Category?

We begin by defining a category. Informally speaking, a category generalizes the notion of mathematical
objects, and the maps between these objects. It is important for the reader to have many examples in mind
when thinking about categories.

Definition: . A category C is a collection1 of objects, ObjpCq, together with a collection of morphisms,
MorpCq, satisfying the following properties:

1. Each morphism f P MorpCq has a source object A and target object B, with A,B P ObjpCq, which we
denote f : AÑ B.

2. For X,Y, Z P ObjpCq, and morphisms f : X Ñ Y and g : Y Ñ Z, there exists a unique morphism
g ˝ f : X Ñ Z, the composition of f and g.

Notationally, for A,B P ObjpCq, we denote

HompA,Bq “ tf P MorpCq : f : AÑ Bu

We can rephrase the condition above by stating that for all X,Y, Z P ObjpCq, there exists a binary operation

˝ : HompA,Bq ˆHompB,Cq Ñ HompA,Cq

pf, gq ÞÑ g ˝ f

In addition, we require that the category C satisfies the following properties.

1. (Identity) For every object A P ObjpCq, there exists a morphism, denoted IdA : AÑ A, such that for
any morphism f : AÑ B, we have that . This is often called the identity morphism.

2. (Associativity) For W,X, Y, Z P ObjpCq, and for f : W Ñ X, g : X Ñ Y , and h : Y Ñ Z, we have
that

h ˝ pg ˝ fq “ ph ˝ gq ˝ f

The (perhaps not so) observant reader may notice that this may remind them of sets and functions, which
is in fact the canonical example.

Example: . We list many examples of categories. Generally, we denote categories by boldfaced text. If it
is not obvious why these are categories, please verify the axioms!

1. Set, the category of sets, where the morphisms are functions.

2. Grp, the category of groups, where the morphisms are group homomorphisms.

3. Ab, the category of abelian groups, where the morphisms are group homomorphisms.

4. (k-)Vect, the category of vector spaces (over a field k), where the morphisms are linear maps.

5. Ring, the category of rings, where the morphisms are ring homomorphisms.

6. R-Mod, the category of R-modules, where the morphisms are R-module homomorphisms.

7. Top, the category of topological spaces, where the morphisms are continuous maps.

Note that in these categories, the morphisms must respect the structure of the algebraic objects. However,
we emphasize that while categories are often algebraic objects with morphisms given by the appropriate
functions between them, there are plenty of categories which do not look like this.

1. We can consider the category of logical expressions, where morphisms are implications.

1We intentionally avoid a discussion of classes versus sets, because this is not something we are interested in distinguishing
at the moment.

5



Algebraic Topology Page 6/13

2. Let X be a topological space. Then, OpenpXq is the category whose objects are open sets in X, and
for U, V open in X, there exists a morphism U Ñ V if and only if U Ă V .

3. Given any category C, we can consider Cop, the opposite category, which has the same objects as C
but with all morphisms reversed.

4. A group can be thought of as a category with one object, and each element of the group corresponds
to a morphism.

We emphasize, especially in the final example, that sometimes, the most important part of a category is not
the collection of objects, but the collection of morphisms.

3.2 Special Morphisms

We now define some special objects and morphisms in a category.

Definition: . Let C be a category, and let A,B P ObjpCq. Suppose we have f P HompA,Bq and g P
HompB,Aq, satisfying

1. g ˝ f “ IdA

2. f ˝ g “ IdB

Then, f and g are said to be isomorphisms, and the objects A and B are said to be isomorphic.

We note that this certainly agrees with our notion of isomorphism in groups, rings, vector spaces, etc, but
this definition is completely independent of any notion of injection or surjection. We can, however, generalize
these notions as well.

Definition: . Let f : AÑ B be a morphism. Then, f is said to be

• a monomorphism if for all g1, g2 : B Ñ C, we have that

f ˝ g1 “ f ˝ g2 ùñ g1 “ g2

• an epimorphism if for all g1, g2 : C Ñ A, we have that

g1 ˝ f “ g2 ˝ f ùñ g1 “ g2

We verify that monomorphisms correspond to injective functions and epimorphisms correspond to surjective
functions in Set. In fact, we can make a stronger statement.

