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Abstract. Borcherds described the exponents a(n) in product expansions f = qhQ∞
n=1(1−qn)a(n)

of meromorphic modular forms with a Heegner divisor. His description does not directly give any
information about h, the order of vanishing at infinity of f . We give p-adic formulas for h in terms
of generalized traces given by sums over the zeroes and poles of f . Specializing to the case of
the Hilbert class polynomial f = Hd(j(z)) yields p-adic formulas for class numbers that generalize
past results of Bruinier, Kohnen and Ono. We also give new proofs of known results about the
irreducible decomposition of the supersingular polynomial Sp(X).

1. Introduction and Statement of Results

At the International Congress of Mathematicians in 1994, Borcherds [1] announced a fascinating
theorem describing the product expansions of those modular forms with a Heegner divisor, that is,
forms whose zeros and poles are all at Heegner points and cusps.1 Borcherds defined an isomorphism
Ψ between the Kohnen plus-space M !

1/2(Γ0(4)) of certain weakly holomorphic modular forms and
the set of integer weight meromorphic modular forms with a Heegner divisor, integer coefficients,
and leading coefficient 1. His result is as follows. Let H(d) be the Hurwitz-Kronecker class numbers,
defined as

H(d) =
∑

Q∈Qd/Γ

1
|ΓQ|

,

where Qd is the set of positive definite binary quadratic forms of discriminant −d and ΓQ is the
stabilizer of Q under the action of Γ = PSL2(Z). Let H̃(z) = −1/12 +

∑
n≥1H(n)qn, where

q = e2πiz. A modular form f ∈ M !
1/2(Γ0(4)) with Fourier expansion f(z) =

∑
n≥n0

A(n)qn maps
under Borcherds’ isomorphism to

Ψ(f) = q−h
∞∏

n=1

(1− qn)A(n2),

where h is the constant coefficient of H̃(z)f(z). Moreover, the multiplicity of the zero of Ψ(f) at
a Heegner point of discriminant −d is

∑
n>0 c(n

2D) (see Theorem 1.1 of [1]).

Example. The Eisenstein series of weight 4 has the formal product expansion

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn = (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n).

By Borcherds’ theorem, there is a unique form in M !
1/2(Γ0(4)) with Fourier expansion

∑
n≥n0

b(n)qn

such that b(1) = −240, b(4) = 26760, and generally b(n2) = c(n) for positive integer n.

1We use the term “Heegner point” in its original meaning as a CM point, not as an element of the Mordell-Weil
group of an elliptic curve.
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The most basic modular forms with Heegner divisors and rational coefficients are the Hilbert
class polynomials2 in the usual elliptic modular invariant j, defined by

(1) Hd(j(z)) =
∏

Q∈Qd/Γ

(j(z)− j(αQ))1/|ΓQ|,

where αQ is the Heegner point determined by Q(αQ, 1) = 0. This modular function Hd(j) has
zeroes at the Heegner points of discriminant −d and a pole (of order H(d)) at infinity. We can
obtain the Borcherds exponents of Hd(j) by observing that the logarithmic derivative of Hd(j) is

(2)
1

2πi
d

dz
(logHd(j)) = −H(d)−

∞∑
m=1

Trm(d)qm.

This generalized trace Trm(d), due to Zagier [10], is defined by

Trm(d) =
∑

Q∈Qd/Γ

1
|ΓQ|

jm(αQ),

where jm(z) is the unique weakly holomorphic modular function on SL2(Z) having a Fourier ex-
pansion of the form q−m +O(q).

Zagier [10] reproved Borcherds’ theorem in the setting described above by using recurrences
involving the traces Trm(d). In Theorem 3 of [10], Zagier characterized the forms fd = Ψ−1(Hd(j))
as the unique elements of M !

1/2(Γ0(4)) with Fourier expansions of the form q−d +
∑

D>0A(D, d)qD.
In other words, we have the Borcherds product

(3) Hd(j) = q−H(d)
∞∏

n=1

(1− qn)A(n2,d).

Logarithmically differentiating and comparing with equation (2), we see that the traces Trm(d) can
be expressed in terms of the coefficients A(n2, d) for m > 0. However, this method does not give
any direct information about the class number H(d) = Tr0(d).

