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Optimization of two- and three-link snakelike locomotion
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We analyze two- and three-link planar snakelike locomotion and optimize the motion for efficiency. The
locomoting system consists of two or three identical inextensible links connected via hinge joints, and the angles
between the links are actuated as prescribed periodic functions of time. An essential feature of snake locomotion
is frictional anisotropy: The forward, backward, and transverse coefficients of friction differ. The dynamics are
studied analytically and numerically for small and large amplitudes of the internal angles. Efficiency is defined
as the ratio between distance traveled and the energy expended within one period, i.e., the inverse of the cost
of locomotion. The optimal set of coefficients of friction to maximize efficiency consists of a large backward
coefficient of friction and a small transverse coefficient of friction, compared to the forward coefficient of
friction. For the two-link case with a symmetrical motion, efficiency is maximized when the internal angle
amplitude is approximately π/2 for a sufficiently large transverse coefficient. For the three-link case, the
efficiency-maximizing paths are triangles in the parameter space of internal angles.
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I. INTRODUCTION

Snake locomotion has long been a topic that has fascinated
researchers and has recently received a renewed wave of
interest in the fields of robotics and control, as well as in
organismal biology. Snakes are familiar organisms, but, as
limbless animals, their locomotion has special features [1].
Terrestrial snakes move using friction between the ground and
their belly scales, which have anisotropic frictional properties
[2]. It has been proposed that the cost of transport (energetic
efficiency) for snake slithering is no greater than that of limbed
animals [3,4]. Some works on modeling snake locomotion are
oriented towards wheeled snake robots [5–11]. These models
are typically concerned with motion planning and assume
that the transverse coefficient of friction is high enough to
prevent transverse motion, while the forward and backward
coefficients of friction are the same. These models work well
for wheeled robots and provide valuable insights into the
locomotion of biological snakes. In experiments, Hu et al. [12]
measured the frictional anisotropy of juvenile milk snakes and
found that the forward, backward, and transverse coefficients
differ but are similar in magnitude. They also studied the
effects of the snake’s active modulation of its weight dis-
tribution on the ground. Hu and Shelley [13] analyzed the
“lateral undulation” motion modeled as a family of sinusoidal
traveling-wave shapes and calculated the dependence of speed
and efficiency on amplitude and wavelength of the kinematics
as well as coefficients of friction. In this work, we adopt the
model of Ref. [12] but for bodies composed of two and three
rigid links. Linked bodies are fundamental for robotic sliding
systems. By specializing to bodies with two and three links,
we consider the simplest such systems, which nonetheless
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have nontrivial behaviors. Two- and three-link locomoting
bodies have been considered previously as swimmers at zero
Reynolds number (Stokes flow). Purcell [14] described the
physics of swimming in Stokes flow and stated the scallop
theorem: In Stokes flow, net locomotion is not possible if
a swimmer deforms in a way that is invariant under the
reversal of time [15]. Such is the case for periodic motions
of a two-link body (“scallop”). He then proposed a three-link
swimmer that moves only one link at a time, in a nonreciprocal
motion that results in net locomotion. Subsequent studies
have calculated efficiency-optimizing motions for Purcell’s
swimmer and similar systems. Becker et al. [16] calculated
efficiency-optimizing stroke amplitudes for Purcell’s swimmer
and considered different length ratios of the three links. Tam
and Hosoi [17] extended the optimization to arbitrary kinemat-
ics (allowing both internal angles to change simultaneously)
and arbitrary slenderness ratios. They found an optimal path
in the parameter space of internal angles using a Fourier series
representation and showed that the high-frequency modes
are subdominant to the low-frequency modes. Recently, Or
[18] studied the stability of the periodic motion of Purcell’s
swimmer when the geometric symmetries are broken. Avron
and Raz [19] developed a qualitative geometric approach
by focusing on the curvature of the local connection matrix
to study the same system. Hatton and Choset [20] further
developed this technique and suggested a systematic way
of choosing the best body-fixed frame to approximate the
inertial frame displacement while accounting for the overall
rotation. They calculated optimal motions for other systems
such as a three-link fish swimming in infinite Reynolds number
(potential flow), which admits a similar formulation. Kanso
et al. [21] and Melli et al. [22] gave a geometric formulation
for swimming in a potential flow and calculated optimal
strokes. Jing and Kanso [23] used this formulation to study the
effects of elasticity and body configuration on the stability of
passive locomotion. Here we study the locomotion of two- and
three-link bodies not in a fluid but instead on a planar surface
with sliding friction. Unlike the fluid studies, the dynamical
equations are nonlinear with respect to body velocities, so
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FIG. 1. Two-link snake model; see text for description.

the scallop theorem and many other results no longer apply.
Like the aforementioned studies, we focus on finding motions
which optimize the efficiency of locomotion. The structure
of the paper is as follows. In Sec. II we formulate the model
for a two-link “snake,” nondimensionalize the system, and
derive the equations of motion. In Sec. III we use analysis
and computation to optimize the two-link model with respect
to kinematic parameters and coefficients of friction for both
small- and large-amplitude actuations. In Sec. IV we analyze
the three-link snake model and compute optimal kinematics of
the relative angles at one realistic set of coefficients of friction
using a Fourier series representation. In Sec. V, we summarize
our work and suggest directions for future study.

II. PROBLEM SETUP FOR THE TWO-LINK MODEL

The snake is modeled in 2D as two identical inextensible
line segments (links) connected via a hinge joint as depicted
in Fig. 1. The total length of the snake is L, and the length
of each link is L/2. The snake shape is parametrized by the
angle θr between the tail link (left) and the head link (right),
with the positive direction of rotation being counterclockwise.
Denoting the snake’s mass per unit length as ρ, the total mass
is m = ρL. We denote s as the arc length between any point
of the snake and the tip of its tail, so 0 � s � L. The tail tip,
hinge joint, and head of the snake correspond to s = 0, L/2,
and L, respectively.

Motion of the two-link snake can be observed both in an
inertial frame {ex,ey} with origin at a fixed point O or in a
body-fixed frame {bx,by} with origin at the center of mass C.
The unit vector bx is parallel to the line connecting the links’
centers and by is bx rotated by 90◦. The position of C in the
inertial frame is xc = (xc,yc), and the orientation θc is the angle
from ex to bx . In the inertial frame, the position of an arbitrary
material point on the snake is denoted as x = (x,y), and θ is
the angle between the tangent to the snake at a given point
and ex . The positive direction of rotation is counterclockwise.
In the body-fixed frame, the position of the same material
point is denoted X = (X,Y ), and the tangent angle is �. For a
given material point, we define the configuration variable in the
inertial frame g = [x , y , θ ]T and in the body-fixed frame G =
[X , Y ,�]T . Specifically, for C, we have gc = [xc , yc , θc]T

and Gc = [0 , 0 , 0]T . The relation between the configuration
variable in both frames is

g = gc + Rθc
G, Rθc

=

⎛
⎜⎝

cos θc − sin θc 0

sin θc cos θc 0

0 0 1

⎞
⎟⎠, (1)
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FIG. 2. Schematic of the body-frame velocities for the two-link
model. Center-of-mass velocity is ξ c = [Uc , Vc , �c]T ; the velocity
due to rotation about C is ξ rot = [−�cY , �cX , 0]T , where (X , Y ) is
the position of a material point in body frame; and the velocity due to
shape change ξ shape consists of a horizontal motion of the link centers
and rotations about the link centers with angular velocities ±θ̇r /2 for
the two links (in this example, θr > 0 and θ̇r < 0).

where Rθc
is the transformation matrix. For the tail link, i.e.,

0 � s � L/2, the configuration in {bx,by} is given by

Gt =

⎛
⎜⎝

Xt

Yt

�t

⎞
⎟⎠ =

⎡
⎢⎣

(s − 1/2) cos(θr/2)

−(s − 1/4) sin(θr/2)

−θr/2

⎤
⎥⎦, (2)

where the subscript t indicates tail. For the head link, L/2 �
s � L, the configuration is

Gh =

⎛
⎜⎝

Xh

Yh

�h

⎞
⎟⎠ =

⎡
⎢⎣

(s − 1/2) cos(θr/2)

(s − 3/4) sin(θr/2)

