CONVOLUTION OF VOLUME MEASURES

ALEX WRIGHT

Abstract

If M_{1} and M_{2} are hypersurfaces in \mathbb{R}^{n} and μ_{1} and μ_{2} are their volume measures, we provide a formula for the absolutely continuous part h of $\mu_{1} * \mu_{2}$. We prove h is continuous off a compact set of measure zero, and calculate it explicitely if M_{1} and M_{2} are spheres.

1. Introduction and Main Formula

Every oriented Riemann manifold M is endowed with a natural volume form $d A$. In oriented local coordinates x_{1}, \cdots, x_{n},

$$
d A=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \cdots d x_{n} .
$$

See [1], p.257-262 for this and related facts. Corresponding to $d A$, there is a natural volume measure μ so that $\int f d A=\int f d \mu$ for continuous functions f.

In this note, M_{1} and M_{2} will be compact hyper-surfaces in \mathbb{R}^{n}. A transversality argument shows that M_{1} and M_{2} are orientable ([4]); hence these manifolds possess natural volume measures μ_{1} and μ_{2}. As another consequence of orientability, we find that M_{1} and M_{2} possess ortho-normal vector fields n_{1} and n_{2}.

A differentiable manifold is called real analytic if the transition functions are real analytic, that is, locally expressable as real power series. Ragozin proved that if M_{1} and M_{2} are real analytic, then $\mu_{1} * \mu_{2}$ is absolutely continuous to Lebesgue measure m ([2], the proof is short). In this case we say simply that $\mu_{1} * \mu_{2}$ is absolutely continuous and write $\mu_{1} * \mu_{2} \in L^{1}$. If M_{1} and M_{2} are spheres, Ragozin also explicitly computed the Radon-Nikodym derivative of $\mu_{1} * \mu_{2}$.

Our primary result derives a formula for the absolutely continuous part of $\mu_{1} * \mu_{2}$. If M_{1} and M_{2} are real analytic, this completely describes $\mu_{1} * \mu_{2}$. We also prove that $\mu_{1} * \mu_{2}$ is continuous off a compact set of measure zero, and re-derive Ragozin's formulas regarding spheres.

Define $\theta: M_{1} \times M_{2} \rightarrow[0, \pi)$ as the angle between $n_{1}\left(x_{1}\right)$ and $n_{2}\left(x_{2}\right)$, so $\sin \theta\left(x_{1}, x_{2}\right)=\sqrt{1-\left(n_{1}\left(x_{1}\right) \cdot n_{2}\left(x_{2}\right)\right)^{2}}$. Let $p: M_{1} \times M_{2} \rightarrow \mathbb{R}^{n}$ be the addition map; $p(x, z)=x+z$. Since M_{1} and M_{2} are compact, the
set of critical points C_{p} of p is compact, and the set of critical values $C_{v}:=p\left(C_{p}\right)$ is also compact. By Sard's Theorem C_{v} has measure zero.

It is important to note that y is a regular value for p if and only if M_{1} and $y-M_{2}$ are transverse. Hence, for such a $y, N_{y}=M_{1} \cap(y-$ M_{2}) is an $n-2$ dimensional sub-manifold of \mathbb{R}^{n}. It can be oriented by the following convention: $\partial x_{1}, \cdots, \partial x_{n-2} \in T_{x} N_{y}$ are oriented if $n_{1}(x), n_{2}(y-x), \partial x_{1}, \cdots, \partial x_{n-2}$ are oriented in \mathbb{R}^{n}. Thus N_{y} possesses a natural volume measure $\mu_{N_{y}}$.

Theorem 1.1. If $f \in C_{c}\left(\mathbb{R}^{n}-C_{v}\right)$, and

$$
h(y)=\int_{N_{y}} \frac{d \mu_{S_{y}}}{\sin \left(\theta\left(x_{1}, x_{2}\right)\right)},
$$

then

$$
\int_{\mathbb{R}^{n}} f d\left(\mu_{1} * \mu_{2}\right)=\int_{\mathbb{R}^{n}} f h d .
$$

Thus, h is the absolutely continuous part of $\mu_{1} * \mu_{2}$.
Proof. By the Submersion Theorem ([1], p.133), for every $x \in M_{1} \times$ M_{2} there are local coordinates $x_{1}, \cdots, x_{2 n-2}$ near x so that

$$
p\left(x_{1}, \cdots, x_{2 n-2}\right)=\left(x_{n-1}, \cdots, x_{2 n-2}\right) .
$$

