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Abstract

We say that a permutation σ ∈ Sn contains a permutation π ∈ Sk as

a pattern if some subsequence of σ has the same order relations among its

entries as π. We improve on results of Wilf, Coleman, and Eriksson et al.

that bound the asymptotic behavior of pat(n), the maximum number of

distinct patterns of any length contained in a single permutation of length

n. We prove that 2n
− O(n22n−

√
2n) ≤ pat(n) ≤ 2n

− Θ(n2n−
√

2n) by

estimating the amount of redundancy due to patterns that are contained

multiple times in a given permutation. We also consider the question of

k-superpatterns, which are permutations that contain all patterns of a

given length k. We give a simple construction that shows that Lk, the

length of the shortest k-superpattern, is at most k(k+1)
2

. This may lend

evidence to a conjecture of Eriksson et al. that Lk ∼
k
2

2
.
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1 Introduction

The field of permutation pattern research studies the set of permutations Sn of

n elements as permutations of the totally ordered set [n] = {1, 2, . . . , n}. We will

represent a permutation σ ∈ Sn, by the sequence σ(1), σ(2), . . . , σ(n) (omitting

commas when there is no ambiguity). We then say that σ ∈ Sn contains a

pattern π ∈ Sk, for some 1 ≤ k ≤ n, if there exists a subsequence of σ with the

same order relations as π (see Section 2 for a formal definition). For example,

the permutation 25314 contains the pattern 312 because its subsequence 514

has the same order relations as 312. We wish to estimate the maximum number

of distinct patterns that can be contained in a permutation σ ∈ Sn. This

maximum, call it pat(n), is trivially bounded above by 2n.

The main known results and conjectures about the asymptotic growth of

pat(n) have compared pat(n) to 2n. In [8], Wilf first attacked the question

of determining its rate of growth. He found the exponential lower bound

pat(n) ≥ Fn+1 (the (n+1)st Fibonacci number), but was unable to determine

the value of lim sup n
√

pat(n), and asked whether it was less than 2. His question

was answered by Coleman [4], who proved that pat(k2) ≥ 2(k−1)2 , implying that

lim sup n
√

pat(n) = 2. More recently, Albert et al. [1] showed that pat(n) ap-

proaches 2n in a stronger manner. Their bound pat(n) ≥ 2n − O(
√

n2n−√
n/2)

is strong enough to imply limn→∞
pat(n)

2n = 1, answering a question of Bóna.

However, we will show that their correction term O(
√

n2n−√
n/2) can be re-

duced substantially, to O(n22n−
√

2n).

In this paper, we determine just how close pat(n) is to 2n by giving upper

and lower bounds for the quantity 2n−pat(n) that differ only by an O(n) factor.

Our lower bound pat(n) ≥ 2n−O(n22n−
√

2n) (Theorem 4.1) comes from “tilted

checkerboard” permutations that have an easily analyzable checkerboard-like

structure similar to that of the square grid permutations used in [4] and [1]
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and the constructions of Eriksson et al. [6] for the closely related superpattern

problem. We show our upper bound, pat(n) ≤ 2n −O(n2n−
√

2n) (Theorem 6.5)

by making rigorous Coleman’s insight that to maximize the number of distinct

patterns contained, we must space the entries of our permutation apart in the

taxicab metric.

There is another natural problem in this area of permutation packings,

loosely dual to that of finding pat(n). A k-superpattern, defined in [2], is a

permutation containing all permutations of length k as patterns. We wish to

bound the minimal length Lk of a k-superpattern. The best previously known

asymptotic bounds for Lk

k2 are

1

e2
≤ lim

k→∞

Lk

k2
≤ 2

3
.

The lower bound is trivial, much like the upper bound of 2n for pat(n). However,

Eriksson et al. ([5, Theorem 6.2]) require a nontrivial probabilistic argument

to show that any pattern can be contained in their tilted checkerboard-like

permutation of length 2k2

3 + o(k2). In the same paper, they conjectured that

asymptotically Lk ∼ k2

2 . In Theorem 3.1 we will give a simple construction,

related to the tilted checkerboard, that yields a large family of k-superpatterns

of length k(k+1)
2 .

The structure of this paper is as follows: Section 2 contains the definitions

and constructions that will form the basis for our later arguments. Section 3

is a brief excursion into superpatterns; we use a “zigzag word” construction

to produce numerous small superpatterns whose structure resembles that of a

tilted checkerboard. We then focus our attention on finding lower and upper

bounds for pat(n).

In Section 4 we find a constructive lower bound for pat(n) using tilted

checkerboard permutations. Our goal is to show that a tilted checkerboard
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having length n has nearly 2n − O(n22n−
√

2n) patterns that it contains in only

one way, which implies our desired result. Because the tilted checkerboard has

only O(
√

n) descents, evenly spaced, we can use the descents of a contained

pattern as benchmarks to locate it within the checkerboard and do the same

with the inverse ascents. This tightly restricts the possibilities for subsets of the

checkerboard whose corresponding permutation is not uniquely contained. The

restriction we get is equivalent to saying that S is disjoint from each of O(n2)

subsets of [n] of size close to
√

2n, from which our bound follows (with some

explicit counting postponed to Section 5).

Finally, we show our upper bound, which says that at least Θ(n2n−
√

2n) of

the 2n subsets S ⊆ [n] are redundant, in the sense that there is another subset of

[n] that corresponds to the same pattern. We do so by considering the geometry

of the graph of a permutation σ, that is, the set of all pairs (i, σ(i)) ∈ Z
2,

equipped with the standard taxicab metric. In Section 6, we bound pat(n) from

above in terms of a geometric quantity called the “swap-redundancy coefficient,”

which we then bound by an inclusion-exclusion argument, with the technical

details of showing that our correction terms are small postponed to Section 7.

(The same methods can also be used to give the bound pat(n) ≤ 2n−Θ(2n−
√

2n)

with much less work.)

2 Definitions and constructions

A pattern π of length k is a permutation in Sk, that is, a permutation of the

elements of the set [k] = {1, 2, 3, . . . , k}: in this sense, “pattern” and “permuta-

tion” are synonymous, but we will generally talk about smaller patterns being

contained in larger permutations.

Definition. For σ = σ(1), σ(2), . . . , σ(n) ∈ Sn and π = π(1), π(2), . . . , π(k) ∈

Sk where 1 ≤ k ≤ n, we say that σ contains the pattern π if there exist indices
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a1, a2, . . . , ak with 1 ≤ a1 < a2 < · · · < ak ≤ n such that for any i, j ∈ [k],

σ(ai) < σ(aj) if and only if π(i) < π(j). In such a case, we say that the subset

{a1, a2, . . . , ak} of [n] represents π.