Bruinier and Ono [3] found p-adic formulas for the class number H(d) in terms of the Fourier
coefficients A(n2, d) by applying Serre’s theory of p-adic modular forms [8] to the logarithmic
derivative given in equation (2). For fixed d, the series (2) is a p-adic modular form for certain
primes p. Serre’s theory implies that if p ≤ 7, then the constant coefficient of a p-adic modular
form is proportional to the p-adic limit of its pth-power coefficients (see Theorem 7 of [8]). More
explicitly, the result for fundamental discriminants −d < −4 in appropriate congruence classes
modulo a fixed prime p ≤ 7 is that

H(d) =
p− 1
24

lim
n→+∞

Trpn(d).

Here we generalize these results to a large class of modular forms with Heegner divisors, and we
obtain results that hold for all primes p.

Definition. Given a prime p ≥ 5 and discriminant −d, the pair (p, d) is called tractable if
(−d

p

)
=

−1, or if both p | d and Q(
√
−d) 6= Q(i),Q(

√
−3). Also, if p ≥ 5 is prime and f is a meromorphic

modular form on SL2(Z) with a Heegner divisor, the pair (p, f) is called tractable if f only has
poles and zeroes at Heegner points of discriminants −d such that (p, d) is tractable.

By a theorem of Ono (see Theorem 4.15 of [7]), if a modular form f with a Heegner divisor has
zeros and poles at Heegner points of discriminants {−di} such that (p, di) is tractable for every di,
then the logarithmic derivative Θf/f is a p-adic modular form.

2Note that these are not strictly polynomials if d is a square or three times a square.
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We define generalized traces that bear the same relationship to arbitrary meromorphic mod-
ular forms that traces of singular moduli do to Hd(j). If f is a meromorphic modular form on
SL2(Z) whose zeroes and poles in the fundamental domain F are z1, z2, . . . , zr with multiplicities
e1, e2, . . . , er, then we define

(4) Trm(f) =
r∑

i=1

ei
|Γzi |

jm(zi).

Also, let ord∞(f) denote the order of vanishing of f at infinity. Note that Trm(Hd(j)) = Trm(d)
and ord∞(Hd(j)) = −H(d).

We recall the definition of the operator U = Up, which acts on formal power series by

(5)
∑
n∈Z

a(n)qn | Up =
∑
n∈Z

a(pn)qn.

If Ω is a vector space of formal power series stable under U , we let ΩU denote the 1-eigenspace of
the action of U on Ω.

For a subfield F ≤ C and a congruence subgroup A ≤ SL2(Z), let Mk(A,F) be the space of
holomorphic modular forms of weight k on A whose Fourier coefficients are elements of F. We set
Mk := Mk(SL2(Z),Q) for brevity.

We begin with our result in its greatest generality. Note that the following limits are taken in
the p-adic topology.

Theorem 1.1. Let p ≥ 5 be a prime. For some n ≤ dimM2(Γ0(p),Q) = dimMp+1, there exist n
positive integers m1 < m2 < · · · < mn ≤ p+1

6 and p-integral rational constants c1, . . . , cn such that

ord∞(f) =
k

12
−

n∑
i=1

ci lim
t→∞

Trmip2t(f)

for every meromorphic modular form f on SL2(Z) with a Heegner divisor such that (p, f) is
tractable. Here k denotes the weight of f .

We can obtain a slightly stronger result if we restrict ourselves to forms with rational Fourier
coefficients. The primary difference is that we do not need to restrict ourselves to even powers of
p because the trace limit limt→∞Trmipt(f) now converges.

Theorem 1.2. Let p ≥ 5 be a prime. For some n ≤ dimM2(Γ0(p),Q)U , there exist n positive
integers m1 < m2 < · · · < mn ≤ p+1

6 and p-integral rational constants c1, . . . , cn such that

ord∞(f) =
k

12
−

n∑
i=1

ci lim
t→∞

Trmipt(f)

for every meromorphic modular form f on SL2(Z) with rational Fourier coefficients and a Heegner
divisor such that (p, f) is tractable.

The following p-adic formula for H(d) is simply the specialization of Theorem 1.2 to the case
f = Hd(j).

Corollary 1.3. Let p ≥ 5 be a prime. For some n ≤ dimM2(Γ0(p),Q)U , there exist n positive
integers m1 < m2 < . . . < mn ≤ p+1

6 and p-integral rational constants c1, . . . , cn such that

H(d) =
n∑

i=1

ci lim
t→∞

Trmipt(d)

for all d > 0 such that (p, d) is tractable.
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For certain values of p, it is possible to choose n = 1 in the above results and obtain a simpler
formula.

