PubPol/Econ 541

Classes 3, 4 Tariffs and Quotas

> by Alan V. Deardorff University of Michigan 2023

Announcements

- New optional reading for last week
 - Article by Indira Rajaraman, grad-school classmate of mine, now in India, on India's new laptop policy.
 - She says "I think it is important for students in the West to know that good stuff is available in non-Western sources, written in English they can understand, just to alert them to the advantages of not confining themselves to sources like the WSJ which has a few correspondents piping in news about the rest of the world."

Pause for News

Class 0: Introduction & Overview

Announcements

- I will stay only very briefly in my office hour this morning, as I have a meeting to attend. If you want to see me, either stay after class or come right at 10:00.
- Quizzes in general
 - Clarify my expectations:
 - Feel free to look up anything you like from course or other sources.
 - But write your answers yourself and do not work with other students.
 - In "short answer" questions, no need to write paragraphs or even sentences if you can convey what I ask for.

Announcements

• Quiz 1 Scores

	Q1
Mean	7.80
Median	8
Max	10
Min	1
S.D.	2.19

Pause for Discussion

Questions from KOM

- How do "specific" and "ad valorem" tariffs differ?
- An import demand curve is sometimes called a "derived demand curve." Why?
- What is an "effective rate of protection"?

Outline for Today and Wednesday

- Tariff by Small country
- Tariff by large country
- Quotas

Small country

- Assumptions throughout
 - Markets perfectly competitive (many small buyers and sellers)
 - Product homogeneous (all units from all suppliers the same)
 - Markets in equilibrium (quantities supplied and demanded equal)
 - There are no "distortions" (externalities, etc.)
 - This includes no taxes other than tariffs
 - Supply and demand curves are straight lines
 - Just for simplicity
 - Model is partial equilibrium (takes all other prices as given)
 - Model is static (time does not play any role)
 - Trade is free and frictionless
 - No tariffs or quotas other than those we introduce
 - No transport costs (for simplicity)

Small country

- Special assumption for small country case
 - World price is given (country too small to influence it)
 - More correctly: country's supply and demand in that industry too small to influence the world price

Small country, Import Industry

Classes 3, 4: Tariffs and Quotas

Welfare Effects

- Why *a* and (*a*+*b*)?
- Area a
 - Loss of "producer surplus"
 - -Zero to S₀
 - Lost revenue
 - $-S_0$ to S_{aut}
 - Lost profit from P_{aut} above MC

Welfare Effects

Welfare Effects

- Note that these welfare effects are
 - Measured in currency, price times quantity
 - Loss of producer surplus is what suppliers would be "willing to pay" to avoid the loss
 - Gain in consumer surplus is what buyers would be "willing to pay" to get this benefit
- This does <u>not</u> tell us about individual buyers and sellers, only them as a group

Small country tariff

- Tariff makes importing buyers pay more than the foreign exporters receive
 - By size of tariff, % or \$
 - Difference goes to importing government
- Small country means that world price does not change
- So domestic price rises above world price by amount of the tariff

Small country tariff

- Effects of a tariff, starting from free trade
 - Price rises for both the
 - Imported good
 - Domestically produced good
 - Quantity supplied rises
 - Quantity demanded falls
 - Quantity of imports falls
 - Tariff revenue rises from zero

Specific Tariff t

Classes 3, 4: Tariffs and Quotas

Small country tariff

Classes 3, 4: Tariffs and Quotas

Pause for Discussion

Questions on Graph

- If a price falls, why does the gain to demanders not equal the fall in what they pay? Is it larger than this or smaller?
- If a price rises, why is the gain to suppliers not their rise in revenue? Is it larger or smaller?
- In what sense does a small country gain by eliminating a tariff? Does anybody in the country lose?

Small country, larger tariff

- Effects of doubling the tariff
 - Price rises by twice as much
 - Imports fall by twice as much
 - Deadweight loss is 4-times as large!
 - (Efficiency loss rises with the square of the tariff)

(These are exact only if S and D are straight lines. Approximate otherwise.)

Specific Tariffs, t, then 2t

Small country, prohibitive tariff

Comparative Statics with Tariff Fall in World Price

Classes 3, 4: Tariffs and Quotas

Comparative Statics with Tariff Fall in World Price

- Welfare effects of a fall in world price in presence of specific tariff
 - Suppliers lose –a
 - Demanders gain +(a+b+c+d)
 - Government gains +(e+f)
 - Country gains +(b+c+d+e+f)

Classes 3, 4: Tariffs and Quotas

Pause for Your Questions

Pause for Discussion

Questions on Lahart, "The Imperfect Science ..."