The quantity of interest is the number of distinct patterns contained in a

given permutation.

Definition. For σ a permutation, let f(σ) denote the number of distinct pat-

terns of any positive length contained in σ. Furthermore, for a fixed positive

integer n, let

pat(n) = max
σ∈Sn

f(σ).

Any pattern π contained in a permutation σ ∈ Sn is represented by one of

the 2n subsets of [n]. If pat(n) is close to 2n, most of these patterns must be

represented by only one of these 2n subsets. We now consider the number of

such “uniquely represented” patterns.

Definition. If π is a pattern contained in σ such that exactly one subset A =

{a1, a2, . . . , ak} of [n] represents π, we say that π is uniquely contained in σ and

that the subset A = {a1, a2, . . . , ak} ⊆ [n] is uniquely determined with respect

to σ. Otherwise, we say that the set A is redundant for σ. Then let u(σ) be

the number of patterns uniquely contained in σ, which is also the number of

uniquely determined subsets for σ. Additionally, let r(σ), the redundancy of σ,

be the number of nonempty subsets of σ that are redundant. Again we define

the maximum number of unique patterns

uni(n) = max
σ∈Sn

u(σ)

and the corresponding minimum number of redundant subsets,

red(n) = min
σ∈Sn

r(σ).
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Figure 1: The graph of the 5 × 3 tilted rectangle permutation
5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11. In general, the j × k tilted
rectangle consists of j staggered upward runs of length k, each an arithmetic
progression of difference j, such that the first entry of the i-th run is j + 1 − i.

We note that both u(σ) and f(σ) are bounded above by 2n. More precisely,

u(σ)+r(σ) = 2n−1 and uni(n)+red(n) = 2n−1 because the redundant subsets

of [n] are exactly those that are not uniquely determined.

Proposition 2.1. For any permutation σ of length n,

2n − 1 − r(σ) = u(σ) ≤ f(σ) < 2n − 1 − r(σ)

2

and so

2n − 1 − red(n) = uni(n) ≤ pat(n) < 2n − 1 − red(n)

2
.

Proof. The left hand inequality is trivial. For the right hand side, consider the

sum 2u(σ) + r(σ) = 2n+1 − 2 − r(σ). It counts every pattern contained in σ at

least twice, so 2n+1 − 2 − r(σ) ≥ 2f(σ), and the desired inequality follows.

Our construction in Section 4 will make heavy use of a certain type of per-

mutation, the tilted square, which is also closely related to the construction of

Section 3.
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Definition. The j × k tilted rectangle is the permutation of Sjk given by

j, 2j, 3j, . . . , kj, j − 1, 2j − 1, . . . , kj − 1, . . . 1, j + 1, . . . , kj − j + 1.

(See Figure 1.) The tilted square of size k is the k × k tilted rectangle.

Remark. We follow Coleman’s convention in [4] in defining the tilted square; in

[5] tilted rectangles and tilted squares are defined to be the reflections of those

given above.

The term “tilted rectangle” comes from the shape of the graph of this per-

mutation. (For a formal definition of the graph of a permutation, see Section 6.)

It is visually evident from the symmetry of the graph of the tilted rectangle (see

Figure 1) that the inverse permutation of the j × k tilted rectangle is identical

to the reverse, or reflection in a vertical axis, of the k × j tilted rectangle. In

sequence form, the inverse of the j × k tilted rectangle is given by

kj − k + 1, kj − 2k + 1, . . . , 1, kj − k + 2, kj − 2k + 2, . . . , 2, . . . , kj, kj − k, . . . , k

which has k staggered downwards runs of length j. In the graph of the tilted

rectangle, the j upward runs appear as tilted columns, and the k downward

runs of the inverse appear as tilted rows. We can generalize this concept of rows

and columns to arbitrary permutations.

Definition. A column of a permutation σ is a maximal upwards run of σ,

that is, a maximal set of the form {i, i+1, i+ 2, . . . , i +m− 1, i+ m} satisfying

σ(i) < σ(i+1) < · · · < σ(i+m). A row of a permutation σ is a maximal subset of

[n] corresponding to a downwards run in σ−1, namely, a maximal set of the form

{σ−1(i), σ−1(i+1), . . . , σ−1(i+m)} with σ−1(i) > σ−1(i+1) > · · · > σ−1(i+m).

Observe that the descents of σ form the dividing lines between adjacent
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columns, so that the number of columns of a permutation is one more than its

number of descents. Similarly, σ has one more row than σ−1 has ascents. (Note:

what we call a “column” is also called an “increasing run” or “ascending run”

in the literature.)

We now show a simple but useful lemma on rows and columns in an arbitrary

permutation.

Lemma 2.2. Let R be a row and C be a column of a permutation σ. Then R

and C intersect in at most one element.

Proof. We note that if a, b ∈ C and a < b, then σ(a) < σ(b). Similarly, if

a, b ∈ R and a < b, then σ(a) > σ(b). Hence it is impossible to have two

distinct elements in both R and C.

Note that tilted rectangles have the special property that every row intersects

every column, but this is not the case for general permutations. We number the

columns of a permutation σ, starting with 1, from left to right as they appear

in the graph of σ, and number the rows from bottom to top.

Although Albert et al. [1] used tilted squares in their lower bound for pat(n),

there is another closely related permutation with a higher diversity of patterns.

We call it the “tilted checkerboard” because we will construct it by coloring the

graph of the tilted square black and white in a checkerboard fashion so that the

first entry is colored black, and then taking the subpermutation corresponding

to all black squares.

Definition. Color each entry of the j×k tilted rectangle black or white accord-

ing to whether the sum of its row number and column number is 0 or 1 mod 2.

The j×k tilted checkerboard is the subpermutation of the tilted square induced

by the set of all black elements (see Figure 2). In this paper we work mainly

with the square k × k tilted checkerboard, which we call the k-checkerboard for

brevity.
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Figure 2: The set of black squares of the 5 × 3 tilted rectangle and the corre-
sponding checkerboard permutation (3, 8, 5, 2, 7, 4, 1, 6)

To help us when working with patterns in the k × k tilted checkerboard, we

make the following definitions.

Definition. For a permutation σ ∈ Sn, and a subset S ⊆ [n], let π be the

pattern of σ determined by S. We say that a subset S avoids the ith column

of σ if it contains no elements from the ith column of σ. We also say that

S truncates the ith column of σ if S does not avoid the ith column, and the

rightmost element of S in the ith column of σ corresponds to the left end of an

ascent of π (equivalently, if it lies below the next element of S). Similarly, S

truncates the ith row of σ if the topmost entry of S in the ith row is the bottom

end of an inverse descent of π. (See Figure 3.)

The rationale for this nomenclature is that in such a case the ith column

runs into the next column to make a single ascending run in π.

