
THE CONJUGACY THEOREMS

ALEX WRIGHT

Abstract. We use the theory of differential forms, orientation,
and mapping degree to prove that all maximal tori in a compact
connected Lie group are conjugate. We also prove that all Lie
groups are orientable, and that if G is a compact connected Lie
group and T a maximal torus of G, then dim G/T is even.

1. Introduction

If G is a compact, connected Lie group, we define a maximal torus of
G to be a maximal connected abelian subgroup. A dimension argument
shows that every such Lie group has at least one maximal torus. If
T is a maximal torus of G, then a structure theorem gives that T is
isomorphic to a torus Tk = Rk/Zk. A generator of a torus Tn is defined
to be an element t ∈ Tn such that {tj : j = 1, 2, · · · } is dense in Tn. If
t = [v], v ∈ Rk, then Kronecker’s theorem gives that t is a generator if
and only if the components of v and 1 are linearly independent over Q.

The rank of G is defined to be dimT , and the Weyl group of T is
defined to be W = N(T )/T , where N(T ) is the normaliser of T . The
Weyl group is proved to be finite in ([2], p. 18). However, maximal tori
are not unique, and it is not clear that the rank and the Weyl group do
not depend on the choice of maximal torus. This problem motivates
us to prove that all maximal tori are conjugate to each other. We pro-
ceed by defining and computing a mapping degree, and we eventually
conclude that every g ∈ G is conjugate to some t ∈ T . To do this, we
will need to first develop the theory of differential forms, orientation,
and integration on manifolds. We assume that a maximal torus T and
the Weyl group W = N(T )/T have been fixed.

2. Differential Forms

Let x1, · · · , xn be standard coordinates on Rn. We define Ω∗ to be
the algebra over R generated by dx1, · · · , dxn subject to the relations
(dxi)

2 = 0 and dxidxj = −dxjdxi if i 6= j. As a real vector space, Ω∗ has
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a basis {1} ∪ {dxi1 ...dxik : i1 < · · · < ik, 1 ≤ k ≤ n}. We further define
Ωk to be the subspace of Ω∗ generated by {dxi1 ...dxik : i1 < · · · < ik}.

The set of smooth differential k-forms on Rn is defined to be

Ωk(Rn) = C∞(Rn)⊗R Ωk.

Thus, if ω is a differential k form, then we can write

ω =
∑

fi1,··· ,ikdxi1 · · · dxik
in a unique way, where all the coefficient functions are in C∞(Rn).
We usually abbreviate this notation to ω =

∑
fIdxI . Note that, in

particular, Ω0(Rn) = C∞(Rn).
We define the exterior derivative, d : Ωk(Rn)→ Ωk+1(Rn) by

df =
∑ ∂f

∂xi
dxi if f ∈ Ω0(Rn)

dω =
∑

(dfi)dxI if ω =
∑

fIdxI .

So, for example, in Ω∗(R2), if f(x, y) = x2y, then

df =
∂f

∂x
dx+

∂f

∂y
dy = 2xydx+ x2dy

d(fdx) = (df)dx = (2xydx+ x2dy)dx = −x2dxdy,

where we have used the relations (dx)2 = 0 and dxdy = −dydx.
A smooth map f : Rm → Rn induces a pullback map on smooth func-

tions f ∗ : Ω0(Rn)→ Ω0(Rm) defined by f ∗(g) = g ◦ f . Let x1, · · · , xm
and y1, · · · , yn be the standard coordinates on Rm and Rn, and let fi
be the i-th coordinate function of f . Then we extend f ∗ to a pullback
on all forms f ∗ : Ω∗(Rn)→ Ω∗(Rm) by

f ∗
(∑

gIdyi1 · · · dyiq
)

=
∑

(gI ◦ f)dfi1 · · · dfiq .

Note in particular that if f maps Rn to Rm, then f ∗ maps Ω∗(Rm) to
Ω∗(Rn) (the order of n and m are reversed), and that the the pullback of
a k-form is again a k form. For example, if f : R3 → R2 : (x1, x2, x3) 7→
(x1, x2 + x2

3), we consider R2 to have coordinates y1, y2 and we have

f ∗(y1y
2
2dy1dy2) = f ∗(y1y

2
2)(df1)(df2) = x2

1(x2 + x2
3)

2dx1d(x2 + x2
3)

= x2
1(x2 + x2

3)
2dx1(dx2 + 2x3dx3)

= x2
1(x2 + x2

3)
2dx1dx2 + 2x2

1(x2 + x2
3)

2x3dx1dx3.