- Why does Lahart say the measurement of harm from tariffs is an "imperfect science"?
- Lahart cited an estimate of loss from Trump's tariffs and retaliation of 1.3% of GDP. Is this big?
- What effects of tariffs are missing from the welfare effects of tariffs?

 Let p^w be world price and p^h be price in home market. With ad valorem tariff, t, <u>assumed</u> not large enough to stop trade:

 $p^h = (1+t)p^w$

• Demand:

• Supply:

• Imports:

 $Q^{d} = D(p^{h})$ $Q^{s} = S(p^{h})$ $Q^{m} = Q^{d} - Q^{s}$

NOTE: Used specific tariff in graphs, ad valorem in eqns. Both are for simplicity.

- Without tariff (free trade; t = 0): $p^{h0} = p^w$ $Q^{m0} = D(p^w) - S(p^w)$
- With tariff, t > 0: $p^{h1} = (1+t)p^{w}$ $Q^{m1} = D((1+t)p^{w}) - S((1+t)p^{w})$

• Notation: Let

$$\Delta x = x^1 - x^0$$

for x = p, Q, etc. Then $\Delta p^h = p^{h1} - p^{h0} = (1+t)p^w - p^w = tp^w$ and

$$t = \frac{\Delta p^h}{p^w} = \frac{\Delta p^h}{p^{h0}}$$

Classes 3, 4: Tariffs and Quotas

- It is most convenient to work with percentage changes and elasticities:
- Percentage change in any variable, *x*, is Percent change in $x = \frac{\Delta x}{x}$
- Elasticity of x with respect to y is

Elasticity of (home) demand (η):

$$\eta = \frac{\Delta Q^{d}}{Q^{d0}} / \frac{\Delta p^{h}}{p^{h0}} \quad \text{or} \quad \frac{\Delta Q^{d}}{Q^{d0}} = \eta \, \frac{\Delta p^{h}}{p^{h0}}$$

- Note that $\eta < 0$ (downward sloping)
- Elasticity of (home) supply (ε):

$$\varepsilon = \frac{\Delta Q^s}{Q^{s0}} / \frac{\Delta p^h}{p^{h0}} \text{ or } \frac{\Delta Q^s}{Q^{s0}} = \varepsilon \frac{\Delta p^h}{p^{h0}}$$

When you know the price change, ci use these to find the quantity change

- Notes regarding elasticities:
 - They'll be defined here as changes relative to the free-trade quantities and prices.
 - Different, but just as valid, would be changes relative to quantities and prices in the presence of the tariff.
 - Answers will differ, but by much less than our uncertainty about the values of elasticities.
 - In your calculations, use whichever is most convenient, but be consistent.

- Data are usually values, not quantities.
- Values of initial quantities:
- Demand: $V^{d0} = p^{h0}Q^{d0} = p^w Q^{d0}$
- Supply:
- Imports:

$$V^{s0} = p^{h0}Q^{s0} = p^{w}Q^{s0}$$

$$V^{m0} = p^{w0} \left(Q^{d0} - Q^{s0} \right)$$

• Effects of tariff on quantities:

Demand: $\Delta Q^d = \eta t Q^{d0}$ Supply: $\Delta Q^s = \varepsilon t Q^{s0}$

I'll use $\langle a \rangle$, $\langle abcd \rangle$, *etc*. to represent these areas.

Classes 3, 4: Tariffs and Quotas

• Welfare gain of suppliers (producers & upstream):

Classes 3, 4: Tariffs and Quotas

• Welfare gain of suppliers (producers & upstream):

Classes 3, 4: Tariffs and Quotas

Welfare loss of demanders (consumers and downstream): $WLD = \langle abcd \rangle = \langle abcde \rangle - \langle e \rangle$ $= (Q^{d0})(\Delta p^{h}) - \frac{1}{2}(|\Delta Q^{d}|)(\Delta p^{h})$ $= \left(1 - \frac{1}{2} \frac{|\Delta Q^d|}{Q^{d_0}}\right) Q^{d_0} \Delta p^h$ $S(p^h)$ $= \left(1 + \frac{1}{2} \frac{\Delta Q^d}{O^{d0}}\right) p^{h0} Q^{d0} \frac{\Delta p^h}{n^{h0}}$ $(1+t)p^w$ $= \left(1 + \frac{1}{2}\eta \frac{\Delta p^{h}}{p^{h0}}\right) V^{d0} \frac{\Delta p^{h}}{p^{h0}}$ e $\Delta p^h = t p^w$ $D(p^h)$ $=\left(1+\frac{1}{2}\eta t\right)tV^{d0}$ 0^{s0} 0^{s1} $O^{d1} O^{d0}$ 0