3 Superpatterns

The gridlike structure of the tilted rectangle and checkerboard permutations

makes it easy to locate specific permutations as patterns in them. However,
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Figure 3: If S is the set of black entries of the 5×3 tilted rectangle shown above,
S truncates the first column of the rectangle and avoids the fourth column. By
Lemma 4.3 the resulting pattern has 5 − 1 − 1 = 3 columns, as seen in the
picture.

they are not an optimal construction for superpatterns because they contain so

many more ascents than descents. In this section we construct patterns with a

structure similar to the tilted checkerboards, but with a more equal number of

ascents and descents.

We will produce superpatterns of length k(k+1)
2 by first constructing a word

Z of that length that contains all permutation patterns of length k. We can

then easily convert Z into a permutation with the same property. A word w =

w(1)w(2) . . . w(n) is a sequence of positive integers of arbitrary length, allowing

repetitions. We generalize the idea of pattern containment to words: a word w

is said to contain a permutation π ∈ Sk as a pattern if there is a subsequence

w(a1)w(a2) . . . w(ak) such that w(ai) < w(aj) if and only if π(i) < π(j). We

say that a permutation σ represents a word w if they have the same length and

if for any i, j ∈ [n], w(i) < w(j) implies σ(i) < σ(j) (but the converse need

not be true). If a permutation σ represents a word w, any pattern contained

in w is also contained in σ. Also, if w contains ai appearances of each positive

integer i, there are
∏

i∈N
ai! permutations representing w, because for each i
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the ai elements corresponding to the appearances of i can be ordered in any

manner. We also say that a word v is a subword of a word w if v is contained in

w as a subsequence (not just up to order-preserving relabeling), and we can also

consider a permutation π ∈ Sn as the word π(1)π(2) . . . π(n), so that it makes

sense to say that a permutation is a subword of a word.

Now, for a positive integer k, let Z be the zigzag superword made by alter-

nating between ⌈k
2 ⌉ copies of the odd uprun 1 3 5 . . . (2⌊k

2 ⌋ − 1) (2⌊k
2⌋ + 1) and

⌊k
2⌋ copies of the even downrun (2⌊k+1

2 ⌋) (2⌊k+1
2 ⌋ − 2) . . . 4 2. It has a total of

⌈k
2⌉

(

⌊k
2 ⌋ + 1

)

+ ⌊k
2⌋⌊k+1

2 ⌋ = k(k+1)
2 entries. When we refer to a run of Z, we

will mean one of those k + 1 odd upruns or even downruns. This zigzag super-

word has a pattern of runs similar to that of the tilted checkerboard, but it has

the advantage over the tilted checkerboard of having roughly equal numbers of

ascents and descents instead of being “biased” towards ascents. (See Figure 4).

Theorem 3.1. For any π ∈ Sk, either π or π+1 (the word produced by adding 1

to each entry of π) is a subword of Z. As a corollary, Z, and so any permutation

representing Z, contains any π ∈ Sk as a pattern.

Proof. We first make a few definitions. An even ascent of a word w is an ascent

with both entries even: that is, an i for which w(i) < w(i + 1) and both w(i)

and w(i + 1) are even. Let A0(w) be the set of even ascents of w. Similarly we

can define A1(w), D0(w), and D1(w) as sets of odd ascents, even descents, and

odd descents of w respectively. Note that odd entries in π correspond to even

entries in π + 1, so that

A0(π) = A1(π + 1), A1(π) = A0(π + 1), (1)

D0(π) = D1(π + 1), D1(π) = D0(π + 1). (2)

We can consider Z as an inital segment of an infinite word Z∞ that alternates
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Figure 4: The graphs of the zigzag word
Z = (1, 3, 5, 6, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5) for k = 5 and of one of the
(3!)3(2!)3 = 1728 permutations that represent it.

13



between infinitely many even upruns and odd downruns. For any π, we can ob-

tain π as a subsequence of Z∞ by a greedy algorithm: take the first appearance

in Z of π(1), say it is in the m1(π)th run, the first succeeding appearance of π(2)

in the m2(π)th run, and so on, so that π(i) lands in the mi(π)th run for each i.

This algorithm will construct π as a subsequence of Z if the subsequence of Z∞

corresponding to π is contained in the first k runs of Z∞, that is, if mk(π) ≤ k.

Similarly, π + 1 will be a subsequence of Z if mk(π + 1) ≤ k.

However, one can easily verify that mi(π) satisfies the conditions

m1(π) =















1 if π(1) is odd

2 if π(1) is even

(3)

and

mi+1(π) =































mi(π) + 1 if π(i + 1) differs in parity from π(i)

mi(π) if i ∈ A0(π) or i ∈ D1(π)

mi(π) + 2 if i ∈ A1(π) or i ∈ D0(π)

(4)

and hence

mk(π) = m1(π) + k − 1 + (|A1(π)| + |D0(π)| − |A0(π)| − |D1(π)|). (5)

Similarly,

mk(π+1) = m1(π+1)+k−1+(|A1(π+1)|+|D0(π+1)|−|A0(π+1)|−|D1(π+1)|).

(6)

Now we add (5) and (6) together, using (1) and (2) to cancel terms:

mk(π) + mk(π + 1) = m1(π) + m1(π + 1) + 2(k − 1) = 2k + 1 (7)
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using (3) in the final step. Because mk(π) and mk(π + 1) are integers summing

to 2k + 1, one of them must be at most k, and we conclude that either π or

π + 1 is a subsequence of Z.

4 Lower bound by identifying uniquely deter-

mined subsets of the tilted checkerboard

Our goal in this section will be to give the following lower bound on pat(n) by

analyzing square checkerboards.

Theorem 4.1. The maximum number of distinct patterns contained in some

permutation in Sn is bounded below by

pat(n) ≥ 2n − O(n22n−
√

2n).

We note that this bound is significantly stronger than the lower bound 2n −

O(
√

n2n−√
n/2) given in [1].

Our main method will be to estimate pat(n) by way of uni(n), or equivalently,

by way of red(n). For this section, we will set N = ⌈k2

2 ⌉, the length of the k-

checkerboard. Our first step is to show for certain large subpermutations σ ∈ Sn

of the k-checkerboard, the non-uniquely determined subsets of [n] can only be

of a certain restricted type: namely, those that truncate or avoid at least two of

the rows and columns of the k-checkerboard. First we prove two useful lemmas

about rows and columns that we will need to characterize those non-uniquely

determined subsets.

Lemma 4.2. Suppose that π ∈ Sm is a pattern represented in a permutation

σ ∈ Sn by a subset S ⊆ [n]. Say that σ has k columns (rows) and that π has

k − d columns (rows). Then if an element a of [m] lies in the jth column (row)
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of π, the corresponding element a′ of S ⊆ [n] appears somewhere between the

jth column (row) and the (j + d)th column (row) of σ, inclusive.

