Extensions of Irreducible Representations of Quaternion Algebras over p-adic Fields

Alexander Wang

Advisor: Karol Koziol

University of Michigan

$$
\text { July 30, } 2020
$$

Introduction

- Groups are often understood by how they act on sets.

Introduction

- Groups are often understood by how they act on sets.
- Representation Theory is the study of how groups act on vector spaces.

Introduction

- Groups are often understood by how they act on sets.
- Representation Theory is the study of how groups act on vector spaces.
- Understanding how a group acts gives us an understanding of the group itself.

Group Representations

Definition

Let G be a group. A representation of G (over a field k) is a vector space V, together with a group homomorphism

$$
\pi: G \rightarrow \mathrm{GL}(V)
$$

Group Representations

Definition

Let G be a group. A representation of G (over a field k) is a vector space V, together with a group homomorphism

$$
\pi: G \rightarrow \mathrm{GL}(V)
$$

Example

Let $G=S_{3}$. One representation of G is to send each $\sigma \in S_{3}$ to the permutation matrix associated with σ.

$$
(12) \mapsto\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad(123) \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Group Representations

Definition

Let G be a group. A representation of G (over a field k) is a vector space V, together with a group homomorphism

$$
\pi: G \rightarrow \mathrm{GL}(V)
$$

Example

Let $G=S_{3}$. One representation of G is to send each $\sigma \in S_{3}$ to the permutation matrix associated with σ.

$$
(12) \mapsto\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad(123) \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

We may often refer to the representation (π, V) as simply π or simply V, depending on context.

Irreducible Representations

Definition

Let (π, V) be a representation of $G . W \subset V$ is said to be a
subrepresentation of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g) W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be irreducible.

Irreducible Representations

Definition

Let (π, V) be a representation of $G . W \subset V$ is said to be a
subrepresentation of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g) W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be irreducible.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Irreducible Representations

Definition

Let (π, V) be a representation of $G . W \subset V$ is said to be a
subrepresentation of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g) W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be irreducible.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Theorem (Maschke)
When $k=\mathbb{C}$, every representation of G can be broken down into a direct sum of irreducible representations.

Irreducible Representations

Definition

Let (π, V) be a representation of $G . W \subset V$ is said to be a
subrepresentation of V provided that (π, W) is a representation of G. In particular, we must have $\pi(g) W \subset W$ for all $g \in G$. If the only subrepresentations of V are 0 and V, V is said to be irreducible.

If we hope to understand representations of a group G, it is a good idea to understand the irreducible representations.

Theorem (Maschke)
When $k=\mathbb{C}$, every representation of G can be broken down into a direct sum of irreducible representations.

Note that this is not true when k is an arbitrary field!

Representations over $\overline{\mathbb{F}_{p}}$

Example
Let $k=\overline{\mathbb{F}_{p}}$. Let $G=\mathbb{Z} / p \mathbb{Z}$, and let $V=\operatorname{span}_{k}\left(e_{1}, e_{2}\right)$, with representation

$$
n \mapsto\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

Representations over $\overline{\mathbb{F}_{p}}$

Example

Let $k=\overline{\mathbb{F}_{p}}$. Let $G=\mathbb{Z} / p \mathbb{Z}$, and let $V=\operatorname{span}_{k}\left(e_{1}, e_{2}\right)$, with representation

$$
n \mapsto\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

Note that this is only a group homomorphism since $\operatorname{char}(k)=p$.

Representations over $\overline{\mathbb{F}_{p}}$

Example

Let $k=\overline{\mathbb{F}_{p}}$. Let $G=\mathbb{Z} / p \mathbb{Z}$, and let $V=\operatorname{span}_{k}\left(e_{1}, e_{2}\right)$, with representation

$$
n \mapsto\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

Note that this is only a group homomorphism since $\operatorname{char}(k)=p$.
If $V=V_{1} \oplus V_{2}$ with neither 0 , both must be 1-dimensional simultaneous eigenspaces for every n.

Representations over $\overline{\mathbb{F}_{p}}$

Example

Let $k=\overline{\mathbb{F}_{p}}$. Let $G=\mathbb{Z} / p \mathbb{Z}$, and let $V=\operatorname{span}_{k}\left(e_{1}, e_{2}\right)$, with representation

$$
n \mapsto\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

Note that this is only a group homomorphism since $\operatorname{char}(k)=p$.
If $V=V_{1} \oplus V_{2}$ with neither 0 , both must be 1 -dimensional simultaneous eigenspaces for every n.

