PubPol/Econ 541

Classes 3, 4 Tariffs and Quotas

by Alan V. Deardorff University of Michigan 2020

Pause for Discussion

Questions from KOM

- How do "specific" and "ad valorem" tariffs differ?
- An import demand curve is sometimes called a "derived demand curve." Why?
- What is an "effective rate of protection"?

Outline

- Tariff by Small country
- Tariff by large country
- Quotas
- Recent tariff threats

Small country

- Assumptions throughout
 - Markets perfectly competitive
 - Product homogeneous
 - There are no "distortions" (externalities, etc.)
 - Supply and demand curves linear
 - Just for simplicity
 - Model is partial equilibrium
 - Model is static

Small country

- Special assumption for small country case
 - World price is given (country too small to influence it)
 - More correctly: country's supply and demand in that industry too small to influence the world price

Small country, Import Industry

- Effects of move from autarky to free trade
 - Price falls
 - Quantity supplied falls
 - Quantity demanded rises
 - Imports rise
- Welfare effects:
 - − Suppliers lose −a
 - Demanders gain +(a+b)
 - Country gains +b

Free trade

Small country tariff

- Effects of a tariff, starting from free trade
 - Price rises
 - Quantity supplied rises
 - Quantity demanded falls
 - Quantity of imports falls
 - Tariff revenue rises from zero

Specific Tariff t

Small country tariff

Classes 3, 4: Tariffs and Quotas

Small country tariff

Classes 3, 4: Tariffs and Quotas

Pause for Discussion

Questions on Graph

- If a price falls, why does the gain to demanders not equal the fall in what they pay? Is it larger than this or smaller?
- If a price rises, why is the gain to suppliers not their rise in revenue? Is it larger or smaller?
- In what sense does a small country gain by eliminating a tariff? Does anybody in the country lose?

Small country, larger tariff

- Effects of doubling the tariff
 - Price rises by twice as much
 - Imports fall by twice as much
 - Deadweight loss is 4-times as large!
 - (Efficiency loss rises with the square of the tariff)

Specific Tariffs, t, then 2t

Small country, prohibitive tariff

Comparative Statics with Tariff Fall in World Price

Comparative Statics with Tariff Fall in World Price

- Welfare effects of a fall in world price in presence of specific tariff
 - Suppliers lose –a
 - Demanders gain +(a+b+c+d)
 - Government gains +(e+f)
 - Country gains +(b+c+d+e+f)

Classes 3, 4: Tariffs and Quotas

Pause for Your Questions

Pause for Discussion

Questions on Tariff Analysis

- Why does Lahart say the measurement of harm from tariffs is an "imperfect science"?
- Lahart cited an estimate of loss from Trump's tariffs and retaliation of 1.3% of GDP. Is this big?
- What effects of tariffs are missing from the welfare effects of tariffs?

 Let p^w be world price and p^h be price in home market. With ad valorem tariff, t, assumed not large enough to stop trade:

$$p^h = (1+t)p^w$$

- Demand: $Q^d = D(p^h)$
- Supply:
- Imports:

$$Q^s = S(p^h)$$

$$Q^m = Q^d - Q^s$$

- Without tariff (free trade; t = 0): $p^{h0} = p^{w}$ $Q^{m0} = D(p^{w}) - S(p^{w})$
- With tariff, t > 0: $p^{h1} = (1+t)p^{w}$ $Q^{m1} = D((1+t)p^{w}) - S((1+t)p^{w})$

• Notation: Let

$$\Delta x = x^1 - x^0$$

for x = p, Q, etc. Then $\Delta p^h = p^{h1} - p^{h0} = (1+t)p^w - p^w = tp^w$ and

$$t = \frac{\Delta p^h}{p^w} = \frac{\Delta p^h}{p^{h0}}$$

Classes 3, 4: Tariffs and Quotas

• Elasticity of (home) demand (η) :

$$\eta = \frac{\Delta Q^{d}}{Q^{d0}} / \frac{\Delta p^{h}}{p^{h0}} \quad \text{or} \quad \frac{\Delta Q^{d}}{Q^{d0}} = \eta \frac{\Delta p^{h}}{p^{h0}}$$