Proof. We do the argument for columns; the argument for rows is identical. If

a is in the jth column of π, there must be j − 1 descents of π before a, and

k − d − j descents of π after a. We can find j − 1 corresponding descents of σ

before a′, so a′ must lie in at least the jth column of π. Similarly, we can find

k − d − j corresponding descents of σ after a′, so at least k − d − j of the k

columns of σ must come after a′, implying that a′ can be in at the latest the

k − (k − d − j) = (j + d)th column of σ.

We can determine the number of descents or ascents of a pattern from its

subset S using the concept of truncation.

Lemma 4.3. Suppose that a set S ⊆ [n] represents the pattern π in some

permutation σ ∈ Sn. Say that σ has k total columns, and that S avoids e of the

columns (rows) of σ and truncates t columns (rows). Then π has k − e − t − 1

descents (inverse ascents).

Proof. We first reduce to the case e = 0 by letting σ′ be the subpermutation of

σ derived by removing the columns avoided by S. The new permutation σ′ has

k − e columns, corresponding to the remaining columns of S, and the columns

of σ′ truncated by the new set S′ correspond to the columns of σ truncated by

S. We now count the number of descents of π. None of them can occur within

the columns of σ′, so they must all occur between columns of σ. The values

of j for which there is a descent of π between the jth and (j + 1)st columns

of σ are exactly those j for which the jth column is not truncated, so π has

(k − e − 1) − t = k − e − t − 1 descents. The argument for rows and inverse

ascents is exactly the same.

We now characterize a large family of uniquely contained patterns in a tilted
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checkerboard.

Proposition 4.4. Let π be a pattern contained in a tilted checkerboard of size k

such that the total number of descents and inverse ascents in π is at least 2k−3.

Then π is uniquely contained. If S is a subset of [N ] representing the pattern

π, this condition is equivalent to saying that S truncates or avoids at most one

of the rows and columns of the tilted checkerboard.

Proof. We first need to show that any permutation π ∈ Sm contained in the

k-checkerboard that has at least 2k − 3 combined descents and inverse ascents

is contained uniquely. Note that π can have at most as many ascents and at

most as many inverse descents as the k-checkerboard containing it does, that

is, at most k − 1 of each. Hence either it has k − 1 of both ascents or descents,

or it has k − 1 of one and k − 2 of the other. In the first case it has k rows

and k columns, while in the second it has k of one and k − 1 of the other. We

first consider the case where π has k rows and k columns. By Lemma 4.2, if

an element of [m] lies in the ith row and jth column of π, the corresponding

element of [n] must also lie in the ith row and jth column of the k-checkerboard.

This uniquely determines the position of each element in [n] because any row

and any column intersect in at most one element.

Now we consider the case when π has k rows and k − 1 columns. Applying

Lemma 4.3 again, if an element a ∈ [m] lies in the ith row and jth column of

π, the corresponding element a′ of [n] lies in the ith row and either the jth or

(j + 1)st column of the k-checkerboard. But the uth row and vth column of

the checkerboard only intersect when u and v have the same parity. Because

exactly one of i+ j and i+ j+1 is even, this is enough to determine the location

of any given element. Hence π is uniquely contained.

The formulation in terms of S then follows directly from Lemma 4.3.

We now deduce an upper bound on the size of the set of subsets that do not
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yield unique patterns. Instead of just working with k-checkerboard permuta-

tions, which can only have lengths that are numbers of the form N = ⌈k2

2 ⌉, we

will work with any subpermutation σ of the k-checkerboard, represented by a

subset T of [N ] that omits at most one element from each row and each column

of the k-checkerboard. The advantage of this is that we can find such permu-

tations σ of any possible length n, allowing us to prove our lower bound for all

n, not just for n of the special form ⌈k2

2 ⌉.

Any subset of [n] that is redundant for σ corresponds to a subset S of T

that is redundant for the k-checkerboard. By Proposition 4.4, S must truncate

or avoid at least two among the rows and columns of the k-checkerboard. The

idea behind counting these is very simple: if S avoids or truncates two rows or

columns of σ, S must not contain any members from at least one of a family

of O(n2) subsets of [n], each of which has k =
√

2n + O(1) elements. For each

of these O(n2) subsets, there are O(2n−
√

2n) choices of S that do not intersect

it, combining for a total of O(n22n−
√

2n) redundant subsets S. We leave the

details of this counting to the following section: for now we merely state the

lemma we need.

Lemma 4.5. Let T be a subset of [N ] that omits at most one element from

each row and each column of the board, and let n = |T |. The number of subsets

S ⊆ T of [N ] that have at least two of the rows and columns of the k-checkerboard

truncated or vanishing is O(n22n−
√

2n).

The subsets just counted are exactly those that fail the criterion of Lemma 4.4,

so we can now bound the number of redundant subsets.

Corollary 4.6. Let σ be a subpermutation of the k-checkerboard represented by

a subset T of [N ] that omits at most one entry from each row and each column
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of the k-checkerboard, and let n = |T | be the length of σ. Then

r(σ) ≤ O(n22n−
√

2n).

Proof. By Proposition 4.4, any subset of [N ] that is redundant for the k-

checkerboard must truncate or avoid at least two of the rows and columns of

the checkerboard. As seen above, the redundant subsets of [n] for σ must all

correspond to subsets of such type that are also contained in T , so we may apply

Lemma 4.5 to deduce r(σ) ≤ O(n22n−
√

2n).

Theorem 4.7. Let σ ∈ Sn be a subpermutation of the k-checkerboard repre-

sented by a subset T satisfying the conditions of Lemma 4.5. Then f(σ) ≥

2n − O(n22n−
√

2n).

Proof. By Corollary 4.6 r(σ) ≤ O(n22n−
√

2n). Hence u(σ) ≥ 2n−O(n22n−
√

2n),

and also f(σ) ≥ 2n − O(n22n−
√

2n).

From this, Theorem 4.1 follows directly.

Proof of Theorem 4.1. For each n, we must find a σn ∈ Sn such that f(σn) ≥

2n−O(n22n−
√

2n). Let k be the unique natural number with (k−1)2 < 2n ≤ k2,

and let N = ⌈k2

2 ⌉ be the size of the k-checkerboard, so N − n ≤ k. Now, the

k-checkerboard has a diagonal with k elements, no two in the same row or same

column. Deleting N − n of those k elements yields a subset Tn of [n] satisfying

the condition of Lemma 4.5. Theorem 4.7 then applies to the corresponding

permutation σn, as desired.