But each non-identity matrix only has eigenspace $\operatorname{span}\left(e_{1}\right)$! So we cannot find a V_{2}.

Quaternion Algebras

What group do we care about the representations of?

Quaternion Algebras

What group do we care about the representations of?
Definition
Let F be a field. A quaternion algebra over F is a 4-dimensional vector space over F, with basis $\{1, i, j, k\}$, satisfying the multiplication rules

$$
\begin{gathered}
i^{2}=a \quad j^{2}=b \\
i j=-j i=k
\end{gathered}
$$

where $a, b \in F^{\times}$.

Quaternion Algebras

What group do we care about the representations of?

Definition

Let F be a field. A quaternion algebra over F is a 4-dimensional vector space over F, with basis $\{1, i, j, k\}$, satisfying the multiplication rules

$$
\begin{gathered}
i^{2}=a \quad j^{2}=b \\
i j=-j i=k
\end{gathered}
$$

where $a, b \in F^{\times}$.
For the remainder of this talk, we assume $F=\mathbb{Q}_{p}$, the field of p-adic numbers, a and b are chosen such that D is a division algebra, and let D^{\times} denote the units of D.

Decomposition of D^{\times}

Fact

There exists an element $\varpi \in D^{\times}$with $\varpi^{2}=p$, with respect to which we have the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

where \mathcal{O} denotes the ring of integers in D.

Decomposition of D^{\times}

Fact
There exists an element $\varpi \in D^{\times}$with $\varpi^{2}=p$, with respect to which we have the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

where \mathcal{O} denotes the ring of integers in D.
Intuition: Think power series in ϖ.

Decomposition of D^{\times}

Fact

There exists an element $\varpi \in D^{\times}$with $\varpi^{2}=p$, with respect to which we have the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

where \mathcal{O} denotes the ring of integers in D.
Intuition: Think power series in ϖ.
Note that D^{\times}contains the index 2 subgroup $H=\varpi^{2 \mathbb{Z}} \times\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)$, where the product is direct since $\varpi^{2}=p$ is in the center of D^{\times}.

Irreducible Representations of D

There are two classes of irreducible representations of D^{\times}over $\overline{\mathbb{F}_{p}}$:

- 1-dimensional representations given by

$$
\begin{aligned}
& \chi_{a, b}: D^{\times} \rightarrow \mathrm{GL}_{1}\left(\overline{\mathbb{F}_{p}}\right)={\overline{\mathbb{F}_{p}}}^{\times} \\
& \left(\varpi^{\times}, y, z\right) \mapsto a^{\times} y^{(p+1) b}
\end{aligned}
$$

for $a \in{\overline{\mathbb{F}_{p}}}^{\times}$and $0 \leq b \leq p-2$.

- 2-dimensional representations constructed by induction of the 1-dimensional representations of H, which are given by

$$
\begin{aligned}
\psi_{c, d}: H & \rightarrow \mathrm{GL}_{1}\left(\overline{\mathbb{F}_{p}}\right)={\overline{\mathbb{F}_{p}}}^{x} \\
\left(\varpi^{2 x}, y, z\right) & \mapsto c^{x} y^{d}
\end{aligned}
$$

for $c \in{\overline{\mathbb{F}_{p}}}^{\times}$and $0 \leq d \leq p^{2}-2$.

Goals

Recall that when our representation is not over \mathbb{C}, irreducible representations don't tell us everything!

Goals

Recall that when our representation is not over \mathbb{C}, irreducible representations don't tell us everything!

Goal
We want to understand how to glue together irreducible representations in more interesting ways than simply taking their direct sum.

Goals

Recall that when our representation is not over \mathbb{C}, irreducible representations don't tell us everything!

Goal
We want to understand how to glue together irreducible representations in more interesting ways than simply taking their direct sum.

We will do this by computing extensions of irreducible representations of D^{\times}。

Extensions of Irreducible Representations

Definition

Given two representations V_{1} and V_{2} of a group G, we say that the representation V is an extension of V_{1} by V_{2} provided that the following sequence

$$
0 \longrightarrow V_{2} \longleftrightarrow V \longrightarrow V_{1} \longrightarrow 0
$$

is exact.

Extensions of Irreducible Representations

Definition

Given two representations V_{1} and V_{2} of a group G, we say that the representation V is an extension of V_{1} by V_{2} provided that the following sequence

$$
0 \longrightarrow V_{2} \longleftrightarrow V \longrightarrow V_{1} \longrightarrow 0
$$

is exact.