- Note that $\eta < 0$ (downward sloping)
- Elasticity of (home) supply (ε):

$$\varepsilon = \frac{\Delta Q^s}{Q^{s0}} / \frac{\Delta p^h}{p^{h0}}$$
 or $\frac{\Delta Q^s}{Q^{s0}} = \varepsilon \frac{\Delta p^h}{p^{h0}}$

- Notes regarding elasticities:
 - They are defined here as changes relative to the free-trade quantities and prices.
 - Different, but just as valid, would be changes relative to quantities and prices in the presence of the tariff.
 - Answers will differ, but by much less than our uncertainty about the values of elasticities.
 - In your calculations, use whichever is most convenient, but be consistent.

- Data are usually values, not quantities.
- Values of initial quantities:
- Demand: $V^{d0} = p^{h0}Q^{d0} = p^w Q^{d0}$
- Supply:
- Imports:

$$V^{s0} = p^{h0}Q^{s0} = p^w Q^{s0}$$

$$V^{m0} = p^{w0} \left(Q^{d0} - Q^{s0} \right)$$

• Effects of tariff on quantities:

Demand: $\Delta Q^d = \eta t Q^{d0}$ Supply: $\Delta Q^s = \varepsilon t Q^{s0}$

I'll use $\langle a \rangle$, $\langle abcd \rangle$, *etc*. to represent these areas.

Welfare gain of suppliers (producers & upstream): $WGS = \langle a \rangle$ $= (Q^{s0})(\Delta p^{h}) + \frac{1}{2}(\Delta Q^{s})(\Delta p^{h})$ $= Q^{s0} \Delta p^h + \frac{1}{2} \frac{\Delta Q^s}{Q^{s0}} Q^{s0} \Delta p^h$ $S(p^h)$ $= \left(1 + \frac{1}{2}\varepsilon\frac{\Delta p^{h}}{p^{h0}}\right)p^{h0}Q^{s0}\frac{\Delta p^{h}}{p^{h0}}$ $(1+t)p^w$ $= \left(1 + \frac{1}{2}\varepsilon \frac{\Delta p^{h}}{n^{h_{0}}}\right) V^{s_{0}} \frac{\Delta p^{h}}{n^{h_{0}}}$ $\Delta p^h = t p^w$ p^{ν} $=\left|\left(1+\frac{1}{2}\varepsilon t\right)tV^{s0}\right|$ $D(p^h)$ O^{s0} O^{s1} $O^{d1} O^{d0}$ 0

Classes 3, 4: Tariffs and Quotas

Welfare loss of demanders (consumers and downstream): $WLD = \langle abcd \rangle = \langle abcde \rangle - \langle e \rangle$ $= (Q^{d0})(\Delta p^{h}) - \frac{1}{2}(|\Delta Q^{d}|)(\Delta p^{h})$ $= \left(1 - \frac{1}{2} \frac{|\Delta Q^a|}{Q^{d_0}}\right) Q^{d_0} \Delta p^h$ $S(p^h)$ $= \left(1 + \frac{1}{2} \frac{\Delta Q^d}{Q^{d0}}\right) p^{h0} Q^{d0} \frac{\Delta p^h}{p^{h0}}$ $(1+t)p^w$ $= \left(1 + \frac{1}{2}\eta \frac{\Delta p^{h}}{n^{h_{0}}}\right) V^{d_{0}} \frac{\Delta p^{h}}{n^{h_{0}}}$ $\Delta p^h = t p^w$ p^{W} $D(p^h)$ $=\left(1+\frac{1}{2}\eta t\right)tV^{d0}$ O^{s0} O^{s1} $O^{d1} O^{d0}$ 0