This lower bound is remarkably close to the upper bound 2n − Θ(n2n−
√

2n)

found in Section 6, but it is possible that one might be able to find an improved

lower bound for pat(n) either by closer scrutiny of the patterns analyzed above

or by other means.
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5 Proof of Lemma 4.5

We complete the proof of our lower bound by proving Lemma 4.5, which bounds

the number of subsets of the tilted checkerboard that satisfy our necessary

condition for being redundant.

Proof of Lemma 4.5. We consider the two essentially different ways that a sub-

set S of [N ] (N = ⌈k2

2 ⌉ ≥ n = |T |) contained in T can truncate or avoid two

among the rows and the columns of the tilted checkerboard: either it can avoid

or truncate two rows or two columns, or it can have one of each. Before doing

so, however, we observe that if S either avoids or truncates the ith column of

the checkerboard, we can find a set Ai of at least α = ⌈k
2⌉−1 consecutive entries

from the ith and (i + 1)st columns, none of which is in S. Indeed, if S avoids

the ith column, the ith column will serve as our sequence. If S truncates the ith

column, each of the α integers following the last element of S in the ith column

must either be in the ith column or below the last element of the ith column:

in either case, they can’t be in S, because the last element of the ith column

corresponds to an ascent in π. Analogously, if S truncates or avoids the ith

row, we can find a set Bi of integers of size at least α that take on consecutive

values, none of which is in S.

Two rows or two columns: Without loss of generality, we do the “two

columns” case: suppose that S avoids or truncates the ith and jth columns

of the checkerboard, say i < j. We claim that in this case S misses two disjoint

sequences of consecutive elements of length at least α. We know that Ai and

Aj are two such sequences, so they will suffice unless they intersect. This can

only happen in the configuration where S truncates column i and avoids column

j = i + 1.

In this case, we claim the 2α entries following the last element of S in the

ith column cannot be in S. For those that are in column i come after the last
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element of S in that column; none can be in column i + 1 = j, which vanishes

for S; and those in column i+2 must have values below that of the last element

of S in the ith column.

We now count the possibilities. Suppose that the first run of missing elements

starts at position r, and the second at position s (where we choose r and s to be

minimal). Given r and s, we have specified that the α elements starting with

r and the α starting with s are not in S, and all other elements of T may or

may not be in S. However, some of these specifications may be redundant due

to the fact that S ⊆ T . Each run, though, contains elements from at most two

columns, so at most four of these can have been already specified. Since there

are at most N2 ways to choose the pair (r, s), and any such choice of a pair

specifies that S must be disjoint from a given subset of at least 2α− 4 elements

of T , there are at most

N22n−2α+4

non-uniquely determined subsets of this form in T . Because T ⊆ [N ] misses at

most one element of each of the k rows of the k-checkerboard, N − k ≤ n =

|T | ≤ N . Because N = ⌈k2

2 ⌉, the number N is O(n), and also α =
√

n
2 − O(1).

Hence the above expression is asymptotically O(n22n−
√

2n).

One of each: We use essentially the same argument as above, this time sup-

posing that S truncates the ith row and jth column. This gives us two sequences

of elements in consecutive positions or with consecutive values having length at

least α. We shorten them if necessary so that both have length α. These se-

quences will not in general be disjoint, but we claim that their intersection will

be small. In fact, the run of α consecutive missing positions intersects at most

two rows of the k-checkerboard because those rows are each of length at most α.

Similarly, the run of consecutive missing values intersects at most two columns

of the k-checkerboard. By the checkered structure of the k-checkerboard, two
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consecutive rows and two consecutive columns intersect in only two elements.

Hence we find in this case that there are at most N22n−2α+6 possibilities for S,

which is again O(n22n−
√

2n).

6 Proof of the upper bound

In a sense, the underlying idea behind our upper bound pat(n) ≤ 2n−O(n2n−
√

2n)

is simpler than that for the lower bound. We will continue to focus on the re-

dundancy. One common way in which a pattern is repeated in a permutation

is by two subsets that differ in only one element. In [4], Coleman observed that

two entries of a permutation are most often “interchangeable” in this way when

the sum of the difference of their positions and that of their values is small. Our

argument will quantify Coleman’s insight, which will let us view the problem in

terms of sphere packing with respect to the standard taxicab metric on R
2.

We start by considering the permutation σ from the following geometric

viewpoint. In previous sections, we have used the graph of the permutation as a

visual aid to illustrate the argument, but we will now use its geometry directly.

Definition. The graph of a permutation σ is the subset of [n]2 given by G(σ) =

{(i, σ(i)) | i ∈ [n]}.

Another geometric concept that will be useful is the rectangle with opposite

corners at two points of G(σ).

Definition. For i, j ∈ [n], the rectangle Rσ(i, j) is the rectangle in R
2 with sides

parallel to the axes and opposite corners at the points (i, σ(i)) and (j, σ(j)).

This geometric viewpoint and Coleman’s observation motivate the following

definition.

Definition. The taxicab distance dσ(i, j) between the ith and jth entries of a
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permutation σ is given by

dσ(i, j) = |i − j| + |σ(i) − σ(j)|.

(We will drop the subscript σ when the permutation in question is clear.)

The following definitions and lemma will be our main tools in formalizing

and quantifying the amount of redundancy observed by Coleman, which we will

call swap-redundancy.

Definition. The ith and jth entries (i 6= j) of a permutation σ are said to be

interchangeable for a subset S of [n] − {i, j} if the subsets S ∪ {i} and S ∪ {j}

represent the same pattern π in σ in such a way that the ith and jth entries of

σ correspond to the same element of π.

Definition. For i, j ∈ [n] and a permutation σ ∈ Sn, the set Sσ(i, j) is defined

by

Sσ(i, j) = {a ∈ [n] | a /∈ [i, j] and σ(a) /∈ [σ(i), σ(j)]}.

where [i, j] denotes the closed interval with endpoints i and j.

Again, we will drop the σ when the permutation referred to is clear.

Lemma 6.1. The following are equivalent for a permutation σ ∈ Sn, integers

i, j ∈ [n] and a set S ⊆ [n] − {i, j}:

(i) the ith and jth entries of σ are interchangeable for S.

(ii) there is no a ∈ S such that either a lies between i and j or σ(a) lies between

σ(i) and σ(j).

(iii) S ⊆ Sσ(i, j).

Furthermore, there are 2|Sσ(i,j)| ≥ 2n−dσ(i,j) such sets S. Equality holds

when Rσ(i, j) has no elements of the graph of σ in its interior.
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Proof. The equivalence of (ii) and (iii) is true by definition, so we need only

show that (i) ⇔ (ii).