Proposition 2.1. Let T be a smooth function from Rn to Rn with coor-
dinate functions T1, · · · , Tn. If x1, · · · , xn are the standard coordinates
of Rn, then

T ∗(dx1 · · · dxn) = dT1 · · · dTn = J(T )dx1 · · · dxn,
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where J(T ) is the determinant of the Jacobian of T .

Proof. If π is a permutation of (1, · · · , n), then since dxidxj = −dxjdxi,
dxπ(1) · · · dxπ(n) = sgn(π)dx1 · · · dxn. Here sgn(π) the usual sign of a
permutation. Combining this with the fact that (dxi)

2 = 0, we get

dT1 · · · dTn = (s
∑
j

∂T1

∂xj
dxj) · · · (s

∑
j

∂Tn
∂xj

dxj)

= s
∑
π

∂T1

∂xπ(1)

· · · ∂Tn
∂xπ(n)

dxπ(1) · · · dxπ(n)

= J(T )dx1 · · · dxn
�

Proposition 2.2. In the notation above, f ∗ commutes with d.

Proof. See ([1], p.19). �

Proposition 2.3. In the notation above, if ω and τ are forms, then
f ∗(ωτ) = f ∗(ω)f ∗(τ).

Proof. This is apparent from the definition of f ∗. �

The idea of differential forms can be extended to smooth manifolds.
(We will assume all manifolds are smooth.) Recall that a smooth n-
manifold M is a second countable, Hausdorff topological space with a
consistent atlas. A consistent atlas is an open cover of M by sets
{Uα}α∈A for which each Uα is homeomorphic to Rn. If these home-
omorphisms are φα : Uα → Rn, we also require that the transitions
functions φα ◦ φ−1

β are smooth functions where defined. Sometimes we
write {(Uα, φα)} for an atlas instead of {Uα}.

A differential k-form ω on a smooth manifold M is a collection of
differential forms ωα on each chart Uα so that, if Vα and Vβ are open
sets in Rn with (φαφ

−1
β )(Vβ) = Vα, then (φαφ

−1
β )∗V (ωα) agrees with ωβ.

We denote the set of differential forms on M (resp. k-forms) by Ω∗(M)
(resp. Ωk(M)). The above theorems imply that d, and the product of
forms (usually called wedge product), are well defined on Ω∗(M).

Note that φαφ
−1
β is a map from Vβ to Vα, not from Rn to Rn, so

(φαφ
−1
β )∗ is a map from Ω∗(Vα) to Ω∗(Vβ). This requires a notion

of differential forms Ω∗(U) for a subset U of Rn. However, all the
definitions and theory above works for open subsets of Rn just as easily
as for Rn itself, so this is not a problem.

In summary, a differential form on a manifold can be thought of
as a collection of differential forms on the charts that agree on the
intersections of charts. There is a rival definition of differential forms,
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which we describe on Rn. Recall that the tangent space to x in Rn, Tx,
has basis ∂x1, · · · , ∂xn. Given the form ω = dxi1 · · · dxik on Rn, and
a point x ∈ Rn, we define ω(x) to be the unique alternating k-linear
functional on Tx such that

ω(x)
(
∂xπ(i1), · · · , ∂xπ(ik)

)
= sgn(π) if π is a permutation

ω(x) (∂xj1 , · · · , ∂xjk) = 0 if {j1, · · · , jk} 6= {i1, · · · , ik}

Note that if V1 =
∑

i f1i∂xi, · · · , Vk =
∑

i fki∂xi are k smooth vector
fields on Rn, then x 7→ ω(x)(V1(x), · · · Vk(x)) is a smooth function
from M to R. Since this is true for forms ω = dxi1 · · · dxik , it is in fact
true for all k forms ω ∈ Ωk(Rn).

Conversely, let ω′ any function that assigns to each point x ∈M an
alternating, multilinear functional ω′(x) on Tx, such that if V1, · · ·Vk
are smooth vector fields on Rn, then ω′(x)(V1(x), · · · , Vk(x)) is smooth.
If we assume the Vi are written as above, we get

ω′(x)(V1(x), · · · , Vk(x))

= ω′(
∑
i

f1i(x)∂xi, · · · ,
∑
i

fki(x)∂xi)

=
∑

{i1<···<ik}

∑
π

sgn(π)fπ(i1)(x) · · · fπ(ik)(x)ω′(x)(∂xi1 , · · · , ∂xik).