Corollary 1.4. Let p ≥ 5 be a prime. If m is a positive integer such that p - m and the mth Fourier
coefficient of every cusp form in M2(Γ0(p),Q)U is zero, then

H(d) =
p− 1

24σ1(m)
lim
t→∞

Trmpt(d)

for all d > 0 such that (p, d) is tractable.

Remark. Similar results hold for p = 2 or 3, but we omit them for simplicity.

In Section 2, we review the relevant results from Serre’s theory of p-adic modular forms. We then
use these results to prove our theorems in Section 3. Section 4 contains a brief discussion of the
effectiveness of our results, followed by two examples in which we use the results to determine class
numbers. We conclude by explaining the connections to the theory of supersingular elliptic curves
and give new proofs of known results about the irreducible decomposition of the supersingular
polynomial.
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2. Preliminaries

In order to prove our results, we will need to work with the classical theory of p-adic modular
forms, as first developed by Serre. We first recall definitions and basic results, which can be found
in Serre’s seminal paper [8]. Throughout, we suppose that p ≥ 5 is prime.

Definition. A p-adic modular form is a formal series f =
∑∞

n=0 anq
n with coefficients an ∈ Qp for

which there exists a sequence {fi} of modular forms on SL2(Z) with rational q-series coefficients
which converge p-adically uniformly to those of f .

A nonzero p-adic modular form has a well-defined weight, which is an element of the group
X = Zp × (Z/(p − 1)Z). We will use the canonical injection Z ↪→ X to identify Z with a dense
subgroup of X.

Definition. The weight of a nonzero p-adic modular form f is defined as the limit in X of the
weights of the fi.

Remark. This limit exists and is independent of the choice of the sequence fi (see Theorem 2 of
[8]).

We will use the notation Mk for the space of all p-adic modular forms of weight k. We recall
the definition of the closely related space M̃k of modular forms mod p, which is the space of formal
power series in Fp[[q]] that are the reductions mod p of modular forms of weight k on SL2(Z) with
p-integral rational coefficients. The operator U defined in (5) acts naturally on both Mk and M̃k.
Another operator which is important in the theory of p-adic modular forms is the Ramanujan theta
operator Θ = q d

dq .
We will need the following results of Serre relating p-adic modular forms on SL2(Z) to modular

forms on Γ0(p) (see Theorem 10 and Theorem 11(c) of [8]).
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Proposition 2.1. (a) Let f =
∑
anq

n be a modular form of weight k on Γ0(p). If the coefficients
an are rational, then f is a p-adic modular form of weight k.

(b) Any element of M̃p+1 is the mod p reduction of a weight 2 modular form on Γ0(p) with
p-integral rational coefficients.

In order to use these results on p-adic modular forms, we need the following theorem of Ono
(see Theorems 4.15 and 4.16 of [7]), which tells us that under certain conditions, the logarithmic
derivative of a modular form is a p-adic modular form (of weight 2).

Proposition 2.2. Let p be prime, and let f be a meromorphic modular form on SL2(Z) with a
Heegner divisor. If (p, f) is tractable, then the logarithmic derivative Θf

f is a weight two p-adic
modular form.

3. Proofs of Our Results

Throughout we assume that p ≥ 5 is prime. We first prove three lemmas.

Lemma 3.1. The inclusion M2(Γ0(p),Q) ↪→M2 induces an isomorphism

M2(Γ0(p),Q)U ⊗Q Qp
∼→MU

2 .

Proof. It is clear that the induced map is injective, so it suffices to prove surjectivity. Let N ≤MU
2

be the Zp-submodule of those forms with q-series coefficients in Zp. Then any element ofMU
2 is a Qp-

multiple of some element of N , so it suffices to prove that the image of M2(Γ0(p),Q)U⊗QQp →MU
2

contains N , which is implied if the image intersects every coset of N mod p. Suppose f is an element
ofN . By the Corollary to Theorem 6 of [8], the reduction of f mod p lies in M̃p+1. Proposition 2.1(b)
gives that we can find a modular form g of weight 2 over Γ0(p) such that g ≡ f (mod p), and g
is an eigenform of U with eigenvalue ±1 (see the Corollary to Theorem 11 of [8]). Because g is
congruent to f mod p, the eigenvalue must be 1, so g ∈M2(Γ0(p),Q)U lies in the same coset mod
p of N as f , as desired. �

The following lemma is a more effective version of Lemma 6 of [8] in a special case.