(i) ⇒ (ii): If the ith and jth entries of σ are interchangeable, they have the

same position in π; this means that there must be the same number of elements

of S before and after them. As a result, there can be no element of S positioned

between i and j, and analogously there can be no element of S with values

between σ(i) and σ(j).

(ii) ⇒ (i): The condition (ii) implies that the map from S ∪ {i} to S ∪ {j}

fixing each element of S and sending i to j is order-preserving with respect to

both the standard ordering on [n] and with respect to the ordering induced by

σ. Hence the permutations represented are identical.

Condition (iii) implies that the number of such sets is 2|Sσ(i,j)|. It remains

to show that |Sσ(i, j)| ≥ n− dσ(i, j). Note that there are |i− j| − 1 elements of

[n]−{i, j} that lie in [i, j], and |σ(i)−σ(j)|−1 possible values for a ∈ [n]−{i, j}

with σ(a) ∈ [σ(i), σ(j)]. All other elements of [n] − {i, j} are in Sσ(i, j), so

Sσ(i, j) ≥ (n− 2)− (|i− j| − 1)− (|σ(i)− σ(j)| − 1) with equality if and only if

no elements of [n] are double-counted, and the result follows.

This lemma yields a family of redundant subsets of [n] for any pair (i, j) of

indices, as seen in the following corollary.

Corollary 6.2. For an ordered pair of indices (i, j), the family

Fi,j = {S ∪ {i} | S ⊆ Sσ(i, j)}

consists of 2|Sσ(i,j)| ≥ 2n−dσ(i,j) distinct subsets of [n], all of which are redun-

dant.

This immediately tells us that there are at least 2n−mini,j dσ(i,j) redundant

subsets. By taxicab metric packing arguments such as the ones we will soon use,

24



it is easy to show that in an n-by-n square grid of points, given any n points,

some two of them must be distance at most
√

2n + 3 apart in the taxicab

metric. The previous two sentences immediately give us a bound of the form

red(n) ≥ Θ(2n−
√

2n). However, this bound can be improved, because we can

show that there are Θ(n) pairs of points of G that are distance at most
√

2n+3

apart, each of which yields a family of redundant subsets of size Θ(2n−
√

2n). In

order to finish up this argument, we must show that these families of subsets

have small overlap.

Any pair (i, j) of indices creates an amount of redundancy roughly propor-

tional to 2n−dσ(i,j), so we will focus on the pairs (i, j) where dσ(i, j) is small. For

our purposes, “small” will mean at most ℓ + 3, where ℓ =
√

2n. This motivates

our next definition. Let Pσ be the set of all ordered pairs (i, j) of elements of

[n] with d(i, j) < ℓ + 3.

Definition. The swap-redundancy coefficient K(σ) of a permutation σ ∈ Sn is

the sum K(σ) =
∑

(i,j)∈Pσ
2−d(i,j).

Because we intend to use K(σ) to estimate r(σ), we estimate K(σ) first.

We bound K(σ) by considering it as a problem of spacing points apart in the

taxicab metric on the square. Namely, we construct taxicab balls around the

points of the graph G(σ) so that their total area exceeds that of the square they

cover by a certain amount, forcing us to have sufficiently many pairs sufficently

close together. This gives the following bound.

Proposition 6.3. For a permutation σ ∈ Sn,

K(σ) ≥ Θ(n2−ℓ).

Proof. We have viewed Gσ, the graph of the permutation, as a subset of [n]2,

but it is also contained in R
2. For each i ∈ [n], construct a ball Bi in the taxicab
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metric on R
2 centered at the point (i, σ(i)) and of radius ℓ+3

2 . If two of these

balls intersect, their centers must be a distance at most ℓ + 3 apart. Provided

that the center of a ball is neither in one of the first or last ⌊ ℓ
2⌋+ 1 rows nor in

one of the first or last ⌊ ℓ
2⌋+ 2 columns, the ball will be contained in the square

Q = [1/2, (n + 1)/2]2. There are at least n− 2ℓ− 6 such balls; we now consider

how they cover Q.

Each ball is a square diamond with diagonal of length ℓ+3, and area (ℓ+3)2

2 =

n + 3ℓ + 9
2 , giving a total area of at least (n− 2ℓ− 6)(n + 3ℓ + 9

2 ) = n2 + Θ(nℓ).

Because the area of Q is only n2, the sum of the areas of overlap between pairs

of balls must be at least Θ(nℓ).

The next step of our analysis takes us from the size of the overlap to an

estimate of K(σ). Take any pair of points of G(σ), say {(i, σ(i)), (j, σ(j))};

without loss of generality, assume that i < j and σ(i) < σ(j). Then if the point

(x, y) is in Bi∩Bj , by the triangle inequality for absolute value |x+y−i−σ(i)| ≤
ℓ+3
2 . Similarly |x + y − j − σ(j)| ≤ ℓ+3

2 , and combining the two results in the

chain of inequalities yields j +σ(j)− ℓ+3
2 ≤ x+ y ≤ i+σ(i)+ ℓ+3

2 . By the same

method we can also get i − σ(i) − ℓ+3
2 ≤ x − y ≤ i − σ(i) + ℓ+3

2 . This system

of inequalities shows that (x, y) must lie within a rectangle with side lengths

j +σ(j)− i−σ(i)+ ℓ+3 = ℓ+3− d(i, j) and ℓ+3. That is, it has area at most

(ℓ + 3 − d(i, j))(ℓ + 3) when this is positive, and otherwise when d(i, j) ≥ ℓ + 3

the overlap is a line or is empty.

We have just bounded the contribution of a particular pair of points that

are close together. We now add everything up. We know that the total overlap

is at least Θ(nℓ), so summing up the above yields

(ℓ + 3)
∑

(i,j)∈Pσ

(ℓ + 3 − d(i, j)) ≥ Θ(nℓ).

Because ℓ + 3 − d is positive, we can use the inequality ℓ + 3 − d ≤ 2ℓ+2−d
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to obtain

(ℓ + 3)2ℓ+2K(σ) = (ℓ + 3)
∑

(i,j)∈Pσ

2ℓ+2−d(i,j)

≥ (ℓ + 3)
∑

(i,j)∈Pσ

(ℓ + 3 − d(i, j)) ≥ Θ(nℓ).

Dividing through, we find that K(σ) ≥ Θ(n2−ℓ).

We now wish to get an O(K(σ)) lower bound on r(σ). This need not be true

in general, but we will prove it in a “worst case” scenario, when no two points

in Gσ are closer than ℓ− log2 n. The non-“worst case” scenario is easily disposed

of, because a pair of points that are closer than ℓ− log2 n automatically gives a

family of O(2n−ℓ+log
2

n) = O(n2n−ℓ) redundant subsets by Corollary 6.2. The

advantage of considering such a scenario is that we can get more precise bounds

on the size of the overlap between any two families, as we will see in Section 7.

