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ALEX WRIGHT

Abstract. These are notes for the final talk in a reading group on
the Pisa notes of Einsiedler and Lindenstrauss. In the first section
we state the high and low entropy methods, and show how they
are combined to give the measure rigidity theorem of Einsiedler,
Katok, and Lindenstrauss. In the second section we discuss the
low entropy method in this context.

Reader beware: these notes may contain errors or misleading
statements. Corrections are welcome.

1. Measure rigidity for SL(3,R)/SL(3,Z).

Statement of result. Let A denote the subgroup of SL(3,R) con-
sisting of diagonal matrices with positive diagonal entries. The goal of
this talk is to explain

Theorem. Let µ be an A invariant and ergodic probability measure on
SL(3,R)/SL(3,Z). Assume that there is a one parameter subgroup of
A which acts with positive entropy. Then µ is Haar measure.

A version of this theorem is true when SL(3,R) is replaced with
SL(n,R), but the conclusion is that µ is algebraic. The theorem is not
true when SL(n,Z) is replaced with an arbitrary lattice. Removing
the entropy assumption is a major open problem.

Notation. The following subgroups of G = SL(3,R) play a central
role:

U12 =

 1 ∗ 0
0 1 0
0 0 1

 , U13 =

 1 0 ∗
0 1 0
0 0 1

 ,

U23 =

 1 0 0
0 1 ∗
0 0 1

 , G− =

 1 ∗ ∗
0 1 ∗
0 0 1

 .

Note that [U12, U23] = U13, and that both U12 and U2,3 commute with
U12. Denote by µij

x the leaf-wise measure on Uij at a point x ∈ X =
SL(3,R)/SL(3,Z).
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The high entropy method. Recall from the last talk

Theorem (The high entropy method.). If µ12 and µ23 are non-trivial,
then µ is invariant under U13.

A leaf-wise measure is trivial if it is the dirac mass at the identity.
We will use without proof the following easy corollary of Ratner’s

Theorem.

Fact. If µ is a measure on SL(3,R)/SL(3,Z) that is invariant under
A as well as a one parameter unipotent subgroup, then µ is Haar.

Therefor, the high entropy method in fact yields that if µ12 and µ23

are non-trivial, then µ is Haar.

The low entropy method. Suppose that a ∈ A acts with positive
entropy. Thus, some µij

x is almost surely non-trivial. Without loss of
generality, we will assume that µ13

x is almost surely non-trivial. For
concreteness, we will assume

a =

 1
4

0 0
0 1

2
0

0 0 8

 .

This assumption is not justified, most of the ideas of the proof are
visible already in this case. Note that with this choice of a, the G−

above is indeed the subgroup of G contracted by Ad(a).
Let CG(U13) denote the centralizer of U13 in G = SL(3,R). We will

be interested in CG(U13) ∩G−, which is equal to all of G− in our case.
This would not be true if SL(3,R) were replaced with SL(n,R), so we
will continue to write CG(U13) ∩ G− to emphasize that in general we
would only be interested in the part of G− which commutes with U13.

Theorem (The low entropy method.). There are µ-generic x such that
µ13
x = µ13

hx for some h ∈ CG(U13) ∩G−.

Before discussing the low entropy method in the second section, we
explain how it is applied.

Combining the high and low entropy methods. We start out by
assuming only that µ13 is non-trivial. There are now two possibilities.

(1) The support of µG−
x is almost surely contained in U13. (This is

equivalent to: there is a subset of full measure X ′ ⊂ X such
that any two points x, y ∈ X ′ which lie on the same G− orbit
in fact lie on the same U13 orbit.)

(2) The support of µG−
x is almost surely not contained in U13.
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Because µ is A ergodic (and U13 is normalized by A), no intermediate
cases are possible.

Lemma. If h ∈ CG(U13) ∩G−, and x is generic, and µ13
x = µ13

hx, then

hx is contained in the support of µG−
x .

By “in the support of” or “generic” we mean in a chosen full µ-
measure set of points of X which are Birkhoff generic and have other
basic properties. All statements such as the lemma implicitly hold only
almost surely.

Proof. Since x is in the support of µ, the identity is in the support of
µ13
x and hence also µ13

hx. Hence hx is in the support of µ and h is in the

support of µG−
x . �

Lemma. If the support of µG−
x is almost surely contained in U13, then

µ is U13 invariant, and thus by the fact above µ is Haar.

This step is essentially (9) in Section 2.1 of the EKL paper. It is not
explained in the Pisa notes. The idea is that the low entropy method
provides some translation invariance for many µ13

x , and this can be
upgraded to showing µ13

x is Haar by using the a dynamics.

Proof. Let B ⊂ X by the set where µ13 is invariant by a non-trivial
translation in U13. First suppose, in order to find a contradiction,
that B has measure zero. The low entropy is compatible with avoid-
ing a given set of measure zero, and hence can produce x ∈ X \ B
and h ∈ CG(U13) ∩ G− such that µ13

x = µ13
hx. By the previous lemma

and our assumption we see that h is in fact in U13, giving the desired
contradiction.