So

ω′ =
∑

{i1<···<ik}

ω′(∂xi1 · · · , ∂xik)dxi1 · · · dxik ,

where ω′ on the right hand side is considered to be a smooth function
from Rn to R that sends x to ω′(x)(∂xi1 , · · · , ∂xik).

This proves that differential k-forms on Rn are the same thing as
functions that map points to alternating k-linear functionals on tangent
spaces, in a way that respects the smoothness of vector fields. This
statement is true if we replace Rn with a smooth n manifold M ; it is
proved by applying the discussion above to charts.

Recall that if f : M → N is a smooth map between manifolds and
x ∈ M , there is an induced map f∗ : Tx → Tf(x) called the push
forward. If V is a vector field on M , f∗V is not in general a vector field
on N (f may not be onto, for example), but we can nonetheless define
f∗V .

Proposition 2.4. If f : M → N is smooth, ω ∈ Ωk(N), and V1, · · · , Vk
are smooth vector fields on M then

f ∗(ω)(V1, · · · , Vk) = ω(f∗(V1), · · · , f∗(Vk)).
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Proof. In order to avoid a description of how to compute push forwards,
we omit this proof. The interested reader should consult ([3]) and try
to prove the proposition for M = N = Rn. �

3. Volume Forms and Orientation

A volume form on an n-manifold M is a nowhere vanishing n-
form on M . For example, dx1 · · · dxn is a volume form on Rn, as is
−dx1 · · · dxn.

Let M be a manifold with atlas {(Uα, φα)}. This atlas is called ori-
ented if all transitions functions φα ◦φ−1

β have positive Jacobian deter-
minants everywhere they are defined. A manifold is called orientable
if it has an oriented chart.

Proposition 3.1. An n-manifold M is orientable if and only if it has
a volume form.

Proof. See ([1], p. 29). �

Any two volume forms ω and ω′ on a manifold M are related by
ω = fω′ for some non vanishing function f . If M is connected, then
f is either everywhere positive or everywhere negative. So on a con-
nected, orientable manifold, volume forms form two equivalence classes,
where ω is equivalent to ω′ if ω = fω′ and f is everywhere positive.
Each equivalence class is called an orientation, and written [M ]. For
example, the standard orientation on Rn is given by dx1 · · · dxn.

In the proof of proposition 3.1, oriented atlases are associated with
volume forms and vice versa. A volume form ω defines the orientation
on an oriented chart {(Uα, φα)}, if when ω is restricted to each chart, it
is m(x)dx1 · · · dxn for some positive function m(x). In this case, we say
that ω is associated with the orientation given by the chart {(Uα, φα)},
or simply that ω is associated with this orientable chart.

Theorem 3.2. Lie groups are orientable.

Proof. Note that if ω is a function that maps points to alternating n-
linear functionals on tangent spaces, the corresponding form is non zero
if and only if, when V1, · · · , Vn are vector fields on M that are linearly
independent at each point, then ω(V1, · · · , Vn) is a nowhere vanishing
function on M .

Let G be a Lie group and let ωe be any non zero alternating n-linear
functional on the tangent space Te of the identity e. Let Lg be the
left multiplication by g, and let L∗g be the corresponding pull back on
forms. The we can define ω(g) = L∗g−1ωe. Using the above description
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of vanishing forms, we can prove that ω is a no-where vanishing n-form
on G, so G must be orientable. �

Using the proposition 2.4, we can prove that L∗g(ω) = ω. In fact this
proof is in some sense trivial, but requires a nuanced understanding of
push forwards, and in that sense is tricky. The experienced reader is
encouraged to work out this proof.

The fact L∗g(ω) = ω is known as translation invariance of the volume
form. In fact, ω is very closely related to a Haar measure, a translation
invariant measure of the group. So we denote ω as dg. We do this
because the Haar measure is denoted dg; we do not mean that dg is
the exterior derivative of some other form. (It isn’t!)

4. Integration on Manifolds

We say that a function f has compact support if it is zero outside
of some compact set in the domain. Given a function f of compact
support, we define∫

Rn
fdxπ(1) · · · dxπ(n) =

∫
Rn

sgn(π)f |dx1 · · · dxn|

where the absolute value bars in the second integral are intended to
indicate that that integral is a Riemann integral, whereas the first
integral is the integral of a form.

