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Definitions

An n-simplex is the convex hull of n + 1 vertices in Rn.

0-simplex 1-simplex 2-simplex 3-simplex

A simplicial complex ∆ is a collection of simplicies closed under inclusion
and intersection.

A face of ∆ is a simplex contained in ∆, and a facet is a face which is
maximal by inclusion.
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Definitions (cont.)

A triangulation of a manifold M is a simplicial complex whose geometric
realization is homeomorphic to M.

Torus Triangulation Graphic: mathematica.stackexchange.com/questions/57829/torus-triangulation

A triangulation ∆ of dimension d is said to be balanced provided that
there exists a proper (d + 1)-coloring; i.e., there exists
κ : V → {1, 2, . . . , d + 1} such that if {a, b} is an edge in ∆, κ(a) 6= κ(b).
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Main Construction

Goal: Find a balanced triangulation of S2 × Sd−3.

S2 × Sd−3 ∼= (D2 × Sd−3) ∪ (D2 × Sd−3)

∪

Sd−1 = ∂Dd = ∂(D2 × Dd−2) = (∂D2 × Dd−2) ∪ (D2 × ∂Dd−2)

= (S1 × Dd−2) ∪ (D2 × Sd−3)
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Main Construction (cont.)

Idea: Take two copies of D2 × Sd−3 and ”glue” them together.

Two questions:

1 How can we triangulate D2 × Sd−3?

2 How do we glue the two copies together?
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1. How can we triangulate D2 × Sd−3?

∂Cd contains d pairs of antipodal vertices: {x1, y1, x2, y2, . . . , xd , yd}.
A facet in ∂Cd is of the form {u1u2 . . . un}, where ui ∈ {xi , yi}. Define a
switch to be when ui and ui+1 are of different labels.
Then, we define B(i , d) to be the set of facets with at most i switches.

x1

x2

x3

y1

y2

y3

B(0, 3)

x1

x2

x3

y1

y2

y3

∂Cd\B(1, 3)

Klee and Novik (2011) showed that B(1, d) triangulates D2 × Sd−3.
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2. How do we glue our two copies together?

We cannot glue directly, since associated vertices in our two copies will be
the same color.

Choose a simplicial isomorphism f on B(1, d) and apply to one copy.

f : xi → xi+1, yi → yi+1, xd → y1, x1 → yd

Identify faces σ and f (σ) and connect using a cross-polytope, then glue
cross-polytopes together to create a ”tubular neighborhood”.
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♦-Connected-Sum

How do we glue the cross-polytopes together? Define the ♦-connected
sum as follows:
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Properties of Triangulation

We were able to show certain properties of the triangulation Σ:

f0 = 4d

f1 = 4d(2d − 3)

fd−1 = (d + 2)2d − 8d

Aut(Σ) ∼= Z2 ×D2d

We also developed a program to generate this construction for arbitrary d
in Python/Sage.
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Is this vertex-minimal?

Is this vertex-minimal?
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In the case d = 3, this produces two disjoint 3-cross-polytopes
triangulating S2 × S0, which is two disjoint 2-spheres, so it must be vertex
minimal.
In general, we may be able to do this in less vertices.
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Bistellar Flips and Cross Flips

Pachner (1987) showed that any two d-dimensional triangulations of a
closed combinatorial manifold may be connected by a sequence of bistellar
flips, where a subcomplex is replaced with its complement in the boundary
of the (d + 1)-simplex.

d = 2
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Bistellar Flips and Cross Flips (cont.)

Izmestiev, Klee, and Novik (2015) showed that an analogous result is true
for balanced complexes, if we instead use subcomplexes satisfying certain
properties in the boundary of the (d + 1)-cross-polytope.

From [1].

This allows us to computationally search for vertex-minimal triangulations.
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