Balanced Triangulations of Sphere Products with Minimal Vertices

Alexander Wang
Advisor: Hailun Zheng

University of Michigan

Mathematics REU 2018

July 19, 2018

Definitions

An n-simplex is the convex hull of $n+1$ vertices in \mathbb{R}^{n}.

0-simplex 1-simplex

2-simplex

3 -simplex

Definitions

An n-simplex is the convex hull of $n+1$ vertices in \mathbb{R}^{n}.

A simplicial complex Δ is a collection of simplicies closed under inclusion and intersection.

Definitions

An n-simplex is the convex hull of $n+1$ vertices in \mathbb{R}^{n}.

0 -simplex 1 -simplex $\quad 2$-simplex 3 -simplex

A simplicial complex Δ is a collection of simplicies closed under inclusion and intersection.

A face of Δ is a simplex contained in Δ, and a facet is a face which is maximal by inclusion.

Definitions (cont.)

A triangulation of a manifold M is a simplicial complex whose geometric realization is homeomorphic to M.

Torus Triangulation Graphic: mathematica.stackexchange.com/questions/57829/torus-triangulation

Definitions (cont.)

A triangulation of a manifold M is a simplicial complex whose geometric realization is homeomorphic to M.

Torus Triangulation Graphic: mathematica.stackexchange.com/questions/57829/torus-triangulation
A triangulation Δ of dimension d is said to be balanced provided that there exists a proper $(d+1)$-coloring; i.e., there exists $\kappa: V \rightarrow\{1,2, \ldots, d+1\}$ such that if $\{a, b\}$ is an edge in $\Delta, \kappa(a) \neq \kappa(b)$.

Definitions (cont.)

A triangulation Δ of dimension d is said to be balanced provided that there exists a proper $(d+1)$-coloring; i.e., there exists $\kappa: V \rightarrow\{1,2, \ldots, d+1\}$ such that if $\{a, b\}$ is an edge in $\Delta, \kappa(a) \neq \kappa(b)$.

Definitions (cont.)

A triangulation Δ of dimension d is said to be balanced provided that there exists a proper $(d+1)$-coloring; i.e., there exists $\kappa: V \rightarrow\{1,2, \ldots, d+1\}$ such that if $\{a, b\}$ is an edge in $\Delta, \kappa(a) \neq \kappa(b)$.

Note that the boundary complex of the $(d+1)$-cross-polytope, denoted ∂C_{d+1}, is the minimal balanced triangulation of \mathbb{S}^{d}.

Main Construction

Goal: Find a balanced triangulation of $\mathbb{S}^{2} \times \mathbb{S}^{d-3}$.

Main Construction

Goal: Find a balanced triangulation of $\mathbb{S}^{2} \times \mathbb{S}^{d-3}$.

$$
\begin{aligned}
& \mathbb{S}^{d-1}=\partial D^{d}=\partial\left(D^{2} \times D^{d-2}\right)=\left(\partial D^{2} \times D^{d-2}\right) \cup\left(D^{2} \times \partial D^{d-2}\right) \\
& =\left(\mathbb{S}^{1} \times D^{d-2}\right) \cup\left(D^{2} \times \mathbb{S}^{d-3}\right)
\end{aligned}
$$

Main Construction (cont.)

Idea: Take two copies of $D^{2} \times \mathbb{S}^{d-3}$ and "glue" them together.

Main Construction (cont.)

Idea: Take two copies of $D^{2} \times \mathbb{S}^{d-3}$ and "glue" them together. Two questions:
(1) How can we triangulate $D^{2} \times \mathbb{S}^{d-3}$?
(2) How do we glue the two copies together?

1. How can we triangulate $D^{2} \times \mathbb{S}^{d-3}$?

∂C_{d} contains d pairs of antipodal vertices: $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d}, y_{d}\right\}$. A facet in ∂C_{d} is of the form $\left\{u_{1} u_{2} \ldots u_{n}\right\}$, where $u_{i} \in\left\{x_{i}, y_{i}\right\}$. Define a switch to be when u_{i} and u_{i+1} are of different labels.
Then, we define $B(i, d)$ to be the set of facets with at most i switches.