Classes 3, 4: Tariffs and Quotas

• Revenue gain of (home) government: $\left| \begin{array}{c} p^{h} \\ \hline \end{array} \right| \xrightarrow{S(p^{h})}$

$$\begin{split} R &= \langle c \rangle & (1+t)p^{w} \\ &= (Q^{d1} - Q^{s1})\Delta p^{h} & \Delta p^{h} = tp^{w} \\ &= (Q^{d0} + \Delta Q^{d} - Q^{s0} - \Delta Q^{s})tp^{w} & A^{Qs} & Q^{d1} \\ &= \left(Q^{d0} \left(1 + \frac{\Delta Q^{d}}{Q^{d0}}\right) - Q^{s0} \left(1 + \frac{\Delta Q^{s}}{Q^{s0}}\right)\right)tp^{w} \\ &= \left(Q^{d0} \left(1 + \eta \frac{\Delta p^{h}}{p^{h0}}\right) - Q^{s0} \left(1 + \varepsilon \frac{\Delta p^{h}}{p^{h0}}\right)\right)tp^{w} \\ &= \left(V^{d0} (1 + \eta t) - V^{s0} (1 + \varepsilon t)\right)t \end{split}$$

• Summary:

• WGS =
$$\left(1 + \frac{1}{2}\varepsilon t\right)tV^{s0}$$

• WLD =
$$\left(1 + \frac{1}{2}\eta t\right)tV^{d0}$$

•
$$\mathsf{R} = \left(V^{d0}(1+\eta t) - V^{s0}(1+\varepsilon t) \right) t$$

• WCC =
$$-\left[\frac{1}{2}\varepsilon t^2 V^{s0} - \frac{1}{2}\eta t^2 V^{d0}\right]$$

Pause for Discussion

Questions on Equations

- What information do you need to calculate these welfare effects?
- How do they change with larger tariffs?
- Explain the sources of the "production distortion loss" and the "consumption distortion loss."
 - Why does each occur, and who is it that loses in each case?
 - Where do these appear in the equations?

Outline

- Small country
- Large country

Large country (i.e., Two Countries)

Autarky
Large country (i.e., Two Countries)

Free trade

Large country (i.e., Two Countries)

Specific Tariff, *t*, by Home Requires: P=P*+*t*, MD=XS*

Large country (i.e., Two Countries)

Large country, World Market

+(a+c)

+c-b

-(b+d

Large country, World Market

Thus large country will gain from tariff if *c>b*

• What is area c?

- The portion of the tariff paid by foreign exporters, who get a lower price
- A transfer from foreign producers to the home government
- The result of improving the home country's "terms of trade"

Pause for Discussion

Questions on Large Country

- The figure for the world market shows the tariff causing the world price to fall. What in the figure tells you that the Home country is large?
- In what sense might a large country gain by using a tariff? Who in the country benefits from that gain?
- What reasons are there, if any, for a large country <u>not</u> to levy a tariff?

Large country, "Optimal" tariff Watch as *t* rises

Classes 3, 4: Tariffs and Quotas

Large country, "Optimal" tariff Watch as *t* rises

Classes 3, 4: Tariffs and Quotas

How Sizes and Slopes Matter

Free trade

Tariff

How Slopes Matter

Free trade

rann

How Sizes Matter

Free trade

Tariff

Pause for Questions

- Countries i = h, f = home, foreign
- Prices p^i , i = h, f
 - With free trade, equilibrium #0:

$$p^{h0} = p^{f0} (= p^{w0})$$

With specific tariff, *t*, levied by country *h* on export of *f*, equilibrium #1:

$$p^{h1} = p^{f1} + t$$

Ad valorem equivalent of the specific tariff at the initial price:

$$\tau = \frac{t}{p^{h0}}$$

Classes 3, 4: Tariffs and Quotas

Domestic supply and demand in each country,
 i = *h*, *f*, are represented by their elasticities:

$$\varepsilon^{i} = \frac{\Delta Q^{is}}{Q^{is0}} / \frac{\Delta p^{i}}{p^{i0}} > 0 \quad \text{or } \Delta Q^{is} = \varepsilon^{i} \frac{\Delta p^{i}}{p^{i0}} Q^{is0}$$

$$\eta^{i} = \frac{\Delta Q^{id}}{Q^{id0}} \Big/ \frac{\Delta p^{i}}{p^{i0}} < 0 \quad \text{or } \Delta Q^{id} = \eta^{i} \frac{\Delta p^{i}}{p^{i0}} Q^{id0}$$

- Notation
 - Values of initial supply and demand, i = h, f: $V^{is0} = p^{i0}Q^{is0}$ $V^{id0} = p^{i0}Q^{id0}$
 - Value of initial (home-country) imports: $M^{0} = (V^{hd0} - V^{hs0})$
 - Convenient values, capturing both size and price responsiveness. i = h. f: $A^i \equiv \varepsilon^i V^{is0} - \eta^i V^{id0} > 0$ $\overline{A} = A^h + A^f > 0$