Lemma 3.2. Let Y be a subspace of M2 of finite dimension n such that the mod p reduction of
any element of Y belongs to M̃p+1. There exist n positive integers m1 < m2 < · · · < mn ≤ p+1

6 and
p-adic integers c1, c2, . . . , cn such that

a0(f) =
n∑

i=1

ciami(f)

for all f ∈ Y , where am(f) denotes the mth q-series coefficient of f .

Proof. Let s = bp+1
6 c. Let Y0 ≤ Y be the Zp-submodule of forms with p-integral coefficients, so Y0

is a free Zp-module of rank n. We view the coefficient functions ai as elements of the dual space
Y ∗0 = HomZp(Y0,Zp).

We first claim that the homomorphism ψ : Y0/pY0 → Zs
p/pZs

p given by f 7→ (ai(f))s
i=1 is injective.

Suppose otherwise for a contradiction. Then there exists f ∈ Y0 such that f /∈ pY0 but ai(f) ≡ 0
mod p for all 1 ≤ i ≤ s. Let f̃ ∈ M̃p+1 be the reduction of f modulo p, so f̃ 6= 0. Then Θf̃ ∈ M̃2p+2

(see Lemma 5(ii) of [9]). Since an(Θf̃) = 0 for each n ≤ 2p+2
12 = p+1

6 , Lemma 6 of [9] gives that
Θf̃ = 0. However, this implies that the filtration of f̃ is a multiple of p (see Lemma 5(ii) of [9]), so
f̃ = 0, which is a contradiction.

Thus ψ is injective, so the dual map ψ∗ : (Zs
p)
∗/p(Zs

p)
∗ → Y ∗0 /pY

∗
0 given by (ci)s

i=1 7→
∑s

i=1 ciai

is surjective. This implies that the lifted map ϕ : (Zs
p)
∗ → Y ∗0 is surjective, because its image is a

Zp-submodule which intersects every coset mod p. Thus a0 =
∑s

i=1 ciai for some c1, c2, . . . , cs ∈ Zp.
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Because Y ∗0 has rank n, these ci can be chosen such that no more than n of them are nonzero, and
we have the desired result. �

Lemma 3.3. Let O be the ring of integers of a number field K, and let p be a prime ideal of O
lying over p. If f ∈ O[[q]] is a formal power series such that f ≡ 1 (mod p), then

ampt

(
Θf
f

)
≡ 0 (mod pt−α)

for all positive integers m and t, where α is a constant that depends only on the ramification index
ep of p in the extension K/Q. In particular, if p is unramified in O, we can set α = −1.

Proof. Write f = 1 − g, where g ∈ pO[[q]]. Then the formal series log f = −
∑∞

i=1
gi

i converges in
the completion Kp of K at the ideal p, which is a finite extension of Qp, and it can be differentiated
term-by-term to give

Θf
f

= Θ(log f) = −Θ
∞∑
i=1

gi

i
.

We extend the p-adic valuation vp on Qp to a valuation on Kp: because g ∈ pO[[q]], all coefficients
of g have valuation at least 1

ep
, so all coefficients of gi

i have valuation at least i
ep
− vp(i). However,

it is easy to see that i
ep
− vp(i) is bounded below independently of i. We conclude that we can find

an integer α depending only on ep such that the coefficients of −
∑∞

i=1
gi

i all have p-adic valuation
at least −α. (In particular, when ep = 1, we can take α = −1 because of the bound i ≥ vp(i) + 1.)

We now use the fact that the action of Θ multiplies the coefficient of qmpt
by mpt, so

ampt

(
Θf
f

)
= −mptampt

( ∞∑
i=1

gi

i

)
≡ 0 (mod pt−α),

as desired. �

Proof of Theorems 1.1 and 1.2. The proofs of these two theorems will be analogous; we focus on
the case covered by Theorem 1.2, in which the Fourier coefficients are rational, but we also describe
the necessary alterations for Theorem 1.1.