Hence B has positive measure. By ergodicity, it has full measure.
Now suppose in order to find a contradiction that a positive measure

subset of B is not invariant by all of U13. Since the stabilizer of a
measure is a closed subgroup, this gives that a positive measure subset
of B has that the stabilizer of µ13

x is discrete and hence contains a
smallest non-zero element. This element is contracted by the a action,
and thus Poincaré Recurrence gives a contradiction.

Hence almost every x has that µ13
x is invariant under U13. Hence µ13

x

is almost surely Haar and µ is U13 invariant. �

Thus we are reduced to case (2): The support of µG−
x is almost surely

not contained in U13. Recall from two weeks ago,

Proposition (The product structure). µG−
x is proportional to ι(µ12

x ×
µ13
x × µ23

x , where ι : U12 × U13 × U23 → G− is the product map.



4 A.WRIGHT

The support of µG−
x is thus the product of the supports of the µij

x .
Thus by assumption at least one of µ12

x and µ23
x is non-trivial. Suppose

without loss of generality that µ23
x is non-trivial.

By the time symmetry of entropy for a, one of µ21
x , µ31

x , µ32
x must also

be non-trivial. All of U21, U31, U32 fail to commute with at least one
of U13, U23. This gives a pair U,U ′ of non-commuting one parameter
unipotent subgroups whose leaf-wise measures are almost surely non-
trivial. The high entropy method applies equally well to this case,
giving that µ is invariant under the one parameter unipotent group
[U,U ′]. By the fact above, we conclude that µ is Haar.

2. The low entropy method for SL(3,R)/SL(3,Z).

Setup. µ is an A invariant ergodic probability measure on X =
SL(3,R)/SL(3,Z), and a ∈ A acts with positive entropy. We are
assuming that µ13

x is almost surely non-trivial.
The low entropy method hinges on the dynamics of the action of the

unipotent subgroup U13. This is remarkable, because the measure µ is
not assumed to be U13 invariant. Write

u(s) =

 1 0 s
0 1 0
0 0 1

 .

Proposition (Polynomial shearing). Let x, y ∈ X be nearby points,
which are not in the same orbit of CG(U13). Then u(s)x and u(s)y
diverge at polynomial speed, and the direction of first divergence is in
the centralizer CG(U13).

Of course, if x and y differ in the direction of the centralizer, their
orbits do not separate at all. The proposition is based on the simple
matrix calculation

u(s)

 m11 m12 m13

m21 m22 m23

m31 m32 m33

u(−s)

=

 m11 + sm31 m12 + sm32 m13 + sm33

m21 m22 m23

m31 m32 m33

u(−s)

=

 m11 + sm31 m12 + sm32 m13 + sm33 − s(m11 + sm31)
m21 m22 m23 − sm21

m31 m32 m33 − sm31

 .



THE LOW ENTROPY METHOD 5

If the mij are very close to δij, then when this expression first becomes
distance 1 from the identity matrix it is approximately in

 m m12 m13

0 m22 m23

0 0 m

 = CG(U13).

(It may seem like the ±sm31 in the (1, 1) and (3, 3) entries is a prob-
lem, but the s2m31 in position (1, 3) will attain size one before this is
significant.)

Idea of the proof of the low entropy method. By Lusin’s Theo-
rem, there is a compact subset K ⊂ X of measure at least 1− ε where
the function x 7→ µ13

x is continuous. (Technically, this may require ei-
ther a stronger than usual form of Lusin, or careful normalization of
leaf-wise measures so that they lie in a compact space. I don’t really
understand the technicalities of Lusin.)

Suppose there are two points x, y ∈ K in the support of µ, so that
y = gx with g very small and not in CG(U13), and with µ13

x = µ13
y .

Recall that

u(s)y = (u(s)gu(−s))(u(s)x),

so the orbits diverge in the direction of u(s)gu(−s), which is approxi-
mately in CG(U13) when it is first of macroscopic size. Suppose that s
can be chosen so that h = u(s)gu(−s) has size about 1 and u(s)x, u(s)y ∈
K. Set x′ = u(s) and y′ = u(s)y ≈ hx′. If we can find a sequence of y
converging to x, we can assume that the x′ and y′ converge, giving in
the limit x′, y′ = hx′ ∈ K with µ13

x′ = µ13
y′ and h ∈ CG(U13). (The fact

that x′, y′ are in K is used to infer that the equality µ13
x′ = µ13

y′ persists
in the limit.) This is the desired conclusion.

There are two issues with making this rigorous. First, starting pairs
x, y must be found with the desired property. We will treat this issue
next. After this we will say something about the far bigger issue of
choosing s. This is the technical heart of the argument, and involves
first moving x and y by the diagonal action.

Initial condition. Let

A′ = CG(U13) ∩ A =


 s 0 0

0 s−2 0
0 0 s

 .

By the arguments that give the product structure (specifically, Corol-
lary 8.13 in the Pisa notes), µ13

x = µ13
a′x for any a′ ∈ A′.

