
THE POINCARE-HOPF THEOREM

ALEX WRIGHT AND KAEL DIXON

Abstract. Mapping degree, intersection number, and the index
of a zero of a vector field are defined. The Poincare-Hopf the-
orem, which states that under reasonable conditions the sum of
the indices of a vector field equals the Euler characteristic of the
manifold, is proven. Some consequences are discussed.

1. Mapping Degree

In this note everything will be assumed to be smooth, and manifolds
will be assumed to be compact and orientable. Many of the results hold
in a broader context, but since the Poincaré-Hopf Theorem requires a
compact and orientable manifold, we restrict ourselves to this simpler
context. We will denote the dimension of a manifolds with superscripts,
so Mm is a manifold of dimension m.

Given a map f : M → N between two manifolds of the same dimen-
sion, and a regular value y of f , we define the degree (sometimes called
the Brouwer degree or mapping degree) of f at y by

deg(f, y) =
∑

x∈f−1(y)

sign(df)x.

Note that since y is a regular value of f , the f−1(y) is an isolated subset
of a compact manifold, and is hence finite. The following technical
lemmas will help us to prove that degree does not depend on the point
y, and is invariant under homotopy of f .

Lemma 1 (Transversality Lemma). Suppose f : M → N , P a closed
sub-manifold of N , C a closed subset of M , and f |C t P . Then there
exists a g : M → N that equals f on a neighbourhood of C with g t P .
g may be chosen to be homotopic to f and arbitrarily close to f .

Proof. This fact is very well known, but the authors have not yet found
a reference for it. The interested reader is encouraged to contact the
first author for a rigorous proof. ¤
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This lemma is in fact enormously powerful! Two manifolds are said
to be in general position if they are transverse. The following lemma,
says that any two manifolds can always be put into general position.

Corollary 2 (General Position Lemma). Suppose that f : M → N ,
and P a closed sub-manifold of N . There is a map g : M → N
homotopic to and arbitrarily close to f , so that g t P . Since being an
embedding is a stable property, if f is an embedding, than g can also
be chosen to be an embedding.

Proof. Apply the Transversality Lemma with C = ∅. ¤
We now return to mapping degree, proving the fundamental result

which shows that it is invariant under homotopy, and that will show
that the index of a zero of a vector fields is well defined.

Lemma 3 (Extension Lemma). Assume that Mn+1 is a connected and
with boundary, Nn is connected, f : ∂M → N , and y is a regular value
for f . If f can be extended to F : M → N , then deg(f, y) = 0.

Proof. Suppose that f is such a map, and F : M → N is such an
extension. By the Transversely Lemma with C = ∂M , we can assume
without loss of generality that F t {y}, that is to say that y is a regular
value of F . Now, f−1(y) is a finite set of points in ∂M , and F−1(y)
consists of a finite set of circles and line segments, and the endpoints of
the line segments all lie in ∂M . Furthermore, every point in f−1(y) is
the endpoint of some line segment of F−1(y), and the circles in F−1(y)
do not intersect ∂M . Thus the points of f−1 occur in pairs, each pair
being the endpoints of a curve α : [0, 1] → M . So it suffices to show
that

sign((df)α(0)) + sign((df)α(1)) = 0,

where sign((df)p) is defined to be sign(det((df)p)).
We can choose n vector fields v1(t), · · · , vn(t) along α so that vi(0)

and vi(1) are tangent to ∂M for each i, and {α′(t), v1(t), · · · , vn(t)} is
an oriented basis for Tα(t)M for t ∈ [0, 1] (Parallel transport can be
used to get these vector fields, as well as more hands on arguments,
using the fact that α is an immersion, and local coordinates). From
now on, every mention of a basis will be understood to be ordered.
Since F t {y}, the vectors

{dF (α′(t)), dF (V1(t)), · · · , dF (Vn(t))}
must span TyN for each t. But dF (α′(t)) = 0, and TyN is m-dimensional;
so we conclude that

{dF (V1(t)), · · · , dF (Vn(t))}
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is a basis for T (y) for all t. It follows that

