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2 MATTIAS JONSSON

1. Introduction

Berkovich spaces are analytic spaces over (non-archimedean) valued fields.

Definition 1.1. A valued field is a pair (k, | · |) where k is a field with a norm | · | : k →
R+ = R≥0 = [0,∞) such that

|a+ b| ≤ |a|+ |b|
|a| = 0 if and only if a = 0

|ab| = |a| · |b|.

Example 1.2. The complex numbers C with the norm |a + ib|∞ =
√
a2 + b2 are a valued

field (C, | · |∞).

Example 1.3. Any field k with the trivial absolute value |a|0 = 1 for a 6= 0 is a valued field
(k, | · |0).

Example 1.4. The p-adic norm on Q is defined by writing a = pn b
c

for (p, bc) = 1 and
setting |a| = rn for r ∈ (0, 1). This makes (Q, | · |) a valued field.

Example 1.5. For any k, k((t)) with the norm trivial on k and |t| = r ∈ (0, 1) makes
(k((t)), | · |) into a valued field.

Definition 1.6. A norm | · | is non-archimedean (NA) if |a+ b| ≤ max {|a|, |b|}.

Lemma 1.7. A norm | · | is non-archimedean if and only if |n| ≤ 1 for all n ∈ Z.

Proof. The ‘only if’ implication is trivial. For the other implication, we see that

|a+ b| = |(a+ b)n|1/n

=

∣∣∣∣∣∣
n∑
j=0

(
n

j

)
ajbn−j

∣∣∣∣∣∣
1/n

≤

 n∑
j=0

|a|j|b|n−j
1/n

≤
(
(n+ 1) max{|a|, |b|}n

)1/n

= (n+ 1)1/n max{|a|, |b|}.

Letting n→∞, (n+ 1)1/n → 1, which gives the result. �

Exercise. For a NA norm | · |, |a| 6= |b| implies that |a+ b| = max{|a|, |b|}.

A norm | · | gives a distance on k (i.e. d(x, y) = |x− y|). More generally, it defines a distance
on kn.

Exercise. If | · | is NA, then

• balls in k and kn are both open and closed,
• k and kn are totally disconnected.
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Näıve (?) definitions.

• Analytic functions on U ⊆ kn are functions locally given by converging power series.
• A k-manifold of dimension n is a topological space X with an open covering {Uα}

such that each Uα is homeomorphic to an open subset Vα in kn and for Uα ∩ Uβ, the
transition maps are analytic. See picture below.

X

Uα

Uβ

kn ⊇ Vα Vβ ⊆ kn

analytic

Problems.

(1) The space kn is locally disconnected.
(2) Too many analytic functions, so we have a problem with analytic continuation. In-

deed, in complex analysis, if an analytic function is 0 on D1/2 then it is zero on D = D1.
This is not the case with our definition of analytic functions for NA fields, because
of the total disconnectedness.

Approaches to NA geometry.

(1) Tate (60s): rigid spaces.
(2) Raynaud (70s): formal schemes over k0.
(3) Berkovich (80s): k-analytic spaces (Berkovich spaces).
(4) Huber(80s): adic spaces.

We will focus on on the third approach. For general introduction and a comparison between
these approaches, see Brian Conrad’s notes [Con07].
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1.1. The Berkovich affine space (as a topological space). Eventually, this will be a
topological space with a sheaf of analytic functions. For now, we focus on the definition of
the topological space itself.

Let k be a valued field (possibly archimedean). Consider

R = k[T1, . . . , Tn].

We can associate to R two algebro-geometric spaces:

• Max(R) = {maximal ideals of R} ⊇ kn,
• Spec(R) = {prime ideals of R} with the Zariski topology; this is usually denoted An

k .

The Berkovich affine space is

An,an
k = {semivaluations on R extending the valuation on k}

=

{
| · |x : R→ R+

∣∣∣∣ |f+g|x≤|f |x+|g|x f,g∈R,
|fg|x=|f |x|g|x| f,g∈R

|a|x=|a| a∈k

}
.

The topology is the weakest one such that the map

An,an
k → R+

x 7→ |f |x
is continuous for all f ∈ R. Hence, a prebasis for the topology consists of sets

{x | |f |x < t}
{x | |f |x > s}

for f ∈ R and s, t ∈ R.

We can check that An,an
k is:

• Hausdorff (this is easy),
• locally compact (this is an application of Tychanoff’s Theorem),
• path connected (this is non-trivial).

Lemma 1.8. We have that Max(R) ⊆ An,an
k .

Sketch. Assume k is algebraically closed so that Max(R) = kn. The valuation associated to
a ∈ kn is | · |a ∈ An,an

k given by
|f |a = |f(a)|.

The resulting map Max(R)→ An,an
k is injective. �

Fact 1.9. If (k, |·|) = (C, |·|∞), then An,an
k = Cn, i.e. the map Max(R)→ An,an

k is surjective.

This follows from the Gelfand–Mazur Theorem. We will talk about it later in the class.

Fact 1.10. If k is NA (and n ≥ 1), then Max(R)→ An,an
k is not surjective.

Example 1.11. Let us work out a special case for now:

• n = 1,
• | · | = | · |0 is the trivial norm,
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• k is algebraically closed.

Then x ∈ A1,an
k corresponds to a semivaluation | · |x on k[T ] which are trivial on k. It is

determined by |T − a|x for a ∈ k.

Case 1: | · |x is the trivial norm on k[T ].
Case 2: |T |x > 1. Then |·|x is uniquely determined by r = |T |x ∈ (1,∞), because |T−a|x = r

for all a ∈ k.
Case 3: there exists a ∈ k such that |T − a|x < 1. Then a is unique, because

|T − b|x = |T − a+ (a− b)|x = 1

for b 6= a. Moreover, | · |x is uniquely determined by a and r = |T − a|x ∈ [0, 1).

This is the picture of the Berkovich affine line:

· · ·

∞

1

0

A1,an
k

[0,∞)

Case 2

Case 1

Case 3

Max(R) ∼= k

Recall that an affine scheme is defined as X = Spec(A) where A is a ring. An important
case is when A is a finitely-generated k-algebra.

The Berkovich analogue of this is X = M(A) where A is a seminormal ring. We call M(A)
the Berkovich spectrum. If X is a space, A denotes the set of functions on X. An important
case is when A is a k-affinoid algebra, where k is an NA field.

2. Seminormed commutative algebra

The main reference for this topic is [BGR84]. It is a little dry so we will not go into full
details, but detailed notes are available here:

http://www.math.lsa.umich.edu/~mattiasj/715/BookParts/Seminormed%20Groups%

20Jan%2012%202020.pdf

There are plenty of exercises and the reader is encouraged to read through them.

http://www.math.lsa.umich.edu/~mattiasj/715/BookParts/Seminormed%20Groups%20Jan%2012%202020.pdf
http://www.math.lsa.umich.edu/~mattiasj/715/BookParts/Seminormed%20Groups%20Jan%2012%202020.pdf
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Definition 2.1. A seminormed group is an abelian group G with a seminorm ‖·‖ : G→ R+,
i.e.

‖0‖ = 0,

‖ − f‖ = ‖f‖ for f ∈ G
‖f + g‖ ≤ ‖f‖+ ‖g‖ for f, g ∈ G

It is non-archimedean (NA) if ‖f + g‖ ≤ max{‖f‖, ‖g‖}. It is a normed group if ‖f‖ = 0 if
and only if f = 0.

There are several ways to make seminormed groups into a category.

Definition 2.2. A homomorphism of groups ϕ : G→ H is

• bounded if there is C > 0, ‖ϕ(g)‖ ≤ C‖g‖ for all g; we then write ‖ϕ‖ for the smallest
such C,
• contractive if ‖ϕ‖ ≤ 1,
• isometry if ‖ϕ(g)‖ = ‖g | for all g ∈ G.

Definition 2.3. If H ⊆ G is a subgroup, the quotient seminorm (or residue seminorm) on
the coset space G/H is given by

‖f‖ = inf
π(g)=f

‖g‖ for f ∈ G/H

where π : G→ G/H.

Definition 2.4. A morphism ϕ : G → H is admissible if G/ kerϕ ∼= imϕ, i.e. there exists
C ≥ 1 such that

C−1 inf
k∈kerϕ

‖g + k‖ ≤ ‖ϕ(g)‖ ≤ C‖g‖

for all g ∈ G. It is contractively admissible if C = 1.

Definition 2.5. A seminormed group G is complete if every Cauchy sequence converges.
(Note that limits are not necessarily unique in a seminormed group.)

A Banach group is a complete normed group.

A separated completion of a seminormed group G is an isometry with dense image

G→ Ĝ

where Ĝ is a Banach group. It satisfies an obvious universal property.

Definition 2.6. A seminormed ring is a ring A with a seminorm ‖ · ‖ on (A,+), as an
abelian group, such that

‖ab‖ ≤ ‖a‖‖b‖ for a, b ∈ A
‖1‖ ≤ 1.

One can then define a normed ring and a Banach ring in the obvious way.

Remark 2.7. If ‖1‖ < 1, then ‖a‖ = 0 for all a ∈ A. Nonetheless, we do not want to require
that ‖1‖ = 1 in general so that we don’t exclude examples like the zero ring.

Definition 2.8. A seminorm ‖ · ‖ on a ring R is
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• power multiplicative if ‖an‖ = ‖a‖n for a ∈ A and n ≥ 1,
• multiplicative if ‖ab‖ = ‖a‖‖b‖ for a, b ∈ A and ‖1‖ = 1.

A valuation is a multiplicative norm. A semivaluation is a multiplicative seminorm.

Examples 2.9.

(1) (A, | · |0) where A is a ring, | · |0 is the trivial norm given by |a|0 = 1 for a neq0. This
is a NA norm.

(2) (Z, | · |∞) or (C, | · |∞) are Banach ring.
(3) The zero ring A satisfies all the above properties.
(4) Valued field (k, | · |) are examples of normed rings. For more details, see Homework

0.
(5) (C,max{| · |∞, | · |0}) is the hybrid norm on C.

Definition 2.10. A non-archimedean field (NA field) is a field which is complete with respect
to a NA valuation.

Lemma 2.11. If A is a Banach ring, then the set of invertible elements of A is open (and
non-empty if A 6= 0).

Proof. Assume a ∈ A is invertible. Assume b ∈ A satisfies

‖b− a‖ < ‖a−1‖−1.

We claim that b is invertible. We have that∥∥∥∥1− b

a

∥∥∥∥ = ‖a−1(a− b)‖ ≤ ‖a−1‖‖a− b‖ < 1.

One can then check that b
a

= 1 −
(

1− b
a

)
is invertible, with inverse

∞∑
n=0

(
1− b

a

)n
. Then

b = a · b
a

is invertible. �

Corollary 2.12. If A is a Banach ring and a ⊂ A is a proper ideal, then

• a is a proper ideal of A,
• if a is a maximal ideal, then a is closed; then A/a is a Banach field.

2.1. Relative discriminant algebras. These are the Berkovich analogues of polynomial
rings. Let A be a seminormed ring and fix r > 0. We define

A〈r−1R〉 =

f =
∞∑
i=0

aiT
i

∣∣∣∣∣∣ ‖f‖ =
∑
i

‖ai‖ri <∞

 .

This is again a seminormed ring. If A is a Banach ring, so is A〈r−1T 〉. In fact, this is the
completion of A[T ] with respect to the above norm.

Lemma 2.13. Assume A is a Banach ring. If a ∈ A, then 1− aT is invertible if and only

if
∞∑
i=0

‖ai‖ri <∞.

Proof. This is left as an exercise. �
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2.2. Seminormed rings and algebras. Let A be a seminormed ring.

Definition 2.14. A seminormed module (M, ‖ · ‖) is

• an A-module M with a seminorm ‖ · ‖ (as a group),
• ‖a ·m‖ ≤ ‖a‖ · ‖m‖.

It is faithfully seminormed if ‖am‖ = ‖a‖‖m‖.
Definition 2.15. A seminormed algebra is a seminormed ring (B, ‖ · ‖) with a contractive
ring homomorphism ϕ : A→ B such that a ◦ ϕ = ϕ(a)b.

2.3. Seminormed tensor products. Let A be a seminormed ring and M , N be semi-
normed A-modules. We consider the tensor product M ⊗A N . There are two possible
seminorms on M ⊗A N :

(1) [General case] Define

‖v‖ = inf

∑
i

‖mi‖‖ni‖

∣∣∣∣∣∣ v =
∑

mi ⊗ ni

 .

(2) [NA case] For A,M,N NA, define

‖v‖ = inf

{
max
i
‖mi‖‖ni‖

∣∣∣∣ v =
∑

mi ⊗ ni
}
.

In each case, the universal property in this case is

M ×N M ⊗A N

P
bounded
bilinear

bounded
bilinear

Suppose A is a Banach ring and M,N are Banach A-modules, then we define

M⊗̂AN = separated completion of M ⊗A N.
This is again a Banach A-module, called the complete tensor product. The universal property
is the same.

3. The Berkovich spectrum

Definition 3.1. The Berkovich spectrum of a seminormed ring (A, ‖ · ‖) is

M(A) = {bounded semivaluations on A}
= {| · |x : A→ R+ semivaluation such that | · |x ≤ ‖ · ‖ on A}.