Now, by Poncaré recurrence, a′(s)x is very close to x for many s.
For such s, a′(s)x = gx with g very close to the identity. To run the
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argument above, we need to arrange that g is not in CG(U12). This is
an interesting point in the argument, since if SL(n,Z) is replaced with
some other lattice, then examples are known where this is impossible.
However, for SL(n,Z) (more specifically we are taking n = 3), this can
be arranged with some care.

One is forced to consider the decomposition of µ into measures which
are ergodic for a′(s). The danger is that each such ergodic component
is locally supported on an orbit of CG(U12). In fact one can show that
the real danger is that each ergodic component is supported on

CG(〈U13, U13〉).

Note that 〈U13, U31〉 is isomorphic to SL(2, R), and its centralizer is
(in our case n = 3) A′. By Poincaré recurrence, almost every x has
many large s for which a′(s)x is very close to x. If the measure were
supported locally on an A′ orbit, then a′(s)x = a′(t)x for t very small.
Thus a′(s − t) ∈ A′ ∩ SL(3,Z) which is a contradiction. (The case
n > 3 is a bit harder since the centralizer is larger, but not that much
harder. See Theorem 5.1 in the EKL paper.)

Here is why I think it is okay to consider CG(〈U13, U13〉) instead of
CG(U13). If the support of µG

x is concentrated on a single constant
subgroup, then this subgroup will be A normalized. Furthermore, if
some element of A contracts part of this subgroup, then this same
element should also expand part of this subgroup, because the measure
is A invariant. The largest subgroup of CG(U13) that satisfies these
conditions is CG(〈U13, U13〉).

Most choices of s give the right drift. Having explained why
suitable x and y exist, we now move to picking the s. Because u(s)x
and u(s)y drift apart polynomially, in the range [−S, S] where there
are distance at most 1 apart, at least (say) 90% of the s have that
u(s)x and u(s)y are between 1

2
and 1 apart. It is important to note

that this is with respect to Lebesgue measure. It will presently become
clear that is is µ13

x which is what counts, not Lebesgue.
In fact we can be a bit more precise: since the distance between

u(s)x and u(s)y is quadratic, except for two small intervals near the
roots of the quadratic, the distance will be at least 1

2
.

Fubini, or an ergodic theorem? We will need to arrange that
u(s)x and u(s)y are in K. Since K has large measure, for µ13

x most
s ∈ [−S, S] and most x, we have that u(s)x ∈ K. This much is seems
to be just Fubini. However, since actually the S is specified after the
x, a purpose built maximal ergodic theorem is used. The end result is
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that we may assume that for µ13
x most s ∈ [−S, S], we have that u(s)x

and u(s)y are in K.

Showing that of µ13
x isn’t concentrated in the two small inter-

vals. We need to pick s ∈ [−S, S] which is not in the two small inter-
vals, but which is in the set of large µ13

x measure {s : u(s)x, u(s)y ∈ K}.
This is possible unless most of the µ13

x measure is concentrated in the
two intervals, i.e. unless the complement of these two intervals has very
small µ13

x measure.
For example, it would be a problem if µ13

x has a dirac mass in one
of the intervals. Since µ13

x contributes positive entropy, we know that
this doesn’t happen, as the identity (i.e. s = 0) is not isolated in the
support.

It would be good if there leaf-wise measures were very regular. For
example imagine there was a doubling condition: for some ρ ∈ (0, 1)
and all T > 0,

µ13
x ((−ρT, ρT )) ≤ 1

2
µ13
x ((−T, T )).

With T about S/(10ρ), this would say that the two intervals, each of
size about say S/10, could not use up all the µ13

x in [−S, S].
The doubling condition above is probably too much to ask for. How-

ever, two things are in our favor. First, we have some freedom in
picking x, and in particular we could replace it with a(r)x, where

a(r) =

 r−1 0 0
0 r−2 0
0 0 r3

 .

Second, we just saw that we only need the regularity at a certain scale
(because we want to say something about intervals of length S/10 only).

A very small amount of regularity is obvious. There is some ρ > 0
so that

µ13
x ((−ρ, ρ)) <

1

2
µ13
x ((−1, 1))

except possible on a set Z of small measure. One can apply the stan-
dard maximal ergodic theorem to the action of a(r) to conclude that
for most x, most r ∈ [0, R] satisfy that

µ13
x ((−ρe2r, ρe2r)) < µ13

x ((−e2r, e2r)),
which is equivalent to a(r)x ∈ Zc. (The exponents here are probably
slightly off.)

It is nonetheless possible that the desired r (computed from S and
ρ) does not have a(r)x ∈ Zc. At this point there is some magic.
Suppose for example that S did not change as we replace x with a(t)x.
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In this case the desired r remains constant, and so we in fact need
a(r)(a(t)x) ∈ Zc, which is to say a(r+t)x ∈ Zc. Since most a(r)x ∈ Zc

this can be arranged for some t.
Once can show that even if S varies in t as x is replaced with a(t)x,

it does so in such a way to allow this argument to be applied. To do
this, one must compute S as a function of t.

This last step seems delicate, and I would be interested to know if
there is a moral reason that it works out. I think you are worried about
S decreasing with t, and we rely on this not happening to quickly.