Definition

Given two representations V_{1} and V_{2} of a group G, we define $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right)$ to be the set of equivalence classes of extensions of V_{1} by V_{2}.

Extensions of Irreducible Representations

Definition

Given two representations V_{1} and V_{2} of a group G, we say that the representation V is an extension of V_{1} by V_{2} provided that the following sequence

$$
0 \longrightarrow V_{2} \longleftrightarrow V \longrightarrow V_{1} \longrightarrow 0
$$

is exact.

Definition

Given two representations V_{1} and V_{2} of a group G, we define $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right)$ to be the set of equivalence classes of extensions of V_{1} by V_{2}.

Over \mathbb{C}, Maschke's Theorem tells us $\operatorname{Ext}_{G}^{1}\left(V, V^{\prime}\right)=0$.

Computing Extensions

Result

We describe Ext ${ }_{D^{\times}}^{1}\left(V_{1}, V_{2}\right)$.

- When V_{1} and V_{2} are both 1-dimensional representations, we have that

$$
\operatorname{dim} \operatorname{Ext}_{D^{\times}}^{1}\left(V_{1}, V_{2}\right)= \begin{cases}2 & V_{1}=V_{2} \\ 0 & \text { else }\end{cases}
$$

- When $V_{1}=\chi_{\gamma, \delta}$ and $V_{2}=\operatorname{Ind}_{H}^{D^{\times}}\left(\psi_{a, b}\right)$, we have that

$$
\operatorname{dim} \operatorname{Ext}_{D^{\times}}^{1}\left(V_{1}, V_{2}\right)= \begin{cases}2 & a=\gamma^{2}, b=(p+1) \delta \\ 1 & a=\gamma^{2}, b-(p+1) \delta= \pm(p-1) \\ 0 & \text { else }\end{cases}
$$

Computing Extensions

Result (cont.)

- When $V_{1}=\operatorname{Ind}_{H}^{D^{\times}}\left(\psi_{a, b}\right)$ and $V_{2}=\operatorname{Ind}_{H}^{D^{\times}}\left(\psi_{c, d}\right)$, we have that
$\operatorname{dim} \operatorname{Ext}_{D^{\times}}^{1}\left(V_{1}, V_{2}\right)= \begin{cases}3 & a=c,(b, d) \in S \\ 1 & a=c, b=d \text { or } b=p d \text { (excl. above case) } \\ 0 & \text { else }\end{cases}$
where

$$
S=\{(\lambda(p+1) \pm p, \lambda(p+1) \pm 1),(\lambda(p+1) \pm 1, \lambda(p+1) \pm 1)\}
$$

Furthermore, we are able to produce explicit bases for these spaces.

Main Idea

- Recall that D^{\times}admits the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

Main Idea

- Recall that D^{\times}admits the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

- Understand $\operatorname{Hom}\left(1+\varpi \mathcal{O}, \overline{\mathbb{F}_{p}}\right)$.

Main Idea

- Recall that D^{\times}admits the decomposition

$$
D^{\times} \cong \varpi^{\mathbb{Z}} \ltimes\left(\mathbb{F}_{p^{2}}^{\times} \ltimes 1+\varpi \mathcal{O}\right)
$$

- Understand $\operatorname{Hom}\left(1+\varpi \mathcal{O}, \overline{\mathbb{F}_{p}}\right)$.
- Extend homomorphisms to functions from D^{\times}to $\overline{\mathbb{F}_{p}}$ which parameterize extensions of representations.

Next Steps

- Currently, our research has focused on D being a quaternion algebra over \mathbb{Q}_{p}.

Next Steps

- Currently, our research has focused on D being a quaternion algebra over \mathbb{Q}_{p}.
- Let F / \mathbb{Q}_{p} be a field extension of finite degree.

Next Steps

- Currently, our research has focused on D being a quaternion algebra over \mathbb{Q}_{p}.
- Let F / \mathbb{Q}_{p} be a field extension of finite degree.
- Take D instead to be a quaternion algebra over F.

Next Steps

- Currently, our research has focused on D being a quaternion algebra over \mathbb{Q}_{p}.
- Let F / \mathbb{Q}_{p} be a field extension of finite degree.
- Take D instead to be a quaternion algebra over F.
- Many desirable properties of \mathbb{Q}_{p} still hold in F, and much of our work can be adapted to F with slight modifications.

Thank You!

Questions?