Notation. If x ∈M(A) and f ∈ A, then we write |f(x)| for |f |x.
Definition 3.2. The topology on M(A) is the weakest one such that the map

M(A) 3 x 7→ |f(x)| ∈ R+

is continuous for all f ∈ A.
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Example 3.3. For A = 0, M(A) = ∅. Indeed, if x ∈ M(A), then |1|x = 1, |0|x = 0. If
0 = 1, this is impossible.

Example 3.4. If ‖ · ‖ = 0, then M(A) = ∅ for the same reason.

Example 3.5. If k is a valued field, then M(k) = {‖ · ‖}. Checking this is a simple exercise.

Theorem 3.6.

(1) For any A, M(A) is a compact (Hausdorff) topological space.
(2) The Berkovich spectrum M(A) is empty if and only if ‖ · ‖ ≡ 0.

Proof of (1). We have a natural injective map

M(A)
i→ P =

∏
f∈A

[0, ‖f‖] = {(tf )f∈A}.

Note that P is compact (and nonempty) by Tychanoff’s Theorem.

By the definition of topologies on M(A) and P , i is an embedding. It suffices to show that
i(M(A)) is closed. The image i(M(A)) ⊆ P is defined by:

t0 = 0,

t1 = 1,

tf+g ≤ tf + tg for all f, g ∈ A,
tfg = tf · tg for all f, g ∈ A.

These are clearly closed conditions. �

To prove the Theorem 3.6, it suffices to show that M(A) 6= ∅. We first talk mention the
functoriality of M .

Definition 3.7. A morphism (i.e. a bounded ring homomorphism) ϕ : A→ B of seminormed
rings induces

M(B)
ϕ∗→M(A)

y 7→ (f 7→ |ϕ(f)(y)|).

Exercise. It is easy to check that this is well-defined and continuous. Therefore, M(B) 6= ∅
implies that M(A) 6= ∅.

We can now complete the proof of Theorem 3.6. We will need the following two lemmas.

Lemma 3.8. If (A, ‖ · ‖) is a norm field with ‖ · ‖ minimal, then the (separated) completion

(Â, ‖ · ‖) is a Banach field, and the induced norm ‖ · ‖ is also minimal.

Proof. See the notes. �

Lemma 3.9. If (A, ‖ · ‖) is a Banach field, the following are equivalent:

(1) ‖ · ‖ is minimal,
(2) ‖f−1‖ = ‖f‖−1 for all f ∈ A×,
(3) ‖ · ‖ is a valuation.
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Proof. Exercise. (2) is equivalent to (3).

It is also easy to see that (2) implies (1). Suppose ‖ · ‖′ ≤ ‖ · ‖. Then for all f ∈ A×,

1 = ‖1‖′ = ‖ff−1‖′ ≤ ‖f‖′‖f−1‖′ ≤ ‖f‖‖f‖−1 = 1

by (2). We hence have equalities throughout, so ‖f‖′ = ‖f‖.

It remains to show that (1) implies (2). Since ‖ · ‖ is minimal, ‖ · ‖ is power multiplicative.
Indeed % ≤ ‖ · ‖ where

%(f) = lim
n→∞

‖fn‖1/n

is the spectral seminorm, so ‖ · ‖ = % which is power-multiplicative.

Suppose there exists f ∈ A× such that r = ‖f−1‖−1 < ‖f‖. Set

B = A〈r−1T 〉 =

g =
∞∑
i=0

fiT
i

∣∣∣∣∣∣ ‖g‖ =
∑
i

‖fi‖ri <∞


(relative discriminant algebra1). This is a Banach A-algebra.

Then 1− f−1T is not invertible in B by Lemma 2.13, because
∞∑
i=0

‖f−1‖ri︸ ︷︷ ︸
=1

=∞.

Hence also f − T is not invertible in B. Consider b = (b− T ) ⊂ B, which is a proper ideal.
Define

(A′, ‖ · ‖′) = (B/b, quotient norm),

a non-zero Banach ring. There are maps A→ B → A′ and the composition ϕ is contractive.

Finally, ‖ · ‖′ ◦ ϕ is a norm on A, ‖ · ‖′ ◦ ϕ ≤ ‖ · ‖, and

(‖ · ‖′ ◦ ϕ)(f) = ‖ϕ(f)‖′ ≤ ‖T‖′ ≤ r < ‖f‖.
The norm ‖ · ‖′ is hence strictly smaller than ‖ · ‖, contradicting minimality. �

Remark 3.10. In general, if (A, ‖ · ‖) is a normed field, then Â is not necessarily a field.
Therefore, the minimality assumption is crucial.

Proof of Theorem 3.6 (2). Assume ‖·‖ 6≡ 0. Consider the separated completion map A→ Â.

Since Â, it is enough to prove the statement for Â by Exercise 3. We may hence assume
without loss of generality that A is a non-zero Banach ring.

Let m be a maximal ideal and consider the map A→ A/m. By Exercise 3, we may assume
without loss of generality that A is a Banach field with a nonzero norm.

Now, consider
S = {norms ‖ · ‖′ on A such that ‖ · ‖′ ≤ ‖ · ‖ on A}.

Then S is a non-empty poset.

Exercise. Any chain in S has a lower bound in S. Hint: use ‖1‖′ = 1.

1Think of this as the analog of a polynomial ring.
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By Zorn’s Lemma, there is a minimal element ‖ · ‖′ in S. By passing to the completion and
using Lemma 3.8, we may assume that (A, ‖ · ‖′) is a Banach field and ‖ · ‖′ is minimal. By
Lemma 3.9, ‖ · ‖′ is a valuation. Hence ‖ · ‖′ ∈M(A). �

3.1. Points and complete residue fields. Let A be a seminormed ring. The points
x ∈M(A) are semivaluations | · |x : A→ R+. Consider the prime ideal

px = {| · |x = 0} ( A.

Then A/px is a valued integral domain. This induces a valuation on

Frac(A/px).

Definition 3.11. The complete residue field of x is the completion H(x) of Frac(A/px).

This plays the role of the residue field from algebraic geometry. We have maps

A A/px Frac(A/px) H(x)

f f(x).

Remark 3.12. Note that |f(x)| = |f |x. This justifies the previously introduced notation.

Definition 3.13. The Berkovich–Gelfand transform is the map

A→
∏

x∈M(A)

H(x)

f 7→ (f(x))x∈M(A).

This map is contractive, because |f(x)| = |f |x ≤ ‖f‖.

Theorem 3.6 has the following consequence.

Corollary 3.14. If A is a Banach ring, then f ∈ A is invertible if and only if f(x) 6= 0 for
all x ∈M(A).

Proof. For the ‘only if’ implication, if fg = 1, then for all x ∈M(A), f(x)g(x) = 1 in H(x),
so f(x) 6= 0.

For the ‘if’ implication, assume that f is not invertible. Then f is contained in a maximal
ideal m. Since A is a Banach ring, A/m is a Banach field (and hence a nonzero Banach ring).
By Theorem 3.6, M(A/m) 6= ∅. If x ∈ M(A) lies in the image of M(A/m) → M(A), then
f(x) = 0. �

3.2. Complex Banach algebras. This is due to Gelfand and others. It served as a moti-
vation for Berkovich when developing the theory of Berkovich spaces.

Let A be a commutative complex Banach algebra, i.e. a Banach ring containing (C, ‖ · ‖∞).
In the general theory, it is important to consider non-commutative algebras, without a unit,
but we will focus on this simpler case.
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Example 3.15. The canonical example is A = C∞(X,C) for a compact topological space
X with the sup (or uniform) norm

‖f | = sup
x
|f(x)|.

The motivating question is: can we reconstruct X from A?

For f ∈ A, consider the spectrum of f :

σ(f) = {λ ∈ C | λ− f is not invertible in A}.

Note that if A is a Banach algebra of some operators acting on a vector space, this recovered
the spectrum (set of eigenvalues) of a linear operator.

Theorem 3.16. We have that σ(f) is non-empty and compact.

Proof. Using Lemma 2.13, ‖g‖ < 1 implies that 1− g is invertible. Hence σ(f) is closed and
λ ∈ σ(f) implies that |λ| ≤ ‖f‖. This shows that σ(f) is compact.

We need to show that σ(f) is non-empty. Suppose σ(f) = ∅. Then the resolvent

C 3 λ 7→ (λ− f)−1 ∈ A
is a bounded non-constant entire function. This contradicts Liouville’s theorem. �

Corollary 3.17 (Gelfand–Mazur). Any complex Banach field is isomorphic to C.

Proof. We have the structure map C→ A. We want to show it is surjective.

For f ∈ A, σ(f) 6= ∅ by Theorem 3.16, so there exists λ ∈ C such that λ−f is not invertible.
Hence λ− f = 0, so λ = f . �

Corollary 3.18. If m is a maximal ideal in a complex Banach algebra A, then C
∼=→ A/m.

We have a map

Max(A)→M(A)

m 7→ seminorm on A

induced by the Euclidean norm on A/m ∼= C.

Corollary 3.19. The map Max(A)→M(A) is bijective.

Proof. We first check surjectivity. Pick x ∈M(A) corresponding to a bounded semivaluation
| · |x on A. We get the prime ideal px = {| · |x = 0} ⊆ A. Then

H(x) = completion of Frac(A/px)

is a valued complex Banach field. Hence H(x) ∼= C. This shows that px is a maximal ideal.

For injectivity, note that m = {| · | = 0}, so we can recover m from | · |. �

Remark 3.20. If A = C0(X,C), then M(A) = Max(A) = X. This answers the question
posed in Example 3.15.
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3.3. The spectral radius. The name spectral radius comes from the theory of complex
Banach algebras. We discuss it in more generality.

Let A be a Banach ring (A 6= 0). Let % : A→ R+ be the spectral radius defined by

%(f) = lim
n→∞

‖fn‖1/n = inf
n
‖fn‖1/n.

Theorem 3.21 (Berkovich Maximum Modulus Principle). For f ∈ A,

%(f) = max
x∈M(A)

|f(x)|.

Note that the supremum is attained by compactness on M(A) (Theorem 3.6).

Proof. For any x ∈M(A) and f ∈ A, |f(x)| ≤ ‖f‖. Hence

|f(x)| = |fn(x)|1/n ≤ ‖fn‖1/n → %(f)

as f →∞. This shows the inequality %(f) ≥ max
x∈M(A)

|f(x)|.

For the other inequality, pick r > max
x∈M(A)

|f(x)|. We must show that r > %(f). Consider the

relative discriminant algebra:

B = A〈rT 〉 =

g =
∞∑
i=0

fiT
i

∣∣∣∣∣∣ fi ∈ A, ‖g‖ =
∞∑
i=0

‖fi‖r−i <∞

 .

Since ‖T‖ = r−1, we see that |T (y)| ≤ r−1 for all y ∈M(B). Hence

|(fT )(y)| < 1

for all y ∈ M(B). Hence (1 − fT )(y) 6= 0 for all y ∈ M(B). By Corollary 3.14, this is
equivalent to 1− fT being invertible in B. Hence Lemma 2.13 shows that

∞∑
i=0

‖f i‖r−i <∞.

Hence r > %(f) = lim
n→∞

‖f i‖1/i. �

Corollary 3.22. We have that %(f) = 0 (f is quasinilpotent) if and only if f(x) = 0 in
H(x) for all x ∈M(A).

Remark 3.23. If Au is the uniformization of A, i.e. the separated completion of (A, %),
then there is a contractive map A → Au. Then the induced map M(Au) → M(A) is an
isomorphism.

Example 3.24. Consider A = (Z, | · |∞). We will describe M(A).

Given x ∈M(A), set px = {| · |x = 0} ⊆ Z, which is a prime ideal. There are several cases.

(1) Suppose px = pZ for a prime p. (This means that |p| = 0.) Then | · |x induces a
valuation on Z/pZ = Fp.

Exercise. The only valuation on Fp is the trivial one.
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Hence the induced valuation on Z/pZ is trivial. Thus | · |x = | · |p,0 is given by:

|n|p,0 =

{
0 if p divides n,

1 otherwise.

(2) Suppose px = 0, i.e. | · |x is a valuation on Z and hence extends to a valuation on Q.
Now, we can use Ostrowski’s Theorem. There are three subcases.
(a) | · |x = | · |0 is the trivial norm

|n|0 =

{
1 n 6= 0,

0 n = 0,

(b) | · |x = | · |%∞ for 0 < % ≤ 1,
(c) | · |x = | · |p,ε for 0 < ε < 1 where for n = pka with (p, a) = 1, we define |n|p,ε = εk.

We have the following picture of M(Z, | · |∞):

· · · · · ·

| · |∞

| · |0

| · |%∞

| · |2,ε

| · |2,0 | · |3,0 | · |5,0 | · |p,0

What about the topology? A prebasis is for n ∈ Z and r ∈ R∗+ by

{x ∈M(Z) | |n|x < r},

{x ∈M(Z) | |n|x > r}.

Exercise. Draw {|6| > 1
6
} ⊆M(Z) and {|6| ≤ 1

6
}.

Let A be a Banach ring.

Definition 3.25. A character on A is a bounded (equivalently, contractive) ring homomor-
phism χ : A→ K for a complete valued field K.

Example 3.26. For x ∈ M(A), the map A → H(x) = Frac(A/px)
∧ is a character. Con-

versely, any character χ : A→ K induces a point in M(A) given by {∗} = M(K)→M(A).

One can prove the following.
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Proposition 3.27. For any Banach ring A,

M(A) ∼= {equivalence classes of characters}.

Exercise. Define the equivalence relation and prove the proposition.

Examples 3.28.

