Extensions of Irreducible Representations of Quaternion Algebras over *p*-adic Fields

Alexander Wang Advisor: Karol Koziol

University of Michigan

July 30, 2020

• • • • • • • • • • • •

• Groups are often understood by how they act on sets.

イロト イヨト イヨト イヨト

- Groups are often understood by how they act on sets.
- **Representation Theory** is the study of how groups act on vector spaces.

- Groups are often understood by how they act on sets.
- Representation Theory is the study of how groups act on vector spaces.
- Understanding how a group acts gives us an understanding of the group itself.

Group Representations

Definition

Let G be a group. A **representation** of G (over a field k) is a vector space V, together with a group homomorphism

 $\pi: G \to \operatorname{GL}(V)$

Group Representations

Definition

Let G be a group. A **representation** of G (over a field k) is a vector space V, together with a group homomorphism

$$\pi: G \to \mathsf{GL}(V)$$

Example

Let $G = S_3$. One representation of G is to send each $\sigma \in S_3$ to the permutation matrix associated with σ .

$$(12) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (123) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Group Representations

Definition

Let G be a group. A **representation** of G (over a field k) is a vector space V, together with a group homomorphism

$$\pi: G \to \operatorname{GL}(V)$$

Example

Let $G = S_3$. One representation of G is to send each $\sigma \in S_3$ to the permutation matrix associated with σ .

$$(12) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (123) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

We may often refer to the representation (π, V) as simply π or simply V, depending on context.

Alexander Wang

July 30, 2020 3 / 15

Definition

Let (π, V) be a representation of G. $W \subset V$ is said to be a **subrepresentation** of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g)W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be **irreducible**.

< ロト < 同ト < ヨト < ヨ

Definition

Let (π, V) be a representation of G. $W \subset V$ is said to be a **subrepresentation** of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g)W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be **irreducible**.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Definition

Let (π, V) be a representation of G. $W \subset V$ is said to be a **subrepresentation** of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g)W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be **irreducible**.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Theorem (Maschke)

When $k = \mathbb{C}$, every representation of G can be broken down into a direct sum of irreducible representations.

Definition

Let (π, V) be a representation of G. $W \subset V$ is said to be a **subrepresentation** of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g)W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be **irreducible**.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Theorem (Maschke)

When $k = \mathbb{C}$, every representation of G can be broken down into a direct sum of irreducible representations.

Note that this is not true when k is an arbitrary field!

Example

Let $k = \overline{\mathbb{F}_p}$. Let $G = \mathbb{Z}/p\mathbb{Z}$, and let $V = \operatorname{span}_k(e_1, e_2)$, with representation

$$n\mapsto \begin{pmatrix} 1 & n\\ 0 & 1 \end{pmatrix}$$

Alexander Wang

Example

Let $k = \overline{\mathbb{F}_p}$. Let $G = \mathbb{Z}/p\mathbb{Z}$, and let $V = \operatorname{span}_k(e_1, e_2)$, with representation

$$n\mapsto \begin{pmatrix} 1&n\\0&1 \end{pmatrix}$$

Note that this is only a group homomorphism since char(k) = p.

イロト イポト イヨト イヨト

Example

Let $k = \overline{\mathbb{F}_p}$. Let $G = \mathbb{Z}/p\mathbb{Z}$, and let $V = \operatorname{span}_k(e_1, e_2)$, with representation

$$n\mapsto \begin{pmatrix} 1&n\\0&1 \end{pmatrix}$$

Note that this is only a group homomorphism since char(k) = p.

If $V = V_1 \oplus V_2$ with neither 0, both must be 1-dimensional simultaneous eigenspaces for every *n*.

イロト 不得 トイヨト イヨト 二日

Example

Let $k = \overline{\mathbb{F}_p}$. Let $G = \mathbb{Z}/p\mathbb{Z}$, and let $V = \operatorname{span}_k(e_1, e_2)$, with representation

$$n\mapsto \begin{pmatrix} 1 & n\\ 0 & 1 \end{pmatrix}$$

Note that this is only a group homomorphism since char(k) = p.

If $V = V_1 \oplus V_2$ with neither 0, both must be 1-dimensional simultaneous eigenspaces for every *n*.

But each non-identity matrix only has eigenspace span (e_1) ! So we cannot find a V_2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quaternion Algebras

What group do we care about the representations of?

What group do we care about the representations of?