Let π_{1} and π_{2} be the projections of $M_{1} \times M_{2}$ onto M_{1} and M_{2} respectively. Let s_{1}, \cdots, s_{n-1} be local coordinates for M_{1} near $\pi_{1}(x)$, and let t_{1}, \cdots, t_{n-1} be local coordinates for M_{2} near $\pi_{1}(x)$. If $x \notin C_{p}$, then without loss of generality (reordering the t_{i} if necessary), we may assume that

$$
\operatorname{span}\left\{\partial p(x) / \partial s_{1}, \cdots \partial p(x) / \partial s_{n-1}, \partial p(x) / \partial t_{1}\right\}=\mathbb{R}^{n}
$$

In the future, considering how M_{1} and M_{2} are embedded in \mathbb{R}^{n}, we write, for example, ∂s_{i} instead of $\partial p / \partial s_{i}$. Now, the collection

$$
\partial s_{1}, \cdots, \partial s_{n-1}, \partial t_{i}, \partial x_{1}, \cdots, \partial x_{n-2}
$$

is linearly independent in $T_{x}\left(M_{1} \times M_{2}\right)$. So, if we consider the map $x \mapsto\left(x_{1}, \cdots, x_{n-2}, t_{1}, s_{1}, \cdots, s_{n-1}\right)$, defined on a neighborhood of x, we see that it has an invertible derivative at x. The inverse function theorem gives that these can serve as local coordinates for some suitably small neighbourhood of x. Thus we can obtain a neighborhood U_{x} of x with local coordinates $x_{1}, \cdots, x_{n-2}, t_{1}, s_{1}, \cdots, s_{n-1}$ with the following properties: U_{x} is rectangular in these coordinates; $p(x)$ does not depend on $x_{1}, \cdots, x_{n-2} ; \pi_{1} \circ s_{i}=s_{i}$ for $i=1, \cdots, n-1$; and $\pi_{2}\left(t_{1}\right)=t_{1}$. These local coordinates will be crucial bellow.

Take $f \in \mathcal{C}_{c}\left(\mathbb{R}^{n}-C_{v}\right)$, supported on a compact set K disjoint from C_{v}. Take a finite open subcover U_{1}, \cdots, U_{m} of the $U_{x}, x \in M_{1} \times M_{2}$
for $p^{-1}(K)$. Let r_{1}, \cdots, r_{m} be a partition of unity subordinate to this open subcover ([3], p.40). Now,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f d\left(\mu_{1} * \mu_{2}\right) & =\int_{M_{1} \times M_{2}} f(x+z) d \mu_{1}(x) \times d \mu_{2}(z) \\
& =\sum_{k} \int_{M_{1} \times M_{2}} r_{k}(x, z) f(x+z) d \mu_{1}(x) \times d \mu_{2}(z)
\end{aligned}
$$

At this point, we restrict out attention to a single coordinate patch U_{k}, and use our good local coordinates $x_{1}, \cdots, x_{n-2}, t_{1}, s_{1}, \cdots, s_{n-1}$. Let $g_{M_{1}}, g_{M_{2}}, g_{M_{1} \times M_{2}}, g_{N_{y}}, g_{\mathbb{R}^{n}}$ be the metric tensor for the manifolds indicated in the subscripts. We get

$$
\int_{U_{k}} r_{k} \cdot(f \circ p) \cdot \sqrt{\operatorname{det}\left(g_{M_{1} \times M_{2}}\right)} d x_{1} \cdots d x_{n-2} d t_{1} d s_{1} \cdots d s_{n-1} .
$$

To compute $\sqrt{\operatorname{det} g_{M_{1} \times M_{2}}}$ we define a $2 n$ by $n-1$ matrix J, whose top block J_{1} is the Jacobian of $\pi_{1} \circ p$ with respect to the local coordinates of M_{1} and the standard coordinates of \mathbb{R}^{n}, and whose bottom block J_{2} is similarly the Jacobian of $\pi_{2} \circ p$. We have $g=J J^{t}$. If the first $n-1$ columns of J represent the s_{i} coordinates, then fact that $\pi_{1} \circ s_{i}=s_{i}$ gives that J is block upper triangular. Thus

$$
\operatorname{det} g_{M_{1} \times M_{2}}=\operatorname{det} J J^{t}=\operatorname{det}\left(J_{1} J_{1}^{t}\right) \operatorname{det}\left(J_{2} J_{2}^{t}\right)=\operatorname{det} g_{M_{1}} \operatorname{det} g_{M_{2}}
$$

where $g_{M_{1}}$ is expressed in local coordinates $\partial s_{1}, \cdots, \partial s_{n-1}$ and $g_{M_{2}}$ is expressed in the local coordinates $\pi_{2} x_{1}, \cdots, \pi_{2} x_{n-2}, t_{1}$.