• Price changes must add up to tariff: $\Delta n^h - \Delta n^f - t$

$$\Delta p^h - \Delta p^f = t$$

• Divide by
$$p^{h0} = p^{f0}$$
:

$$\frac{\Delta p^h}{p^{h0}} - \frac{\Delta p^f}{p^{f0}} = \frac{t}{p^{h0}} = \tau$$

or:

$$\frac{\Delta p^h}{p^{h0}} = \frac{\Delta p^f}{p^{f0}} + \tau$$

Classes 3, 4: Tariffs and Quotas

• Equilibrium quantities:

$$\Delta Q^{hd} - \Delta Q^{hs} = \Delta Q^{fs} - \Delta Q^{fd}$$

• Use elasticities:

$$\eta^h \frac{\Delta p^h}{p^{h0}} Q^{hd0} - \varepsilon^h \frac{\Delta p^h}{p^{h0}} Q^{hs0} = \varepsilon^f \frac{\Delta p^f}{p^{f0}} Q^{fs0} - \eta^f \frac{\Delta p^f}{p^{f0}} Q^{fd0}$$

• Multiply through by $p^{h0} = p^{f0}$ to get values:

$$A^{h} \left(\eta^{h} V^{hd0} - \varepsilon^{h} V^{hs0} \right) \frac{\Delta p^{h}}{p^{h0}} = \left(\varepsilon^{h} f V^{fs0} - \eta^{f} V^{fd0} \right) \frac{\Delta p^{f}}{p^{f0}}$$

• or:

Classes 3, 4: Tariffs and Quotas

• This gives us two equations in two unknowns, $\frac{\Delta p^{h}}{p^{h0}} & \frac{\Delta p^{f}}{p^{f0}}:$ $\Delta n^{h} \quad \Delta n^{f}$

$$\frac{\Delta p^{h}}{p^{h0}} = \frac{\Delta p^{f}}{p^{f0}} + \tau$$

$$A^h \frac{\Delta p^h}{p^{h0}} = -A^f \frac{\Delta p^f}{p^{f0}}$$

• Solution:

$$A^{h}\frac{\Delta p^{h}}{p^{h0}} = A^{h}\left(\frac{\Delta p^{f}}{p^{f0}} + \tau\right) = -A^{f}\frac{\Delta p^{f}}{p^{f0}}$$
$$= \left(A^{h} + A^{f}\right)\frac{\Delta p^{f}}{p^{f0}} = -A^{h}$$
$$\left(\frac{\Delta p^{f}}{p^{f0}} = -\frac{A^{h}}{\bar{A}}\tau\right)$$
$$\frac{\Delta p^{h}}{p^{h0}} = -\frac{A^{h}}{\bar{A}}\tau + \frac{A^{h} + A^{f}}{\bar{A}}\tau = \frac{A^{f}}{\bar{A}}\tau$$
$$\left(\frac{\Delta p^{h}}{p^{h0}} = \frac{A^{f}}{\bar{A}}\tau\right)$$

Classes 3, 4: Tariffs and Quotas

- Interpretation:
 - Ratio of two price changes:

$$R \equiv \frac{\Delta p^{h}}{-\Delta p^{f}} = \frac{\Delta p^{h}/p^{h0}}{-\Delta p^{f}/p^{f0}} = \frac{A^{f}}{A^{h}}$$

- Home country share of tariff incidence:

$$S \equiv \frac{\Delta p^h}{\Delta p^h - \Delta p^f} = \frac{A^f}{A^h + A^f}$$

- Recall that $A^i = \varepsilon^i V^{is0} \eta^i V^{id0}$ measures country <u>size</u> in this industry:
 - Small home country: if $A^h \to 0$; $R \to \infty$; $S \to 1$
 - Large home country: if $A^h \approx A^f$; $R \approx 1$; $S \approx 1/2$

• Welfare of home country:

 $WHC = \langle e \rangle - \langle b \rangle - \langle d \rangle$

Classes 3, 4: Tariffs and Quotas

• Welfare of home country:

 $WHC = \langle e \rangle - \langle b \rangle - \langle d \rangle$

Welfare of Home Country

$$WHC = \langle e \rangle - (\langle b \rangle + \langle d \rangle) = \left[\frac{A^h}{\bar{A}} M^0 \tau - \frac{A^{h^2} A^f}{\bar{A}^2} \tau^2 \right] - \frac{A^h A^{f^2}}{2\bar{A}^2} \tau^2$$

Classes 3, 4: Tariffs and Quotas

• Other effects can be calculated similarly from the areas in the figure:

Classes 3, 4: Tariffs and Quotas

Note that as A^h goes to zero, so does $\frac{A^h}{\overline{A}}$ and WFC.

However, area $\langle h \rangle$ may not, so the welfare effects on foreign demanders and suppliers separately are not negligible.

Is the US a Large Country?

Consider Trump's 25% tariff on steel

$$\begin{split} &\frac{\Delta p^{f}}{p^{f0}} = -\frac{A^{US}}{\bar{A}} 25\% \\ &A^{US} \equiv \varepsilon^{US} V^{USs0} - \eta^{US} V^{USd0} \\ &\bar{A} = A^{US} + A^{f} \end{split}$$

- So
 - Foreign price of steel should fall by 25% time the US share of the world market
 - US price of steel should rise by 25% of the foreign share of the world market

Is the US a Large Country?

- What matters is, approximately, the US share of the world market for steel.
- In 2018 (from Wikipedia)
 - US/World production $\approx 5\%$
 - US/World demand $\approx 7\%$
- So US share is, at most, 7%
 - World price change 7% of 25%: negative < 2%</p>
 - US price change 93% of 25%: positive > 23%
- Several studies of the 2018 tariffs showed
 - No perceptible fall in world prices
 - US prices rose by amount of tariffs

Pause for Questions

Quotas

- Quota puts upper limit on <u>quantity</u> of imports
- Analysis is exactly the same as a tariff, except
 - Policy sets quantity of imports
 - Price difference determined by market
 - Price difference is "tariff equivalent" of the quota
- Welfare analysis of quota is the same as tariff, except
 - "Quota rent" instead of tariff revenue
- Who gets the quota rent?
 - Depends on how quota is administered
 - Most commonly, goes to foreigners

Small country quota (with rents to foreigners)

Classes 3, 4: Tariffs and Quotas

Large country quota (with rents to foreigners)

Welfare effects of a largecountry quota, starting from free trade

• Home:

Private sector (S&D) loses-(a+b)Government gains0Country must lose:-(a+b)

Foreign:

Private sector (S&D) loses-(c+d)Foreigners gain rents+(a+c)

+*a*-*d*

Country may gain or lose

World loses
 "Dead weight Loss" (-(b+d))

Classes 3, 4: Tariffs and Quotas

Pause for Discussion

Questions on Quotas

- How might quotas be administered; what happens to the quota rents in each case?
- How is an import quota equivalent to a tariff? How is it not?
- With a fixed and binding import quota, how will the domestic price and the tariffequivalent of the quota change if curves shift?

Recent Tariff Threats

- Oil
 - Oil price dropped 60% with pandemic
 - Demand fell with reduced travel and production
 - Oil producers were in price war
 - Trump floated the idea of a tariff on imported oil
 - Purpose to help US oil producers
Recent Tariff Threats

- Wine
 - US put 25% tariff on European wine, as part of Boeing-Airbus retaliation
 - In February, Trump threatened to raise the tariff to 100%
 - [Later report said this was postponed to at least 2021

Recent Tariff Threats

- Champagne
 - In response to France's digital services tax, the US is threatening 100% tariffs on \$2.4 billion of French wine and luxury goods
 - This would include champagne.
 - Who would pay the tariffs?
 - Article (Toplensky) suggests US consumers would pay
 - How does that fit with what we learned today?

Pause for Discussion

Classes 3, 4: Tariffs and Quotas

Questions on Tariff Threats

- What is OPEC+?
- Who is protesting against raising the tariff on wine to 100%?
- What does it mean for wine to be "on the water," and why is that relevant?
- Might the tariff on champagne be avoided by negotiation?