Recall that M2(Γ0(p),Q)U⊗QQp can be naturally viewed as a subspace ofM2 of finite dimension
equal to dimM2(Γ0(p),Q)U . Then by Lemma 3.2, for some n ≤ dimM2(Γ0(p),Q)U there exist
positive integers m1 < . . . < mn ≤ p+1

6 and constants c1, . . . , cn ∈ Zp such that

(6) a0(f) =
n∑

i=1

ciami(f)

for every f ∈ M2(Γ0(p),Q)U ⊗Q Qp. Since M2(Γ0(p),Q)U ⊗Q Qp contains a basis of forms with
rational Fourier coefficients, these constants ci must belong to Q ∩ Zp.

For Theorem 1.1, we choose themi and ci analogously by applying Lemma 3.2 toM2(Γ0(p),Q)⊗Q
Qp.

We now show that the theorems hold with the integersmi and constants ci chosen above. Suppose
that f satisfies the conditions in Theorem 1.1. Dividing by the appropriate power of ∆ to reduce
the weight to zero and writing the resulting modular function as a rational function of j yields

(7) f(z) = A∆k/12
r∏

i=1

(j(z)− j(zi))ei/|Γzi |,

where A ∈ C× and f has zeroes and poles zi with multiplicities ei ∈ Z. Since the zi are Heegner
points, the singular moduli j(zi) are algebraic integers, and we can find some finite Galois extension
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K/Q with ring of integers O such that A−1f has coefficients in O. Note that if f has rational
coefficients, then we can take K = Q. Also, we can still ensure in the general case that the
characteristic p residue field of K has order at most p2. (See [4] for one proof. We will give an
independent proof in Section 5.)

By Proposition 2.2, the logarithmic derivative of f is a p-adic modular form of weight 2 with
coefficients in the completion Op of O at some prime ideal p over p. Logarithmically differentiating
(7), and using the standard identity Θj(z)

j(τ)−j(z) =
∑∞

m=0 jm(τ)qm (see page 10 of [10]), we obtain the
q-series expansion

Θf(z)
f(z)

=
k

12
Θ∆
∆

+
r∑

i=1

ei
|Γzi |

Θj(z)
j(z)− j(zi)

=
k

12
E2(z)−

r∑
i=1

ei
|Γzi |

∞∑
m=0

jm(zi)qm

=
k

12
E2(z)−

∞∑
m=0

Trm(f)qm.

If K = Q, then we claim that Θf(z)
f(z) |U

t converges p-adically as t→∞. Moreover, we can give a
lower bound for the rate of convergence; we have

am

(
Θf(z)
f(z)

|U t − Θf(z)
f(z)

|U t−1

)
= aptm

(
Θf(z)
f(z)

− (Θf)(pz)
f(pz)

)
=

1
p
aptm

(
Θ(f(z)p)
f(z)p

− Θ(f(pz))
f(pz)

)
=

1
p
aptm

(
Θ(f(z)p/f(pz))
f(z)p/f(pz)

)
,

which is a multiple of pt by Lemma 3.3, since f(z)p/f(pz) ≡ 1 mod p.
In general, we claim that Θf(z)

f(z) |U
2t converges similarly. As above, we have

(8) am

(
Θf(z)
f(z)

|U t − Θf(z)
f(z)

|U t−2

)
=

1
p2
aptm

(
Θ(f(z)p2

/f(p2z))
f(z)p2/f(p2z)

)
,

which has p-adic valuation at least t−α (for some constant α only depending on p) by Lemma 3.3,
since f(z)p2

/f(p2z) ≡ 1 mod p for some prime ideal p above p.
We then have (in the case when K = Q) that

lim
t→∞

Θf(z)
f(z)

| U t =
k

12
E∗2 − Tr0(f)−

∞∑
m=1

lim
t→∞

Trmpt(f)qm

is a p-adic modular form of weight 2, and subtracting a multiple of the p-adic Eisenstein series E∗2
then gives that

(9) ord∞(f)− k

12
−

∞∑
m=1

lim
t→∞

Trmpt(f)qm

is also a p-adic modular form of weight 2. Since this form is invariant under U , it is in the
subspace M2(Γ0(p),Q)U ⊗Q Qp by Lemma 3.1. Applying equation (6) then yields the desired
formula for ord∞(f) in Theorem 1.2. Theorem 1.1 is obtained similarly by replacing U with U2

and M2(Γ0(p),Q)U ⊗Q Qp with M2(Γ0(p),Q)⊗Q Kp. �

Proof of Corollary 1.4. Because the form given by (9), which we here denote g, is in M2(Γ0(p),Q)U ,
it can be written as a linear combination of cusp forms in M2(Γ0(p),Q)U and the p-adic Eisenstein
series E∗2 (see Example 1.6 of [8]). The ratio of a0(g) to am(g) is therefore equal to the same
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ratio for E∗2 . This ratio is (p − 1)/(24σ1(m)) when p - m, so the corollary follows when we set
g = Hd(j). �

4. Discussion and Examples

We first consider for which primes p we can apply Corollary 1.4. For primes p ∈ {5, 7, 13}, the
vector space M2(Γ0(p),Q)U is one-dimensional, so the corollary holds for any m. Taking m = 1
gives the result of Bruinier, Kohnen, and Ono (see Theorem 9 of [2]). When p ∈ {11, 17, 19}, the
modular curves X0(p) are elliptic and the corresponding single cusp form generates S2(Γ0(p))U .
By a theorem of Elkies [5], in these cases the mth Fourier coefficient of the cusp form is zero for
infinitely many relatively prime m. For primes p greater than 19, the situation is less clear; the
only such primes under 100 for which an appropriate m ≤ 1000 exists are 23, 37, 43, and 73. Using
the above ten primes p, as well as p = 2, 3, for which similar results hold (see [2]), we can write the
class numbers for all fundamental discriminants 0 > −d > −25016 as single trace limits.

For a given discriminant −d, we may not be able to find a prime p and an integer m so that we
can apply Corollary 1.4. However, we can still find explicit p-adic formulas for H(d), because our
bound m1,m2, . . . ,mn ≤ p+1

6 in Corollary 1.3 allows us to work in a finite-dimensional space of
linear functionals. Also, we can explicitly calculate coefficients of forms in M2(Γ0(p),Q)U by using
a basis of newforms.

We can give a lower bound for the rate of convergence of general trace limits. When f has
rational coefficients, it easily follows from our proof of Theorem 1.2 that ord∞(f) is congruent to
its tth convergent − k

12 +
∑n

i=1 ci Trmipt(f) modulo pt+1. Specializing to the case in Corollary 1.3,
we obtain congruences for H(d) modulo any power of p. For sufficiently high powers of p, such
a congruence determines the class number explicitly because H(d) is well known to be bounded
above by 1

π

√
d log d for d > 4.

Example 1. Suppose d = 20 and p = 19: because
(−20

19

)
= −1, (19, 20) is tractable. We can verify

that Corollary 1.4 applies with m = 2. The zeroth convergent then is

1
4

Tr2(20) = 399294607884 ≡ 2 (mod 19).

and the first convergent is

1
4

Tr38(20) =182662265194463481152046602771045642272694627840643955117524630929

821589663274481205025644235268066346837974230975523219756392569384
270437210996877964403143434911181096053504114150918891384882568640
9146265304728985179901902973757680

≡2 (mod 192).

Example 2. Suppose d = 163 and p = 23. We could apply Corollary 1.4 with m = 43, but we
instead observe that Corollary 1.3 applies with n = 3, mi = i for i = 1, 2, 3, and c1 = c3 = 1

12 ,
c2 = 1

6 . The zeroth convergent then is

1
12

(Tr1(163) + 2 Tr2(163) + Tr3(163))

= −1507968801804542555313630788253741265583016569829682 ≡ 1 (mod 23),

so H(163) ≡ 1 (mod 23). The upper bound on the size of H(d) gives that H(163) ≤ 20, and so we
have H(163) = 1.
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5. The Supersingular Connection

Recall that an elliptic curve E over a field K of characteristic p > 0 is called supersingular if
E(K) has no p-torsion. The supersingular polynomial for a prime p is then the polynomial in Fp[X]
defined by

Sp(X) :=
∏

E/Fp supersingular

(X − j(E)).

The work of Deuring on supersingular j-invariants (see Theorem 7.25 of [7]) implies that for fun-
damental discriminants −d,

(10) Hd(X) | Sp(X)H(d) in Fp[X]

when p is inert or ramified in Q(
√
−d). We define a homomorphism L : Zp((q))× → Zp[[q]]+ by

L(f) = lim
n→∞

(
Θf
f

)
|Un.