Definition: . We say that a category C is concrete provided that objects in C have an underlying set.
For example, Grp, Ab, Vect, and Ring are all concrete categories.

3.3 Special Objects

We now define a special kind of object.

Definition: . Let C be a category, and let A be an object of C. We say that A is

• initial provided that for all B P ObjpCq, there exists a unique morphism f : AÑ B.

• final provided that for all B P ObjpCq, there exists a unique morphism g : B Ñ A.

• terminal provided that it is either initial or final.

• a zero object provided that it is both initial and final.

6
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Of course, we must give plenty of examples. Note that not all categories have terminal objects, but some
categories do.

Example: . We give some examples of terminal objects.

1. In Set, we have that H is initial, and t˚u, any singleton set, is final.

2. In Grp (and similarly Ab), we have that the trivial group is a zero object.

3. In Ring, we have that Z is the only initial object, and the zero ring is final.

4. In the category of fields, there is no initial object (Why?).

Notice that in Set, any singleton set is final. This motivates us to prove the following proposition.

Proposition . Let C be a category. All initial objects, and dually, terminal objects, in C are unique up to
unique isomorphism.

Proof. We prove this for initial objects. Let A,B be initial objects in C. Then, there exists a unique
f P HompA,Bq, and unique g P HompB,Aq.

A B

f

IdA

g

IdB

Note additionally that there is exactly one map in HompA,Aq, namely, IdA, and similarly, there is exactly
one map in HompB,Bq, namely, IdB . Thus, we must have that

g ˝ f “ IdA f ˝ g “ IdB

and thus we have that A and B are isomorphic as desired.

3.4 Functors

Throughout our discussion, we have been emphasizing that in a category, the relationship between objects
is sometimes more important than the objects themselves. Can we apply this to categories? (Hint: yes!)

Definition: . Let C,D be categories. We say that F : C Ñ D is a (covariant) functor provided that

• For all A P ObjpCq, we have that F pAq P ObjpDq.

• For all f : X Ñ Y in MorpCq, we have that F pfq : F pXq Ñ F pY q in MorpDq.

Additionally, we require that F satisfies

• For every X P ObjpCq, we have that F pIdXq “ IdF pXq.

• For every f : X Ñ Y and g : Y Ñ Z in MorpCq, we have that F pg ˝ fq “ F pgq ˝ F pfq.

A contravariant functor F : C Ñ D is a covariant functor Cop Ñ D.

Let’s give some examples. Verify that these are indeed functors (where do they send the morphisms?).

1. The forgetful functor on any concrete category C, which takes every object to the underlying set.

2. The free functor, which associates any set to the “free” object associated with that set (free group,
free vector space, etc).

3. The fundamental group is a functor from Top to Grp.

4. The dual vector space functor sends vector spaces to the associated dual space.

7
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5. The tangent space functor sends a manifold to the tangent space at a point.

6. A sheaf of rings on a topological space X is a contravariant functor from OpenpXq Ñ Ring.

We can even take this a step further.

Definition: . Let C,D be two categories, and let F,G : C Ñ D be two functors between them. A natural
transformation between F and G is a collection of morphisms ηX for every X P ObjpCq such that the
following diagram commutes.

F pXq F pY q

GpXq GpY q

F pfq

ηX ηY

Gpfq

We can think of this as a map between functors, which are related in a natural way. Some examples include
the identity functor and the opposite functor in Grp, which sends a group to the opposite group, as well as
the identity functor and the double dual functor in Vect.

3.5 Universal Properties

Category theory allows us to abstract away from many of the concrete definitions we make, and the way
that we do this is through universal properties.

Definition: . (Informal) A universal property is a property which uniquely determines an object.