(1) If k is a valued field, then M(k) is a point.
(2) We described M(Z, | · |∞) in Example 3.24.
(3) Let A be a trivially normed ring. We always have the kernel map:

ker : M(A)→ Spec(A)

x 7→ px = {| · |x = 0}.

When A is trivially normed, this has a canonical section:

triv : Spec(A)→M(A)

p 7→ | · |p,0

where

|f |p,0 =

{
0 if f ∈ p,

1 if f 6∈ p.

We also have a reduction map (or center map)

red: M(A)→ Spec(A),

x 7→ {| · |x < 1}.

Exercise.
• The map ker is continuous.
• The map red is anticontinuous (i.e. preimage of any open is closed), if A is

Noetherian.
• The map triv is neither.
• For any x, ker(x) is a specialization of red(x), i.e. ker(x) ⊆ red(x).

(3a) Let A be a DVR, e.g. Zp or kJT K. We consider A with the trivial valuation, (A, | · |0).
Let m = (f) be the maximal ideal of (f). Pick x ∈M(A). Then for all g ∈ A,

|g|x ≤ |g|0 ∈ {0, 1}.

If g 6∈ m, it is invertible, so |g|x = 1. The semivaluation | · |x will hence be determined
by |f |x.

There are 3 cases:
(a) If |f |x = 1, then | · |x = | · |0.
(b) If |f |x = 0, then | · |x = | · |m,0.
(c) If |f |x = ε ∈ (0, 1), then

|g|x = εmax{` | g∈m`}.

Hence M(A) ∼= [0, 1] in this case.
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| · |m,0 ← ker = red = m

| · |m,ε ← ker = 0, red = m

| · |0 ← ker = red = 0

(3b) Let A be a Dedekind ring, e.g. Z or k[T ]. A similar analysis to Example 3.24 shows
that M(A) looks like:

· · · · · ·

| · |0

| · |p1,ε

| · |p1,0 | · |p2,0 | · |p3,0 | · |p,0

where the points at the bottom are Max(A) = Spec(A) \ {0}.

4. Berkovich discs

Some references for this section include [BR10] and [Jon12].

Let k be a non-archimedean field. By assumption, it is complete.

Let r > 0 be a radius. Define

E(r) = {a ∈ k | |a| ≤ r} the closed disc,

D(r) = {a ∈ k | |a| < r} the open disc.

Any polynomial f ∈ k[T ] defines a continuous function

f : E(r)→ k

a 7→ f(a).

A tentative norm on k[T ] is given by sup
E(r)

|f |.

Exercise. If the value group |k×| ⊆ R×+ is dense, then for any f ∈ k[T ], f =
∑
i

aiT
i,

sup
E(r)

|f | = max
i
|ai|ri.

Exercise. This is false if k is discretely or trivially valued.

We ignore the tentative norm and use the following for any k.
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Definition 4.1. For any r > 0, we define ‖f‖ = ‖f‖r = max
i
|ai|ri if f ∈

∑
i

aiT
i.

Lemma 4.2 (Gauss). The norm ‖ · ‖r is a valuation on k[T ] (i.e. it is also multiplicative).

Proof. Exercise. �

Definition 4.3. Define k{r−1T} to be the separated completion of (k[T ], ‖ · ‖r):

k{r−1T} =

{
f ∈

∞∑
0

aiT
i

∣∣∣∣∣ lim
i
|ai|ri = 0

}
⊆ kJT K

with the norm ‖f‖ = max
i
|ai|ri.

To check that this is indeed the separated completion, one should check that it is a valued
Banach k-algebra. We leave that as an exercise.

Remark 4.4. If r = 1, k{T} is called the Tate algebra in 1 variable, also denoted k〈T 〉.

Definition 4.5. The Berkovich closed disc of radius r is E(r) = Ek(r) = M(k{r−1T}).

Note that E(r) ⊆ A1,an
k is a closed subset, where A1,an

k was defined in Example 1.11.

Remark 4.6. If 0 < r < s, we have a map k{s−1T} → k{r−1T} which is bounded (not ad-
missible), with dense image, which induces an embedding (homeomorphism onto the image)

E(r)→ E(s).

The next goal is to understand the structure of E(r). This is naturally divided into three
cases:

(a) k is trivially valued,
(b) k non-trivially valued, algebraically closed,
(c) k is non-trivially valued, not algebraically closed.

4.1. Case (a): k is trivially valued. For r = 1, k{r−1T} = k[T ] with the trivial norm |·|0.
This is a Dedekind ring and we saw a picture of the Berkovich spectrum in Example 3.28 (3b):

· · · · · ·

| · |0

| · |p1,ε

| · |p1,0 | · |p2,0 | · |p3,0 | · |p,0

For 0 < r < 1, we have that k{r−1T} = kJT K. The picture in this case is:
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| · |0 ← ker = red = 0

‖ · ‖

For r > 1, k{r−1T} = k[T ] and Ek(r) ⊆ A1,an
k :

· · ·

A1,an
k

Max(R)

Ek(r)

‖ · ‖

4.2. Case (b): k is algebraically closed but non-trivially valued. Some examples of

these fields include k̂((T ))a (where the superscript a is the algebraic closure) or Cp.

Remark 4.7.

• In this case, |k×| ⊆ R×+ is dense.
• If x ∈ E(r), | · |x is uniquely determined by |T − a|x = |(T − a)(x)| for a ∈ E(r).

There are a few types of points.

Type 1 points. These are also called classical or rigid points. We have a map

E(r)→ E(r)

a 7→
(
f 7→ |f(a)|

)
.

This defines a semivaluation with kernel (T − a).

Exercise. The map E(r)→ E(r) is a homeomorphism onto its image.

The remaining points are valuations on k[T ] ⊆ k{r−1T}. We need to first talk about discs.
Given a ∈ E(r) ⊆ k and % ∈ (0, r], set

E(a, %) = {b ∈ k | |b− a| ≤ %} ⊆ E(r),

E(a, %) = {x ∈ E(r) | |(T − a)(x)| ≤ %} ⊆ E(r).

Exercise. Check that:

(1) E(a, % ∩ k = E(a, %) via the map E(r) ⊆ E(r),
(2) E(a1, %1) ⊆ E(a2, %2) if and only if %1 ≤ %2 and |a1 − a2| ≤ %2,
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(2’) E(a1, %1) ⊆ E(a2, %2) if and only if %1 ≤ %2 and |a1 − a2| ≤ %2,
(3) if a ∈ E(r), then T 7→ T + a gives an automorphism of k{r−1T} and sends E(b, %) to

E(a+ b, %).

Type 2 and 3 points. Let (a, %) be as above. Define a norm | · | on k[T ] by

|f | = max
i
|ci|%i for f =

∑
ci(T − a)i.

This norm is determined by |T − b|E = max{%, |a − b|}. Gauss’ Lemma 4.2 shows that | · |
is a valuation.

Exercise.

• The norm | · | only depends on E = E(a, %); we denote it by | · |E.
• We have that | · |E ≤ ‖ · ‖ on k[T ]. Hence | · |E extends to a valuation on k{r−1T}.

Therefore, | · |E defined a point p(E) ∈ E(r).

Definition 4.8. The point p(E) is of Type 2 if %(E) ∈ |k×|. Otherwise, p(E) is of Type 3.

The norm | · |E is often called the Gauss norm associated to E (because we check that it is
a valuation using Gauss’ Lemma 4.2).

Exercise. The point p(E) is the maximal point of E, i.e. |f(x)| ≤ |f |E for all x ∈ E,
f ∈ k{r−1T}.

Exercise. For two discs E,E ′, E ⊆ E ′ if and only if | · |E ≤ | · |E′ on k{r−1T}.

Exercise. If f ∈ k{r−1T},

• |f |E = sup
E=E∩k

|f | (the supremum over classical points),

• if p(E) is of Type 2, the supremum is attained.

Exercise. Given a ∈ E(r), the map [0, r] 3 % 7→ p(E(a, %)) ∈ E(r) is a homeomorphism
onto its image.

By convention, p(E(a, 0)) is a Type 1 point associated to a ∈ E(r). We get a path inside
the Berkovich space starting at points of Type 1.

Here is a rough picture of what this space looks like.
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%

r

0

6∈ |k×|

|a|

|a− b|

p(E(r)) = given norm on k{r−1T}

0 a b

Type 3

p(E(|a|)) Type 2

Type 1

p(E(a, |a− b|))

a− b

Overall, we have the following points:

Type 1 points ↔ points in E,
Type 2, 3 points ↔ discs in E,
Type 4 points ↔ decreasing families of discs

in E with empty intersection.

Definition 4.9. A field k is spherically complete if the intersection of any chain of discs in
nonempty.

Exercise.

(1) Any disc E = E(a, %) has a unique maximal point p(E) ∈ E.
(2) Under the partial order on E(r), where x ≤ y if and only if |f(x)| ≤ |f(y)| for all

f ∈ k{r−1T}, p(E), check that

E = {y ∈ E(r) | y ≤ p(E)}.
(3) Moreover, p(E) is given by

|fE| = max
i
|ci|%i for f =

∞∑
0

ci(T − a)i.

We can clarify Definition 4.8 now.

Definition 4.10. We say that x ∈ E(R) is of:

• Type 1 if x = p(E), %(E) = 0,
• Type 2 if x = p(E), %(E) ∈ |k×|,
• Type 3 if x = p(E), %(E) ∈ R×+ \ |k×|.

Type 4 points. A family E = {Ei}i∈I of discs in E(r) is a chain if for all i, j ∈ I, Ei ⊆ Ej
or Ej ⊆ Ej. This implies that

⋂
i∈I
Ei 6= ∅, since E(r) is compact.
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Set Ei = Ei ∩ E(r). Then Ei 6= ∅ but it is possible that
⋂
i∈I

Ei = ∅. Define

%(E) = inf
i
%(Ei) ∈ [0, r]

and p(E) ∈ E(r) given by

|f |E = |f |p(E) = inf
i
|f |Ei .

There are 3 cases.

(1) If %(E) = 0, one can check that
⋂
Ei =

⋂
Ei = {p(E)}. Hence p(E) is of Type 1.

Exercise. Check this.

(2) If %(E) > 0 and
⋂
i

Ei 6= ∅. Then
⋂
Ei = E is a disc in E(r) and p(E) is of Type 2

or 3.

Exercise. Check this,

(3) If %(E) > 0 and
⋂
i

Ei = ∅, we say that p(E) is of Type 4.

Remark 4.11.

(1) Type 4 points exist if and only if k is not spherically complete.
(2) Type 1 and Type 4 points are minimal with respect to the partial order.

Here is a schematic diagram of E(r).
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0

r

%

p(E(r))

Type 3

Type 2

Type 2

Type 2
Type 4

E(r) (Type 1)

E
p(E)

We marked an embedded disc E in blue, it’s maximal element is labelled p(E).

Theorem 4.12. For any algebraically closed non-archimedean field k and any r > 0, every
point of E(r) is of Type 1–4.

Proof. Given x ∈ E(r) and a ∈ E(r), set

Ea = E(a, |(T − a)(x)|︸ ︷︷ ︸
%a

).

Exercise. The family E = {Ea}a∈E(r) is a chain.

Exercise. Check that p(E) = x.

This completes the proof. �

4.3. Case (c): k is not algebraically closed, non-trivially valued. We first talk about

fibers of morphisms. Let A
ϕ→ B be a morphism of seminormed rings. This gives a continuous

map
f = ϕ∗ : M(B)→M(A).
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For x ∈M(A), we get a character A→ H(x), where H(X) is the complete residue field.

Proposition 4.13. There is a homeomorphism

f−1(x) ∼= M(B ⊗A H(x)).

Proof. See the notes. �

It is possible that the seminorm on B ⊗A H(x) is 0. In that case f−1(x) = ∅.

We now consider ground field extensions. Suppose k is an NA field and A is an NA Banach
k-algebra. Let k′/k is an NA field extension. Define

A′ = A⊗̂kk′,

where the completion is with respect to the NA seminorm on the tensor product. This is a
Banach k′-algebra.

Exercise. If A = k{r−1T}, A′ = k′{r−1T}.

The map k ↪→ k′ gives an isometry A ↪→ A′, which induces

M(A′)
f→M(A).

For x ∈M(A), Proposition 4.13 shows that

f−1(x) ∼= M(A′⊗̂AH(x)) = M(k′ ⊗k H(x)).

Theorem 4.14 (Grusan). If V and W are nonzero k-Banach spaces (and k is NA), then

0 6= V ⊗k W ↪→ V ⊗̂kW,

i.e. the seminorm on V ⊗k W is a norm.

Corollary 4.15. The map M(A′)→M(A) is surjective.

We now discuss an important example of field extensions. Let k be an NA field and ka be
an algebraic closure of k. We will state a few facts without proof.

Fact 4.16. The valuation on k extends uniquely to a valuation on ka.

Fact 4.17. The completion k′ = ĥa is also algebraically closed.

Let G = Aut(ka/k).

Fact 4.18. The group G acts on ka by isometries. Hence the action extends to k′.

If A is a Banach k-algebra, G acts on A′ = A⊗k k′. Hence G also acts on M(A′).

Theorem 4.19. The map

M(A′)/G→M(A)

is a homeomorphism.
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We will soon use this to describe E(r) for non-algebraically closed k. First, we summarize
the structure of E(r) for k = ka.

Recall that we have a partial ordering on E(r) (or even any M(A)), defined by

x ≤ y if and only if |f(x)| ≤ |f(y)| for all f ∈ k{r−1T}.