{dF (V1(0)), · · · , dF (Vn(0))} and {dF (V1(1)), · · · , dF (Vn(1))}
have the same orientation. Similarly, the orientation of

{α′(t), v1(t), · · · , vn(t)}
is constant. But α(0) points outward from ∂M , and α(1) points in-
wards, so {v1(0), · · · , vn(0)} and {v1(1), · · · , vn(1)} must have opposite
signs. (n vectors in the tangent space on the boundary are defined to
have positive orientation if they have positive orientation when sup-
plemented on the left with a vector pointing into the manifold.) So
det d(f)α(0) and det d(f)α(1) have the same sign if we use any given
basis for TyN , and the bases {v1(0), · · · , vn(0)} and {v1(1), · · · , vn(1)}
for Tα(0)∂M and Tα(1)∂M . But one of these basis is oriented and the
other not, so we get

sign((df)α(0)) + sign((df)α(1)) = 0

as desired. (Of course, when written this way, it is assumed that de-
terminants are taken in oriented bases.) ¤
Corollary 4. If g0 and g1 are smoothly homotopic maps that have a
common regular value y, then deg(g0, y) = deg(g1, y).

Proof. Let G : M × [0, 1] → N be a homotopy, so G(·, 0) = g0 and
G(·, 1) = 1. The result now follows by applying the previous lemma,
since

∂(M × [0, 1]) = M × {1} −M × {0}
and thus

deg(F |∂(M×[0,1]), y) = deg(g1, y)− deg(g0, y).

¤
In light of this, we can speak of deg(f, y) whenever there is a g ho-

motopic to f such that y is a regular value of g: We just set deg(f, y) =
deg(g, y), and y no longer needs to be a regular value for f , as long at is
a regular value for g. The above lemma shows that this is well defined.
The general position theorem gives that there is always a g homotopic
to f so that y is a regular value of g. Thus deg(f, ·) is globally defined.

Proposition 5. If Mm and Nm are connected, then deg(f, y) is inde-
pendent of y ∈ N .

Proof. We will show that deg(f, y) is a locally constant function of y.
Without loss of generality y is a regular value of f (Otherwise homotope
f). Pick a neighbourhood U of y so that f−1(U) consists of finitely
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many disjoint open sets V1, · · · , Vk and f |Vi
is a diffeomorphism for

each i. Then sign(df)x is constant on Vi, and we get that deg(f, x) =∑k
i=1 sign((df)|Vi

) for any x ∈ U . Thus deg(f, ·) is locally constant,
and hence constant on the connected manifold M . ¤

Given this proposition, we talk about the degree of a map and write
deg(f). This degree can be shown to be equivalent to the degree defined
in terms of volume forms and de Rham cohomology (see [3] or [1]).

2. Oriented Intersection Number

Suppose that f : M → N is transverse to P , a closed sub-manifold
of N , and that dim P + dim M = dim N . Then f−1(P ) is a compact
manifold of dimension 0, and is hence a finite collection of points. For
any point x ∈ f−1(P ), Tf(x)P + (df)xTxM = Tf(x)M . We define the
oriented intersection number I(f, P )x to be 1 if a positively oriented
a basis of Tf(x)P plus a positively oriented basis for (df)xTxM give
an oriented basis for TxM and -1 otherwise. The oriented intersection
number of f and P is defined to be

I(f, P ) =
∑

x∈f−1(P )

I(f, P )x.

This is simply a sort of signed sum of the number of points of intersec-
tion of f(M) and P . When f is an embedding, we often simply write
I(M,P ). We will not need the following proposition, but we prove it
to develop intuition for oriented intersection number.

Proposition 6. I(Mm, P p) = (−1)mpI(P p,Mm).

Proof. We must compare the direct sum orientations of Tx(M)⊕Tx(P )
and Tx(P ) ⊕ Tx(M). Write down bases, and observe that to convert
one to the other requires mp transpositions. ¤

Proposition 7. If f, g : M → N are both transverse to P and are
homotopic, then I(f, P ) = I(g, P ).