Classes 3, 4: Tariffs and Quotas

- Revenue gain of (home) government:
 - $R = \langle c \rangle$ $(1+t)p^{w}$ el $\Delta p^h = t p^w \cdot p^w \cdot$ $= (Q^{d1} - Q^{s1})\Delta p^h$ а $= (Q^{d0} + \Delta Q^d - Q^{s0} - \Delta Q^s)tp^w$ O^{s0} O^{S1} O^{d0} $= \left(Q^{d0} \left(1 + \frac{\Delta Q^d}{Q^{d0}} \right) - Q^{s0} \left(1 + \frac{\Delta Q^s}{Q^{s0}} \right) \right) t p^w$ $= \left(Q^{d0} \left(1 + \eta \frac{\Delta p^{h}}{p^{h0}} \right) - Q^{s0} \left(1 + \varepsilon \frac{\Delta p^{h}}{p^{h0}} \right) \right) t p^{w}$ $= \left| \left(V^{d0} (1 + \eta t) - V^{s0} (1 + \varepsilon t) \right) t \right|$

 $S(p^h)$

Classes 3, 4: Tariffs and Quotas

• Summary:

• WGS =
$$\left(1 + \frac{1}{2}\varepsilon t\right)tV^{s0}$$

• WLD =
$$\left(1 + \frac{1}{2}\eta t\right)tV^{d0}$$

• $\mathsf{R} = \left(V^{d0}(1+\eta t) - V^{s0}(1+\varepsilon t) \right) t$

• WCC =
$$-\left[\frac{1}{2}\varepsilon t^2 V^{s0} - \frac{1}{2}\eta t^2 V^{d0}\right]$$

Classes 3, 4: Tariffs and Quotas

WGS = Welfare Gain of Suppliers WLD = Welfare Loss of Demanders R = Government Revenue WCC = Welfare Change of Country

Pause for Discussion

Questions on Equations

- What information do you need to calculate these welfare effects?
- How do the equations change with larger tariffs?
- Explain the sources of the "production distortion loss" and the "consumption distortion loss."
 - Why does each occur, and who is it that loses in each case?
 - Where do these appear in the equations?

Outline

- Tariff by Small country
- Tariff by large country
- Quotas

Autarky

Classes 3, 4: Tariffs and Quotas

Free trade

Free trade

Specific Tariff, *t*, by Home Requires: P=P*+*t*, MD=XS*

Large country, World Market

Large country, World Market

Thus large country will gain from tariff if *c>b*

• What is area c?

- The portion of the tariff paid by foreign exporters, who get a lower price
- A transfer from foreign producers to the home government
- The result of improving the home country's "terms of trade"

"Terms of Trade" \equiv Relative price of exports $= P^{X}/P^{M}$

Pause for Discussion

Questions on Large Country

- The figure for the world market shows the tariff causing the world price to fall. What in the figure tells you that the Home country is large?
- In what sense might a large country gain by using a tariff? Who in the country benefits from that gain?
- What reasons are there, if any, for a large country <u>not</u> to levy a tariff?

Large country, "Optimal" tariff Watch as *t* rises

Classes 3, 4: Tariffs and Quotas

Large country, "Optimal" tariff Watch as *t* rises

Classes 3, 4: Tariffs and Quotas

How Sizes and Slopes Matter

Free trade

Tariff

How Slopes (Elasticities) Matter

Free trade

Classes 3, 4: Tariffs and Quotas

How Sizes Matter

Free trade

Tariff

Classes 3, 4: Tariffs and Quotas

Pause for Your Questions

- Countries i = h, f = home, foreign
- Prices p^i , i = h, f
 - With free trade, equilibrium #0:

$$p^{h0} = p^{f0} (= p^{w0})$$

 With specific tariff, t, levied by country h on export of f, equilibrium #1:

$$p^{h1} = p^{f1} + t$$

Ad valorem equivalent of the specific tariff at the initial price:

Go to Solution

Skipping slides 63-74

$$\tau = \frac{\tau}{p^{h0}}$$

Domestic supply and demand in each country,
 i = h, f, are represented by their elasticities:

$$\varepsilon^{i} = \frac{\Delta Q^{is}}{Q^{is0}} / \frac{\Delta p^{i}}{p^{i0}} > 0 \quad \text{or } \Delta Q^{is} = \varepsilon^{i} \frac{\Delta p^{i}}{p^{i0}} Q^{is0}$$

$$\eta^{i} = \frac{\Delta Q^{id}}{Q^{id0}} \Big/ \frac{\Delta p^{i}}{p^{i0}} < 0 \quad \text{or } \Delta Q^{id} = \eta^{i} \frac{\Delta p^{i}}{p^{i0}} Q^{id0}$$

- Notation
 - Values of initial supply and demand, i = h, f: $V^{is0} = p^{i0}Q^{is0}$ $V^{id0} = p^{i0}Q^{id0}$
 - Value of initial (home-country) imports: $M^{0} = (V^{hd0} - V^{hs0})$
 - Convenient values, capturing both size and price responsiveness, i = h, f: $A^i \equiv \varepsilon^i V^{is0} - \eta^i V^{id0} > 0$ $\overline{A} = A^h + A^f > 0$

• Price changes must add up to tariff:

$$\Delta p^h - \Delta p^f = t$$

• Divide by
$$p^{h0} = p^{f0}$$
:

$$\frac{\Delta p^h}{p^{h0}} - \frac{\Delta p^f}{p^{f0}} = \frac{t}{p^{h0}} = \tau$$

or:

$$\frac{\Delta p^h}{p^{h0}} = \frac{\Delta p^f}{p^{f0}} + \tau$$

Classes 3, 4: Tariffs and Quotas

• Equilibrium quantities:

$$\Delta Q^{hd} - \Delta Q^{hs} = \Delta Q^{fs} - \Delta Q^{fd}$$

• Use elasticities:

$$\eta^h \frac{\Delta p^h}{p^{h0}} Q^{hd0} - \varepsilon^h \frac{\Delta p^h}{p^{h0}} Q^{hs0} = \varepsilon^f \frac{\Delta p^f}{p^{f0}} Q^{fs0} - \eta^f \frac{\Delta p^f}{p^{f0}} Q^{fd0}$$

• Multiply through by $p^{h0} = p^{f0}$ to get values:

$$A^{h}\left(\eta^{h}V^{hd0} - \varepsilon^{h}V^{hs0}\right)\frac{\Delta p^{h}}{p^{h0}} = \left(\varepsilon^{h}fV^{fs0} - \eta^{f}V^{fd0}\right)\frac{\Delta p^{f}}{p^{f0}}$$

• or:

Classes 3, 4: Tariffs and Quotas

• This gives us two equations in two unknowns, $\frac{\Delta p^h}{p^{h0}} \& \frac{\Delta p^f}{p^{f0}}$:

$$\frac{\Delta p^h}{p^{h0}} = \frac{\Delta p^f}{p^{f0}} + \tau$$

$$A^h \frac{\Delta p^h}{p^{h0}} = -A^f \frac{\Delta p^f}{p^{f0}}$$

Classes 3, 4: Tariffs and Quotas

• Solution:

$$A^{h} \frac{\Delta p^{h}}{p^{h0}} = A^{h} \left(\frac{\Delta p^{f}}{p^{f0}} + \tau \right) = -A^{f} \frac{\Delta p^{f}}{p^{f0}}$$

$$= \left(A^{h} + A^{f} \right) \frac{\Delta p^{f}}{p^{f0}} = -A^{h} \qquad \text{Where} \\ A^{h} \approx \text{Home size} \\ A^{f} \approx \text{Foreign size} \\ \overline{A}^{f} \approx \text{Foreign size} \\ \overline{A} = A^{h} + A^{f}$$

$$\frac{\Delta p^{h}}{p^{h0}} = -\frac{A^{h}}{\overline{A}} \tau + \frac{A^{h} + A^{f}}{\overline{A}} \tau = \frac{A^{f}}{\overline{A}} \tau$$

$$\frac{\Delta p^{h}}{p^{h0}} = \frac{A^{f}}{\overline{A}} \tau$$

$$Classes 3, 4: \text{ Tariffs and Quotas}$$

- Interpretation:
 - Ratio of two price changes:

$$R \equiv \frac{\Delta p^{h}}{-\Delta p^{f}} = \frac{\Delta p^{h}/p^{h0}}{-\Delta p^{f}/p^{f0}} = \frac{A^{f}}{A^{h}}$$