Here is a summary of the classification of points when k is algebraically closed. For a ∈ E(r),
0 ≤ % ≤ r, we defined

E = E(a, %) = {x ∈ E(r) | |(T − a)(x)| ≤ %}.

It has a maximal point p(E) ∈ E ⊆ E(r). These points have the following types:

(Type 1) %(E) = 0,
(Type 2) %(E) ∈ |k×|,
(Type 3) %(E) ∈ R×+ \ |k×|.

Finally, there are Type 4 points, associated to chains E = {Ei}i∈I of discs Ei ⊆ E(r) such
that ⋂

i

Ei ∩ E(r) = ∅.

Then
⋂
Ei = {p(E)} and p(E) is a point of Type 4. Recall the picture of the Berkovich disc

above. There is a tree structure of (E(r),≤, %).

• There is a unique maximal element x0 = p(E(r)).
• Every point dominates some minimal point.
• For any x ∈ E(r), the set

[x, x0] = {y ∈ E(r) | x ≤ y ≤ x0}

is totally ordered, and there is an order preserving bijection:

% : [x, x0]→ [%(x), r].

• Any two points x, y ∈ E(r) have a supremum x ∨ y.

Below is a sketch indicating an interval [x, x0] and a supremum x ∨ y of two points x, y.
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0

r

%(x)

%

x0

x

[%(x), r]←→ [x, x0]

x

y

x ∨ y

E(r)

We finally discuss Berkovich discs for general k. Consider k′ = k̂a and G = Aut(ka/k) acts
on k′ by isometries. Hence G acts on Ek′(r) by homeomorphisms.

Theorem 4.19 in this case shows implies the following.

Fact 4.20. The map k ↪→ k′ induces a homeomorphism

Ek′(r)/G
∼=→ Ek(r).

Moreover, G preserves the partial ordering ≤ on Ek′(r) and the radius %. Hence G preserves
the Type of a point.

Example 4.21. Consider k = CJtK, formal Laurent series in t. Here is a picture for k′ =
k(
√
t).
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−
√
t 0

√
t 0 ±

√
t

2

Ek′(r) Ek(r)
π

Exercise.

(1) Points of Type 2, 3 have finite G-orbits.
(2) Points of Type 1 have finite G-orbits if and only if they come from ka.
(3) Points of Type 4 may or may not have finite orbits, and both possibilities occur.
(4) The Berkovich disc (E(r),≤, ”π∗%”) has a tree structure as before.

4.4. Residue fields. Let A be a Banach ring and x ∈ M(A). Recall that H(x) is the

complete residue field, i.e. ̂Frac(A/px). If A is NA, H(x) is also NA.

Here are some invariants of NA fields. Let k be an NA field. We have:

|k×| ⊆ R×+ the value group,

k̃ = {| · | ≤ 1}/{| · | < 1} the classical residue field,⊕
r∈R×+

{| · | ≤ r}/{| · | < r} the graded residue field.

We will call H̃(x) the double residue field.

Example 4.22. Let A = k{r−1T} for an algebraically closed NA field. Then M(A) =
Ek(r) = E(r). We want to compute H(x) for x of Type 1,2,3,4.

Type 1 points. Let x = p(E(a, 0)) for a ∈ k. Then px = (Ta), so

H(x) = k.

Type 3 points. Let x = p(E(a, %)) for a ∈ E(r), % ∈ (0, r]\|k×|. Without loss of generality,
assume a = 0. For 0 6= f ∈ k{r−1T}, we have

|f(x)| = max
i
|ai|%i for f =

∞∑
0

aiT
i.
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Since % 6∈ |k×|, the max is attained for a unique i. Otherwise, if |ai|%i = |aj|%j for i < j, we

have %j−i =
|aj |
|ai| ∈ |k

×|, so % ∈ |k×| because |k×| is divisible. Then

f = aiT
i

1 +
∑
j 6=i

|aj|
|ai|

T j−i

 ,

where
|aj |
|ai|%

j−i < 1, so → 0 as j → ∞. We have a similar description for any f ∈ Frac(A)

(i.e. i ∈ Z).

From this, one can deduce that:

H(x) ∼= k{%−1T%T−1} =

f =
∞∑
−∞

T i

∣∣∣∣∣∣ |ai|%i → 0 for i→ ±∞


with |f(x)| = max |ai|%i.

The value group |H(x)×| is generated by |k×| and %. The double residue field is:

H̃(x) ∼= k̃.

5. Strictly k-affoinoid spaces

The reference for this section is [BGR84] and [Ber90, Section 2.1].

Let k be an NA field. We will define an k-affinoid space as the Berkovich spectrum of a
k-affinoid algebra:

A = k{r−1
1 T, . . . , r−1

n T}/I,
X = M(A).

We will note that if X is a k-affinoid space,

X ↪→ E(r),

where E(r) is a polydisc.

Analogies.

(1) Complex analytic sets are (locally) X = {f1 = · · · = fm = 0} ⊆ B ⊆ Cn.
(2) Affine k-schemes (of finite type) are X = Spec(A) where k is a field and A =

k[T1, . . . , Tn]/I is a finitely generated k-algebra. Moreover:

X ↪→ An
k .

We now make the definitions formal.
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For r = (r1, . . . , rn) ∈ R×n+ , we define

k{r−1T} = k{r−1
1 T1, . . . , r

−1
n Tn}

=

f =
∑
ν∈Zn+

aνT
ν

∣∣∣∣∣∣∣ lim
|ν|→∞

|aν |rν = 0

 where |ν| = ν1 + · · · νn

⊆ kJT1, . . . , TnK.

We define
‖f‖ = max

ν
|aν |rν .

Gauss’ Lemma 4.2 implies that k{r−1T} is a valued Banach k-algebra.

Definition 5.1. The Berkovich polydisc is E(r) = M(k{r−1T}).

5.1. The algebra and Banach structure of the Tate algebra.

Definition 5.2. The Tate algebra is

Taten = k{T1, . . . , Tn} ⊆ kJT1, . . . , TnK,

i.e. we take r = (1, . . . , 1), with the norm

‖f‖ = max
ν
|aν |.

Exercise. If k is trivially valued, then Taten = k[T1, . . . , Tn] with the trivial norm.

Reduction.

Taten = k{T1, . . . , Tn},
Tate◦n = k◦{R1, . . . , Tn} {‖ · ‖ ≤ 1},

Tate◦◦n = k◦◦{T1, . . . Tn} {‖ · ‖ < 1},

T̃aten ∼= k̃[T1, . . . , Tn] {‖ · ‖ ≤ 1}/{‖ · ‖ < 1}.

Elementary properties.

(1) An element f ∈ Taten is invertible if and only if ‖f − f(0)‖ < ‖f‖ = ‖f(0)‖, where
we note that f(0) = a0.

Sketch of proof. Without loss of generality, f(0) = 1, i.e. f = 1 + f0 with f0(0) = 0.
We need to then show that

1 + f0 is invertible if and only if ‖f0‖ < 1.

Recall that the ‘if’ follows from Lemma 2.13. Conversely, suppose fg = 1. Since
f(0) = 1, ‖f‖ ≥ 1. Also, g(0) = 1, so ‖g‖ ≥ 1. This shows that ‖f‖ = ‖g‖ = 1, since
‖ · ‖ is a valuation.

If f, g ∈ Taten, fg = 1, then f̃ g̃ = 1 in k̃[T1, . . . , Tn]. The only invertible elements

in k̃[T1, . . . , Tn] are constants, and hence f̃ = 1. Therefore

1 = f̃ = 1 + f̃0,
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showing that f̃0 = 0, i.e.

f0 ∈ {‖ · ‖ < 1}.

This shows that ‖f0‖ < 1. �

(2) For any f ∈ Taten, there exists a ∈ k such that |a| = ‖f‖ and f −a is non-invertible.

Proof. If |f(0)| = ‖f‖, pick a = f(0). If |f(0)| < ‖f‖, pick any a ∈ k with |a| = ‖f‖
(this is always possible). Then

|(f − a)(0)| = ‖f − a‖ = ‖f‖ = ‖(f − a)− (f − a)(0)‖,

so f − a is not invertible by (1). �

(3) The Jacobson radical of Taten is zero (so there are many maximal ideals).

Proof. Suppose f 6= 0 belongs to every maximal ideal. Then (2) implies that there
exists a ∈ k× such that f − a is non-invertible. Then f − a ∈ m for some maximal
ideal m, so a = f − (f − a) ∈ m. This contradicts the maximality of m. �

(4) Every k-algebra homomorphism ϕ : Taten → Tatem is contractive.

Proof. Suppose ‖ϕ(f)‖ = ‖f‖ for f ∈ Taten. Pick a ∈ k such that |a| = ‖ϕ(f)‖ and

ϕ(f) + a = ϕ(f + a) is not invertible.

Hence f + a is not invertible, contradicting (1). �

Hence any ϕ : k{T1, . . . , Tn} → k{T1, . . . , Tm} induces

ϕ̃ : k̃[T1, . . . , Tn]→ k̃[T1, . . . , Tm].

(5) If ϕ as above is an isomorphism of k-algebras, then m = n and ϕ is an isometric
isomorphism.

Proof. This follows immediately from (4). �

5.1.1. The maximum modulus principle. Consider

Enk = {x ∈ kn | |xi| ≤ 1 for all i} = (k◦)n.

Any f ∈ Taten defines a continuous function f : Enk → k such that |f(x)| ≤ ‖f‖ for all x.

Theorem 5.3 (Maximum modulus principle). If k̃ is infinite, then for all f ∈ Taten, there
exists x ∈ Enk such that |f(x)| = ‖f‖.

Proof. Without loss of generality, suppose ‖f‖ = 1. If k̃ is infinite, there exists x̃ ∈ k̃n such

that f̃(x̃) 6= 0.

Lift x̃ to x ∈ Enk . Then f̃(x) = f̃(x̃) 6= 0, so |f(x)| = 1. �
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5.1.2. Algebraic properties. We state the following results as a black box; the details can be
found in the notes.

Theorem 5.4. The Tate algebra Taten is Noetherian, Jacobson (every ideal is an intersec-
tion of maximal ideals), factorial (UFD) of Krull dimension n.

The proof is omitted. It uses Weierstrass polynomials : W = T n + a1T
n−1 + · · · a0 ∈

Taten−1[T ] ⊆ Taten such that ‖ai‖ ≤ 1 for all i. One proves a Weierstrass preparation
theorem, a division theorem, and so on.

5.1.3. Properties as a Banach ring.

Definition 5.5. Let A be a Banach ring and M be a Banach A-module.

(1) M is finite (as a Banach A-module) if there exists an admissible surjective morphism
An �M for some n ≥ 0,

(2) M is Noetherian (as a Banach A-module) if every submodule M ′ of M is a finite
Banach A-module (in particular, any such M ′ is closed),

(3) A is Noetherian (as a Banach ring) if it is Noetherian as a Banach A-module (in
particular, every ideal of A is closed).

Question. Are these good definitions? It is one way to formulate this theory, but it is
unclear if this is the most canonical way to do it.

Theorem 5.6. The Banach ring Taten is Noetherian. In particular, every ideal of Taten is
closed.

We will work towards the proof of this theorem. It uses the Banach open mapping theorem.

Theorem 5.7 (Open Mapping Theorem). Let k be a complete non-trivially valued field, and
ϕ : A→ B be a bounded surjective morphism of k-Banach spaces. Then ϕ is admissible (in
particular, it is open).

Proof. Copy the usual proof over C. Use |k×| 6= {1} to scale various balls. �

Remark 5.8. This is false if |k×| = {1}. Consider

k{s−1T︸ ︷︷ ︸
k[T ]

} ↪→ k{r−1T}︸ ︷︷ ︸
k[T ]

for 1 ≤ r < s.

This map is bounded and bijective (it is the identity) It is not admissible (or open), because
T n 7→ T n but sn � rn for n� 0.

Lemma 5.9. Let k be a non-trivially valued NA field, A be a NA Banach k-algebra, and M

be a NA normed A-module such that the completion M̂ is a finite Banach A-module. Then

M̂ = M .

We defer the proof until later and first show how the lemma is used.

Corollary 5.10. If k is NA, non-trivially valued, then any Banach k-algebra A that is
Noetherian as a ring is Noetherian as a Banach ring (in particular, every ideal is closed).
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Proof. Pick any ideal a ⊆ A. We want to apply Lemma 5.9 with M = a and M̂ = a.

Since A is Noetherian, there is an A-linear surjective map ϕ : An → a for some n ≥ 0.

Exercise. The map ϕ is automatically bounded.

Using the Open Mapping Theorem 5.7, ϕ is admissible. Therefore, a is a Banach A-module.
Then Lemma 5.9 implies that a = a. �

Proof of Theorem 5.6. We know that Taten is Noetherian as a ring by Theorem 5.4. If
|k×| 6= {1}, we are done by Corollary 5.10.

Otherwise, |k×| = {1}, Taten = k[T1, . . . , Tn] with the trivial norm. �

The main takeaway of Theorem 5.6 is that every ideal of Taten is automatically closed.

We still need to prove Lemma 5.9 to complete the proof.

Proof of Lemma 5.9. There exist m′1, . . . ,m
′
n ∈ M̂ such that π : An → M̂ given by

π(a1, . . . , an) =
n∑
1

aim
′
i

is surjective and admissible. Then

π((A◦◦)n) =
n∑
1

A◦◦m′i

is an open neighborhood of 0 ∈ M̂ . Since M ⊆ M̂ is dense, we have that

m′i ∈M +
n∑
1

A◦◦m′j for 1 ≤ i ≤ n,

so

m′i = mi +
n∑
1

ai,jm
′
j for aij ∈ A◦◦,mi ∈M.