θr/2

⎤
⎥⎦, (3)

where h represents head.
In the inertial frame, the linear and angular velocities of

any point on the snake are given by the time derivative of its
configuration, that is ġ. In particular, the velocity of C in the
inertial frame is given by ġc. The velocity of C with respect
to the inertial frame can also be expressed in the body frame
as ξ c = [Uc , Vc ,�c]T , where �c = θ̇c. Similarly, the velocity
of any material point with respect to the inertial frame can be
expressed in the body frame as

ξ ≡
⎛
⎝U

V

�

⎞
⎠ = ξ c + ξ shape + ξ rot,

(4)

ξ shape = ∂G(s,t)

∂t
, ξ rot =

⎛
⎜⎝

−�cY

�cX

0

⎞
⎟⎠,

where ξ shape is due to shape changes and ξ rot is due to rotation
of the snake about C (see Fig. 2). The relation between the
velocity in both frames is given by

ġ = Rθc
ξ , in particular ġc = Rθc

ξ c. (5)

Perpendicular to the plane of motion, the forces on the snake
are gravity and the supporting force from the ground, which
balance each other. Within the plane of motion, the forces on
the snake are external friction from the ground and internal
forces. Since the coefficients of friction are anisotropic, the
frictional force is decomposed into components in different
directions. In the body frame, we denote the linear velocity
of an arbitrary material point as ξ lin = [U ,V ]T , the unit
vector tangent to the snake as ŝ = (cos �, sin �), and the unit
normal vector as n̂ = (− sin �, cos �). Our model for the
snake mechanics is essentially the same as that in Ref. [12]. The
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Coulomb frictional force density at a given point on the snake is

f(s,t) = ρg{−μt (ξ̂ lin · n̂)n̂ − [μf H (ξ̂ lin · ŝ)

+μb(1 − H (ξ̂ lin · ŝ))](ξ̂ lin · ŝ)ŝ}, (6)

where μf , μb, and μt are the forward, backward, and trans-
verse coefficients of friction respectively, ξ̂ lin = ξ lin/‖ξ lin‖,
and H (·) is the Heaviside function, used to distinguish forward
and backward friction [12]. Note that the frictional force den-
sity depends on the direction of velocity but not the magnitude.
In addition to the external force, there are also forces internal to
the snake, and the internal force density is denoted as fin(s,t).
The torque density with respect to C due to friction is given by
τ (s,t) = X⊥ · f, while that due to internal force is τin(s,t) =
X⊥ · fin. The internal force and torque densities are due to a
system of equal and opposite tension and shearing forces acting
on adjacent sections of the snake across their interfaces [24],
which makes the snake inextensible and enforces its shape.
The integrals of internal forces and torques are zero∫ L

0
fin ds = 0,

∫ L

0
τin ds = 0. (7)

We now nondimensionalize the variables. We consider actu-
ations θr (and resulting snake motions) that are periodic in time
with period T . Variables are nondimensionalized by scaling
by the total length L, period T , and mass m = ρL. Three
important dimensionless numbers for the snake dynamics are

Fr ≡ L

μf gT 2
, μ̃b ≡ μb

μf

, μ̃t ≡ μt

μf

. (8)

Here Fr is the Froude number, which can be written as a ratio
of snake inertia to the forward frictional force acting on it.
The other two parameters are friction coefficient ratios. We
assume the coefficients of friction are uniform along the snake
and define the forward direction as that with the smaller of the
tangential friction coefficients (if μf �= μb), so μ̃b � 1 by def-
inition. For real snakes, Fr � 1, which means that the snake’s
inertia is negligible compared to frictional forces [12,13].

For simplicity, we now drop the tildes with the understand-
ing that all variables are dimensionless in the remainder of this
work. The dimensionless pointwise frictional force density is
given in the body frame by

f = −μt (ξ̂ lin · n̂)n̂ − {H (ξ̂ lin · ŝ)

+μb[1 − H (ξ̂ lin · ŝ)]}(ξ̂ lin · ŝ)ŝ. (9)

It can be transformed into the inertial frame via the transfor-
mation matrix Rθc

. The governing equations are given by the
linear and angular balance laws,

Rθc

∫ 1

0
(f + fin) ds = Fr ẍc ,

(10)∫ 1

0
X⊥ · (f + fin) ds = d

dt

∫ 1

0
(Fr ξ lin × ξ̇ lin) ds.

Since the inertia term is negligible, the Froude number is
assumed to be zero: Fr = 0. Therefore, substituting (7) into
(10), the governing equations are reduced to the integrals of

frictional force and torque densities equaling zero,∫ 1

0
f ds = 0,

∫ 1

0
X⊥ · f ds = 0. (11)

The above equations give three independent scalar equations
for the three unknowns ξ c = [Uc , Vc ,�c]T , and the solution
depends on the parameters μb and μt , as well as the prescribed
relative angle θr (t). Notice that (11) are intrinsically nonlinear,
and the nonlinearity primarily lies in the form of friction given
in (9). An explicit derivation of the equations of motion is
given in the Appendix.

Since f depends only on the direction of the velocity, and
no inertia term is present in the equations, the only time scale
in the problem is T . For a given θr (t), if T is doubled, the speed
of the motion is reduced by half, but the snake will trace exactly
the same trajectory, as does Purcell’s three-link swimmer in
Stokes flow. This is referred to as the rate independence or
time invariance of inertialess systems: If a body undergoes a
deformation, the trajectory traveled by the body between two
different shape configurations does not depend on the rate of
deformation but only on the sequence of deformation [14–16].
On the other hand, the scallop theorem indicates that inverting
the shape change sequence corresponds to inverting time
for the original shape change sequence [18] (note this is
not equivalent to time invariance). A corollary [19,20] is as
follows: In the body-fixed frame, the velocity of the center
of mass is proportional to the velocity of the shape change.
This is known as the kinematic reconstruction equation in the
geometric mechanics literature

ξ c = A(θ r )θ̇ r , (12)

where θ r is a shape change vector for systems with multiple
degrees of freedom, A(θ r ) is the local connection matrix,
which is an n × m matrix that relates an m × 1 shape change
velocity θ̇ r to an n × 1 velocity of C in the body frame ξ c. For
the two-link model, θr is a scalar and ξ c is a 3 × 1 vector, hence
A(θr ) is a 3 × 1 vector. Note that A(θ r ) does not depend on θ̇ r .

However, Eq. (12) does not apply to our snake model.
This is due to the anisotropy of coefficients of friction,
specifically the Heaviside function in the force equation (9),
which causes the irreversibility of shape change. Instead, for
our system, the local connection matrix also depends on the
direction (or sign) of θ̇ r , denoted by Sr = sgn(θ̇ r ), but not the
magnitude ‖θ̇ r‖. If there were no Heaviside function in (9),
and force were only decomposed into tangential and transverse
directions, then the system would become very similar to the
multilink fish problem in a potential flow, for which it is
known that with the added inertia decomposed into tangential
and transverse directions (12) holds [21]. Consequently, the
techniques of analyzing the local connection matrix developed
in Refs. [19,20] cannot be directly implemented here since
it is based on (12). In general, the modified kinematic
reconstruction equation for the snake model can be written as

ξ c = A(θ r ,Sr )θ̇ r . (13)

For the two-link model where θr is a scalar, the above
equation is reduced to ξ c = A(θr ,Sr )θ̇r . Note that when
the relative angle θr (t) is prescribed, (13) is a nonlinear
algebraic equation rather than a differential equation, and the
nonlinearity lies in the form of A(θr ,Sr ). The solution of (11)
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FIG. 3. (a) Relative angle θr prescribed as a triangular wave with
period T = 1 and amplitude θmax. (b) Angular velocity for relative
angle θ̇r .

or, equivalently, (13) is the velocity of C expressed in the
body frame, ξ c. Without loss of generality, assume the snake
starts from the origin with zero initial orientation angle, i.e.,
gc(0) = 0. The configuration in the inertial frame is then

gc(t) =
∫ t

0
ġc dt̃ =

∫ t

0
Rθc

ξ c dt̃ , (14)

which is an iterative integral in time since θc is only known
from the integral θc = ∫ t

0 �c(t̃) dt̃ and t̃ is the integration
variable. The distance traveled by C during one period
observed in the inertial frame is given by

d = ‖xc(T ) − xc(0)‖. (15)

The work generated by the snake during one period is equal
to the energy dissipation due to friction since the system is
inertialess, i.e.,

W =
∫ T

0

∫ L

0
−f · ξ lin ds dt, (16)

and here it is more convenient to express f in the body frame.
The efficiency of locomotion is defined as the ratio between
distance and work,

e = d

W
. (17)

This efficiency e, after nondimensionalization, is equivalent
to the inverse of the cost of locomotion commonly seen in the
animal locomotion literature [15]. Intuitively speaking, e is
analogous to the concept of “miles-per-gallon.”