Suppose T is a diffeomorphism from Rn to Rn. Suppose further that
y1, · · · , yn are the standard coordinates of Rn and yi = xi◦T (y1, · · · , yn)
are coordinates after the diffeomorphism. Then, by proposition 2.1, we
have ∫

T ∗(fdx1 · · · dxn) =

∫
(f ◦ T )J(T )dy1 · · · dyn.

By the change of variables theorem, this is equal to ±
∫

Rn fdy1 · · · dyn
with positive sign if J(T ) > 0 and negative sign if J(T ) < 0.

Given a such a diffeomorphism T of Rn, we call T orientation pre-
serving if J(T ) is everywhere positive. By the above, integration on
Rn is invariant under orientation preserving diffeomorphisms.

Given an open cover {Uα} of a manifold M , a partition of unity
subordinate to {Uα} is defined to be a collection of smooth functions
ρα : M → R such that ρα has support in Uα (this means that ρα(x) 6= 0
implies x ∈ Uα) and

∑
ρα is the constant function 1 on M . We also

require that only finitely many ρα are non zero at any point.
An example, note that {sin2(θ/2), cos2(θ/2)} is a partition of unity

of the unit circle subordinate to the open cover {(0, 2π), (−π, π)}.
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Theorem 4.1. For every manifold M , and every open cover {Uα} of
M , there is a partition of unity of M subordinate to {Uα}.

Proof. See ([3], p.63). �

Let τ be a compactly supported n-form and [M ] be an orientation on
M . Given an oriented atlas {(Uα, φα)} corresponding to the orientation
[M ] and a partition of unity ρα subordinate to {Uα}, we define∫

[M ]

ω =
∑
α

∫
Uα

ρατ,

where
∫
Uα
ρατ means

∫
Rn(φ−1

α )∗(ρατ). Basically, we integrate over the
manifold by using a partition of unity and integrating over charts.
Usually, with a fixed orientation of M understood, we leave out the
square brackets and write

∫
M
τ .

Proposition 4.2. The definition of the integral
∫
M
τ is independent of

the oriented atlas {(Uα, φα)} and partition of unity ρα.

Proof. See ([1], p.30). �

The most important theorem about integrals on manifolds is Stoke’s
theorem. We state a special case:

Theorem 4.3 (Stoke’s Theorem). Let M be an oriented n dimensional
smooth manifold. Let ω be an n− 1 form on M with compact support.
Then

∫
dω = 0.

Proof. See ([1], p.32). �

Forms like dω are called exact forms, so this case of Stoke’s theorem
says that the integral of an exact form on an oriented manifold is zero.
The more general Stoke theorem discusses the integral of exact forms
on manifolds with boundary.

5. Mapping Degree

Let M and N be compact n-manifolds with fixed orientations. As an
application of the powerful Poincaré duality theorem ([1], p.44) we get
that if ω and ω′ are two n forms (necessarily with compact support),
and if

∫
M
ω =

∫
M
ω′, then ω−ω′ = dτ , for some n−1 form τ . This fact,

together with Stoke’s theorem above, allows us to define the mapping
degree of a smooth function f : M → N . Let ω ∈ Ωn(N) be a form
with integral 1 and define the mapping degree of f to be

deg(f) =

∫
M

f ∗(ω).
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If ω′ ∈ Ωn(N) is another n-form with integral 1, we get that ω−ω′ = dτ
for some τ ∈ Ωn−1(N) and we get∫

M

f ∗(ω)−
∫
M

f ∗(ω′) =

∫
M

f ∗(ω − ω′)

=

∫
M

f ∗(dτ) =

∫
M

df ∗(τ) = 0

by Stoke’s theorem. So mapping degree is in fact well defined. It can be
proven that mapping degree is always an integer, and that homotopic
maps have the same mapping degree ([1], p.40, p.35). However, we will
not need these facts.

Proposition 5.1. In the notation above, if f is not onto, then deg f =
0.

Proof. Pick y ∈M not in the range of f . The range of f is compact, so
we can find a neighborhood U of y that is disjoint from the range of f .
There exists an n-form ω, zero outside of U , with

∫
M
ω = 1. (We will

not prove this, but creating such “bump” functions is common in the
theory of calculus of manifolds.) Using either definition of differential
forms, it is straightforward to show that f ∗ω = 0. So

deg(f) =

∫
M

f ∗(ω) = 0.

�

Recall that if we have an oriented chart of M , say {Uα}, then a
volume form α is associated with this orientation if α restricts to
a(x)dx1 · · · dxn on each Uα and a(x) is strictly positive.