So, the integral above becomes

$$
\int_{U_{k}} r_{k} p \sqrt{\operatorname{det} g_{M_{1}}} \sqrt{\operatorname{det} g_{M_{2}}} d x_{1} \cdots d x_{n-2} d s_{1} \cdots d s_{n-1} d t_{1}
$$

We have that $t_{1}, s_{1}, \cdots, s_{n-1}$ serve as local coordinates near $p(x)$, and that ([1], Lemma 10.38)

$$
\sqrt{g_{\mathbb{R}^{n}}\left(s_{1}, \cdots, s_{n-1}, t_{1}\right)}=\left\langle n_{1}\left(\pi_{1}(x)\right), \partial t_{1}\right\rangle \sqrt{g_{M_{1}}}
$$

where we write $g_{\mathbb{R}^{n}}\left(s_{1}, \cdots, s_{n-1}, t_{1}\right)$ to stress the use of the non-standard local coordinates for \mathbb{R}^{n}.

Recall that $N_{y}=M_{1} \cap\left(y-M_{2}\right)$ is an $n-2$ dimensional oriented submanifold of \mathbb{R}^{n}. It is also an oriented sub-manifold of co-dimensions 1 in $y-M_{2}$. Thus N_{y} possesses an orthonormal vector field $n_{y}(x)$ as a sub-manifold of $y-M_{2}$. We have

$$
\sqrt{g_{M_{2}}}=\left\langle n_{y}\left(y-\pi_{2}(x)\right), \partial t_{1}\right\rangle \sqrt{g_{N_{y}}} .
$$

Hence, the integral above is

$$
\int_{U_{k}} r_{k} \cdot(f \circ p) \cdot \frac{\left\langle n_{y}\left(y-\pi_{2}(x)\right), \partial t_{1}\right\rangle}{\left\langle n_{1}\left(\pi_{1}(x)\right), \partial t_{1}\right\rangle} \cdot d A_{N_{y}} d A_{\mathcal{R}^{n}}
$$

We can write $\partial t_{1}=v_{y}+v_{y}^{\perp}$, where $v_{y} \in T_{\pi_{2}(x)} N_{y}$, and $\left\langle v_{y}^{\perp}, v_{y}\right\rangle=0$. So

$$
\begin{aligned}
\frac{\left\langle n_{y}\left(y-\pi_{2}(x)\right), \partial t_{1}\right\rangle}{\left\langle n_{1}\left(\pi_{1}(x)\right), \partial t_{1}\right\rangle} & =\frac{\left\langle n_{y}\left(y-\pi_{2}(x)\right), v_{y}^{\perp}\right\rangle}{\left\langle n_{1}\left(\pi_{1}(x)\right), v_{y}^{\perp}\right\rangle} \\
& =\frac{\left\|v_{y}^{\perp}\right\|}{\left\|v_{y}^{\perp}\right\| \cos \varphi}
\end{aligned}
$$

where φ is the angle between v_{y}^{\perp} and $n_{1}\left(\pi_{1}(x)\right)$. We now draw a picture and find that $\varphi=\theta(x)+\pi / 2$.

Thus we get

$$
\int_{U_{k}} \frac{r_{k} \cdot(f \circ p)}{\sin (\theta(x))} d A_{N_{y}} d A_{\mathbb{R}^{n}}
$$

Since we assumed that the U_{k} are rectangular we can use Fubini's Theorem to integrate first over the N_{y} coordinates and then over \mathbb{R}^{n}. Then, summing over the k we get the formula as desired.

2. Surface measures on Spheres

Let $S_{n-1} \in \mathbb{R}^{n}$ be the $n-1$ dimensional unit sphere, and let its volume be V_{n-1}. Let μ_{r} be the volume measure on $r S_{n-1}$ In [2], Ragozin computed h the Radon-Nikodym derivative of $\mu_{r} * \mu_{t}(r, t>0)$. We are able to compute h using our formula and the fact that θ is constand on the N_{y} for spheres. Our results agree (check constant!!) with Ragozin's up to a constant depending on r and t, which is due to the fact that Ragozin uses measures normalized to have mass 1.