III. TWO-LINK MODEL ANALYSIS

We first look at an example of two-link snake locomotion.
We prescribe the relative angle θr as a triangular wave with

period T = 1 and amplitude θmax, and with θr (0) = θmax,
i.e.,

θr (t) =
{
θmax(1 − 4t), 0 � t < 0.5,

θmax(−3 + 4t), 0.5 � t � 1,
(18)

θ̇r (t) =
{−4θmax, 0 � t < 0.5,

4θmax, 0.5 � t � 1.

Figure 3 depicts θr and θ̇r within one period. For concreteness,
let μb = 1.3 and μt = 1.7, which are taken from the exper-
imental measurement in Ref. [13]. The equations of motion
(11) are solved numerically using the subroutine fsolve in
MATLAB, which implements a trust-region–dogleg algorithm.
When θmax = π/2, the trajectory of the center of mass C

is shown in Fig. 4(a) with five snapshots of the snake at
t = 0,0.25,0.5,0.75 and 1 overlaid (the head of the snake is
represented by ♦, just for illustration), and the orientation θc

as a function of time is depicted in Fig. 4(b). (For a movie that
shows the motion of the snake and the trajectory, see Movie 1
in online Supplemental Material [25].) One can see from the
trajectory plot that the displacement in the x direction is larger
than that in the y direction. Moreover, even for the large
amplitude of actuation θmax = π/2, the rotation is very small:
‖θc‖ < 5 × 10−3 = 0.3◦ for all time. The distance traveled
during the period is d = 0.0535, the work is W = 0.7868,
and the efficiency is e = 0.0680. Figure 5 shows the velocity
of the center of mass ġc in the inertial frame. The horizontal
velocity ẋc is always non-negative. The vertical velocity ẏc

is non-negative during the first half-period and nonpositive
during the second half. The two half periods nearly cancel out
and result in nearly zero net displacement in the y direction, as
shown in Fig. 4(a). The angular velocity θ̇c alternates between
positive and negative during the period and is symmetric about
t = 0.5. All components of velocity become 0 when t = 1/4
and t = 3/4, which corresponds to θr = 0. From Figs. 4 and 5,
one can see the resulting velocities depend nonlinearly on θ̇r .
They can only be solved numerically. The nonlinearity arises
from both the form of the friction in (9) and the large amplitude
of actuation, in this case θmax = π/2. In order to focus on
understanding the former nonlinearity, we now analyze an
actuation with small amplitude.

a. Small-amplitude analysis. For a general kinematics
θr (t), assume supt ‖θr‖ = ε � 1 and, consequently, θr , θ̇r ∼
O(ε). One can show that Uc, Vc,�c � O(ε) as follows.
Specifically, when the motion of the snake is as depicted
in Fig. 2, that is, θr > 0 and θ̇r < 0, we show in the
Appendix that the integral form of the equations of motion (11)

0 0.05

0

-0.01
xc

yc

(a) trajectory of C and snapshots

0 0.5 1t

θc

-5

5

0

×10−3

(b) orientation θc vs. t

FIG. 4. (Movies online) Motion of two-link snake when θr is prescribed as a triangular wave given in (18) and θmax = π/2. (a) Trajectory
of center of mass C in the inertial frame with snapshots of the snake at t = 0,0.25,0.5,0.75, and 1; (b) orientation θc as a function of time. The
coefficients of friction are μb = 1.3 and μt = 1.7.
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FIG. 5. Inertial frame velocities of the center of mass C for the two-link model with θr given by (18) and θmax = π/2. The coefficients of
friction are μb = 1.3 and μt = 1.7.

results in

μb

(
Uc + 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣+
(

Uc − 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc − θ̇r θr/4

∣∣∣∣ ≈ 0,

−μt

(
2Vc + 1

16
θ̇r θ

2
r

)
− μb

(
Ucθr + 1

16
θ̇r θ

2
r

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣ ≈ 0, (19)

−3

4
μt

(
2Ucθr − �c

)
+
[

4μt (1 + μb)
Uc

θ̇r

+ μt

4
(1 − μb)θr

](
Uc + 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣ ≈ 0.

The solutions for equations (19) are given by

Uc ≈ − 1

16
(1 + β)θ̇r θr ,

Vc ≈ 1

32

(
−1 + μb

μt

β ln

∣∣∣∣ 4

βθr

∣∣∣∣
)

θ̇r θ
2
r ,

�c ≈
{
−1

8
(1 + β) − 1

48
β[β(1 + μb) + 2μb]

× ln

∣∣∣∣ 4

βθr

∣∣∣∣
}
θ̇r θ

2
r , (20)

where β is the solution of the following transcendental
equation

[(μb + 1)β(t) + 2] [2 ln 2 − ln |θr (t)|]
−μbβ(t) ln |β(t)| − [β(t) + 2] ln |β(t) + 2| ≈ 0. (21)

Notice β(t) depends on μb and θr but not on μt . For θr ∼
O(ε) � 1, β(t) can be approximated by

β ≈ − 2

μb + 1
, (22)

which is between 0 and −1 for μb � 1. For details of the
derivation of (19) and (20), as well as some numerical results
regarding (22), see the Appendix. From (20), one has Uc ∼
O(ε2) and Vc,�c ∼ O(ε3) since θr , θ̇r ∼ O(ε), which is con-
sistent with the observation mentioned before: Uc, Vc,�c �
O(ε). Since �c = θ̇c ∼ O(ε3) � 1, one has θc � O(1) for
a period of time t ∼ O(1). Hence, the transformation matrix
Rθc

given in (1) is approximately an identity matrix, which
means the inertial frame velocity can be approximated by the
body frame velocity, i.e., ġc ≈ ξ c. One can easily obtain the

velocities for other combinations of the signs of θr and θ̇r by
symmetry.

As an example, when θr is given by (18) and θmax = ε =
0.1, the velocity of C is numerically solved from the full
nonlinear equations (11), and the result is plotted in Fig. 6. The
large-amplitude solutions plots (Fig. 5) approximately contain
those in Fig. 6. Specifically, θr for θmax = 0.1 nearly coincides
with the two subintervals where θr is between [−0.1 0.1] for
the case with θmax = π/2, when time is dilated by a constant
factor. Hence, the results in Fig. 6 also nearly coincide with
the portions around zero in Fig. 5. One can observe that the
order of magnitude of ġc is much smaller than ε = 0.1. For the
first quarter period, ẋc ∝ (1 − 4t), ẏc ∝ (1 − 4t)2, and θ̇c ∝
(1 − 4t)2, which is consistent with the analytical solutions
in (20). When t is close to 1/4 and 3/4, the velocities can no
longer be approximated by linear or quadratic functions. This is
because β(t) can no longer be approximated by a constant since
θ̇r is discontinuous, but the velocities are still bounded. Due
to the symmetry in θr in the four quarter periods, the distance
traveled by C and the total work during one period are given by

d ≈ 4
∫ 1

4

0
ẋc dt ≈ μb − 1

8(μb + 1)
ε2,

(23)

W = 4
∫ 1

4

0

∫ 1

0
−f · ξ lin ds dt ≈ 1

4
μtε,

since
∫ 1

0 ẏc dt ≈ 0. Therefore, the efficiency for small-
amplitude actuation is approximately

e = d

W
≈ μb − 1

2μt (μb + 1)
ε. (24)
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FIG. 6. Inertial frame velocities of the center of mass C for the two-link model with θr given by (18) and small amplitude of actuation
θmax = 0.1. The coefficients of friction are μb = 1.3 and μt = 1.7.