We will need to use the fact that the amount of double-counting caused by

overlapping families of redundant subsets generated by different pairs in P∗
σ is

small. This follows from the following technical lemma, whose proof we postpone

to the following section. We recall that we have defined

Fi,j = {S ∪ {i} | S ⊆ Sσ(i, j).

Lemma 6.4. There is a constant c such that the following holds: For all per-

mutations σ ∈ Sn such that dσ(i, j) ≥ ℓ − log2 n for all (i, j) ∈ Pσ, there

exists a subset P∗
σ ⊆ Pσ satisfying: (i) the total contribution K∗(σ) to K(σ)

from pairs in P∗
σ is at least 1

20K(σ), and (ii) for all pairs of ordered pairs

(i1, j1), (i2, j2) ∈ P∗
σ,

|Fi1,j1 ∩ Fi2,j2 | ≤ c2n−2ℓ.

From this we can deduce the result we want:
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Theorem 6.5. We have the following bounds:

red(n) ≥ Θ(n2n−
√

2n) (8)

pat(n) ≤ 2n − Θ(n2n−
√

2n) (9)

for any positive integer n.

Proof. For the first inequality, we need to show that for any permutation σ ∈ Sn,

r(σ) ≥ Θ(n2n−
√

2n). We first take care of the case when there exist i, j ∈ [n]

with dσ(i, j) < ℓ − log2 n. Then

r(σ) ≥ |Fi,j | ≥ 2n−dσ(i,j) > 2n−ℓ+log
2

n = Θ(n2n−
√

2n).

Suppose instead that this is not the case: then the condition of Lemma 6.4

holds, and we can proceed as follows.

We will estimate the size of the set F∗ =
∣

∣

∣

⋃

(i,j)∈P∗

σ
Fi,j

∣

∣

∣
, where P∗

σ is as in

Lemma 6.4. Because this set contains only redundant subsets of [n], this will

give a lower bound for r(σ). We can use Bonferroni’s inequality to give the

following lower bound on F :

|F∗| =

∣

∣

∣

∣

⋃

(i,j)∈P∗

σ

Fi,j

∣

∣

∣

∣

≥
∑

(i,j)∈P∗

σ

|Fi,j | −
∑

{(i1,j1),(i2,j2)}⊆P∗

σ

|Fi1,j1 ∩ Fi2,j2 |. (10)

We apply Corollary 6.2 and sum over all pairs to bound the first term of (10)

by
∑

(i,j)∈P∗

σ

|Fi,j | ≥
∑

(i,j)∈P∗

σ

2n−d(i,j) = 2nK∗(σ) ≥ Θ(n2n−ℓ). (11)

We can use Proposition 6.4 to bound each of the terms in the other sum:

∑

{(i1,j1),(i2,j2)}⊆P∗

σ

|Fi1,j1 ∩ Fi2,j2 | ≤
∑

{(i1,j1),(i2,j2)}⊆P∗

σ

c2n−2ℓ (12)
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which is at most O(n42n−2ℓ) because the number of terms in the sum is bounded

above by the total number of possible ways of choosing two pairs (i1, j1) and

(i2, j2) of indices in [n], which is O(n4).

Subtracting (12) from (11) yields

|F∗| =
∑

(i,j)∈P∗

σ

|Fi,j | −
∑

{(i1,j1),(i2,j2)}⊆P∗

σ

|Fi1,j1 ∩ Fi2,j2 |

≥ Θ(n2n−ℓ) − O(n42n−2ℓ) = Θ(n2n−ℓ).

(13)

We conclude from the above that we can always find at least Θ(n2n−ℓ)

redundant subsets for any given pattern. Hence red(n) ≥ Θ(n2n−ℓ), as desired.

Equation 9 then follows by Proposition 2.1.

7 Proof of Lemma 6.4

We first need the following technical results, which allow us to use the power

of our “worst-case” assumption that no pair of points is closer than ℓ − log2 n.

The following lemma tells us that under this assumption, the equality case of

Corollary 6.2 holds for all pairs in Pσ.

Lemma 7.1. Suppose σ ∈ Sn (n sufficiently large) is a permutation such that

for any i, j ∈ [n], dσ(i, j) ≥ ℓ − log2 n. If i, j ∈ [n] with dσ(i, j) ≤ ℓ + 3, then

the rectangle Rσ(i, j) contains no points of G(σ) in its interior.

Proof. Suppose that Rσ(i, j) contained some point (a, σ(a)). Then we would

have d(i, j) = d(i, a) + d(a, j). But the left hand side is at most ℓ + 3, while the

right hand side is at least 2(ℓ − log2 n), which cannot hold for sufficiently large

n.

For the remainder of this section, we will assume that n is sufficiently large

that Lemma 7.1 holds, which we can do because we are proving an asymptotic
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result.

Instead of using all the pairs in Pσ, we restrict to a smaller subset. Without

loss of generality, at least 1
4 of the total contribution to K(σ) comes from pairs

(i, j) with i < j and σ(i) < σ(j): let P ′
σ denote the subset of such pairs and

K ′(σ) be the contribution to K(σ) from pairs in P ′
σ. We claim that we can

shrink P ′
σ further to a set P∗

σ such that P ′
σ contains no two distinct pairs (i1, j1)

and (i2, j2) with i1 = i2 or j1 = j2, and such that the contribution K∗(σ) to

K(σ) from pairs in P∗
σ is at least 1

5K ′(σ) ≥ 1
20K(σ). To do this, we need the

following lemma.

Lemma 7.2. Suppose σ ∈ Sn (n sufficiently large) is a permutation such that

for any i, j ∈ [n], dσ(i, j) ≥ ℓ − log2 n. For any i ∈ [n], there are at most 3

values of j for which (i, j) ∈ P ′
σ. Likewise, for any j ∈ [n], there are at most 3

values of i for which (i, j) in P ′
σ.

Proof. We argue by contradiction. If not, suppose that there exists j1 < j2 <

j3 < j4 such that (i, jr) ∈ P ′
σ, for each r = 1, 2, 3, 4. The definition of P ′

σ implies

that i < jr and σ(i) < σ(jr) for each r. If for some pair r, s with r < s, it were

the case that σ(jr) < σ(js), it would follow that i < jr < js and σ(i) < σ(jr) <

σ(js), contradicting Lemma 7.1. Hence σ(j1) > σ(j2) > σ(j3) > σ(j4). We also

know that 0 < jr − i < d(jr, i) < ℓ + 3 and 0 < σ(jr) − σ(i) < ℓ + 3. It follows

from the previous two inequalities with r = 1 and r = 4 that

(j4 − j1) + (σ(j1) − σ(j4)) < 2ℓ + 6
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but also

(j4 − j1) + (σ(j1) − σ(j4)) =(j4 − j3) + (σ(j3) − σ(j4))

+ (j3 − j2) + (σ(j2) − σ(j3))

+ (j2 − j1) + (σ(j1) − σ(j2))

=d(j4, j3) + d(j3, j2) + d(j2, j1) ≥ 3ℓ − 3 log2 n

by assumption. Combining the above yields 2ℓ + 6 > 3ℓ − 3 log2 n, which is

impossible for n sufficiently large.