Proof. This proof is exactly the same as the proof that degree is ho-
motopy invariant. ¤

It follows, as in the discussion of degree, that I(M, P ) can always be
defined even when M and P are not transverse: we just homotope M
a bit before taking its intersection number with P .
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3. Vector Fields, The Index of a Zero

A vector field on a manifold Mm is a map V : M → TM such that
π(V (x)) = x for all x ∈ M , where π : TM → M is the canonical
projection. In fact, V is easily seen to be an embedding, so if we define
σ(V ) = range(V ), then σ(V ) is a sub-manifold of M . In particular,
the zero vector field has σ(0) = M , and in general, the intersections of
M with σ(V ) correspond to the zeros of V .

The map V is then a diffeomorphism from M to σ(V ), thus σ(V )
inherits an orientation from V . We very often abuse notation, and
think of V in some local coordinates as a map from M to Rm. When
we do this, if {(v1), · · · , (vm)} is an oriented basis for TxM , then
{(v1, 0), · · · , (vm, 0)} is an oriented basis for T(x,0)M ⊂ T(x,0)TM , and
{(v1, (dV )xv1), · · · , (vm, (dV )xvm)} is an oriented basis for T(x,V (x))σ(V ).

Suppose that x is an isolated zero of V , and fix some local coordinates
near x. Pick a closed disk D centered at x, so that x is the only zero
of V in D. Then we define the index of x for V , Indx(V ), to be the
degree of the map

u : ∂D → Sm−1, u(z) =
V (z)

|V (z)| .

The reader is urged to try to verify the following indices.

Proposition 8. Indx(V ) does not depend on the choice of D or the
choice of local coordinates.

Proof. If we pick another disk D′ centered at x, we can find a disk D0

contained in both D and D′. Then the Extension Lemma gives that
the degrees of u : D → Sm−1 and u : D0 → Sm−1 are the same, and
also that the degrees of u : D′ → Sm−1 and u : D0 → Sm−1 are the
same. Thus index does not depend on the choice of D. Index does
not depend on the choice of local coordinates either, but we will omit
the proof of that fact. The proof involves proving that an orientation
preserving diffeomorphism of the disk is homotopic to the identity. See
Burns and Gidea ([1], p.293) for a detailed proof. ¤
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Lemma 9. If D is a disk containing zeros x1, · · · , xk of V , then the
degree of V (x)/|V (x)| on ∂D is equal to the sum of the indices of V at
the xi.

Proof. Put small spheres around each zero, note that the vector field
is non-zero on the region in between the small spheres and ∂D, and
apply the Extension Lemma. ¤

A zero x of V is called non-degenerate if (dV )x : TxM → TxM is
non-singular. If V is a vector field with finitely many zeros, we can
modify V near each of its zeros, to get a new vector field V ′ having
the same sum of indices, still with finitely many zeros, but having only
non degenerate zeros. The following lemma makes this precise, and
will allow us to assume that our vector fields have only non-degenerate
zeros whenever they have only finitely many zeros.

Lemma 10. Suppose that x is a zero of V and U is a small neighbor-
hood of x in M containing no other zero of V . Let D be a closed disk in
U , whose interior contains x. There exists a vector field V1 that equals
V outside of D, with only finitely many zeros in D, all of which are non-
degenerate. Any such V1 has

∑
x∈V −1(0) Indx(V ) =

∑
V1(x)=0 Indx(V1).

Proof. We assume that U is contained in some chart, so we can work
in local coordinates. Pick a bump function ρ that is 1 near x and 0
outsize of D, and define

V1(z) = V (z) + ρ(z)a,

where a ∈ Rk. If a is small enough, V1 can be zero on where p = 1.
Now, if −a is a regular value of V , we get that all the zeros of V1 will be
non-degenerate, and if a is also small enough, V1 will still have finitely
many zeros. Since V and V1 both restrict to the same function on ∂D,
the above lemma gives∑

x∈V −1(0)∩D

Indx V = deg(V |∂D/|V|∂D|)

= deg((V1)∂D/|(V1)∂D|)
=

∑

x∈V −1
1 (0)∩D

Indx V
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¤

Corollary 11 (The Splitting Lemma). If V is a vector field with only
finitely many zeros, there exists a vector field W with only finitely many
zeros, all of which are non-degenerate, so

∑

x∈V −1(0)

Indx V =
∑

x∈W−1(0)

Indx W.