This shows that the efficiency is maximized when μt → 0
and μb → ∞ [i.e., (μb − 1)/(μb + 1) → 1]. Note that the
linearization is valid only when μt  O(ε2). When μt is com-
parable to ε2, which means the body is almost frictionless in the
transverse direction, the terms in W which are of higher order
in ε cannot be ignored, and these higher-order terms depend
on μb as well. This means that transverse friction provides the
leading-order contribution to the work, and tangential (forward
and backward) friction is comparable at higher order (see the
Appendix for details). However, (24) is valid for ε → 0 with
fixed μt , which indicates e → 0, or small-amplitude actuation
is energetically inefficient, and the efficiency increases linearly
with ε. Thus, maximum efficiency occurs at large amplitude,
where geometric nonlinearities play a role.

b. Large-amplitude optimization. We now investigate the
case when the amplitude of actuation is not small in general.
Consider a periodic actuation of the relative angle that varies
in the interval θr ∈ [θmin,θmax] during t ∈ [0,1]. Without loss
of generality, assume θr (0) = θr (1) = θmax and θr (tmin) = θmin.

To simplify the analysis, we consider the case that θmax and θmin

are the only extrema of θr during the period. In other words,
θr varies monotonically between the maximum and minimum,
i.e., θ̇r � 0 when 0 < t < tmin and θ̇r � 0 when tmin < t < 1.
In general, if more local extrema exist, one can always divide
the period into multiple parts at the extrema, and the following
analysis can be modified accordingly. Recall that our system
has the modified kinematic reconstruction equation (13). That
is, for the two-link problem,

ξ c ≡
⎛
⎝Uc

Vc

�c

⎞
⎠ =

⎡
⎣U ∗(θr ,Sr )

V ∗(θr ,Sr )
�∗(θr ,Sr )

⎤
⎦θ̇r ≡ A(θr ,Sr )θ̇r , (25)

where the exact forms of the components U ∗, V ∗, and �∗
can be derived from the equations of motion (11). We will
show mathematically that the trajectory of C depends only on
the path of θr but not on the speed θ̇r along the path. For a
prescribed θr , one has

θc(t) =
∫ t

0
θ̇c(t̃) dt̃ =

∫ t

0
�c(t̃) dt̃ =

∫ t

0
�∗(θr ,Sr )θ̇r dt̃ =

∫ θr (t)

θmax

�∗(θ̃r ,Sr ) dθ̃r

=
{∫ θr (t)

θmax
�∗(θ̃r ,−1) dθ̃r , for 0 < t � tmin,∫ θmin

θmax
�∗(θ̃r ,−1) dθ̃r + ∫ θr (t)

θmin
�∗(θ̃r ,1) dθ̃r , for tmin � t < 1,

(26)

where t̃ and θ̃r are integration variables. Once θc(t) is obtained,
the position of C can be given by (14),[

xc(t)
yc(t)

]
=
∫ t

0
Rθc

ξ c dt̃ =
∫ t

0

(
cos θc − sin θc

sin θc cos θc

)(
Uc

Vc

)
dt̃

=
∫ t

0

(
cos θc − sin θc

sin θc cos θc

)[
U ∗(θr ,Sr )
V ∗(θr ,Sr )

]
θ̇r dt̃

=
∫ θr (t)

θmax

(
cos θc − sin θc

sin θc cos θc

)[
U ∗(θ̃r ,Sr )
V ∗(θ̃r ,Sr )

]
dθ̃r , (27)

where the integration can be evaluated similarly to (26).
Therefore, gc(t) depends only on the path of θr via the
integration limits, and the speed θ̇r does not explicitly appear

in the expression (although its sign does appear). For distance
d, work W and, consequently, efficiency e, the integration is
over the whole period from t = 0 to 1, and, hence, they only
depend on the extrema of θr during the period: θmax and θmin.
This is because the parameter space of shapes is only one
dimensional, so the path of θr is defined by the end points θmax

and θmin.
Due to the nonlinearity of the system, the calculation

of gc(t) via (26) and (27) is not trivial. However, from the
numerical results of θmax = 0.1 and π/2, one can observe that
the orientation of the snake θc is usually very small during the
locomotion. This is due to the symmetry in shape about the by

axis and the fact that the μb–μf asymmetry has little effect on
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rotation. Indeed, even for a large amplitude θmax = π − 0.01,
one still has supt ‖θc‖ < 1.4◦ for all time. Hence, one can
closely approximate the problem by assuming θc ≈ 0 during
the period. Therefore, from (4), the velocities of C in both
frames are approximately the same, i.e., ġc ≈ ξ c, in which the
nonzero components are the linear velocity,(

uc

vc

)
≈
(

Uc

Vc

)
=
[
U ∗(θr ,Sr )
V ∗(θr ,Sr )

]
θ̇r . (28)

Since the Heaviside function appears in the tangential but not
the transverse direction, comparing the force equation in (11)
for the same θr and opposite θ̇r gives

U ∗(θr ,1) = −U ∗(θr , − 1), V ∗(θr ,1) = V ∗(θr ,−1). (29)

This is also evident from the results shown in Figs. 5(a) and
5(b): for two instants symmetric about 0.5, which have equal
θr but opposite θ̇r , the corresponding uc are nearly equal
but vc are nearly opposite. To simplify the notation, denote
u(θr ) ≡ U ∗(θr ,Sr = 1) and v(θr ) ≡ V ∗(θr ,Sr = 1). They are
nonlinear functions of θr only. From (27) and (28), integrating
the velocity in the inertial frame for the whole period yields

xc(1) =
∫ 1

0
uc dt ≈

(∫ tmin

0
+
∫ 1

tmin

)
U ∗(θr ,Sr ) θ̇r dt

=
∫ tmin

0
−u(θr ) θ̇r dt +

∫ 1

tmin

u(θr ) θ̇r dt

=
(
−
∫ θmin

θmax

+
∫ θmax

θmin

)
u(θ̃r ) dθ̃r

= 2X(θmax) − 2X(θmin),

yc(1) =
∫ 1

0
vc dt ≈

(∫ tmin

0
+
∫ 1

tmin

)
V ∗(θr ,Sr ) θ̇r dt

=
∫ tmin

0
v(θr ) θ̇r dt +

∫ 1

tmin

v(θr ) θ̇r dt

=
(∫ θmin

θmax

+
∫ θmax

θmin

)
v(θ̃r ) dθ̃r = 0, (30)

where X(θ ) = ∫ θ

0 u(θ̃) dθ̃ depends on the form of u and the
integration limit θ . The distance d is given by

d =
√

xc(1)2 + yc(1)2 ≈ 2X(θmax) − 2X(θmin), (31)

since xc(0) = yc(0) = 0. The power, or rate of work, done by
the snake at a given time can be written

P (θr ,θ̇r ) ≡
∫ 1

0
−f · ξ lin ds = p∗(θr ,Sr )θ̇r . (32)

Power is identical for the instants with the same value
of θr and same magnitude but opposite sign of θ̇r . That
is, P (θr ,θ̇r ) = P (θr ,−θ̇r ). Therefore, one has p∗(θr ,1) =
−p∗(θr ,−1). Similarly to our definition of u(θr ), we define
p(θr ) ≡ p∗(θr ,1). The total work is given by integrating power
over the period,

W =
∫ 1

0
P (θr ,θ̇r ) dt =

(
−
∫ θmin

θmax

+
∫ θmax

θmin

)
p(θr ) dθr

= 2W (θmax) − 2W (θmin), (33)

where W (θ ) = ∫ θ

0 p(θ̃) dθ̃ . The integrals X and W only
explicitly depend on their upper integration limits (and
implicitly on the parameters μb and μt ). By definition, they are
odd functions, for instance, X(θ ) = −X(−θ ). For symmetric
cases, θmax = −θmin (e.g., the one shown in Fig. 3), and the
efficiency is simplified to

e = 2X(θmax) − 2X(θmin)

2W (θmax) − 2W (θmin)

= X(θmax) + X(θmax)

W (θmax) + W (θmax)
= X(θmax)

W (θmax)
. (34)

Figure 7 shows X, W , and e as functions of the maximum
amplitude θmax for parameters μb = 1.3 and μt = 1.7. One
can see that X is maximized around θmax ≈ 3π/4, but since
W increases faster at larger θmax, the efficiency e is maximized
around θmax ≈ π/2. We emphasize that, since the parameter
space of shapes is only one dimensional, as long as θmax is the
same, the efficiency and trajectory traveled by C are the same.
For example, any function θr that has the same maximum and
minimum (and varies monotonically in between) as the one
shown in Fig. 3, for example, a cosine function with period 1
and amplitude π/2, will also result in the trajectory shown in
Fig. 5(a) and have the same e.