This is best demonstrated through example. For example, we present the universal property of products

X

A C

Y

f

g

h

πX

πY

An object C satisfies the universal property of products provided that for any object A and maps f : AÑ X
and g : A Ñ Y , there exists a unique map h : A Ñ C making the above diagram commute. When this is
the case, we say that P is the product of X and Y in this category. Note that when we are working in Set,
we can take P to be X ˆ Y . The important point to note, however, is that we have defined the product
completely independently of sets. However, not every category has products, and the existence of products
is something that needs to be proved about categories.

We can similarly define coproducts using a universal property.

X

P A

Y

f

ix

h

iy

g

Let X and Y be objects. We say that an object P satisfies the universal property of coproducts provided
that for any object A and morphisms f : X Ñ A and g : Y Ñ A, there exists a unique map h : P Ñ A
which makes the above diagram commute. What are the coproducts in Set?

8
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Another important construction is the pullback and pushout, defined by the following universal properties.

B

P Y

X A

p

q

h

hY

hX g

f

Let X,Y be objects with maps f : X Ñ A and g : Y Ñ A. The pullback is the object P satisfying the
universal property that given any object B with maps p : B Ñ X and q : B Ñ Y , there exists a unique map
h : B Ñ P making the above diagram commute.

A Y

X P

B

g

f hY
q

hX

p

h

We can define the pushout dually by the diagram above. Many other objects can be defined using universal
properties, which illustrates an important point about category theory: objects can sometimes be defined
by the properties they satisfy.

Proposition . Universal objects are unique up to unique isomorphism.

Proof. We prove this using a slick argument. Consider this example: Let C be a category, and suppose that
an object A of C satisfies the universal property that for any map f : X Ñ A, and any object Y with a map
g : X Ñ Y , there exists a unique map h : AÑ Y .

X

A Y

f h

h

Then, let D be the category whose objects are diagrams of the form

X

Y

fY

for every Y P ObjpCq and whose morphisms are arrows g of the form

X

Y Z

fY fZ

g

Then, we note that the diagram

X

A

fA

is initial in D, and thus unique up to unique isomorphism by previous result. We can do this process for
(most) universal properties.

This illustrates the notion of a comma category, which is beyond the scope of these notes.

9
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3.6 Adjunction

An important relationship between two functors is the concept of adjunction.

Definition: . Let C,D be categories, and let F,G be functors F : C Ñ D and G : D Ñ C. We say that F
and G are adjoint provided that for all objects X P C and Y P D, we have that

HomDpF pXq, Y q – HomCpX,GpY qq

When this is true, we say that F is left adjoint and G is right adjoint, and we denote this by F % G.

For our purposes, there are two important examples of functor adjunctions.

1. A free functor is generally adjoint to a forgetful functor. For example, the free functor on sets is adjoint
to the forgetful functor on groups, vector spaces, etc.

2. Let A be an R-module. The ´bR A functor is adjoint to the HompA,´q functor. This can be seen by
writing

HompX bR A,Zq – HompX,HompA,Zqq

In particular, one neat example is the forgetful functor from Top to Set. We notice that in fact, this functor
is left adjoint to the “free” functor which assigns the discrete topology, and right adjoint to the “free” functor
which assigns the trivial topology.

3.7 Limits

We further generalize the notion of a universal property to that of a limit.

Definition: . Let D be a diagram in a category C, and let A be an object such that for all objects X P D,
we have a map fX : A Ñ X, such that each fX and all maps in D commute. Then, we define the limit of
D, denoted limD, to be the unique object such that for any objects A as above, there exists a unique map
gA : AÑ limD making everything commute.

A

limD

D1 D2

f1 f2
gA

h1 h2

Dually, we can define a colimit, denoted colimD. Let B be an object such that for all objects X in D,
we have a map fX : X Ñ B, such that all maps in sight commute. Then, we define the colimit of D to be
the unique object such that for any object B as above, there is a unique map gB : colimD Ñ B making
everything commute.

D1 D2

colimD

B

h1

f1

h2

f2gB

These generalize the previous universal property definitions. How can we express the universal property of
products and coproducts as a limit or colimit?