It follows easily from Lemma 3.3 that L(f) depends only on the reduction of f mod p. By (10),
the reduction mod p of Hd(j) lies in a finitely generated subgroup of Fp((q)) spanned by L(Pi(j)),
where Pi runs over the irreducible factors of Sp(X), so L(Hd(j)) lies in the corresponding finite-
dimensional subspace of Qp[[q]].

From this fact, one immediately obtains an ineffective version of Corollary 1.3 without invoking
the theory of p-adic modular forms. This approach gives only a nonconstructive proof that a0 is
a linear combination of the am. It does not give any explicit information about the nature of the
coefficients of such a linear combination. Similar nonconstructive arguments apply to the case of a
general modular form with a Heegner divisor.

We can also use the methods from Section 3 to study the supersingular polynomial and its
factorization in Fp[X]. We first state a more general proposition that we will apply to factors of
the supersingular polynomial.

Proposition 5.1. Let Op be the ring of integers of a finite extension Kp of Qp. If f ∈ Op((q))×

with leading coefficient 1 is such that Θf
f is a p-adic modular form of weight 2, then the extension

of Qp generated by the coefficients of f has residue field Fp or Fp2.

Proof. By the usual argument, reminiscent of that of Serre in [8], Lemma 3, limt→∞
Θf
f |U

2t exists
and lies in M2(Γ0(p),Q)⊗Kp, and the same is true if we replace 2t by 2t+ 1 (although the limit
might be different). By the identity (8),

lim
t→∞

aptm

(
Θ(f(z)p2

/f(p2z))
f(z)p2/f(p2z)

)
= p2 lim

t→∞
am

(
Θf(z)
f(z)

|U t − Θf(z)
f(z)

|U t−2

)
= 0

for all positive integers m. Let g = f(z)p2

f(p2z)
. We claim that g ≡ 1 (mod p), where p is the maximal

ideal of Op. Assuming this claim for the moment, we observe that this implies am(f)p2 ≡ am(f)
mod p for each m, which is equivalent to the desired result.

We now prove the claim. Suppose for contradiction that am(g) /∈ p for some m > 0. Take m
to be minimal and replace g by g′ = 1 +

∑∞
n=m an(g)qn. By Lemma 3.3 limt→∞ aptm

(
Θg′

g′

)
=

limt→∞ aptm

(
Θg
g

)
= 0. However,

aptm

(
Θg′

g′

)
= −aptm

(
Θ

( ∞∑
i=1

(1− g′)i

i

))
= −m

ptaptm

pt−1∑
i=1

(1− g′)i

i

+ (−am(g))pt

 .
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Thus vp

(
aptm

(
Θg′

g′

))
= vp(m) for all t, contradicting the fact that aptm → 0. �

We use this proposition to give a new proof of known results about the irreducible factors of the
supersingular polynomial.

Theorem 5.2. The supersingular polynomial Sp(X) splits completely over Fp2, and the number of
irreducible factors of Sp(X) over Fp is equal to dimM2(Γ0(p),Q)U .

Proof. Suppose α ∈ Fp is a root of Sp(X), and let a ∈ O be a lifting of α into the ring of integers
of some number field. Using well-known facts (for example, see [6]) relating the supersingular
polynomial to the mod p reduction of the Eisenstein series Ep−1, we can easily determine that the
hypotheses in Theorem 4.15 of [7] hold with f = j−a. Thus Θf

f is a p-adic modular form of weight
2, so by the previous proposition we have α ∈ Fp2 .

Thus the supersingular polynomial splits as a product of l1 linear and l2 quadratic factors over
Fp. It is well-known that the degree l1 + 2l2 of Sp is equal to dim(M2(Γ0(p)),Q) = dimMp+1, so
it suffices to show that dim(M2(Γ0(p),Q)U ) ≥ l1 + l2 and dim(M2(Γ0(p),Q)−U ) ≥ l2. The first
of these inequalities follows immediately from the fact that the homomorphism L is well-defined
and injective on the multiplicative group generated by the irreducible factors of Sp. For the second
inequality, suppose that (X − α)(X − ᾱ) is an irreducible factor of Sp over Fp. Then we can
iterate the operator −U on Θ( j−α

j−ᾱ)/ j−α
j−ᾱ . By analogous arguments, this iteration will converge to

a p-adic modular form fixed by −U , and this process produces l2 linearly independent elements of
M2(Γ0(p),Q)−U . �
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