We write this equation as
m = (In −B)m′

where B = (ai,j)
n
i,j=1.

Exercise. Use the invertibility criterion 2.13 to show that In −B is invertible.

Then m′ ∈Mn, showing that M̂ = M . �

5.2. Strictly k-affinoid algebras. Everything in this section is NA.

Definition 5.11. A Banach k-algebra is strictly k-affinoid if there is an admissible surjective
morphism

Taten � A

for some n ≥ 0.
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Remark 5.12. In Tate’s theory of rigid analytic spaces, one also assumes that k is non-
trivially valued. If k is trivially valued, A is a finitely-generated k-algebra with norm equiv-
alent to the trivial norm.

Example 5.13. Consider A = k{T, T−1}, the unit circle algebra. It is defined as

k{T, T−1} =

f =
∞∑
−∞

aiT
i

∣∣∣∣∣∣ lim
i→±∞

|ai| = 0


with norm ‖f‖ = maxi |ai|.

The map

k{S, T}� k{T, T−1}
(S, T ) 7→ (T−1, T )

is admissible and surjective. Hence A is strictly k-affonoid.

Remark 5.14. Note that the natural map k{T} ↪→ k{T, T−1} induces and injective map

M({T, T−1}) ↪→M(k{T}) = E(1) the unit disc

and its image is

{x ∈ E(1) | |T (x)| = 1},
the unit circle.

This is an analog of Spec(A) ⊇ Spec(Af ) from algebraic geometry, which is an open affine
subset. It is hence deceptively large for a unit circle inside a unit disc.

The category of strictly k-affinoid algebras is closed under various operators (ground field
extensions, products, tensor products, . . .).

5.2.1. Algebraic and Banach ring properties.

Theorem 5.15. Any strictly k-affinoid algebra is Noetherian and Jacobson.

Proof. Since A is a quotient of a Tate algebra, this follows from Theorem 5.4. �

One can also prove a generalization of Theorem 5.6.

Theorem 5.16. Any strictly k-affinoid algebra is Noetherian as a Banach ring.

Corollary 5.17. Every ideal of A is closed.

Theorem 5.18 (Noether normalization). If A 6= 0 is strictly k-affinoid, then there is a finite
injective morphism Tated ↪→ A for some d ≥ 0.

The proof, once again, uses induction and Weierstrass polynomials. We omit it here.

Geometrically, we have a closed immersion M(A) ↪→ En by definition. Noether Normaliza-
tion Theorem 5.18 says that there’s also a finite map M(A)→ Ed:
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M(A) En

Ed

closed imm.

finite

Corollary 5.19 (Nullstellensatz). If m ⊆ A is a maximal ideal, then dimk(A/m) <∞.

Proof. Since m is closed, A/m is strictly k-affinoid. Noether Normalization Theorem 5.18
implies that there is a finite map

Tated ↪→ A/m.

This shows that Tated is a field which is only possible if d = 0 and Tated = k. �

Corollary 5.20. If ϕ : A→ B is a morphism of strictly k-affinoid algebras and n ⊆ B is a
maximal ideal, then ϕ−1(n) ⊆ A is a maximal ideal.

Proof. We have maps
k ↪→ A/f−1(n) ↪→ B/n

and dim(B/n) <∞ by Corollary 5.19. Hence A/f−1(n) is an integral domain which is finite
over k, so it is a field. �

Corollary 5.21. If A is strictly k-affinoid, and m ⊆ A is a maximal ideal, then the valuation
on k extends uniquely to A/m. In particular, there is a map

Max(A) ↪→M(A),

m 7→ (f 7→ norm of image in A/m).

Proposition 5.22. If k is non-trivially valued, then Max(A) ⊆M(A) is dense.

Remark 5.23. If k is trivially valued, the closure of Max(A) in M(A) is the image of the
canonical section

Spec(A) M(A)

p trivial valuation of A/p.

triv

ker

Example 5.24. Let A = k{T} = Tate1 so that M(A) = E(1).

When |k×| = {1},

· · · · · ·

| · |0

| · |p1,ε

| · |p1,0 | · |p2,0 | · |p3,0 | · |p,0
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and | · |0 = triv((0)). The closure of Max(A) in M(A) is exactly Max(A) ∪ {triv((0))}, i.e.
all the marked points.

When |k×| 6= {1} and k is algebraically closed:

Type 2 points:

infinite branching
−→

0

r

%

p(E(r))

Type 3

Type 2

Type 2

Type 2
Type 4

Max(A) ∼= k (Type 1)

E
p(E)

Since Type 2 points have infinite branching, they will always be in the closure of Max(A) ∼= k.

Sketch of proof of Proposition 5.22. Pick x0 ∈ M(A) and U 3 x0 is an open neighborhood.
We must prove that Max(A) ∩ U 6= ∅.

Without loss of generality, assume that

U = {x ∈M(A) | |fi(x)| < ai, |gj(x)| > bi 1 ≤ i ≤ m, 1 ≤ j ≤ n}

for ai, bj > 0.
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Since |k×| 6= {1}, there exist pi, qi ∈ |k×|Q︸ ︷︷ ︸
dense in R×+

such that

{
|fi(x0)| < pi < ai,

|gj(x(0)| > qj > bj.

Replace fi, gj with powers and then scale to assume without loss of generality that pi = qj = 1
for all i, j. Set

B = A{S1, . . . , Sm, T1, . . . , Tn}︸ ︷︷ ︸
strictly k-affinoid

/ (fi − Si, gjTj − 1)︸ ︷︷ ︸
closed

,

a strictly k–affoinoid algebra. The map A→ B is bounded and hence induces a continuous

map M(B)
h→M(A).

One can show that (h is a homeomorphism onto its image and) the image of h is

{x ∈M(A) | |fi(x)| ≤ 1, |gj(x)| ≥ 1}︸ ︷︷ ︸
Laurent domain in M(A)

⊆ U.

Then h(Max(B)) ⊆ Max(A)∩U . Since the image of M(B) contains x0, B 6= 0, so Max(B) 6=.
Hence Max(A) ∩ U 6= ∅. �

Recall that the spectral radius associated to a seminorm ‖ · ‖ on A is %(f) = lim ‖fn‖1/n.
Recall also the Berkovich maximum modulus principle 3.21

(1) %(f) = max
x∈M(A)

|f(x)|

for all f ∈ A, where A is a Banach ring.

Theorem 5.25 (Maximum modulus principle). If A is a strictly k-affinoid algebra, then the
max in equation (1) is attained on Max(A) ⊆M(A).

Sketch of proof. We did this for A = Taten. In general, we reduce to this case using Noether
Normalization Theorem 5.18. �

Lemma 5.26. If Tated ↪→ A is finite, then for any f ∈ A, there is a polynomial

P (T ) = Tm + a1T
m−1 + · · ·+ am ∈ Tated[T ]

such that P (f) = 0 and %(f) = max
i
%(ai)

1/i.

Idea of proof. Use Berkovich MMP 3.21 to reduce to the case Tated = k (d = 0). Indeed,
the map M(A)→ Ed is surjective with finite fibers an %(f) = max

x∈M(A)
|f(x)|. Then take P to

be the minimal polynomial of f . �

Corollary 5.27. The spectral radius %(f) is in the divisible value group |k|Q.

Proof. Since %(ai) ∈ |k|, this follows from Lemma 5.26. �
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We can also prove the MMP (Theorem 5.25)

%(f) = max
x∈Max(A)

|f(x)|

in the same way. Then the corollary also follows from MMP 5.25/

Another proof of Corollary 5.27. If x ∈ Max(A), H(x)/k is finite, so

|f(x)| ∈ {0} ∪ |H(x)×| ⊆ {0}{0} ∪ |k×|Q

for every f ∈ A.

By Theorem 5.25, %(f) = max
x∈Max(A)

|f(x)|, which completes the proof. �

Proposition 5.28. Let f ∈ A be as above. The following are equivalent:

(1) f is power-bounded: sup
n
‖fn‖ <∞,

(2) %(f) ≤ 1.

Sketch of proof. That (1) implies (2) is trivial. The converse implication is true when A =
Taten (since it is valued). The general case follows by reducing to this case using Noether
Normalization Theorem 5.18. �

Proposition 5.29. For A, f as above:

(1) f is nilpotent if and only if %(f) = 0,
(2) if f is not nilpotent, then there exists C = Cf > 0 such that %(f)n ≤ ‖fn‖ ≤ CF%(f)n

for all n ≥ 1.

Proof. For (1), we know that %(f) = 0 if and only if f belongs to all maximal ideals of A by
MMP 5.25. Since A is Jacobson (cf. Theorem 5.15), this is equivalent to f being nilpotent.

In (2), the first inequality holds in general. We sketch the proof of the other inequality.
By Noether Normalization Theorem 5.18, there exists a finite map ϕ : Tated ↪→ A. By
Lemma 5.26, there exists P (T ) ∈ Tated[T ] such that P (f) = 0 and %(f) = max

i
ϕ(ai)

1/i.

Case 1. If %(f) = 0, ai = 0 for all i, so fm = 0.

Case 2. If %(f) > 0, we reduce to %(f) = 1 by power-multiplicativity and scaling. Then

P (T ) ∈ Tate◦d[T ],

so

fm ∈
m−1∑
i=0

ϕ(Tate◦d) · f i since P (f) = 0.

Hence

fn ∈
m−1∑
i=0

ϕ(Tate◦d) · f i for all n ≥ m.

This shows that sup
n
‖fn‖ <∞. �

Corollary 5.30. If A is reduced, then % is a norm.
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A stronger result is true.

Theorem 5.31. If A is reduced, then % is a complete norm, equivalent to the given norm.

Remark 5.32.

(1) Every reduced strictly k-affinoid algebra has a canonical norm.
(2) Suffices to prove that % is complete. The map

(A, ‖ · ‖) id→ (A, %)

is admissible by the Open Mapping Theorem 5.7.

Idea of proof. We use Noether Normalization Theorem 5.18 in the standard way. The new
ingredient is that the valued field K = Frac(Tated) is weakly stable. For any finite field
extension L ⊇ K, we equip L with the spectral norm2: for f ∈ L with minimal polynomial
P (T ) = Tm + a1T

m−1 + · · ·+ am, we define

‖f‖ = max
i
‖ai‖1/i.

Weak stability means that the normed K-vector space (L, ‖ · ‖) is isomorphic to Kn, i.e. the
natural map Kn → L is admissible. �

Definition 5.33. If A is a strictly k-affinoid algebra, we call M(A) a strictly k-affinoid
space. A morphism M(B) → M(A) of strictly k-affinoid space is induced by a (bounded)
map A→ B.

Proposition 5.34. If ϕ : A → B is a finite morphism of strictly k-affinoid algebras, then
f : M(B)→M(A) has finite fibers.

Proof. There exists an admissible A-linear epimorphism An → B for some n. Pick any
x ∈M(A). Take complete tensor product with H(x) to get an admissible epimorphism:

H(x)n ∼= An⊗̂AH(x)→ B⊗̂AH(x).

This implies that f−1(x) ∼= M(B⊗̂AH(x)) is finite, because B⊗̂AH(x) is a finite extension
of H(x). �

Proposition 5.35. Assume ϕ : A ↪→ B is a finite injective morphism. Then f : M(B) →
M(A) is surjective (with finite fibers).

Proof. We already know that f has finite fibers by Proposition 5.34. Pick x ∈M(A). Then

f−1(x) ∼= M(B ⊗A H(x)).

We have to show that B ⊗A H(x) is non-zero and has non-zero seminorm.

We use the fact that the map Spec(B)→ Spec(A) is surjective (a standard fact in algebraic
geometry). Set p = ker(x) ⊆ A and let L = Frac(A/p). Then L is a valued field whose
completion is H(x). The fiber of p is Spec(B⊗AL). Hence V = B⊗AL, a non-zero L-vector
space.

2If K was complete, there would be a unique extension of the norm to L. However, K = Frac(Tated) is
not complete.
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As above, have an admissible epimorphism H(x)n → B ⊗A H(x) of A-modules. But B ⊗A
H(x) ∼= V ⊗L H(x) is non-zero vector space over H(x).

To summarize, we have an admissible epimorphism

π : H(x)n → V ⊗L H(x)

of H(x)-modules. Hence

V ⊗L H(x) ∼=
H(x)n

W
for W = kerπ. We must show that the seminorm on H(x)n/W is a norm (or at least 6≡ 0).
This is equivalent to showing that W ⊆ H(x)n is closed.

Fact. This is automatic: any finite-dimensional vector space over a complete valued field is
complete.

Therefore, B ⊗A H(x) is a seminormed ring with non-zero seminorm. This implies that
f−1(x) = M(B ⊗A H(x)) 6= ∅. �

Recall that we defined the kernel map

ker : M(A)→ Spec(A).

Theorem 5.36. If A is strictly k-affinoid, then ker is surjective.

We first prove a lemma.

Lemma 5.37. Suppose A is an integral domain. Then there exists a bounded valuation
on A. Equivalently, there exists x ∈M(A) such that kerx = 0 ∈ Spec(A).

Proof. By Noether Normalization Theorem 5.18, there is a finite injective map

Tated ↪→ A.