- Home country share of tariff incidence:

$$S \equiv \frac{\Delta p^h}{\Delta p^h - \Delta p^f} = \frac{A^f}{A^h + A^f}$$

- Recall that $A^i = \varepsilon^i V^{is0} \eta^i V^{id0}$ measures country <u>size</u> in this industry:
 - Small home country: if $A^h \to 0$; $R \to \infty$; $S \to 1$
 - Large home country: if $A^h \approx A^f$; $R \approx 1$; $S \approx 1/2$

• Welfare of home country:

 $WHC = \langle e \rangle - \langle b \rangle - \langle d \rangle$

Classes 3, 4: Tariffs and Quotas

• Welfare of home country:

 $WHC = \langle e \rangle - \langle b \rangle - \langle d \rangle$

Welfare of Home Country

$$WHC = \langle e \rangle - (\langle b \rangle + \langle d \rangle) = \left[\frac{A^h}{\bar{A}} M^0 \tau - \frac{A^{h^2} A^f}{\bar{A}^2} \tau^2 \right] - \frac{A^h A^{f^2}}{2\bar{A}^2} \tau^2$$

Classes 3, 4: Tariffs and Quotas
Two-Country in Equations

• Other effects can be calculated similarly from the areas in the figure:

Classes 3, 4: Tariffs and Quotas

Two-Country in Equations

Note that as A^h goes to zero, so does $\frac{A^h}{\overline{A}}$ and WFC.

However, area $\langle h \rangle$ may not, so the welfare effects on foreign demanders and suppliers separately are not negligible.

Two-Country in Equations

• Solution:

$$\frac{\Delta p^f}{p^{f0}} = -\frac{A^h}{\bar{A}}\tau$$

$$\frac{\Delta p^h}{p^{h0}} = \frac{A^f}{\bar{A}}\tau$$

Where $A^h \approx$ Home size $A^f \approx$ Foreign size $\overline{A} = A^h + A^f$

Is the US a Large Country?

Consider Trump's 25% tariff on steel

$$\frac{\Delta p^{f}}{p^{f0}} = -\frac{A^{US}}{\bar{A}} 25\%$$
$$A^{US} \equiv \varepsilon^{US} V^{USs0} - \eta^{US} V^{USd0}$$
$$\bar{A} = A^{US} + A^{f}$$

- So
 - Foreign price of steel should fall by 25% times the US share of the world market
 - US price of steel should rise by 25% of the foreign share of the world market

Is the US a Large Country?

- What matters is, approximately, the US share of the world market for steel.
- In 2018 (from Wikipedia)
 - US/World production $\approx 5\%$
 - US/World demand $\approx 7\%$
- So US share was, at most, 7%
 - World price change 7% of 25%: negative < 2%</p>
 - US price change 93% of 25%: positive > 23%
- Several studies of the 2018 tariffs showed
 - No perceptible fall in world prices
 - US prices rose by amount of tariffs

Pause for Discussion

Questions Martin, "US Importers Bore Cost..."

- By how much did prices of items subject to tariffs rise?
- How much did this mean for individual items?
- How much did imports decline from China?
- Has USTR under Biden responded?

Pause for Your Questions

Outline

- Tariff by Small country
- Tariff by large country
- Quotas

Quotas

- Quota puts upper limit on <u>quantity</u> of imports
- Analysis is exactly the same as a tariff, except
 - Policy sets quantity of imports
 - Price difference is determined by the market (supply & demand)
 - Price difference is called "tariff equivalent" of the quota
- Welfare analysis of quota is the same as tariff, except
 - "Quota rent" instead of tariff revenue
- Who gets the quota rent?
 - Depends on how quota is administered
 - Most commonly, goes to foreigners

Small country quota (with rents to foreigners)

Classes 3, 4: Tariffs and Quotas

Large country quota (with rents to foreigners)

Welfare effects of a largecountry quota, starting from free trade

• Home:

Private sector (S&D) loses-(a+b)Government gains0Country must lose:-(a+b)

Foreign:

Private sector (S&D) loses-(c+d)Foreigners gain rents+(a+c)

+a-d

Country may gain or lose

World loses
"Dead weight Loss" (-(b+d))

Classes 3, 4: Tariffs and Quotas

Pause for Discussion

Questions on Quotas from Deardorff "Nontariff ..."

- How might quotas be administered; what happens to the quota rents in each case?
- How is an import quota equivalent to a tariff? How is it not?
- With a fixed and binding import quota, how will the domestic price and the tariffequivalent of the quota change if curves shift?