$B(0,3)$

$\partial C_{d} \backslash B(1,3)$

1. How can we triangulate $D^{2} \times \mathbb{S}^{d-3}$?

∂C_{d} contains d pairs of antipodal vertices: $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d}, y_{d}\right\}$. A facet in ∂C_{d} is of the form $\left\{u_{1} u_{2} \ldots u_{n}\right\}$, where $u_{i} \in\left\{x_{i}, y_{i}\right\}$. Define a switch to be when u_{i} and u_{i+1} are of different labels.
Then, we define $B(i, d)$ to be the set of facets with at most i switches.

$B(0,3)$

$\partial C_{d} \backslash B(1,3)$

Klee and Novik (2011) showed that $B(1, d)$ triangulates $D^{2} \times \mathbb{S}^{d-3}$.

2. How do we glue our two copies together?

We cannot glue directly, since associated vertices in our two copies will be the same color.

2. How do we glue our two copies together?

We cannot glue directly, since associated vertices in our two copies will be the same color.
Choose a simplicial isomorphism f on $B(1, d)$ and apply to one copy.

$$
f: x_{i} \rightarrow x_{i+1}, y_{i} \rightarrow y_{i+1}, x_{d} \rightarrow y_{1}, x_{1} \rightarrow y_{d}
$$

2. How do we glue our two copies together?

We cannot glue directly, since associated vertices in our two copies will be the same color.
Choose a simplicial isomorphism f on $B(1, d)$ and apply to one copy.

$$
f: x_{i} \rightarrow x_{i+1}, y_{i} \rightarrow y_{i+1}, x_{d} \rightarrow y_{1}, x_{1} \rightarrow y_{d}
$$

Identify faces σ and $f(\sigma)$ and connect using a cross-polytope, then glue cross-polytopes together to create a "tubular neighborhood".

\diamond-Connected-Sum

How do we glue the cross-polytopes together? Define the \diamond-connected sum as follows:

Properties of Triangulation

We were able to show certain properties of the triangulation Σ :

- $f_{0}=4 d$
- $f_{1}=4 d(2 d-3)$
- $f_{d-1}=(d+2) 2^{d}-8 d$
- $\operatorname{Aut}(\Sigma) \cong \mathbb{Z}_{2} \times \mathcal{D}_{2 d}$

Properties of Triangulation

We were able to show certain properties of the triangulation Σ :

- $f_{0}=4 d$
- $f_{1}=4 d(2 d-3)$
- $f_{d-1}=(d+2) 2^{d}-8 d$
- $\operatorname{Aut}(\Sigma) \cong \mathbb{Z}_{2} \times \mathcal{D}_{2 d}$

We also developed a program to generate this construction for arbitrary d in Python/Sage.

Is this vertex-minimal?

Is this vertex-minimal?

Is this vertex-minimal?

Is this vertex-minimal?

In the case $d=3$, this produces two disjoint 3-cross-polytopes triangulating $S^{2} \times S^{0}$, which is two disjoint 2-spheres, so it must be vertex minimal.

Is this vertex-minimal?

Is this vertex-minimal?

In the case $d=3$, this produces two disjoint 3-cross-polytopes
triangulating $S^{2} \times S^{0}$, which is two disjoint 2-spheres, so it must be vertex minimal.
In general, we may be able to do this in less vertices.

Bistellar Flips and Cross Flips

Pachner (1987) showed that any two d-dimensional triangulations of a closed combinatorial manifold may be connected by a sequence of bistellar flips, where a subcomplex is replaced with its complement in the boundary of the $(d+1)$-simplex.

$$
d=2
$$

Bistellar Flips and Cross Flips (cont.)

Izmestiev, Klee, and Novik (2015) showed that an analogous result is true for balanced complexes, if we instead use subcomplexes satisfying certain properties in the boundary of the $(d+1)$-cross-polytope.

From [1].

Bistellar Flips and Cross Flips (cont.)

Izmestiev, Klee, and Novik (2015) showed that an analogous result is true for balanced complexes, if we instead use subcomplexes satisfying certain properties in the boundary of the $(d+1)$-cross-polytope.

From [1].

This allows us to computationally search for vertex-minimal triangulations.

References

S. Klee and I. Novik: Centrally symmetric manifolds with few vertices, Advances in Mathematics 229 (2012), 487-500.
目 I. Izmestiev, S. Klee, and I. Novik: Simplicial moves on balanced complexes, Advances in Mathematics 320C (2017), 82-114.