It is clear (from our formula, or more basic facts) that $h(y)$ depends only on $\|y\|$, and that $h(y)$ is zero unless $\|y\| \in(|r-t|, r+t)$. So,
given y of appropriate norm, we draw a picture to aid our calculations, where the botton is the origian and the top is y. (Note: $\|x\|$ should read $\|y\|!!!)$

Let A be the area of this triangle. Heron's formula yields

$$
\begin{aligned}
A & =\frac{1}{4} \sqrt{(r+t+\|y\|)(r+t-\|y\|)(\|y\|-r+t)(\|y\|+r-t)} \\
& =\frac{1}{4} \sqrt{\left((r+t)^{2}-\|y\|^{2}\right)\left(\|y\|^{2}-(r-t)^{2}\right)} .
\end{aligned}
$$

Now, $A=\|y\| R / 2$ gives

$$
R=\frac{\sqrt{\left((r+t)^{2}-\|y\|^{2}\right)\left(\|y\|^{2}-(r-t)^{2}\right)}}{2\|y\|}
$$

and $A=r t \sin \theta$ gives

$$
\frac{1}{\sin \theta}=\frac{2 r t}{R\|y\|}
$$

To compute $h(y)$ we integrate the constant $1 / \sin \theta$ over an $n-2$ dimensional sphere of radius R. Hence,

$$
\begin{aligned}
h(y) & =\frac{V_{n-2} R^{n-2}}{\sin \theta} \\
& =\frac{2 r t V_{n-2} R^{n-2}}{R\|y\|} \\
& =\frac{2 r t V_{n-2}}{\|y\|}\left(\frac{\sqrt{\left((r+t)^{2}-\|y\|^{2}\right)\left(\|y\|^{2}-(r-t)^{2}\right)}}{2\|y\|}\right)^{n-3} \\
& =\frac{r t V_{n-2}\left((r+t)^{2}-\|y\|^{2}\right)^{\frac{n-3}{2}}\left(\|y\|^{2}-(r-t)^{2}\right)^{\frac{n-3}{2}}}{2^{n-4}\|y\|^{n-2}}
\end{aligned}
$$

As Ragozin pointed out, we obtain the following as a corroloary.
Corollary 2.1. If $n \geq 3$ and $r \neq t, \mu_{r} * \mu_{t} \in C_{c}\left(\mathbb{R}^{n}\right)$, and $\mu_{r}^{2} \in L_{p}$ for all $p<n$. Also, for $n=2, \mu_{r} * \mu_{t} \in L_{p}$ for all $p<2$.

Ragozin used this result to find examples of singular measures on $\mathbb{R}^{n}, n \geq 3$ whose convolution square is in $C_{c}\left(\mathbb{R}^{n}\right)$.

Guess: if μ_{M}^{2} is never in $C_{c}\left(\mathbb{R}^{n}\right)$ if M is a manifold. To be investigated.

3. Continuity Property

We now prove that h always has a certain ammount of continuity.
Theorem 3.1. h is continuous at each point of $\mathbb{R}^{n}-C_{v}$.
Proof. Take $y \in \mathbb{R}^{n}-C_{v}$. For each $x \in N_{y}$, we have the coordinate patch U_{x} as above. We can take a finite subcover U_{1}, \cdots, U_{m} of N_{y}, with each U_{i} centered at a point in N_{y}. So if V is an open ball contained in $\cap_{i} p\left(U_{i}\right) \cap\left(\mathbb{R}^{n}-C_{v}\right)$ and $U=p^{-1}(V)$ we get that that $U \simeq N_{y} \times V$ through the diffeomorphism $x \mapsto \pi(x), p(x)$, where π comes from the projection in each of the U_{i} onto the coordinates x_{1}, \cdots, x_{n-2}. The function $\sqrt{g_{M_{1} \times M_{2}}} / \sin \theta\left(x_{1}, \cdots, x_{n-2}, y_{1}\right)$ is continuous everywhere on $U \simeq N_{y} \times V$. Now in the $U \simeq N_{y}$ coordinates, if $y_{1} \in V$

$$
h\left(y_{1}\right)=\int_{y_{1} \times N_{y}} \frac{\sqrt{g_{M_{1} \times M_{2}}}}{\sin \theta\left(x_{1}, \cdots, x_{n-2}, y_{1}\right)} d x_{1} \cdots d x_{n-2}
$$

As $y_{1} \rightarrow y$, the inside of this integral converes uniformly to its value at y, since pointwise convergence of continuous functions to a continuous function on a compact set gives uniform convergence. Thus result follows from the fact that integrals can be interchanged with uniform limits of continuous functions.

References

[1] J. Lee, An Introduction to Smooth Manifolds. Springer, GTM 218, 2000.
[2] D. Ragozin, Rotation invariant measure algebras on Euclidean space, Indiana Univ. Math. J. 23 (1973/74), 1139-1154.
[3] W. Rudin, Real and Complex Analysis. McGraw-Hill, 1970.
[4] H. Samelson, Orientability of Hypersurfaces inR ${ }^{n}$, Proceedings of the American Mathematical Society, 1969.

Pure Math. Dept., U. Waterloo, Waterloo, ON N2L-3G1, CANADA