Proposition 5.2. Let f : M → N be a smooth map between compact
oriented n-manifolds, and let α and β be volume forms on M and N
associated with the orientations on M and N . If det(f) is defined by

f ∗(β) = det(f)α,

and y ∈ N is a point with a finite pre-image f−1(y) = {x1, · · · , xn}
and det(f)(xi) 6= 0 for all i, then

deg(f) =
∑
i

sgn(det(f)(xi)).

Proof. First note that det(f) is indeed a function of x ∈ M , and it is
well defined since α is nowhere vanishing. Separate the xi with disjoint
charts Ui such that f(Ui) ⊂ V , where V is a chart for y. So all the Ui
and V are homeomorphic to Rn. By choosing the n-form β with to be
zero outside of V , we get deg(f) =

∑
i deg(fi), where fi : Rn → Rn is
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f restricted to Ui ' Rn. Thus it suffices to prove the theorem for a
map f : Rn → Rn and a point y with a single pre-image f−1(y) = x.
Without loss of generality, x and y are both assumed to be 0.

Let α = a(x)dx1 · · · dxn and β = b(x)dx1 · · · dxn be the two volume
forms on the domain and range. Since α and β are associated to the
orientations on the domain and range, we have that a(x) and b(x) are
strictly positive. Then

f ∗(β) = f ∗(b(x))f ∗(dx1 · · · dxn) = f(b(x))J(f)dx1 · · · dxn,

by proposition 2.1, where J(f) is the Jacobian determinant of f . We
also have that f ∗(β) = det(f)α. So, we get that

det(f) = b(f(x)))J(f)/a(x),

and in particular, since a and b are strictly positive, sgn(det(f)) =
sgn(J(f)). Since det(f)(0) 6= 0, f must be a diffeomorphism of a
neighbourhood of 0 onto a neighbourhood V ′ ⊂ V of 0. By reducing
the size of the Ui and V , and by changing β to be zero outside the new,
smaller V ′, we can assume that the f : Rn → Rn is a diffeomorphism.

Since f is a diffeomorphism, as discussed in section 4, we have∫
Rn
f ∗(β) = sgn(J(f))

∫
Rn
β = sgn(J(f)) = sgn(det(f))

and the result is proved. �

6. Maximal Tori

Recall that we have fixed a compact, connected Lie group G and
a maximal torus T , and that we will speak of the Weyl group W =
N(T )/T , which we assume is finite. Let k = dimT , and n = dimG.
By the closed subgroup theorem, a closed subgroup of a Lie group is
again a Lie group. We also have the following.

Theorem 6.1. Let H be a closed subgroup G, and let π : G→ G/H :
g 7→ gH be the canonical quotient map. Then the topological space
G/H is a smooth manifold of dimension dimG− dimK = n− k.

Proof. See ([2], p.14), or for a more detailed discussion, ([4], p.218). �

Proposition 6.2. If H is connected, G/H is orientable.

Proof. As in the proof that Lie groups are orientable, let τe be an
alternating (n − k)-linear functional on the tangent space TeT to eT .
We define a volume form τ(gT ) = L∗g−1τe, where Lg−1 is the map hT 7→
g−1hT . In general, Lg is not independent of choice of representative
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in gT , so it is not obvious that τ is well defined. To prove it is well
defined, we need to show that if h ∈ H, then

L∗g−1τe = L∗(gh)−1τe = (Lh−1Lg−1)∗τe = L∗g−1L∗h−1τe.

(It is true in general that (fg)∗ = g∗f ∗ for appropriate smooth functions
f and g.) So in particular, it suffices to show that L∗h−1τe = τe. It makes
sense to speak of this equality since Lh−1 maps eT to itself.

For each h, L∗h−1τe is alternating n−k-linear functional on TeT . Since
the later space has dimension n−k, it can be shown that up to a scalar
multiple, it has a unique alternating n−k-linear functional (correspond-
ing to the determinant). So for all h, L∗h−1 = c(h)L∗e, and, in particular,
c(h) is a homomorphism from H to the multiplicative group R∗. Since
H is compact and connected, c(h) must be identically 1. Thus, we get
that L∗h−1τe = τe for all h ∈ H. �

We denote τ as d(gH) since again we get that L∗g(d(gH)) = d(gH);
d(gH) is translation invariant.