We repeat the process above to calculate e as a function
of θmax for various μb and μt , and the results are shown in
Fig. 8 for (a) μb = 1.3 and various μt and (b) μt = 1.7 and
various μb. In (a), the efficiency-maximizing θmax ≈ π/2 for

0 π/2 π
0

0.1

0.2

θmax

X

(a) X vs. θmax

0 π/2 π
0

θmax

3

6
W

(b) W vs. θmax

0 π/2 π
θmax

e

0

0.03

0.06

(c) e vs. θmax

FIG. 7. Two-link model (a) X, (b) W , and (c) e as functions of maximum amplitude of actuation θmax for μb = 1.3 and μt = 1.7.
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0.2
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0.4
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(b) e for μt = 1.7 and various μb

FIG. 8. Two-link efficiency e as a function of actuation amplitude
θmax for various μb and μt : (a) fixed μb = 1.3 and various μt and
(b) fixed μt = 1.7 and various μb.

μt > 1 and increases as μt drops below 1, in which case there
is a smaller increase in work for the additional transverse
motion associated with a larger amplitude. In (b), one can see
that for μt = 1.7 > 1, the efficiency-maximizing θmax ≈ π/2
regardless of the value of μb. Note that when θmax is small, e

varies almost linearly with θmax, which agrees with the small-
amplitude result in (24).

We now determine the values of μb and μt that maximize
e. Figure 9(c) shows a contour plot of e as a function of μb

and μt when θmax = π/2. Here e is evaluated at points on
a 10 × 10 logarithmic grid with nodes spaced by factors of
1.5, and μb ranges from 1.50 = 1 to 1.59 ≈ 38.44 and μt

from 1.5−6 ≈ 0.088 to 1.53 ≈ 3.375. The highest efficiency
occurs at the largest μb and the smallest μt in this range. In
Fig. 9(a), the distance d increases when μb and μt increase. By
contrast, work W is mostly independent of μb and increases
when μt increases, as shown in Fig. 9(b). Note this is consistent
with the small-amplitude result in (23). The trends shown in
Fig. 9 hold for a wider range of parameters, which suggests
that the efficiency-maximizing parameters are μb large and μt

small.

IV. THREE-LINK MODEL

We now consider a snake model with three links (each with
length 1/3) connected by hinge joints as depicted in Fig. 10.
The shape is now given by two relative angles, θr1 and θr2.
Since the links cannot penetrate each other, the angles are
constrained to lie in the set

Sθr1,θr2 =

⎧⎪⎨
⎪⎩(θr1,θr2) ∈ (−π,π ) × (−π,π )

⋂⎛
⎜⎝

θr2 > −π − θr1/2, −π < θr1 � −2π/3
θr2 > −2π − 2θr1, −2π/3 � θr1 � −π/2
θr2 < 2π + 2θr1, π/2 � θr1 � −2π/3
θr2 < π − θr1/2, 2π/3 < θr1 < π

⎞
⎟⎠
⎫⎪⎬
⎪⎭ . (35)

In Fig. 11 the infeasible regions are shaded at the upper right
and lower left corners in the (θr1 , θr2) plane. One can describe
the motion in the inertial frame {ex,ey} or in the body-fixed
frame {bx,by}, with the angle between bx and ex now given
by

θc ≡ 1
3 (θt + θm + θh) = θm − 1

3θr1 + 1
3θr2. (36)

Here θt , θm, and θh are the orientations of the tail, middle,
and head links in the inertial frame, respectively. In the
body frame, the configuration variable on each of the three

links is

Gt =
⎡
⎣(s − 5/18) cos �t − 1/6 cos �m − 1/18 cos �h

(s − 5/18) sin �t − 1/6 sin �m − 1/18 sin �h

�t ≡ −2θr1/3 − θr2/3

⎤
⎦,

Gm =
⎡
⎣1/18 cos �t + (s − 1/2) cos �m − 1/18 cos �h

1/18 sin �t + (s − 1/2) sin �m − 1/18 sin �h

�m ≡ θr1/3 − θr2/3

⎤
⎦,

Gh =
⎡
⎣1/18 cos �t + 1/6 cos �m + (s − 13/18) cos �h

1/18 sin �t + 1/6 sin �m + (s − 13/18) sin �h

�h ≡ θr1/3 + 2θr2/3

⎤
⎦.

(37)
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FIG. 9. Contour maps of (a) distance d , (b) work W , and (c) efficiency e as functions of μb and μt (on a log-log scale) for θmax = π/2.
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θr1

θt
L/3

μfμb

μt

ŝn̂

θr2

O ex

ey

FIG. 10. Three-link snake model; see text for description.

The linear and angular velocities in the body and inertial
frames and the transformations between them are again given
by (4) and (5). The expressions for forces, the equations of
motion and the definitions of distance, work, and efficiency
are all in the same form as in the two-link case.

In this section, to keep the parameter space tractable,
we set μb = 1.3 and μt = 1.7 (based on the experimental
measurement in Ref. [13]) and search for the efficiency-
maximizing shape change in terms of θr1(t) and θr2(t). Now
the path of the shape change over one period in (θr1 , θr2) space
is a directional closed curve (path) denoted by η (an example
of which is shown in Fig. 11).

The reconstruction equation (13) is now

ξ c ≡
⎛
⎝Uc

Vc

�c

⎞
⎠ =

⎡
⎣U ∗

1 (θr1,Sr1,θr2,Sr2) U ∗
2 (θr1,Sr1,θr2,Sr2)

V ∗
1 (θr1,Sr1,θr2,Sr2) V ∗

2 (θr1,Sr1,θr2,Sr2)
�∗

1(θr1,Sr1,θr2,Sr2) �∗
2(θr1,Sr1,θr2,Sr2)

⎤
⎦

×
(

θ̇r1

θ̇r2

)
≡ A(θ r ,Sr )θ̇ r . (38)

As in the two-link case, most quantities of interest are
independent of how time is parametrized. For example,

θc(t) =
∫ t

0
�c dt̃ =

∫ t

0
[�∗

1(θr1,Sr1,θr2,Sr2)θ̇r1

+�∗
2(θr1,Sr1,θr2,Sr2)θ̇r2]dt̃

=
∫

ηt
0

[�∗
1(θr1,Sr1,θr2,Sr2) dθr1

+�∗
2(θr1,Sr1,θr2,Sr2) dθr2], (39)

where ηt
0 is the portion of the shape-change path connecting

(θr1(0),θr2(0)) to (θr1(t),θr2(t)). Hence, θc(t) does not depend
on the speeds of the shape change, θ̇r1 and θ̇r2. Similar results
hold for xc(t) and yc(t) and, consequently, also for the distance
d, work W , and efficiency e. Hence, e is only a function
of the path η. In contrast to the two-link case, the shape of
the three-link model is not symmetric in general. Therefore,
the orientation θc given by (39) is no longer always small,
and the initial and final orientations in one period are not
necessarily the same.

The extrema of e occur when the variation of e with respect
to η is zero, i.e.,

δηe = 0. (40)

Our goal is to find the η which are local and/or global
maximizers of e.

− ππ

π

−π

θr1

θr2

π

2

−π

2
−2π

3

2π

3

2π/3
π/2

−π/2
−2π/3

0

0

l

η

FIG. 11. Shape change parameter plane (θr1,θr2). The shaded
areas are infeasible due to the mutual avoidance of the links. A
periodic kinematics is a directional closed path η, with the initial
state marked by ◦.

c. Triangular waves for θr1 and θr2. We start by maximizing
within low-dimensional subspaces of the space of all feasible
paths. First, we prescribe θr1 and θr2 to be triangular waves with
period 1 (similar to the two-link case), and equal amplitudes:
θr1max = θr2max = −θr1min = −θr2min ≡ θmax. There is a phase
delay φ between the two angles: θr1 is assumed to be given by
Fig. 3(a) and θr2 is shifted φ behind θr1 in time. In general,
0 < θmax < π and 0 < φ < 1, but the constraint given in (35)
also applies. The angular velocities are given by

θ̇r1 =
{−4θmax, 0 � t < 0.5,

4θmax, 0.5 � t � 1,
(41)

θ̇r2 =
{−4θmax, 0 � t − φ < 0.5 or −1 < t − φ < −0.5,

4θmax, 0.5 � t − φ < 1 or −0.5 � t − φ < 0.