Definition

Let *F* be a field. A **quaternion algebra** over *F* is a 4-dimensional vector space over *F*, with basis $\{1, i, j, k\}$, satisfying the multiplication rules

$$i^2 = a$$
 $j^2 = b$
 $ij = -ji = k$

where $a, b \in F^{\times}$.

What group do we care about the representations of?

Definition

Let *F* be a field. A **quaternion algebra** over *F* is a 4-dimensional vector space over *F*, with basis $\{1, i, j, k\}$, satisfying the multiplication rules

$$i^2 = a$$
 $j^2 = b$
 $ij = -ji = k$

where $a, b \in F^{\times}$.

For the remainder of this talk, we assume $F = \mathbb{Q}_p$, the field of *p*-adic numbers, *a* and *b* are chosen such that *D* is a division algebra, and let D^{\times} denote the units of *D*.

Fact

There exists an element $\varpi \in D^{\times}$ with $\varpi^2 = p$, with respect to which we have the decomposition

$$D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{\times} \ltimes 1 + \varpi \mathcal{O} \right)$$

where \mathcal{O} denotes the ring of integers in D.

A D > A A > A > A

Fact

There exists an element $\varpi \in D^{\times}$ with $\varpi^2 = p$, with respect to which we have the decomposition

$$D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{\times} \ltimes 1 + \varpi \mathcal{O} \right)$$

where \mathcal{O} denotes the ring of integers in D.

Intuition: Think power series in ϖ .

Fact

There exists an element $\varpi \in D^{\times}$ with $\varpi^2 = p$, with respect to which we have the decomposition

$$D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{\times} \ltimes 1 + \varpi \mathcal{O} \right)$$

where \mathcal{O} denotes the ring of integers in D.

Intuition: Think power series in ϖ .

Note that D^{\times} contains the index 2 subgroup $H = \varpi^{2\mathbb{Z}} \times \left(\mathbb{F}_{p^2}^{\times} \ltimes 1 + \varpi \mathcal{O} \right)$, where the product is direct since $\varpi^2 = p$ is in the center of D^{\times} .

Irreducible Representations of D^{\times}

There are two classes of irreducible representations of D^{\times} over $\overline{\mathbb{F}_p}$:

• 1-dimensional representations given by

$$\chi_{a,b}: D^{\times} \to \operatorname{GL}_1(\overline{\mathbb{F}_p}) = \overline{\mathbb{F}_p}^{\times}$$
$$(\varpi^{\times}, y, z) \mapsto a^{\times} y^{(p+1)b}$$

for
$$a \in \overline{\mathbb{F}_p}^{\times}$$
 and $0 \leq b \leq p-2$.

• 2-dimensional representations constructed by induction of the 1-dimensional representations of *H*, which are given by

$$\psi_{c,d}: H \to \mathsf{GL}_1(\overline{\mathbb{F}_p}) = \overline{\mathbb{F}_p}^{\times}$$
$$(\varpi^{2x}, y, z) \mapsto c^x y^d$$

for $c \in \overline{\mathbb{F}_p}^{\times}$ and $0 \leq d \leq p^2 - 2$.

(日)

Recall that when our representation is not over \mathbb{C} , irreducible representations don't tell us everything!

< □ > < □ > < □ > < □ > < □ >

Recall that when our representation is not over \mathbb{C} , irreducible representations don't tell us everything!

Goal

We want to understand how to glue together irreducible representations in more interesting ways than simply taking their direct sum.

Recall that when our representation is not over \mathbb{C} , irreducible representations don't tell us everything!

Goal

We want to understand how to glue together irreducible representations in more interesting ways than simply taking their direct sum.

We will do this by computing **extensions** of irreducible representations of D^{\times} .

Extensions of Irreducible Representations

Definition

Given two representations V_1 and V_2 of a group G, we say that the representation V is an **extension** of V_1 by V_2 provided that the following sequence

$$0 \longrightarrow V_2 \longleftrightarrow V \longrightarrow V_1 \longrightarrow 0$$

is exact.

Extensions of Irreducible Representations

Definition

Given two representations V_1 and V_2 of a group G, we say that the representation V is an **extension** of V_1 by V_2 provided that the following sequence

$$0 \longrightarrow V_2 \longleftrightarrow V \longrightarrow V_1 \longrightarrow 0$$

is exact.

Definition

Given two representations V_1 and V_2 of a group G, we define $\text{Ext}_G^1(V_1, V_2)$ to be the set of equivalence classes of extensions of V_1 by V_2 .