It is a fact that right adjoints preserve limits, and left adjoints preserve colimits.

10
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3.8 Homological Algebra

We have already seen that category theory can help us redefine many ideas in terms of categorical notions.
However, we need some additional structure to define concepts like homology. In this section, we assume
our category has a notion of adding and subtracting morphisms, kernels and cokernels, images, zero objects,
and quotients.

Definition: . A chain complex is a sequence of objects

C‚ “ ¨ ¨ ¨ Cn`1 Cn Cn´1 ¨ ¨ ¨
dn`1 dn

together with morphisms between each object such that di´1 ˝ di “ 0. Note that this implies that impdiq Ă
kerpdi´1q. The di are said to be the boundary maps or differentials. We typically take the category to
be Ab or R-Mod. A cochain complex has the indices reversed.

We say that a chain complex is exact at Ci provided that impdi`1q “ kerpdiq. We say that a chain complex
is an exact sequence if it is exact everywhere.

Example: . Some examples of chain complexes include

1. Differential forms on a manifold, with the exterior derivative.

2. Manifolds with the boundary operator.

Definition: . We can measure how much a chain complex fails to be exact by computing the homology
of the chain complex, which is defined to be

HnpC‚q “ kerpdnq{ impdn`1q

This produces its own chain complex, whose differentials are 0.

A sequence of the form

0 A B 0

forces A and B to be isomorphic (why?).

A sequence of the form

0 A B C 0α β

is called a short exact sequence. Note that α is injective and β is surjective (why?). An exact sequence
which is longer is called a long exact sequence.

4 Van Kampen’s Theorem (February 11, 2020)

This section explores the first big theorem in algebraic topology. We will see how compute fundamental
groups by decomposing spaces into component parts.

4.1 A Motivating Example

Consider the following image,
TODO: Put image here. pg 40 Hatcher is a good picture.
Fun Fact : colloquially this is known as a ”figure eight” or ”infinity”, however in algebraic geometry this is
also known as a lemniscate. I will choose this terminology simply because it is cool.
The lemniscate is made up of two circles that share a basepoint, so intuitively we may expect that its funda-
mental group somehow decomposes into two copies of π1pS1q. To check this hypothesis let us compute the
fundamental group of the lemniscate, then we will later try to make this hypothesis more general and more

11
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rigorous.

Let this space be called X such that X is formed by two circles A and B intersecting at a single point
x0. Because A and B are both circles, we know that π1pAq – π1pBq – π1pS1q – Z. Define a P π1pAq as a
loop around the circle A. Define powers of a in the obvious way, and similarly define b in the obvious manner.

Then loops in π1pXq are formed by going around each circle independently as many times as we want. This
reduces to the words formed with characters from π1pAq and π1pBq. Write an a if you navigate around
circle A, and similarly write b. For instance, one element of π1pXq may look like a´2b3a. Read the word
right-to-left, so that a´2b3a consists of first going around the circle A clockwise, then going around B three
times clockwise, and finally going around A two times counterclockwise. It also suffices to consider these
words in reduced form by combining adjacent characters that are from the same group – that is, a2ab3 may
be simplified to a3b3.

Because loops in π1pXq are formed in this manner, we find that π1pXq is the free product of π1pAq and
π1pBq. Symbolically,

π1pXq – π1pAq˚ π1pBq – Z ˚ Z

Before fully defining ˚, the free product of groups, take note that just as X is decomposed into A and B,
the fundamental group π1pXq is decomposed into π1pAq and π1pBq. This parallel notion of decomposition
is the key intuition behind Van Kampen’s theorem.

4.2 Free Product of Groups

For some collection of groups tGαu, the free product ˚αGα contains all words g1g2 ¨ ¨ ¨ gm of arbitrary finite
length m ě 0. Again, reduce words if adjacent elements are in the same group. For convenience and
without loss of generality, most work is done with words in reduced form. The group operation in ˚αGα is
”juxtaposition” or ”concatenation”. Simply join the words as follows,

pg1g2q ¨ ph1h2q “ g1g2h1h2

One can check that p˚αGα, ¨q satisfies all the group axioms and they will find that this is indeed a group.