Such a path η is a rectangle in (θr1,θr2), centered at the origin
with the edges at ±45◦ to the θr1 axis, examples of which
are shown in Fig. 12(b). The shapes and orientations of the
rectangular paths lie in a two-dimensional space parametrized
by (θmax,φ). We perform an exhaustive search for the globally
optimal shape change in this case: discretize (θmax,φ) on a
100 × 100 mesh on the range [0.01 , π − 0.01] × [0.01 , 0.99]
and calculate the efficiency at each node by solving the
equations of motion given in (11). The results are depicted
as a contour plot of e as a function of θmax and φ in
Fig. 12(a). The areas bounded by the dashed lines and the
boundaries at the upper and lower right corners are infeasible
due to the constraint given in (35). One finds three local
maxima of e, located at p1, p2, and p3. At p1, θmax = 2.4694,
φ = 0.1981, and e = 0.1197, which is the global maximum for
this family of kinematics. The second and third local minima
are ep2 = 0.0834 at θmax = 1.6181, φ = 0.5940, and ep3 =
0.0634 at θmax = 2.7847, φ = 0.8118. The corresponding
trajectories η in the (θr1 , θr2) plane are shown in Fig. 12(b).
Note that ηp1 is counterclockwise, and the other two are
clockwise, because φ < 0.5 for p1 and φ > 0.5 for the others.
Figure 13 shows trajectories of C and snapshots of the snake
at these local optima (see Movies 2–4 online [25]). The arrows
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(a) e contour
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(b) paths in (θr1, θr2) space

FIG. 12. (a) Contour plot of e as function of θmax and φ for the shape change prescribed in (41). Areas bounded by dashed lines and
boundaries at the upper and lower right corners are infeasible due to the mutual avoidance of the links. The three local maxima of e are marked
p1, p2, and p3: ep1 = 0.1197 (global maximum), ep2 = 0.0834, and ep3 = 0.0634. (b) Corresponding paths η in the (θr1,θr2) parameter space.

indicate the directions of travel along the trajectories. We note
that on average the snake moves forward for p1 and p2, but
backward for p3 (keep in mind that distance is the norm of
net displacement). It seems suboptimal to move backwards
(since μb > 1), and, indeed, ep3 is not a global maximum.
One can see two small “loops” in the trajectory of C for p1

and they correspond to the first and third edges of the rectangle,
during which the head and tail links are almost parallel to each
other during the motion. The other two edges correspond to
the head and tail links rotating in opposite directions, which
results in much greater displacements compared to the small
loops. During the period, the orientation of the middle link
does not vary as much as the other two links. The differences
among the edges in the work done are not very large but the
differences in distance traveled are. The first and third edges
are somewhat analogous to recovery strokes, with the second
and fourth edges analogous to power strokes.

d. More general shape changes. We now optimize in a more
general class of shape changes. Since θr1 and θr2 are periodic
functions with period 1, they can be represented as Fourier
series,

θri(t) = ai
0

2
+

n∑
j=1

[
ai

j cos (2jπt) + bi
j sin (2jπt)

]
, (42)

where ai
j and bi

j are Fourier coefficients, their superscripts
i = 1 or i = 2 correspond to θr1 or θr2, respectively, and
the subscripts j indicate the mode in Fourier series. One
needs n → ∞ to represent a general function in the Fourier
series. Following Ref. [17], we start with n = 1 and increase n

systematically, observing the resulting change in the optima.
For n = 1, the relative angles are given by θr1(t) =

a1
0/2 + a1

1 cos (2πt) + b1
1 sin (2πt) and θr2(t) = a2

0/2 +
a2

1 cos (2πt) + b2
1 sin (2πt). The corresponding η is a relatively

I
II

III

IV

V

I II III IV V

I II III IV VI

II
III

IV

V

I II III IV V

I

II

III

IV
V

p1

p2

p3

FIG. 13. (Movies online) Trajectories of C (left) and snapshots (right) in the inertial frame for p1, p2, and p3. Starting at (0,0) at t = 0, the
positions of C at t = 1 are for p1, (0.1649,0.0504); for p2, (0.0536,0.0105); and for p3, (−0.0973, −0.0300). The snapshots are given at time
increments of 0.05 for p1 and p3 and 0.1 for p2. The head of the snake is represented by ♦. The orientations of the snapshots in the inertial
frame are preserved, while the centers are shifted to a straight line for better illustration.
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I II III IV V

(c) snapshots

FIG. 14. (Movie online) (a) Global optimal path η in (θr1,θr2) space for 1 mode in the Fourier series. (b) Trajectory of the center of mass C

in the inertial frame, which moves from (0,0) at t = 0 to (0.3381, −0.0780) at t = 1, with an arrow showing the direction of locomotion. (c)
Snapshots of three-link snake are given at time increments of 0.05, with the head of snake represented by ♦.

smooth curve, an example of which is shown in Fig. 14(a).
For compactness, we denote q = [a1

0 , a2
0 , a1

1 , a2
1 , b1

1 , b2
1]T

as the coefficient vector. Mathematically, the optimization
problem can be stated as the following:

Objective max
q

e(η),

Variables q = [a1
0 , a2

0 , a1
1 , a2

1 , b1
1 , b2

1

]T
,

= ai
0

/
2 + ai

1 cos (2πt) + bi
1 sin (2πt) ,

η : θri(t) i = 1,2,

Equations
∫ 1

0
f ds = 0,

∫ 1

0
X⊥ · f ds = 0, ∀t ∈ [0 , 1],

Constraints (θr1,θr2) ∈ Sθr1,θr2 , (43)

where Sθr1,θr2 is given by (35). Since q has 6 degrees of
freedom, performing an exhaustive search is more expensive
now. Instead, we utilize the subroutines provided by the
Global Optimization Toolbox in MATLAB. The procedure
is briefly described here. For a random initial guess q0, a
local constrained optimization function fmincon, which
implements a sequential quadratic programming algorithm, is
called to solve for a local optimal qlocal that results in a local
maximum of efficiency elocal. To find the globally optimal
variable qglobal, two approaches are taken: (i) repeat the local
search 2000 times with random initial guesses prefiltered
such that the new searches do not fall back to the immediate
vicinity of exploited results and then pick the largest elocal as
a candidate for the global maximum (using MultiStart) and
(ii) numerically calculate the basins of attraction of the local
maxima and then pick the largest elocal as a candidate when
the basins cover the variable space (using GlobalSearch).
Each approach is repeated several times, and the largest
candidate is regarded as the global maximum. We verify the
global maximum is indeed a local maximum by numerically
computing the gradient using PatternSearch.

The globally optimal coefficients are qglobal = [−0.1635,

−0.2274,−2.0246,−0.1079,2.2364,−2.9886]T , and the
corresponding η is depicted in Fig. 14(a), with the starting
point marked by ◦ and the direction shown by the arrow.
Fig. 14(b) shows the trajectory of C in the inertial frame, which
moves from the origin when t = 0 to (0.3381,−0.0780) when
t = 1. Figure 14(c) shows the snapshots of the snake at time
increment �t = 0.05 from t = 0 to 1. The five instants t =
0,0.25,0.5,0.75,1 correspond to the five states I to V , respec-
tively (see Movie 5 online [25]). The distance is d = 0.3470,
the work is W = 1.5123, and the efficiency is e = 0.2295. In
comparison to the optimal solution in the triangular wave case
(e = 0.1197), the efficiency is much higher. The loops in the
trajectory in Fig. 13 no longer exist, the distance is much larger,
and the trajectory is smoother than in the triangular wave case.