The second half of the result follows analogously.

We return to proving our claim that we can pick P ′
σ as specified above. We

do this by the greedy algorithm. First pick (i1, j1) ∈ P ′
σ such that dσ(i1, j1)

is minimal. By Lemma 7.2, P ′
σ can contain at most 2 other pairs of the form

(i1, j) with j 6= j1, and only 2 other pairs of the form (i, j1) with i 6= i1. Discard

all such pairs, and repeat the process: letting (i2, j2) be one of the remaining

pairs with dσ(i2, j2) minimal, discard the at most 4 total pairs that share a left

or right endpoint with (i2, j2). We repeat until we run out of pairs to pick, and

we let P∗
σ = {(i1, j1), (i2, j2), . . . } be the set of all chosen pairs. At each stage

the pair we choose contributes the maximum amount possible to K ′(σ), and we

then discard at most 4 pairs that each contribute the same or a smaller amount.

Hence the total contribution K∗(σ) to K(σ) from pairs in P∗
σ is at least 1

5K ′(σ),

which is in turn at least 1
20K(σ).

We are now ready to prove Lemma 6.4.

Proof of Lemma 6.4. Let P∗
σ be as constructed above: we already know that

K∗(σ) ≥ 1
20K(σ). It remains to prove (ii).

The general member of the set Fi1,j1 ∩Fi2,j2 is of the form S ∪ {i1, i2}, and

represents the same pattern as S ∪ {j1, i2} and S ∪ {i1, j2}. By Lemma 6.1, the
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interchangeability condition implies that S ∪ {i2} ⊆ Sσ(i1, j1) and S ∪ {i1} ⊆

Sσ(i2, j2).

For one thing, this means that Fi1,j1 ∩ Fi2,j2 will be empty unless it is the

case both that i2 ∈ Sσ(i1, j1) and i1 ∈ Sσ(i2, j2). These conditions imply that i2

lies outside the interval [i1, j1] and i1 lies outside the interval [i2, j2]. Hence the

intervals [i1, j1] and [i2, j2] are disjoint. Likewise, the intervals [σ(i1), σ(j1)] and

[σ(i2), σ(j2)] must also be disjoint for the overlap to be nonempty: hence we can

assume that we are in this case. The rest of our independence condition tells us

that the sets S that work are exactly those contained in Sσ(i1, j1) ∩ Sσ(i2, j2),

so

|Fi1,j1 ∩ Fi2,j2 | = 2|Sσ(i1,j1)∩Sσ(i2,j2)|. (14)

We now show that under these conditions, |Sσ(i1, j1)∩Sσ(i2, j2)| ≤ n−2ℓ+O(1)

and so there are only O(2n−2ℓ) possibilities for S.

We define two subsets of the plane, which we call crosses, as follows:

C1 = {x, y ∈ R
2 | i1 < x < j1 or σ(i1) < y < σ(j1)},

C2 = {x, y ∈ R
2 | i2 < x < j2 or σ(i2) < y < σ(j2)}.

Then the members of Sσ(i1, j1) are exactly the members of G(σ) outside C1,

and the members of Sσ(i2, j2) are exactly those outside C2. We now show that

C1∩C2 contains at most 18 points of G(σ). This intersection is composed of two

rectangles, X = [i1, j1]×[σ(i2), σ(j2)] and Y = [i2, j2]×[σ(i1), σ(j1)]. The sum of

the length and width of X (that is, its taxicab diameter) is j1−i1+σ(j2)−σ(i2) <

d(i1, j1) + d(i2, j2) < 2(ℓ + 3), so if we partition X into 9 subrectangles of one-

third the length and width, each subrectangle will have diameter < 2
3 (ℓ + 3).

For n large enough, 2
3 (ℓ + 3) < ℓ − log2 n, so each subrectangle can contain at

most one point of G(σ). Hence X , and likewise Y , can each contain at most 9
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points of G(σ), and the two can contain at most 18 between them.

By the equality case of Lemma 6.1 and Lemma 7.1, Sσ(i1, j1) contains ex-

actly n − (d(i1, j1) − 2) points, which are exactly the points of G(σ) outside

C1. Likewise, Sσ(i2, j2) contains exactly the d(i2, j2)−2 points of G(σ) that are

outside C2. Because C1 ∩ C2 contains at most 18 points of G(σ), we can apply

inclusion-exclusion to conclude that

|Sσ(i1, j1) ∩ Sσ(i2, j2)| = n − |G(σ) ∩ C1| − |G(σ) ∩ C2| + |G(σ) ∩ C1 ∩ C2|

≤ n − (d(i1, j1) − 2) − (d(i2, j2) − 2) + 18

≤ n − 2(ℓ + 3) + 22 = n − 2ℓ + O(1).

(15)

Combining this with (14), we conclude that

|Fi1,j1 ∩ Fi2,j2 | = O(2n−2ℓ),

as desired.

8 Conclusion and further directions

Our arguments have sandwiched pat(n) between the two bounds

2n − O(n22n−
√

2n) ≤ pat(n) ≤ 2n − Θ(n2n−
√

2n).

These bounds are quite close, but it is still possible that one or the other could

be improved to give the exact rate of growth of 2n − pat(n), or equivalently, for

red(n). Besides this, there are other questions that can be asked about pat(n).

It has been observed ([3]) based on experimental data of Micah Coleman that

for n ≥ 10, the ratio pat(n)
2n is monotone increasing: the bounds given here make
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such behavior plausible, but it seems impossible to prove it by the methods

given here. An inductive approach may be more fruitful in this direction.

Another direction of generalization would be to patterns in words or permu-

tations of multisets. Constructions like those used for the lower bound might

again be close to optimal. The approach used for our upper bound breaks down

when multiple entries can have the same value, but there may be some way to

fix it.

In the field of superpatterns, on the other hand, the bounds are still wide

open. Our upper bound of Lk ≤ k(k+1)
2 , while a significant improvement on

the previous result of Lk ≤ (2
3 + o(1))(k2), is still some way off from the lower

bound Lk ≥
(

k
e

)2
, and it is not apparent how one might improve either bound.

Although this paper makes substantial steps towards understanding the asymp-

totics of pattern packing, there is still much new territory to be explored.
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