This induces commutative diagram:

M(A) M(Tated) = Ed

Spec(A) Spec(Tated)

ker ker

The rows are surjective by Proposition 5.35. Pick x ∈M(A) mapping to the Gauss point of
Ed. We hence have elements

x M(A) M(Tated) = Ed Gauss

ξ Spec(A) Spec(Tated) generic point

ker ker

Then ξ = ker(x) ∈ Spec(A) maps to the generic point of Spec(Tated). By the corresponding
algebraic geometry statement, we conclude that ξ is a generic point of Spec(A). �
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Proof of Theorem 5.36. Without loss of generality, A is reduced. Indeed, A 7→ A/nilradical(A)
does not change M(A).

Consider ξ ∈ Spec(A) with associated prime ideal p ⊆ A. Then A/p is a strictly Indk-affinoid
integral domain. We have a commutative diagram:

M(A/p) M(A)

Spec(A/p) Spec(A)

ker ker

By Lemma 5.37, there exists y ∈ M(A/p) such that ker(y) = η, the generic point of
Spec(A/p). Then the image x ∈M(A) of y ∈M(A/p) maps to ξ under ker. �

5.3. The Zariski topology. Let A be strictly affinoid. For an ideal I ⊆ A,

V (I) = {x ∈M(A) | f(x) = 0 for all f ∈ I}.

Definition 5.38. The Zariski topology on M(A) is the weakest topology such that V (I) are
closed.

Since V (I) are closed in the Berkovich topology, the Berkovich topology is stronger than the
Zariski topology.

For Z ⊆M(A), we define

IZ = {f ∈ A | f |Z ≡ 0} ⊆ A,

which is an ideal.

Proposition 5.39.

(1) The set V (IZ) is the Zariski closure of Z.

(2) For any ideal I ⊆ A, IV (I) =
√
I, the radical of I.

Proof. (1) is clear. For (2), f ∈
√
I implies that fn ∈ I for some n ≥ 1, so fn|V (I) ≡ 0, and

hence f |V (I) ≡ 0, so f ∈ IV (I). Conversely, if f ∈ IV (I), then f ≡ 0 on Max(A) ∩ V (I). This
is equivalent to f ∈ m where m is a maximal ideal and m ⊇ I. Since A is Jacobson, this is
equivalent to f ∈

√
I. �

5.4. Reduction. Let (A, ‖ · ‖) be a NA Banach ring. Then the graded reduction ring is⊕
r∈R×+

{‖ · ‖ ≤ r}/{‖ · ‖ < r}︸ ︷︷ ︸
Ãr

.

The classical reduction ring is just Ã1.

Definition 5.40. If A is a strictly k-affinoid algebra, then the reduction of A is

Ã = A◦/A◦◦
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where

A◦ = {% ≤ 1},
A◦◦ = {% < 1}.

Then Ã is a k̃-algebra, which only depends on A/nil(A), justifying the name reduction.

Note that there is no need to work with the graded reduction ring (for %): by Corollary 5.27,

we can always scale Ãr to Ãr.

Any bounded map ϕ : A→ B induces ϕ̃ : Ã→ B̃, since %B ◦ f ≤ %A.

Lemma 5.41. The spectral norm % is multiplicative if and only if Ã is an integral domain.

Proof. If % is multiplicative, and ã, b̃ 6= 0, then %(a) = %(b) = 1, so %(ab) = 1, so ãb̃ 6= 0.

Conversely, suppose f, g ∈ A and %(fg) < %(f)%(g). Since %(f), %(g) ∈ |k×|Q by Corol-
lary 5.27 and % is power-multiplicative, we may assume that

%(f), %(g) ∈ |k×|.
Replace f , g by af , bg for a, b ∈ k× to assume that %(f), %(g) = 1. Then %(fg) < 1. This is

equivalent to f̃ g̃ = f̃ g = 0, but f̃ , g̃ 6= 0. �

Proposition 5.42. If ϕ : A→ B is a morphism of strictly k-affinoid algebras with A reduced,
the following are equivalent:

(1) ϕ is injective and admissible (C−1‖f‖ ≤ ‖ϕ(f)‖ ≤ C‖f‖ for some C)
(2) ϕ is an isometry for the spectral radius,

(3) ϕ̃ : Ã→ B̃ is injective.

Proof. Use:

• Corollary 5.27,
• since A is reduced, without loss of generality, ‖ · ‖ = % on A.

The details are left as an exercise. �

Remark 5.43. In general, it is not easy to related surjectivity of ϕ and ϕ̃.

We leave the following theorem as a black box.

Theorem 5.44. If ϕ : A→ B is a morphism of strictly k–affinoid algebras, then

ϕ is finite if and only if ϕ̃ is finite.

We will not use the techniques used to prove it later in the class, which is why we will not
discuss them in detail.

Ingredients of the proof.

• We reduce to A = Taten using Noether Normalization Theorem 5.18 and the defini-
tion of strictly k-affinoid algebras.
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• Use Weierstrass polynomials to show the ‘if’ implication.

• Use T̃aten = k̃[T1, . . . , Tn] is a Japanese ring.

Corollary 5.45. If A is strictly k-affinoid, then Ã is a finitely-generated k̃-algebra.

Proof. Using Noether Normalization Theorem 5.18 to get a finite ma Tated ↪→ A and Theo-

rem 5.44 to get a finite map T̃ated → Ã. �

6. Affinoid spaces and the structure sheaf

Let k be a NA field and A a Banach k-algebra.

Recall that A is strictly k-affinoid if there is an admissible epimorphism

k{T} = k{T1, . . . , Tn}� A.

Example 6.1. The algebra k{r−1T} is strictly k-affinoid if and only if ri ∈ |k×|Q for i =
1, . . . , n.

Definition 6.2. A k-affinoid algebra is a Banach k-algebra A admitting an epimorphism
k{r−1T}� A for some r ∈ (R×+)n for n ≥ 0. Then M(A) is a k-affinoid space.

Remark 6.3. In Tate’s theory of analytic spaces [Tat71], he only uses strictly k-affinoid
spaces and refers to them as k-affinoid spaces.

6.1. Ground field extension. Let k′/k be a NA extension. Then A⊗̂kk′ is a Banach
k′-algebra.

Proposition 6.4. Let A be k-affinoid. Then:

(1) A⊗̂kk′ is k′-affinoid,
(2) there exists an extension k′/k such that A⊗̂kk′ is strictly k′-affinoid.

Proof. For (1), note that k{r−1T}� A tensored with k′/k gives the desired map

k′{r−1T}� A⊗̂kk′.

In (2), we pick k′ of a spacial form. We say r ∈ (R×+)n is |k×|-free if the images of r1, . . . , rn
in the Q-vector space R×+/|k×|Q are Q-linearly independent. (This is equivalent to rν ∈ |k×|
if and only if ν = 0.)

If r is |k×|-free, define

kr =

f =
∑
ν∈Zn

aνT
ν

∣∣∣∣∣∣ lim
|ν|→∞

|aν |rν = 0

 ⊆ kJJT±1
1 , . . . , T±1

n K

with the norm ‖f‖ = max
ν
|aν |rν . This is a field because the maximum is attained for a

unique ν. Then we can pick k′ = kr in (2).

The general case follows easily, so we omit this here. �
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Remark 6.5. We can describe A⊗̂kkr concretely:

A⊗̂kkr =

f =
∑
ν∈Zn

aνT
ν

∣∣∣∣∣∣ lim
|ν|→∞

‖aν‖rν = 0, aν ∈ A


with the seminorm and spectral norm:

‖f‖ = max
ν
‖aν‖rν ,

%(f) = max
ν

%(aν)r
ν .

In particular, we have a diagram:

A A⊗̂kkr A

id

∑
aνT ν 7→a0

How do ground field extensions look for spaces? For X = M(A), define Xk′ = M(A⊗̂kk′).
Then the map k ↪→ k′ induces a continuous surjective map

Xk′ → X.

Example 6.6. Let A = k{r−1T} for r ∈ R×+. Then X = Ek(r) is a disc. We consider
r 6∈ |k×|Q, k′ = kr and Xk′ = Ek′(r).

Then p(Ek(r)) is a Type 3 point, with a unique branch coming down. However, p(Ek′(r)) is
a Type 2 point with infinitely many branches coming down.

Let π : Ek′(r)→ Ek(r) be the map above. The fibers of π are

π−1(x) ∼= M(H(x)⊗̂kk′)

As above,

H(x)⊗̂kkr =

f =
∞∑
−∞

aiT
i

∣∣∣∣∣∣ ai ∈ H(x), lim
i
|ai|ri = 0

 .

Therefore, π−1(x) is a circle of radius r over H(x).

There is always a section

σ : Ek(r)→ Ek′(r)

given by

σ(x) = Gauss point of H(x)⊗̂kkr.

6.2. Properties of k-affinoid algebras.

Proposition 6.7. Let A be a k-affinoid algebra. Then:

(1) A is a Noetherian Banach ring (i.e. A is Noetherian and every ideal is closed),
(2) if a ⊆ A is an ideal, then A/a is k-affinoid.
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Sketch of proof. We will prove that A is Noetherian and every ideal a ⊆ A is closed.

As in the proof of Proposition 6.4, pick r ∈ (R×+)n which is |k×|-free such that A′ = A⊗̂kkr
is strictly k-affinoid.

The key property is that

(2) a = A ∩ (A′ · a)

where A′ · a is an ideal in A′. We use

A A⊗̂kkr A.

id

To prove this, pick generators f1, . . . , fn ∈ a of A′ · a. Pick f ∈ a. Then

f =
n∑
1

fjgj

for
gj ∈

∑
ν∈Zn

gjνT
ν , gjν ∈ A.

Hence

f =
n∑
1

fjgj0

and gj0 ∈ A. This shows that a is generated by f1, . . . , fn and equation (2) holds. �

Similarly, one proves the following.

Proposition 6.8. If A is k-affinoid and f ∈ A,

(1) %(f) = 0 if and only if f is nilpotent,
(2) %(f) ≤ 1 if and only if sup

n
‖fn‖ <∞.

Proposition 6.9. If A is a reduced k-affinoid algebra, then % is a complete norm, equivalent
to the given norm.

Remark 6.10. The classical reduction A 7→ Ã is not well-behaved for k-affinoid algebras.
Instead, use the graded reduction:

Ã =
⊕
r∈R×+

{% ≤ r}/{% < r}.

6.3. Rational domains and the structure sheaf. Let k be a NA field, A a k-affinoid
algebra.

Then X = M(A) is an affinoid space and A are the analytic functions on X.

The goal is to define a structure sheaf OX such that

Γ(V,OV ) = {analytic functions on V }
for V ⊆ X.
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It is easier to first work with certain closed subset V ⊆ X, called affinoid domains.

To define OX , we want:

• Γ(V,OX) = AV is a k-affinoid algebra,
• restriction maps A→ AV ,
• sheaf axiom.

The idea is to define V using inequalities.

We will have the following analogy between algebraic and NA geometry:

Algebraic geometry NA geometry

X = Spec(A) X = M(A)

V = {f 6= 0}
= Spec(A[f−1])

V = {|f | ≥ 1}
= M(A{f−1})

(Laurent domain)

V ⊆ X affine open V ⊆ X affinoid

We will have the following classes of affinoid domains:

Weierstrass⇒ Laurent⇒ Rational⇒ Affinoid.

6.3.1. Weierstrass domains of X = M(A). Given f1, . . . , fn ∈ A, p1, . . . , pn ∈ R×+, set

V = X(p−1f) = {x ∈ X | |fi(x)| ≤ pi 1 ≤ i ≤ n}.

Then

AV = A{p−1
1 T1, . . . , p

−1
n Tn}/(fi − Ti)

with the quotient norm is a k-affinoid algebra. The map A→ AV is contractive with dense
image, so

M(AV )
τ→M(A) = X

is a homeomorphism onto its image.

Lemma 6.11. We have that τ(M(AV )) = V .

Sketch of proof. For the ‘⊆’ inclusion, note that for y ∈ M(AV ), |fi(y)| = |Ti(y)| ≤ pi for
1 ≤ i ≤ n, so if x = τ(y) ∈ X, then |fi(x)| ≤ pi.

For the ‘⊇’ inclusion, given x ∈ V i.e. a bounded semivaluation on A with |fi| ≤ pi for all i,
we can extend this to AV by

|g| = inf

{
max
ν
|aν | · |f |ν

∣∣∣∣ g =
∑

aνT
ν

}
.

One has to check that this is actually a norm, but we omit this here. �
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6.3.2. Laurent domains of X = M(A). Given fi, gj ∈ A, pi, qj ∈ R×+, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
define

V = X(p−1f, qg−1) = {x ∈ X | |fi(x)| ≤ pi, |gj(x)| ≥ qj} ⊆ X.

Then
AV = A{p−1

1 T1, . . . , p
−1
m Tm, q1S1, . . . , qnSn}/(Ti − fi, gjSj − 1)

with the quotient norm is a k-affinoid algebra.

The analog of Lemma 6.11 still holds for Laurent domains.

Lemma 6.12. The map A→ AV induces M(AV )
τ
↪→M(A) with image V .

The proof is similar. The reason why M(AV ) → M(A) is injective follows from a general
lemma.

Suppose ϕ : A→ B is a morphism of Banach rings. Define ϕ+(A) ⊆ B to be the augmented
image:

{ϕ(a)/ϕ(a′) | a, a′ ∈ A, ϕ(a′) is invertible in B}.

Lemma 6.13. If ϕ+(A) ⊆ B is dense, then M(B)→M(A) is injective.