For n = 2, the coefficient variable is q = [a1
0, a

2
0, a

1
1, a

2
1,

b1
1, b

2
1, a

1
2, a

2
2, b

1
2, b

2
2]T , and the four additional coefficients

correspond to the second mode in the Fourier series.
Following the aforementioned procedure, we obtain
the globally optimal coefficient q = [−2.7831,−2.0203,

0.3941, 0.0653,−0.3580, 0.4929,−0.0156, 0.1473, 0.1589,

−0.0305]T . Note that the second-mode coefficients are
smaller on average than the first-mode coefficients. Besides
this global maximum, we also find three other local maxima
of interest. Their paths in the parameter space are plotted in
Fig. 15(a). We denote the globally optimal path at the lower
left corner as η1, and the locally optimal results at the upper
right, lower right, and upper left corners as η2, η3, and η4,
respectively. The corresponding efficiencies are e1 = 0.3253,
e2 = 0.3252, e3 = 0.2893, and e4 = 0.2882. Note that they
are all larger than the global maximum with one mode. One
can see that η1 and η2 are very similar in shape and are
counterclockwise. Their efficiencies are almost equal. Similar
results hold for η3 and η4, only they are clockwise. In all four
cases, the path shapes are close to 45-45-90 right triangles. The
locations of the centers of η1 and η2 are close to the θr1 = θr2
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FIG. 15. (Movies online) (a) Optimal paths ηi,i = 1,2,3,4 in (θr1,θr2) space for n = 2 mode in the Fourier series; e1 = 0.3253 (global
optimum), e2 = 0.3252, e3 = 0.2893, and e4 = 0.2882. (b) Trajectories of the centers of mass C in the inertial frames for η1 (top), for which
C moves from (0,0) at t = 0 to (0.0884,0.0144) at t = 1. The snapshots are at t = 0,0.185,0.37,0.555,0.74,0.87, and 1. For η3 (bottom), C

moves from (0,0) at t = 0 to (0.0586,0.0454) at t = 1. The snapshots are at t = 0,0.19,0.38,0.555,0.73,0.875, and 1.

line and those of η3 and η4 are close to the θr1 = −θr2 line.
Figure 15(b) shows the trajectories of C in the inertial frame
and snapshots of η1 and η3. For η2 and η4, they are nearly
mirror images of those for η1 and η3, respectively. In all four
cases the motion is as follows: moving just the head or just the
tail link first, then moving both, and then just the other link.
The orientation of the middle link does not change much in all
cases (see Movies 6–7 online [25]). It is interesting to note that
for the two-mode case, more efficient kinematics correspond
to a “contraction-expansion” motion, which is reminiscent of
the “concertina” mode of snake locomotion [26].

For n > 2, so far we have not found any motion that is
more efficient that the ones found for n = 2. The numerical
error in our calculation of efficiency is less than 10−5, based on
the time discretization used. The higher dimensionality of the
parameter space at larger n implies more computational time
is needed to locate local optima, which may also increase in
number. Nevertheless, based on our computations for n > 2,
the global optimum obtained in the two-mode study seems
likely to be close to the global efficiency-maximizing shape
change for the three-link model.

V. DISCUSSION

To summarize, we have adapted a model for the slithering
locomotion of snakes from Ref. [12] to the case of two-link and
three-link bodies sliding in 2D. Two dimensionless numbers,
the ratios of the coefficients of friction, are the key physical
parameters. Because of the frictional anisotropy, the local
connection matrix in the reconstruction equation depends on
both the relative angles and the directions of their velocities,
which breaks the symmetry of time reversal and shape reversal
equivalence, and the scallop theorem does not apply. We
maximized the efficiency e, the ratio of the distance traveled
to the work done by the snake during one period of actuation,
under various kinematic assumptions. For a two-link snake
in the limit of small-amplitude actuations, e is maximized
when μb  1 and μt � 1. Simulations of large-amplitude
actuations show that the optimal shape change occurs when

the relative angle amplitude θmax ≈ π/2 except for small μt .
In real snakes, μt is usually not very small. We note that
when μt � 1, the distance traveled is also very small, as
shown in Fig. 9. Although the body can increase its actuation
frequency by decreasing T to achieve higher d in a given
time, the actuation frequency may be constrained in biological
or robotic snakes. If so, a very small μt may constrain the
speed of locomotion to be small, which may be undesirable
for biological or robotic snakes. We also note that μb can
be increased by real snakes by altering the angles at which
their scales contact the ground [26]. For the three-link model,
we searched for optimal motions in terms of the two relative
angles θr1 and θr2, and assumed μb = 1.3, μt = 1.7, which is
a set of coefficients measured for juvenile milk snakes [13].
We first studied the family of kinematics with relative angles
constrained to a rectangular path in parameter space. Three
local optima were found, and the global optimum results in
a trajectory with sharp changes in center-of-mass velocity,
shown in Fig. 13. We then considered paths parametrized by
Fourier series for θr1 and θr2. If only the first mode (lowest
frequency) is allowed, the optimal shape-change path in the
parameter space resembles an ellipse elongated in the diagonal
direction, shown in Fig. 14. If more modes are allowed, then the
optimal paths are instead close to right triangles that are small
compared to the ellipse, shown in Fig. 15. The globally optimal
motion is found to be reminiscent of the concertina mode of
snake locomotion [26]. Table I highlights some of our findings.

Although the results obtained in this work are based on
a simplified model of snake locomotion, the system is still
mathematically challenging due to its nonlinear nature. A
key feature of snake locomotion—frictional anisotropy—is
present in this work, but to keep the analysis tractable,
other biological and dynamical aspects of snake slithering
are omitted. One aspect is the dynamic load distribution, i.e.,
snakes lifting part of their body during locomotion [12]. To
take this into consideration, the current model can be modified
such that coefficients of friction can change in time and along
the snake. This modification will result in a more complex
optimization problem. The assumption of Coulomb friction
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TABLE I. Highlights of results for two-link and three-link snake models. θr or θr1 and θr2 are the angles between the links, and μf , μb, and
μt are the forward, backward, and transverse coefficients of friction, respectively. In the two-link model, the optimal coefficients are obtained
through analysis; in the three-link model, the coefficients of friction are fixed to be those from an experiment [13].

Model Optimal shape change Friction coefficients used Optimal friction coefficients

Two-link θr

θmax ≈ π/2
unless μt � 1

1 < μb/μf < ∞
0 < μt/μf < ∞

μb/μf  1
μt/μf � 1

Three-link
θr1

θr2

π

π

−π
−π

θr1

θr2 μb/μf = 1.3
μt/μf = 1.7

could also be replaced by more complex and nonlinear friction
models such as those discussed in Refs. [27,28], which would
also present new challenges in solving the dynamical equations
as well as the optimization problems.

In the three-link case, we focused on the optimal shape
change with fixed coefficients of friction; a natural extension
is to vary these. Another natural extension is to systematically
increase the number of links N and see how the optima change.
For large N it would interesting to compare optimal motions
with those found in a two-parameter space of smooth shapes
by Ref. [13].
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APPENDIX: DERIVATION OF THE EQUATIONS OF
MOTION AND SMALL-AMPLITUDE ANALYSIS

The reader is first reminded that the velocity of an arbitrary
point on any link can be decomposed into the velocity of the
link center and a rotation about that center (see Fig. 2). For
the tail link, in the body frame, the link center velocities in the

tangential and transverse directions are(
Us

t

Un
t

)
≡
(

cos θr

2 − sin θr

2

sin θr

2 cos θr

2

)(
Uc + 1

8 θ̇r sin θr

2

Vc − 1
4�c cos θr

2

)
, (A1)

and the rotation rate is �̇t = −θ̇r/2. The unit tangent vector
of the tail link is ŝt = ( cos(θr/2),− sin(θr/2)), and the unit
transverse vector is n̂t = ( sin(θr/2) , cos(θr/2)). Therefore,
the linear velocity of any point on the tail link is given by

ξ t,lin = Us
t ŝt + [Un

t + (s − 1
4

)
�̇t

]
n̂t , for 0 � s � 1

2 .

(A2)

Similarly, for the head link, the link center velocity is(
Us

h

Un
h

)
≡
(

cos θr

2 sin θr

2

− sin θr

2 cos θr

2

)(
Uc − 1

8 θ̇r sin θr

2

Vc + 1
4�c cos θr

2

)
, (A3)

and �̇h = θ̇r/2, the unit vectors ŝh = ( cos(θr/2) , sin(θr/2))
and n̂h = ( − sin(θr/2) , cos(θr/2)). Therefore, the velocity
of any point on the head link is given by

ξh,lin = Us
h ŝh + [Un

h + (s − 3
4

)
�̇h

]
n̂h, for 1

2 � s � 1.