We found one example of a free product above with the lemniscate. Here is another such example.

Example: Z2 ˚ Z2. Consider two copies of Z2, one presented as te, au and the other as te, bu. Then the
elements of Z2 ˚ Z2 are given as,

te, a, b, ab, ba, aba, bab, abab, baba, . . . u

Note that although this is a free product of groups, it is not a free group as it is subject to the
relations a2 “ b2 “ e.

Side note: This is also called the infinite dihedral group.

4.3 Van Kampen’s Theorem

TODO define the i’s in hatcher p. 43. These serve to mod out the loops in the intersection

Theorem Van Kampen. Let X be a topological space.

1. If X is the union of path connected Aα each containing basepoint x0, and if each Aα X Aβ is path
connected, then ϕ : ˚απ1pAαq Ñ π1pXq is surjective.

12
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2. If in addition each AαXAβ XAγ is path connected, then N :“ kerϕ is the normal subgroup generated
by all elements of the form iαβpωqiβαpωq

´1 for ω P π1pAαXAβq, and hence ϕ induces an isomorphism
π1pXq – ˚απ1pAαq{N .

TODO pf vk1, statement on how vk2 is extraneous, pf vk2, sidebar on the categorical approach.

5 Covering Spaces and Deck Transformations (February 18, 2020)

This section discusses a characterization of covering spaces and describes how we can view deck transforma-
tions as group actions

5.1 Background Information and Motivating Examples

Recall: . A covering space of topological space X is a topological space X̃ equipped with a map p : X̃ Ñ X
satisfying the following condition

@ x P X, D open neighborhood U Q x such that p´1rU s “
Ů

iOi with Oi open and disjoint in

X̃, each of which is map homeomorphically onto U via p

Saying p : X̃ Ñ X is a covering space is typical abuse of notation. Additionally, such a U is called evenly
covered and the Oi are called sheets of X̃

Fact: The # of sheets over U is the cardinality of p´1pxq for x P U . As x varies over X, this number
is locally constant.

ùñ |p´1pxq| “ c if X is connected

Example: . Let us look at some covering spaces of S1 which we have considered before. We have seen

ϕ : RÑ S1

x ÞÑ pcosp2πxq, sinp2πxqq

is a covering space and for n P N

ϕn : S1 Ñ S1

z ÞÑ zn

is a covering space if we consider S1 Ď C. Since both covering spaces are connected, let us answer how
many sheets each has. Due to the periodic nature of sin and cos we see that |ϕ´1ppx, yqq| “ 8 and over the
complex plane, we know each number as n complex nth roots. Thus we conclude that |ϕ´1

n pzq| “ n. One
might be curious if there are other connected covering spaces besides the ones listed above. Using the theory
we will develop below, we shall see that there are in fact none. This is related to the idea that π1pS

1q “ Z
and all of the subgroups of Z are nZ for some positive n

From the first talk, we know that continuous maps between topological spaces induces a group homomorphism
between the spaces’ fundamental groups. Additionally, since the image of a group homomorphism is a group,
we might be curious about what subgroup p˚rπ1pX̃, x̃qs Ď π1pX,x0q is? In the examples above, we see that

ϕ˚rπ1pRqs “ ϕ˚rt0us “ t0u

and
ϕn˚rπ1pS

1qs “ ϕn˚rZs “ nZ
This is the relationship we’d like to explore in general as we classify covering spaces. We would also like to
know how our choice of basepoint in X̃ affects which subgroup of π1pX,x0q is realized as this image. We
will come to discover that changing x̃ will amount to conjugating p˚rπ1pX̃, x̃qs. The conjugating element if
π1pX,x0q is represented by any loop that is the projection of a path in X̃ joining the basepoints together.

5.2 Lifiting Properties
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