Exercise. For a Laurent domain V , the augmented image of A→ AV is dense.

Remark 6.14. The Laurent domains define the topology on X = M(A), i.e.

{int(V ) | V ⊆ X is a Laurent domain }
is a basis for the topology. Recall that the topology was originally defined by requiring that
x 7→ f(x) is continuous for all f . This will be given by the kind of (strict) inequalities as in
the definition of Laurent domains. Clearly, Weierstrass domains are not enough.

6.3.3. Rational domains of X = M(A). Given

{
g, f1, . . . , fn ∈ A without common zero on X,

p1, . . . , pn ∈ R×+
set

V = X

(
p−1f

g

)
= {x ∈ X | |fi(x)| ≤ pi|g(x)| for all i} ⊆ X.

Then
AV = A{p−1

1 T1, . . . , p
−1
n Tn}/(gTi − fi)

and A → AV induces M(AV ) ↪→ M(A) with image V (the augmented image of A → AV is
dense).

Remark 6.15. If pi, qj ∈ |k×|Q above, we call V strictly Weierstrass/Laurent/Rational. We
can then always pick pi = qj = 1.

We discuss some elementary properties of the above domains. We abbreviate them by their
first letters below.

(1) Pullbacks: if f : Y → X is a morphism and V ⊆ X is W/L/R, then f−1(V ) ⊆ Y is
W/L/R.

(2) Finite intersections: if V1, . . . , VN ⊆ X are W/L/R, then V1 ∩ · · · ∩ VN ⊆ X is
W/L/R.
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Exercise. Check that the intersection of rational domains is rational.

(3) For domains V ⊆ X, Weierstrass implies Laurent implies Rational. (Indeed, a general
Laurent domain is the intersection of Laurent domains with 1 inequality which are
clearly Rational.)

We now discuss transitivity. Suppose U ⊆ V ⊆ X = M(A).

Proposition 6.16. If V ⊆ X is W/R and U ⊆ V is W/R, then U ⊆ X is W/R.

Remark 6.17. This is false for Laurent domains.

Sketch of proof in the W case. Suppose V = X(p−1f) where |fi| ≤ pi, fi ∈ A, and U =
V (r−1g) for gj ∈ AV . Since A is dense in AV , we can find hj ∈ A such that |hj − gj| ≤ rj
on V . Hence

U = V (r−1h) = X(r−1h, p−1f)

where |fi| ≤ pi, |hj| ≤ rj on X. �

Remark 6.18. One finally defines affinoid domains using a universal property. One then
show that they are finite unions of rational domains. We delay this until Section 6.5.

Example 6.19. Let X = E = M(k{T}) be the unit disc. For 0 < |a| < 1, a ∈ k, consider

V = {|T | ≤ |T − a|2}
is (strictly3) rational, but not Laurent. We note that V = V1 ∪ V2 is a disjoint union with

V1 = {|T | = 1}, V2 = {|T | ≤ |a|2}.

x3

x2

x1

V1

V2

3I.e. all pi are in the divisible value group. One has similar notions of strictly W and L domains.
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One can check that this domain is not Laurent, i.e.

V 6= {|fi| ≤ pi, |gj| ≥ qj}
for any fi, gj, pi, qj. We can test this at points marked x1, x2, x3 in the figure above.

Consider a rational domain V = {|fi| ≤ pi|G|} = X(p−1f/g) ⊆ X. Then

AV = A{p−1T}/(gTi − fi)
be a k-affinoid algebra.

Question. Is AV canonically associated to V (and A)? (I.e. independent of pi, fi, g.)

Answer. Yes, by a universal property.

Recall that the map ϕ : A→ AV induces a map M(A)
τ→M(A) = X.

Theorem 6.20.

(1) The map τ is a homeomorphism onto its image.
(2) If σ : Z → X is a morphism of k-affinoid spaces such that σ(Z) ⊆ V , then σ factors

through τ :

Z M(AV )

X

σ τ

(3) If y ∈M(Av), then A
ϕ→ Av induces an isomorphism H(y)

∼=→ H(τ(y))

Proof of (1) and (3). For any x ∈ X, τ−1(x) = M(Bx) where

Bx = H(x)⊗̂AAV ∼= H(x){p−1T}/(g(x)Ti − fi(x)).

If x ∈ V , then

• g(x) 6= 0 (or else fi(x) = 0, a contradiction),

•
(
Ti − fi(x)

g(x)

)
is a maximal ideal in H(x){p−1T},

• H(x)
∼=→ Bx and #τ−1(x) = 1.

If x 6∈ V , then

• τ−1(x) = ∅ since if y ∈M(AV ), then

|fi(y)| = |Ti(y)| · |g(y)| ≤ pi|g(y)|,
which shows that τ(y) ∈ V .

This proves (1) and (3). �

It remains to prove (2) in Theorem 6.20. We will need the following lemma.

Lemma 6.21. Let ψ : A → C be a morphism of k-affinoid algebras, h1, . . . , hn ∈ C,
p1, . . . , pn ∈ R×+. Assume %(hi) ≤ pi for 1 ≤ i ≤ n. Then there is a unique map
Ψ: A{p−1T} → C extending ψ such that Ψ(Ti) = hi.
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Proof. The uniqueness is clear: we must set

Ψ

(∑
ν

aνT
ν

)
=
∑
ν

ψ(aν)h
ν .

The question is: is this power series convergent?

It suffices to prove that ‖ψ(aν)‖ · ‖hν‖ → 0 as |ν| → ∞. Since C is k-affinoid, there exists
Dh, Nh > 0 such that

‖hνii ‖ < Dh%(hi)
νi ≤ Dhp

νi
i

for νi ≥ Nh, i = 1, . . . , n. This implies the converges since ‖ψ(aν)‖ ≤ ‖aν‖ and ‖aν‖pν → 0
as |ν| → ∞. �

Proof of (2) in Theorem 5.7. Let σ : Z → X be a map induces by ψ : A→ C. Then

AV = A{p−1T}/(gTi − fi).
Note that ψ(g) ∈ C is invertible since |ψ(g)(z)| = |g(σ(z))| 6= 0 for all z ∈ Z. We can use
Lemma 6.21 to lift ψ to

Ψ: A{p−1T} → C with Ψ(Ti) =
ψ(fi)

ψ(g)︸ ︷︷ ︸
hi

.

Note that the lemma does apply to hi because

%(hi) = max
z∈Z
|hi(z)| by BMMP 3.21

= max
z∈Z

|fi(σ(z))|
g(σ(z))

≤ pi since σ(z) ∈ V.

It is clear that Ψ(gTi − fi) = 0, so Ψ induces ψV : AV → C. (We also get uniqueness.) �

6.4. Tate acyclicity. Let X = M(A) be a k-affinoid space. The idea is to prove that

{(V,AV ) | V ⊆ X rational domain}
is a sheaf.

A rough is example is the following. Suppose X = V1∪V2 where Vi are rational. Let fi = AVi
such that f1 = f2 on V1 ∩ V2. Then there exists f ∈ A such that f |Vi = fi.

In general, given a finite covering X = V1∪· · ·∪Vn by rational domains, we get the following
complex:

0 A
∏
i

AVi
∏
i,j

AVi∩Vj · · · (∗)(ϕi)i (ϕi−ϕj)i,j

where ϕi : A→ AVi , ϕi,j : AVi → AVi∩Vj are the natural maps

Theorem 6.22 (Tate’s Acyclicity). The above complex (∗) is exact (as a complex of Banach
A-modules).
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Sketch of proof. Step 1. Use ⊗̂kkr to reduce to the strict case.

Step 2. Reduce to the special covering

X = {|f | ≤ 1} ∪ {|f | ≥ 1} for f ∈ A.

Step 3. Treat this case by hand: show that

0 A A{f} × A{f−1} A{f, f−1} 0

is exact. �

6.5. Affinoid domains.

6.5.1. Monomorphisms and immersions. We review different nortions of embeddings: monomor-
phisms, closed immersions, Weierstrass embeddings, and Runge embeddings.

Definition 6.23. A map Y
ϕ→ X be a monomorphism if whenever

Z Y X
ψ1

ψ2

ϕ

we have that ϕ ◦ ψ1 = ϕ ◦ ψ2 if and only if ψ1 = ψ2.

This is equivalent to the map Y → Y ×X Y being an isomorphism, and hence to the map

B⊗̂AB → B

being an isomorphism.

Definition 6.24. A map Y → X is a closed immersion if the corresponding map A→ B is
an admissible epimorphism.

Example 6.25. For any k-affinoid domain A we have k{r−1T} � A, so X ↪→ E(r) is a
closed immersion.

Definition 6.26. A map Y → X is a Weierstrass embedding if B = AV where V ⊆ X is a
Weierstrass domain.

Example 6.27. For 0 < r < 1, E(r) ⊂ E is a Weierstrass embedding.

Definition 6.28. A map Y → X is a Runge immersion if it factors:

Y X

X ′
closed immersion Weierstrass

Example 6.29. The composition E(r) ↪→ E2(r) → E2(1) for 0 < r < 1 is a Runge
immersion.

Lemma 6.30. A map Y → X is a Runge immersion if and only if the associated map

A
ϕ→ B has dense image.
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Proof. The ‘only’ is implication is clear, since this is true both for Weierstrass embeddings
and for closed immersions.

For the ‘if’ implication, suppose A
ϕ→ B has dense image. Since B is a k-affinoid algebra,

there exists an admissible epimorphism k{r−1T}� B. Applying ⊗̂kA, we get

A{r−1T}� B.

Without loss of generality, (by perturbing the map a little bit) we may suppose that Ti 7→
ϕ(fi) for fi ∈ A. We get a commutative triangle:

A B

A{r−1T}/(Ti − fi)

showing that the associated map Y → X is a Runge immersion. �

Corollary 6.31. The composition of two Runge immersions is a Runge immersion.

Corollary 6.32. Any Runge immersion Y → X is a monomorphism.

Theorem 6.33 (Temkin). If ϕ : Y → X is a monomorphism of k-affinoid spaces, then:

(1) ϕ is injective,
(2) for any y ∈ Y , H(x)→ H(y) is an isomorphism, where x = ϕ(y),
(3) there exists a finite covering X = X1 ∪ . . . ∪Xn by rational domains such that

ϕ−1(Xi)→ Xi is a Runge immersion.

Remark 6.34. This is also true in the strict case, when |k×| 6= {1}.

Proof of Theorem 6.33, parts (1) and (2). Pick y ∈ Y and set x = ϕ(y) ∈ X. Then

ϕ−1(x) ∼= M(Bx) where Bx = H(x)⊗̂AB.
We know that

B⊗̂AB → B is an isomorphism

because ϕ is a monomorphism. Base changing this with A→ H(x), we get that

Bx⊗̂H(x)Bx → Bx

is an isomorphism.

Theorem (Grusan). The seminorm on Bx ⊗H(x) Bx is a norm.

Therefore, Bx ⊗H(x) Bx → Bx⊗̂H(x)Bx is an isometric injection. Hence the composition

Bx ⊗H(x) Bx → Bx

is injective, showing that
(dimH(x) Bx)

2 ≤ dimH(x) Bx,

which is only possible if
dimH(x)Bx = 1.

This shows that the map H(x)→ Bx is an isomorphism. This shows both (1) and (2). �
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We will skip the details of the proof of part (3) of Theorem 6.33, because it would take too
much time. The ingredients are:

• (graded) reduction: A Ã,
• compactness of X, Y .

6.5.2. Affinoid domains. Let X = M(A) as before be a k-affinoid space.

Definition 6.35 (Temkin4). An affinoid domain of X is a pair (V,AV ) such that:

• V ⊆ X is closed,
• AV is a k-affinoid algebra with a morphism A→ AV such that:

(1) the induced map τ : M(AV )→ X has image equal to V ,

(2) every morphism Z
σ→ X of k-affinoid spaces such that σ(Z) ⊆ V factors uniquely

through τ :

Z M(AV )

X

σ τ

or equivalently:

C AV

A

Example 6.36. A rational domain is affinoid by Theorem 6.20.

Exercise. If V is an affinoid domain, M(AV ) → X is a monomorphism. Hint. Use the
universal property above.

Lemma 6.37. Suppose V ⊆ X is an affinoid domain and V ↪→ X is a closed immersion,
then:

(1) U = X \ V is also affinoid,
(2) A ∼= AU × AV ,
(3) U, V ⊆ X are Weierstrass domains.

Sketch of proof. We know that AV = A/I for an ideal I ⊆ A. We use the universal property
of affinoid domains, testing with A → A/I2, which induces M(A/I) = M(A/I2) → M(A)
with image V . We get a morphism

A/I → A/I2,

so I = I2. Then I = Ae is principle where e2 = e and e 6= 0, 1 (as long as V 6= ∅, X).
Therefore,

A ∼= AU × AV
for AU = A(1− e), AV = Ae.

Also, V = {|e| ≤ 1
2
}, U = {|(1− e)| ≤ 1

2
}. �

4Berkovich in [Ber90] had a slightly different definition than Temkin. Eventually, one can show these two
definitions are equivalent.
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Corollary 6.38 (Gerntzen–Grauert Theorem). Any affinoid domain is a finite union of
rational domains.