Let g be the Lie algebra of G, and t the sub-algebra of the torus.
Pick an inner product on g witch is invariant under the action of the
adjoint representation Ad(g) for all g ∈ G. Let g/t be the orthogonal
complement to t with respect to this invariant inner product. The
adjoint map restricted to the torus Ad|T acts trivially on every vector
in t, and non trivially on every nonzero vector in g/t. By definition,
Ad acting trivially on v ∈ g/t means Ad(t)(v) = v for all t ∈ T . If this
is the case, pick v(s), a one parameter subgroup in G with derivative v
at the identity. Then tv(s)t−1 is a one parameter subgroup in G with
derivative v at the origin, since Ad(t)(v) = v. By the uniqueness of one
parameter subgroups, it must be that tv(s)t−1 = v(s) for all t ∈ R.
Thus, v(R) commutes with T and v(R)T is a torus containing T . Since
T is maximal, this means v(R) ⊂ T , so v ∈ t. Thus v ∈ t ∩ g/t so
v = 0.

Since g/t is an invariant subspace of Ad, we can define an induced
action of T on g/t, denoted AdG/T : T → Aut(g/t) : t → Ad(t)|g/t.
By proposition 6.1, since T is closed, G/T is a manifold of dimension
n − k, where n = dimG and k = dimT . The canonical projection
π : G→ G/T is smooth and hence induces a map π∗ from g = g/t⊕ t
to the tangent space toG/T at the point eT . We claim that π∗ maps g/t
isomophically onto this tangent space; this is apparent from a careful
study of one of the proofs referenced in proposition 6.1. So, from now
on, we will identify the tangent space to eT in G/T with g/t via this
map π∗.
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T is a Lie group, so we can find a translation invariant volume form dt
on T . So we get a translation invariant form d(gT )dt on G/T×T . Both
(d(gT )dt)(e) and dg(e) are non zero alternating n-linear functionals on
g/t ⊕ t. Since, up to multiplication by a constant, there is a unique
alternating multilinear n-linear functional on g/t⊕ t (corresponding to
determinant), we get that (d(gT )dt)(e) = c · dg(e) for some non-zero
constant c. By replacing τ with −τ if necessary, we get that c > 0.

Now, if we give G/T×T and G the orientations associated to d(gT )dt
and dg, we can state the main lemma of this essay.

Lemma 6.3 (Main Lemma). Let G be a compact connected Lie group
and T a maximal torus in G. Then the map

q : G/T × T → G, (gT, t) 7→ gtg−1

has mapping degree deg(q) = |W|, where |W| is the order of the Weyl
group associated to T .

Given this lemma, we easily get the conjugation theorems.

Theorem 6.4 (Conjugation Theorem 1). In a compact, connected Lie
group G, every element is conjugate to an element in any fixed maximal
torus.

As an example, consider SU(n), the special unitary matrices of size
n. It can be shown by elementary means that a maximal torus is the
diagonal matrices in some basis. So, the statement that every element
is conjugate to an element in this maximal torus just says that every
special unitary matrix can be diagonalised by a matrix in SU(n)!

Proof. By an proposition 5.1, since the mapping degree of the map
q is non zero, q must be surjective. So for every g ∈ G there are
hT ∈ G/T, t ∈ T so that q(hT, t) = g. Since q(hT, t) = hth−1, we are
done. �

Theorem 6.5 (Conjugation Theorem 2). Any two maximal tori in a
compact, connected Lie group are conjugate.

Proof. Let T and T ′ be two maximal tori. Pick a generator t of T , and,
by the previous theorem, find g ∈ G so that gtg−1 ∈ T ′. Then, for all
n > 0, gtng−1 = (gtg−1)n ∈ T ′. Thus gTg−1 = cl{gtng−1 : n > 0} ⊂ T ′,
where cl denotes closure. Since T is maximal, we get that T ′ = gTg−1

as desired. �

We now proceed to the proof of the main lemma.

Proof of Main Lemma. As in proposition 5.2, the determinant of the
conjugation map q is defined by the equation q∗dg = det(q)(d(gH)dt).
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Lemma (Helper Lemma 1).

sgn(det(q)(gT, t)) = sgn(det(AdG/T (t−1 − idG/T ))),

where idG/T is the identity on g/t.