The following two lemmas, combined with the homotopy invariance
of oriented intersection number, will give the astounding fact that the
sum of the indices of a vector field with only finitely many zeros does
not actually depend on the vector field.

Lemma 12. If x is a non-degenerate zero of V , then

Indx V = sign((dV )x).

We conclude that if V has only finitely many zeros, all of which are
non-degenerate, then

∑

x∈V −1(0)

Indx V =
∑

x∈V −1(0)

sign((dV )x).

Proof. In local coordinates, V is just a map from Rn to Rn, and we
see that x is non-degenerate if and only if V , viewed in this fashion,
is a local diffeomorphism. Furthermore, we can see that Indx V is 1 if
V preserves orientation, and -1 if it reverses orientation. To see this,
pick a basis for TyS

m−1, where Sm−1 is a small sphere around X. If
we supplement this basis by a vector pointing outward from Sm−1, we
get a basis for TyM . V is a local diffeomorphism, and V will send this
outward pointing vector to another vector pointing outward. Since
outward facing vectors can be used to determine if a basis of TyS

m−1 is
oriented, V preserves the orientation of Sm−1 if and only if it preserves
orientation of the ambient space. ¤

Lemma 13. If V has only finitely many zeros, all of which are non-
degenerate, then σ(V ) is transverse to M in TM and

I(M,σ(V )) =
∑

x∈V −1(0)

sign((dV )x).

Proof. Say x ∈ M , and that (x, 0) is a point of intersection of M and
V . Let {v1, · · · , vm} be an oriented basis for TxM . So

{(v1, 0), · · · , (vm, 0)}
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is an oriented basis for T(0, 0)xM , the tangent space to M ⊂ TM . We
also have, by the definition of our natural orientation of V , that

{(v1, (dV )xv1), · · · , (vm, (dV )xvm)}
is an oriented basis for V . We need to prove that

{(v1, 0), · · · , (vm, 0), (v1, (dV )xv1), · · · , (vn, (dV )xvm)}
is a basis for T(x,0)(TM) (to show that the intersection is transverse),
and decide when it is oriented. This is a basis (and is oriented) if and
only if

{(v1, 0), · · · , (vn, 0), (0, (dV )xv1), · · · , (0, (dV )xvn)}
is a basis (and is oriented), because, just as subtracting one row from
another doesn’t change the determinant of a matrix, subtracting one
vector from another doesn’t change span (or orientation if the vectors
form a basis). Since (dV )x is non singular, we get that this is a basis,
and M and σ(M) are transverse. The orientation on T(x,0)(TM) is such
that the above basis is oriented if and only

{(dV )xv1, · · · , (dV )xvm}
is oriented, that is to say, if sign(dV )x = 1. So

I(M, V ) =
∑

x∈M∩V

I(M, V )x =
∑

x∈V −1(0)

sign(dV )x.

¤
Theorem 14.

∑
x∈V −1(0) Indx V does not depend on the vector field V ,

as long as V has only finitely many zeros.

Proof. The Splitting Lemma allows us to assume that V ’s zeros are all
degenerate. So∑

x∈V −1(0)

Indx V =
∑

x∈V −1(0)

sign((dV )x) = I(M,V ).

But V is homotopic to M , through the homotopy Vt(x) = tV (x).
(Recall that the zero vector field is equal to M , as a sub-manifold
of TM .) But intersection number is homotopy invariant, so I(M, V ) =
I(M,M). This does not depend on V ! ¤

4. Poincaré-Hopf Theorem

In the next section, we will construct a vector field on M whose sum
of indices will be χ(M), the Euler characteristic of M . This, combined
with our previous work, will then easily give the celebrated Poincaré-
Hopf Theorem.
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Theorem 15 (Poincaré-Hopf Theorem). If V is vector field on M with
only finitely many zeros, then

∑
x∈V −1(0) Indx V = χ(M).