Extensions of Irreducible Representations

Definition

Given two representations V_1 and V_2 of a group G, we say that the representation V is an **extension** of V_1 by V_2 provided that the following sequence

$$0 \longrightarrow V_2 \longleftrightarrow V \longrightarrow V_1 \longrightarrow 0$$

is exact.

Definition

Given two representations V_1 and V_2 of a group G, we define $\text{Ext}_G^1(V_1, V_2)$ to be the set of equivalence classes of extensions of V_1 by V_2 .

Over \mathbb{C} , Maschke's Theorem tells us $\operatorname{Ext}^1_G(V, V') = 0$.

イロト 不得 トイヨト イヨト 二日

Result

- We describe $\operatorname{Ext}_{D^{\times}}^{1}(V_{1}, V_{2})$.
 - When V_1 and V_2 are both 1-dimensional representations, we have that

$$\dim \operatorname{Ext}^1_{D^{ imes}}(V_1, V_2) = egin{cases} 2 & V_1 = V_2 \ 0 & \operatorname{else} \end{cases}$$

• When $V_1 = \chi_{\gamma,\delta}$ and $V_2 = \operatorname{Ind}_H^{D^{ imes}}(\psi_{\mathsf{a},b})$, we have that

dim
$$\operatorname{Ext}_{D^{\times}}^{1}(V_{1}, V_{2}) = \begin{cases} 2 & a = \gamma^{2}, b = (p+1)\delta \\ 1 & a = \gamma^{2}, b - (p+1)\delta = \pm (p-1) \\ 0 & \text{else} \end{cases}$$

Result (cont.)

• When $V_1 = \mathsf{Ind}_H^{D^{ imes}}(\psi_{a,b})$ and $V_2 = \mathsf{Ind}_H^{D^{ imes}}(\psi_{c,d})$, we have that

$$\operatorname{dim} \operatorname{Ext}_{D^{\times}}^{1}(V_{1}, V_{2}) = \begin{cases} 3 & a = c, (b, d) \in S \\ 1 & a = c, b = d \text{ or } b = pd \text{ (excl. above case)} \\ 0 & \text{else} \end{cases}$$

where

$$S = \{(\lambda(p+1) \pm p, \lambda(p+1) \pm 1), (\lambda(p+1) \pm 1, \lambda(p+1) \pm 1)\}$$

Furthermore, we are able to produce explicit bases for these spaces.

• • • • • • • • • • • •

• Recall that D^{\times} admits the decomposition

$$D^{ imes} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{ imes} \ltimes 1 + \varpi \mathcal{O} \right)$$

<ロト <問ト < 目と < 目と

• Recall that D^{\times} admits the decomposition

$$D^{ imes} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{ imes} \ltimes 1 + \varpi \mathcal{O} \right)$$

• Understand Hom $(1 + \varpi \mathcal{O}, \overline{\mathbb{F}_p})$.

• Recall that D^{\times} admits the decomposition

$$D^{ imes} \cong \varpi^{\mathbb{Z}} \ltimes \left(\mathbb{F}_{p^2}^{ imes} \ltimes 1 + \varpi \mathcal{O} \right)$$

- Understand Hom $(1 + \varpi \mathcal{O}, \overline{\mathbb{F}_{p}})$.
- Extend homomorphisms to functions from D^{\times} to $\overline{\mathbb{F}_p}$ which parameterize extensions of representations.

< □ > < 同 > < 回 > < Ξ > < Ξ

 Currently, our research has focused on D being a quaternion algebra over Q_p.

イロト イヨト イヨト イヨト

- Currently, our research has focused on D being a quaternion algebra over Q_p.
- Let F/\mathbb{Q}_p be a field extension of finite degree.

イロト イポト イヨト イヨト 一日

- Currently, our research has focused on D being a quaternion algebra over Q_p.
- Let F/\mathbb{Q}_p be a field extension of finite degree.
- Take D instead to be a quaternion algebra over F.

- Currently, our research has focused on D being a quaternion algebra over Q_p.
- Let F/\mathbb{Q}_p be a field extension of finite degree.
- Take *D* instead to be a quaternion algebra over *F*.
- Many desirable properties of \mathbb{Q}_p still hold in *F*, and much of our work can be adapted to *F* with slight modifications.

イロト イポト イヨト イヨト

Thank You!

Questions?

Alexander Wang

Michigan Math REU 2020

July 30, 2020 15 / 15

イロト イ部ト イヨト イヨト 二日