Proof. This proof relies on proposition 2.4, and also required a good
understanding of push forwards. Let V1, · · · , Vn be smooth vector fields
on G/T × T . Then

q∗dg(V1(gT, t), · · · , Vn(gT, t))

= dg(q∗(V1(gT, t)), · · · q∗(Vn(gT, t)))

= L∗q(gT,t)−1dg(q∗(V1(gT, t)), · · · q∗(Vn(gT, t)))

= dg((Lq(gT,t)−1)∗q∗(V1(gT, t)), · · · , (Lq(gT,t)−1)∗q∗(V1(gT, t)))

= dg(e)((Lq(gT,t)−1 ◦ q)∗(V1(gT, t)), · · · , (Lq(gT,t)−1 ◦ q)∗(Vn(gT, t))),

where we have used the translation invariance of dg and proposition
2.4. Note in particular that in this last expression we have written
dg(e) to emphasize that all arguments of dg lie in the tangent space
g/t⊕ t to the identity. Also, we have

(dg(H)dt)(V1(gT, t), · · · , Vn(gT, t)) =

(dg(H)dt)(e)((L(gT,t)−1)∗V1(gT, t), · · · , (L(gT,t)−1)∗Vn(gT, t))

where we have used the translation invariance of dg(H)dt. Now, we
use the fact that (dg(H)dt)(e) = c · dg(e), and write

Wi(gT, t) = (L(gT,t)−1)∗Vi(gT, t),

to get

(dg(H)dt)(V1(gT, t), · · · , Vn(gT, t)) = c · dg(e)(W1, · · · ,Wn)

and

q∗dg (V1(gT, t), · · · , Vn(gT, t))

= dg(e) ((Lq(gT,t)−1 ◦ q ◦ L(gT,t))∗W1(gT, t), · · · ,
(Lq(gT,t)−1 ◦ q ◦ L(gT,t))∗Wn(gT, t)).

Since each Wi(gT, t) is just a vector in g/t ⊕ t, as in proposition 2.1,
we get that this last expression is equal to

J(Lq(gT,t)−1 ◦ q ◦ L(gT,t))dg(e)(W1, · · · ,Wn).

Thus
q∗dg = J(Lq(gT,t)−1 ◦ q ◦ L(gT,t))dg(e)(W1, · · · ,Wn),

where J is the Jacobian determinant. Hence

det(q) = J(Lq(gT,t)−1 ◦ q ◦ L(gT,t))/c.
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Note that this is just the determinant of (Lq(gT,t)−1 ◦ q ◦L(gT,t))∗ over c.
Now, we compute

(Lq(gT,t)−1 ◦ q ◦ L(gT,t))(hT, s) = c(g)(c(t−1)(h)sh−1),

where c(a)(b) = aba−1 is conjugation. Let f be the function (hT, s) 7→
c(t−1)(h)sh−1. So by the chain rule

(Lq(gT,t)−1 ◦ q ◦ L(gT,t))∗ = Ad(g)f∗

and

det((Lq(gT,t)−1 ◦ q ◦ L(gT,t))∗) = det(Ad(g)) det(f∗).

Now, Ad(g) is a unitary real matrix, so it must have determinant ±1.
Since G is connected and Ad(e) has determinant 1, we get that Ad(g)
always has determinant 1. So deg(g) = det(f∗).

To compute f∗, we only need to determine its action on differentiable
curves through (eT, e). Say v ∈ g/t and v(r) ∈ G, r ∈ R is a one
parameter subgroup with derivative v at e. Then (v(r)T, e) is a curve
through (eT, e) with the corresponding derivative, and we can compute
the action of f∗ on this curve.

f∗(v) =
d

dr
f((v(r)T, e)

=
d

dr
c(t−1)(v(r))v(−r)) =

d

dr
t−1v(r)tv(−r)

We can express t−1v(r)tv(−r) as the composition r 7→ (r, r) and (r, q) 7→
t−1v(r)tv(−q) and apply the chain rule to get that f∗(v) = Ad(t−1)(v)−
v. Since v ∈ g/t, we write that f ∗ is AdG/H(t−1)− idG/H on g/t.

Now suppose v ∈ t and v(r) ∈ G is a one parameter subgroup with
derivative v at e. Then

f∗(v) =
d

dr
f((eT, v(r))

=
d

dr
c(t−1)(e)v(r)) =

d

dr
v(r) = v.

So f ∗ is the identity on t. Thus, in a matrix corresponding to the
decomposition g/t⊕ t, we can write f∗ as(

AdG/T (t−1)− idG/T 0
0 idT

)
The result follows.

�

Lemma (Helper Lemma 2). There is a generator t of T such that

(i) |q−1(t)| = |W|.
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(ii) AdG/T (t−1) has no real eigenvalues. Consequently, dimG/T is
even.