Proof of the Poincaré-Hopf Theorem. The sum of indices does not de-
pend on the vector field, and we will construct a nice vector field VT

whose sum of indices is equal to the χ(M), for some triangulation T of
M . So if V is as above,

∑

x∈V −1(0)

Indx V =
∑

x∈V −1
T (0)

Indx VT = χ(V ).

¤

Corollary 16. χ(M) does not depend on the choice of triangulation T
of M .

5. Euler Characteristic

Consider a triangulation T . on a compact surface S.. We define the
Euler characteristic χ(M). as the number of vertices plus the number
of faces minus the number of edges of the triangulation. It is a classical
result that the Euler characteristic is a topological invariant, and by
that we mean that its value in independent of which triangulation is
used. In this way we think of the Euler characteristic to be a function
of the surface χ(S). rather than just a particular triangulation.

We want to generalize the idea of Euler characteristic to manifolds of
arbitrary dimension, from the dimension 2 case which corresponds to
surfaces. Note that vertices are 0-dimensional simplices, edges are 1-
dimensional simplices, and faces are 2-dimensional simplices. Let si. be
the number of i-dimensional simplices of a triangulation T . of a surface
S., for i = 0, 1, 2.. Then χ(S) = χ(T ) = s0−s1+s2.. We generalize this
to a compact manifold M . of dimension m. by χ(M) =

∑m
i=0(01)isi,

where the si.s are the number of i.-dimensional simplices of a given
triangulation of M . It is a well known, but difficult to prove fact that
every differentiable manifold has a triangulation, which may be chosen
to be finite it the manifold is compact.

Example 17 (A vector field which computes the Euler characteristic).
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Let T be a triangulation on a compact manifold Mm. We can create
a vector field VT ∈ TM with zeros in the centre of each simplex of T , in
a way so that the flow lines of the vector field point from the centres of
higher dimensional simplices towards the lower dimensional simplices.
See the two dimensional example above.

In particular, each vertex of the triangulation is a zero of the vector
field, and this zero acts as a sink, so it has an index of 1. At the centre of
every edge is a zero where most of the field lines point towards it, except
for 1 dimension of field lines pointing outwards (towards the vertices).
These outward pointing lines correspond to a negative eigenvalue of the
vector field’s derivative dVT . Since the index of the zero is equal to the
sign of this derivative, we have that the index is equal to −1 for this
zero. Similarly, the zero at the centre of an i-dimensional simplex will
have exactly i negative eigenvalues, so its index will be (−1)i. Summing
up the indices of all of the zeros gives

∑

x∈V −1
T (0)

Indx VT =
m∑

i=0

∑

{i−dimensional simplices S}
IndcS

VT

=
m∑

i=0

si(−1)i = χ(M)

where cS is the centre point of the simplex S.

6. Conclusion

The Poincaré-Hopf Theorem is a very useful tool for computing Euler
characteristics. For example, if M is a parallelizable manifold (that
is, a manifold with trivial tangent bundle), then M has lots of no-
where vanishing vector fields, and thus M ’s Euler characteristic is 0.
In particular, the Euler characteristic of any Lie group is 0, since Lie
groups are parallelizable!
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The Hopf Degree Theorem states that two maps of a compact, con-
nected, oriented manifold Mm into Sk are homotopic if and only if
they have the same degree. This can be used to prove the following
surprising result.

Theorem 18. A compact, oriented manifold M possesses a no-where
vanishing vector field if and only if its Euler characteristic is zero.

Proof. The idea of the proof is to start off with a vector field with
only finitely many zeros, and use an isotopy to move all the zeros to
single coordinate chart. Then the Hopf Degree theorem and a converse
to the Extension Lemma is used to homotope the vector field to one
without zeros, while leaving it constant outside the coordinate chart.
See Guillemin and Pollack ([2], p.144) for details, as well as the outline
of proofs of the Hopf degree theorem and the converse to the Extension
Lemma. ¤

Since every manifold M2k+1 of odd dimension has zero Euler charac-
teristic (χ(E) = I(M, M) = (−1)2k+1I(M, M) = −χ(E)), this proves
that every odd dimensional manifold has a no-where vanishing vector
field. In fact, this theorem represents a complete answer to the ques-
tion: When does a manifold posses a no-where vanishing vector field?
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