(A4)

The unit velocity vector for the tail link is

ξ̂ t,lin = 1√[
Un

t − (s − 1
4

)
�̇t

4

]2 + (Us
t

)2
[
Us

t , Un
t +

(
s − 1

4

)
�̇t

]T

, (A5)

and that for the head link is of a similar form. For concreteness, we discuss the case when θr > 0 and θ̇r < 0, as depicted in
Fig. 2. The analysis can be easily extended to other cases with minor modifications. Substituting (A2) into (9) and integrating
over the whole link, the frictional force exerted on the tail link is∫ 1

2

0
fds = − μt

�̇t

[√(
Un

t + �̇t/4
)2 + (Us

t

)2 −
√(

Un
t − �̇t/4

)2 + (Us
t

)2]
n̂t

− μbU
s
t

�̇t

ln

⎡
⎣Un

t + �̇t/4 +
√(

Un
t + �̇t/4

)2 + (Us
t

)2
Un

t − �̇t/4 +
√(

Un
t − �̇t/4

)2 + (Us
t

)2
⎤
⎦ ŝt . (A6)
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Similarly, the frictional force on the head link is∫ 1

1
2

fds = − μt

�̇h

[√(
Un

h + �̇h/4
)2 + (Us

h

)2 −
√(

Un
h − �̇h/4

)2 + (Us
h

)2]
n̂h

− Us
h

�̇h

ln

⎡
⎣Un

h + �̇h/4 +
√(

Un
h + �̇h/4

)2 + (Us
h

)2
Un

h − �̇h/4 +
√(

Un
h − �̇h/4

)2 + (Us
h

)2
⎤
⎦ ŝh. (A7)

The force equation (11) is
∫ 1/2

0 fds + ∫ 1
1/2 fds = 0. One can

readily derive the torque equation, which is omitted here due
to complexity. We have given the force and torque equations
in terms of Us

t ,U
n
t ,Us

h , and Un
h . The center-of-mass velocity

ξ c = [Uc,Vc,�c]T can be easily obtained by inverting (A1)
and (A3). In general, ξ c does not have a closed-form solution
for large amplitudes of θr .

For small amplitude kinematics supt ‖θr‖ = ε � 1, one
can make the approximation

cos(θr/2) ≈ 1, sin(θr/2) ≈ θr/2. (A8)

Hence, ŝt and ŝh are almost parallel to bx while n̂t and
n̂h are almost parallel to by . One can intuitively see that
Uc, Vc,�c � O(ε) due to the symmetry in kinematics for
the two-link model, and this can also be verified later. The
dominant term in velocity is due to the rotation about each
link center. As an example, in the tail link (A2), the dominant
term is (s − 1/4)�̇t n̂t , whose magnitude is of the order O(ε)
and direction is almost parallel to by . All other terms have order
of magnitude O(ε2), and they are comparable to the dominant
term only when s ≈ 1/4. Therefore, the components of the unit
velocity vector in (A5) are as follows: almost sign function in
by , and mostly zero in bx except around s ≈ 1/4. A similar
result holds for the head link.

We now analyze the orders of magnitudes in the equations of
motion. For the bx component of the force equation, the term
generated from the transverse direction, μtθ

2
r /2 ∼ O(ε2), is

negligible compared to the tangential direction terms ∼O(ε),
as long as μt/μf and μb/μf are O(1) in the small-ε limit.
Hence, after multiplying by the common denominator θ̇r/2
and neglecting higher-order terms, the equation is reduced to

μb

(
Uc + 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣
+
(

Uc − 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc − θ̇r θr/4

∣∣∣∣ ≈ 0. (A9)

For the by component of the force equation, although the
absolute values of the transverse terms are O(1), they almost
cancel out due to the symmetry in shape. As a result,
contributions from both tangential and transverse directions
are comparable in order of magnitude and ∼O(ε2). Neglecting
higher-order terms, the equation becomes

−μt

(
2Vc + 1

16
θ̇r θ

2
r

)

−μb

(
Ucθr + 1

16
θ̇r θ

2
r

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣ ≈ 0, (A10)

in which (A9) was used. For the torque equation, after
multiplying by the common denominator θ̇r/2, contributions
from the tail and head links are comparable and ∼O(ε2). After
manipulation, the linearized torque equation is reduced to

−3

4
μt (2Ucθr − �c) +

[
4μt (1 + μb)

Uc

θ̇r

+ μt

4
(1 − μb)θr

]

×
(

Uc + 1

16
θ̇r θr

)
ln

∣∣∣∣ −θ̇r

4Uc + θ̇r θr/4

∣∣∣∣ ≈ 0, (A11)

in which (A9) was used again. To solve the three equations
(A9)–(A11), notice in (A9) that Uc appears with θ̇r θr/16, and
hence, we seek Uc in the form

Uc ≈ − 1
16 [1 + β(t)]θ̇r θr , (A12)

where β(t) is a function of time. The governing equation for
β(t) can be obtained by substituting (A12) into (A9), obtaining

μb

[
−β(t)

16
θ̇r θr

]
ln

∣∣∣∣ 4

β(t)θr

∣∣∣∣
− 1

16
[2 + β(t)] θ̇r θr ln

∣∣∣∣ 4

[2 + β(t)] θr

∣∣∣∣ ≈ 0, (A13)

which can be further simplified to

[(μb + 1)β(t) + 2] [2 ln 2 − ln |θr (t)|]
−μbβ(t) ln |β(t)| − [β(t) + 2] ln |β(t) + 2| ≈ 0. (A14)

Note that β depends on μb but not on μt . For θr ∼ O(ε) � 1,
the dominant term in (A14) is ln |θr (t)|. Hence, for the left side
of (A14) to be bounded in the small-ε limit, the coefficient of
the dominant term has to tend to zero, i.e.,

β(t) ≈ − 2

1 + μb

. (A15)

For the parameter μb = 1.3, and θr (t) given by the triangular
wave in (18) for ε = 0.1, when θr > 0 and θ̇r < 0 (first
quarter period), β(t) is calculated from (A14) and plotted in
Fig. 16. One can see that −2/(μb + 1) = −0.8696 is a good
approximation of β(t) for most times. One can obtain solutions
of Vc and �c by substituting (A12) into the remaining two
equations of motion:

Vc ≈ 1

32

(
−1 + μb

μt

β ln

∣∣∣∣ 4

βθr

∣∣∣∣
)

θ̇r θ
2
r ,

�c ≈
{
−1

8
(1 + β) − 1

48
β[β(1 + μb) + 2μb] ln

∣∣∣∣ 4

βθr

∣∣∣∣
}
θ̇r θ

2
r ,

(A16)

As stated before, these solutions for Uc, Vc, and �c are
for the case when θr > 0 and θ̇r < 0. One can easily obtain

022711-14



OPTIMIZATION OF TWO- AND THREE-LINK SNAKELIKE . . . PHYSICAL REVIEW E 87, 022711 (2013)

0 1/8 1/4
-1

-0.75

-0.5

t

β(t)

FIG. 16. β (solid) as a function of t for μb = 1.3 and ε = 0.1. It
is close to a constant −2/(μb + 1) = −0.8696 (dashed).

solutions for other cases based on symmetry. The reader is
reminded that one can approximate inertial frame velocity with
body frame velocity since θc � 1 for all time, i.e., ġc ≈ ξ c. As
an example, for μb = 1.3, μt = 1.7, and ε = 0.1, the velocities
are given in Fig. 6. Since the velocity in the ey direction ẏc

is almost antisymmetric about t = 1/2, one has
∫ 1

0 ẏcdt ≈ 0.
Hence, the distance is given by

d ≈
∫ 1

0
ẋc dt ≈

∫ 1

0
Uc dt ≈ 4

∫ 1/4

0
Uc dt

≈ 4
∫ 1/4

0
− 1

16
(1 + β)θ̇r θr dt

= 4
∫ 1/4

0
− 1

16
(1 + β)(−4ε)ε(1 − 4t) dt

= 1

8
(1 + β)ε2 ≈ μb − 1

8(μb + 1)
ε2. (A17)

The work is given by

W ≈
∫ 1

0

∫ 1

0
−f · ξ lin ds dt

≈ −4
∫ 1/4

0

(∫ 1/2

0
+
∫ 1

1/2

)
f · ξ lin ds dt

≈ 1

4
μtε + γ ε3, (A18)

where

γ ≈ 1

16(μb + 1)2

[
2μt + μb + μ2

b + μtμ
2
b

3

+ μt + μb + μ2
b

2
ln

(μb + 1)2

2ε2
− 2μ2

b + μt

2
ln μb

]
.

(A19)

Therefore, the efficiency is given by

e = d

W
≈ μb − 1

2(μb + 1)(μt + 4γ ε2)
ε. (A20)

One can see that when μt  4γ ε2,

e ≈ μb − 1

2μt (μb + 1)
ε. (A21)
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