(iii) det(q) > 0 at each of these points.

Proof. We will in fact see that we can pick t to be the square of any
generator of T .

(i) Let t be any generator of T . Note q−1(t) = {(gT, s) ∈ G/T ×
T : gsg−1 = t}. Of course, g−1tg depends only gT . Also, if
g−1tg ∈ T , then

cl({g−1tg = (g−1tg)n : n > 0}) = g−1Tg ⊂ T,

where cl is closure, so g ∈ N(T ). For every gT ∈ N(T )/T we
can find a unique s (which must be g−1tg) with (gT, s) ∈ q−1(t).

(ii) Since AdG/T (t−1) is an orthogonal linear transformation on g/t,
its real eigenvalues (if any) must be ±1. By Kronecker’s theo-
rem, we see that t2 is again a generator of T , so by replacing
t with t2 we get that AdG/T (t−1), for this new value of t, can
only have real eigenvalues 1. If AdG/T (t−1) had eigenvalue 1
with eigenvector v ∈ g/t, then we’d have AdG/T (t−n)v = v
for all n. However, {t−n : n > 1} is dense in T , so we’d get
that AdG/T (s)v = v for all s ∈ T . As discussed above, AdG/T
acts non trivially on each non zero vector in g/t, so this is
impossible.

(iii) Basic linear algebra shows that AdG/T−idG/T has no real eigen-
values if AdG/T has no real eigenvalues. So part (iii) follows
from the following claim, and Helper Lemma 1. An real ma-
trix with no real eigen values has positive determinant. Proof:
Consider the characteristic polynomial of the matrix. It is
monic, and its constant term is the determinant. (In general,
the constant term is (−1)d times the determinant, where d is
the dimension of the matrix. Since our matrix has no real
eigenvalues, it must be of even dimension.) So, by the inter-
mediate value theorem, if the determinant is not positive, the
characteristic polynomial has a real root. This implies that the
matrix has a real eigen value, a contradiction.

�

At this point, we can finally prove this main lemma. Pick t as in
helper lemma 2. Then since q−1(t) consists of exactly |W| points and
det(q) > 0 at each of these points, proposition 5.2 gives that deg(q) =
|W|. �
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7. Corollaries

For completeness, we state without proof some of the corollaries of
the conjugation theorems. As mentioned, the first two corollaries are
that rank and Weyl group are well defined. We also have:

Corollary 7.1. The exponential map of a compact connected Lie group
is surjective.

Corollary 7.2. Let G be a compact connected Lie group, and T a
maximal torus of G, and let Z(H) denote the center of a subgroup H.

(i) Z(T ) = T ,
(ii) If S ⊂ T is a connected abelian subgrouo, then Z(S) is the

union of the (maximal) tori containing S.
(iii) The center of G is the intersection of all maximal tori in G.

In particular, Z(G) is contained in any maximal torus.

Corollary 7.3. The Weyl group (of a compact, connected Lie group)
acts effectively on the maximal torus. Thus, we may interpret the Weyl
group as a group of automorphisms of T .

Corollary 7.4. Two elements of a maximal torus are conjugate (in a
compact connected Lie group G) if and only if they lie in the same orbit
under the action of the Weyl group.

Some of these corollaries are tough to prove, but all make use of
the conjugacy theorems. There are also consequences of the conjugacy
theorem regarding class functions that are important in representation
theory, but we omit those results here.

8. Final Remarks

The conjugacy theorems are deep theorems with important conse-
quences. Their proof here is based on ([2]) and ([5]), which in turn
references exposé number 26 in ([7]) by Serre as the original source.
These are not the only proofs of the conjugacy theorems that use the
notion of mapping degree; ([6]) offers a proof by computing the map-
ping degree of a different map and showing that the equation gk = h
always has a solution for g (given k > 0, h ∈ G) in connected compact
Lie groups. Also, [8] offers two proofs of the conjugacy theorems, one
algebraic, and one using the Lefschetz fixed point theorem.

Our approach has several advantages. Firstly, it relates to the theory
of differential forms and de Rham cohomology, which is a very impor-
tant theory. Secondly, with only a little extra work, it is possible to
prove the Weyl integration formula from the results presented here.
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Thirdly, the discussion of of volume forms can be extended to define
Haar measure on Lie groups. And finally, we get dimG/T is even. The
fact that we can approach all these theorems in a unified way illustrates
the power of topological ideas and the depth of Lie group theory.
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