Proof. By Temkin’s Theorem 6.33, there is a finite covering X = X1 ∪ · · ·Xn by rational
domains such that V ∩Xi → Xi is a Runge immersion. Therefore, we have:

V ∩Xi Xi

Yi

closed immersion
of affinoid

Weierstrass

By Lemma 6.37, V ∩Xi ↪→ Yi is Weierstrass, V ∩Xi ↪→ Xi is also Weierstrass. In particular
V ∩Xi ↪→ Xi is rational, so V ∩Xi ↪→ X is rational. �

If U, V ⊆ X are affinoid domains, then U ∩ V is also affinoid with

AU∩V ∼= AU⊗̂AAV .
Example 6.39. Let k be algebraically closed and trivially valued, |k×| = 1.

Let X = E(r) for 0 < r < 1. Then X ∼= [0, r] (homeomorphic). A rational domain in this
case is the same as a Laurent domain which is a closed interval ( 6= {0}).

Indeed, X = M(k{r−1T}), k{r−1T} = kJT K and it only makes sense to use inequalities
involving T .

If U, V ⊆ X are affinoid domains and U ∩ V = ∅, then U ∩ V is affinoid with

AU∩V = AU × AV .
Definition 6.40. A finite union of affinoid (or rational) domains in X is called special (or
a compact analytic domain).

Definition 6.41. For a special domain V = V1 ∪ · · · ∪ Vn where Vi are rational, define

AV = ker

∏
i

AVi →
∏
i,j

AVi∩Vj

 .

Proposition 6.42.

(1) The ring AV does not depend on the covering.
(2) The assignment V 7→ AV satisfies Tate’s acyclicity (i.e. the conclusion of Theo-

rem 6.22): if X = V1 ∪ · · · ∪ Vn for special domains Vi, then

0 A
∏
i

AVi
∏
i,j

AVi∩Vj · · · (∗)(ϕi)i (ϕi−ϕj)i,j

is exact.
(3) A special domain V is affinoid if and only if AV is a k-affinoid algebra and im(M(AV )→

M(A) = X) = V .

The proof uses Tate’s acyclicity Theorem 6.22 and the universal property of affinoid rational
domains.
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6.6. The structure sheaf for the Berkovich topology. Let U ⊆ X open where X is a
k-affinoid space. Define

OX(U) = lim←−
V⊆U

special

AV .

U

V

This is a filtered limit: given V1, V2 ⊆ U special and x ∈ U , there exists V ⊆ X special
such that Vi ⊆ V and x ∈ intV . Indeed, we may choose a Laurent domain V ′ whose interior
contains x and then set V = V1 ∪ V2 ∪ V .

x

V ′ V1

V2

U

Corollary 6.43. The functor OX is a sheaf of k-algebras.

Proof. By Proposition 6.42 (2), the sequence in the definition of a sheaf is exact for special
domains. Since OX is defined as a filtered limit over special subdomains, it is left-exact, and
hence the sequence remains exact. �
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Example 6.44. Let A = {T1, T2} and X = M(A) = E2 be the unit bidisc. Consider the
Laurent domains:

Vi = {|Ti| = 1} for i = 1, 2.

This is a very rough sketch of this situation.

|T1|

|T2|

V1

V2 V1 ∩ V2

Take V = V1 ∪ V2. Then

AV1 = k{T±1
1 , T2},

AV2 = k{T1, T
±1
2 },

AV1∩V2 = k{T±1
1 , T±1

2 }.
We have that:

AV = ker

(
AV1 × AV2 → AV1∩V2

(f1, f2) 7→ f1 − f2

)
= A

but V ( X. This is the analog of Hartogs phenomenon from several complex variables.

Remark 6.45. We may also define OX(Y ) for the class of analytic subsets Y ⊆ X, including
special domains and open sets. One should think of a special domain as a compact analytic
subset.

7. Local rings and residue fields

Suppose f ∈ OX(U) for U ⊆ X open. We can view f as a function

f : U →
∐
x∈U

H(x)

via identifying f(x) ∈ H(x).

Definition 7.1. The stalk of OX at x is the k-algebra:

OX,x = lim−→
x∈U

U⊆X open

OX(U).

A priori, this definition is rather inconvenient because OX,x is defined as a double limit. One
can, however, check the following facts.

Exercise.

(1) We have that
OX,x ∼= lim−→

V

AV

where the limit is over affinoid neighborhoods of x in X (i.e. x ∈ V int).
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(2) The ring OX,x is local with maximal ideal

mx = {f ∈ OX,x | f(x) = 0}.

Definition 7.2. The residue field κ(x) is the valued field OX,x/mx.

In general, κ(x) is not complete, but κ(x) ⊆ H(x) is dense.

Example 7.3. Let k be algebraically closed, X = E(1), and x ∈ X. The residue field will
depend on the Type of the point.

When x is of Type 1, assume without loss of generality that x = 0. There is a neighborhood
basis E(r) for 0 < r ≤ 1.

p(E(1))

0

E(r)

Then

OX,x =

{
f =

∞∑
0

aiT
i

∣∣∣∣∣ lim
i→∞
|ai|1/i <∞

}
and hence

κ(x) = H(x) = k.

When x is of Type 3, assume without loss of generality that x = p(E(%)) for % ∈ (0, 1)\|k×|.
There is a basis of Laurent neighborhoods of x:

{r ≤ |T | ≤ s} for 0 < r < % < s < 1.

We then have that:

OX,x =

f =
∞∑
−∞

aiT
i

∣∣∣∣∣∣ lim sup
i→∞

|ai|1/i < %−1, lim sup
i→∞

|a−i|1/i <∞

 .
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p(E(1))

0

x

{r ≤ |T | ≤ s}

r

%

s

Since this is already a field,

κ(x) = OX,x.
Finally:

H(x) =

f =
∞∑
−∞

aiT
i | lim

i→±∞
|ai|%i = 0

 .

For Type 2 and Type 4 points, it is hard to write down explicitly what the local rings and
residue fields are.

7.1. Kernel map. Recall the kernel map:

ker : X = M(A)→ X = Spec(A)

x 7→ ker(| · |x).

Example 7.4. If X = E(r) and k is algebraically closed, then

• if x is of Type 1, ker(x) = mx,
• if x is of Type 2, 3, or 4, ker(x) = (0) is the generic point of X.

The idea is to compare OX,x to OX,x using the kernel map.

Theorem 5.36 for strictly k-affinoid spaces generalizes to k-affinoid spaces.

Theorem 7.5. The map ker : X → X is surjective.

We will work towards the proof of this theorem. This will require some setting up.
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7.1.1. Grusan’s results. To prove this theorem, we will need some results on Banach spaces
due to Grusan (a little more than Theorem 4.14).

Lemma 7.6. If V is a NA k-Banach space5, then for any α > 1, there is an α-orthonormal
basis (vi)i∈I for V : for every v ∈ V , there is a unique representation

v =
∑
i∈I

λivi λi ∈ k

such that
α−1 max

i∈I
|λi|‖vi‖ ≤ ‖v‖ ≤ max

i
|λi|‖vi‖.

Proof. This follows from the Gram-Schimdt algorithm. �

Theorem 7.7 (Grusan).

(1) If V , W are NA k-Banach spaces, then the seminorm on V ⊗k W is a norm is a
norm, i.e. V ⊗k W ↪→ V ⊗̂kW .6

(2) If V ′ ↪→ V and W ′ ↪→ W are isometric embeddings of NA k-Banach spaces, then
both

V ′ ⊗k W ′ ↪→ V ⊗k W
and

V ′⊗̂kW ′ ↪→ V ′⊗̂kW
are isometries.

(3) If W is an NA k-Banach space, then a sequence

V ′ → V → V ′′

of k-Banach spaces is exact (and hence admissible) if and only if

V ′⊗̂kW → V ⊗̂kW → V ′′⊗̂kW
is exact.

We omit the proof of this theorem, but all parts follow by using the basis from Lemma 7.6.

7.1.2. Finite Banach modules. If A is a Banach ring, a Banach A-module M is finite if there
is an admissible map An �M for some n ≥ 0.

Theorem 7.8. If A is a Noetherian Banach ring (e.g. A is a k-affinoid algebra), then:

(1) the forgetful functor

{finite Banach A-modules} → {finite A-modules}
is an equivalence of categories,

(2) any A-linear morphism M → N between finite Banach A-modules is admissible,

(3) if M , N are finite Banach A-modules, then M ⊗A N
∼=→M⊗̂AN ,

(4) if M is a finite Banach A-module, and B is a Noetherian Banach A-algebra, then

M ⊗A B
∼=→M⊗̂AB.

5A NA k-Banach space is the analog of a Banach space. This result is the substitute for existence of an
orthonormal basis.

6This was Theorem 4.14.
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We omit the proof of this theorem. It is not hard, but takes a little bit of time to write
down.

7.1.3. Ground field extension. Let K/k be a NA extension. Let A be a Banach k-algebra
(e.g. a k-affinoid algebra) and AK = A⊗̂kK (if A was a k-affinoid algebra, this is a K-affinoid
algebra).

The map k ↪→ K induces an isometry A ↪→ AK by Grusan’s Theorem 7.7.

Lemma 7.9. If A is a k-affinoid, then the map A → AK is faithfully flat (in the algebraic
sense).

Proof. We know that A and AK are Noetherian Banach rings (Proposition 6.7). It suffices
to show that a sequence

(3) M ′ →M →M ′′

of finite A-modules is exact if and only if

(4) M ′ ⊗A AK →M ⊗A AK →M ′′ ⊗A AK

is exact.

Since A is a Noetherian Banach ring, there is a unique structure of finite Banach A-modules
on M ′, M , M ′′ by Theorem 7.8 (1). Define MK = M⊗̂kK. Then

MK
∼= M⊗̂AAK ∼= M ⊗A AK

where the last isomorphism follows from Theorem 7.8 (4) because AK is Noetherian. (Since
An �M is amidssible, AnK �M⊗̂AAK is also admissible.)

The analogous statements hold for M ′ and M ′′.

Admissibility in (3) and (4) is automatic by Theorem 7.8 (2), since all modules are finite.

The result now follows from Grusan’s Theorem 7.7 (3). �

7.1.4. Kernel is surjective. We can finally prove that kerX → X = Spec(A) is surjective if
X = M(A) is a k-affinoid space.

Proof of Theorem 7.5. Recall that we proved this whenX is strictly k-affinoid (Theorem 5.36),
using Noether Normalization Theorem 5.18. We reduce to this case.

In general, pick k′/k such that k′ is non-trivially valued and A′ = A⊗̂kk′ is strictly k′-affinoid.
Set X ′ = M(A′) and X′ = Spec(A′). We have a commutative diagram:

X ′ X

X X

ker′ ker
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By Theorem 5.36, X ′ → X′ is surjective.

Since the map A → A′ is faithfully flat by Lemma 7.9, X′ → X is surjective. By the
commutativity of the diagram, X → X is also surjective. �

7.2. Properties of the local rings. Let X be a k-affinoid space and x ∈ X = M(A). Let
X = Spec(A) and ξ = ker(x) ∈ X. We will prove the following results:

(1) OX,x is Noetherian, faithfully flat over OX,ξ,
(2) OX,x is Henselian,
(3) OX,x is excellent.

We will prove (1) and (2) and likely skip (3).

Theorem 7.10. The ring OX,x is Noetherian and faithfully flat over OX,ξ.

The idea of the proof is to:

• first do the case when X is strictly k-affinoid at x ∈ Xrig is a rigid point,
• use ground field extension to reduce to the above case.

7.2.1. Local rings at rigid points. Suppose |k×| 6= {1} and X is strictly k-affinoid. Suppose
that x ∈ Xrig (i.e. [H(x) : k] <∞). It corresponds to a maximal ideal m of A.

Recall that

OX,x = lim−→
V 3x

strictly k-affinoid

AV .

Fix a strictly k-affinoid neighborhood V of x in X. The natural map

ϕ : A→ AV

induces the map

ϕ∗ : M(AV )︸ ︷︷ ︸
Y

→ X,

a homeomorphism onto V . Note that ϕ∗(Y rig) ⊆ Xrig.

Lemma 7.11.

(1) We have that Y rig = (ϕ∗)−1(Xrig).
(2) If n ⊆ AV is a maximal ideal, and m = ϕ−1(n) ⊆ A, then

• n = ϕ(m)AV (= mAV by definition),

• for all j ≥ 1, A→ AV induces A/mj
∼=→ AV /n

j.

Sketch. Part (1) follows from H(x)
∼=→ H(ϕ∗(x)) and the criteria{

x ∈ Xrig if and only if [H(x) : k] <∞,
y ∈ Y rig if and only if [H(y) : k] <∞.

For part (2), we use the universal property twice. We start with the commutative diagram:
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A AV

A/mj AV /m
jAV

ϕ

π $α

σ

The dotted map α such that the top triangle commutes exists by the universal property,
because

Im(π∗) = {x} ⊆ V.

A similar argument shows that the bottom triangle commutes (by uniqueness), using:

A AV

AV /mjAV

ϕ

σ◦π

We play around with this to show that σ is an isomorphism. Applying this with j = 1 gives
the first statement. �

Recall that x ∈ Xrig ↔ corresponds to a maximal ideal m ⊆ A.

Corollary 7.12. We have that:

(1) mx = mOX,x,
(2) A→ OX,x factors through the localization Am,

(3) A/mj
∼=→ (Am)(mAm)j

∼=→ OX,x/mj
x for all j > 1.

We look at the completion with respect to maximal ideals. (This has a seminorm rordm for
0 < r < 1.) Write

Â, Âm, ÔX,x
for the completions.

Corollary 7.13. We have that:

(1) Â
∼=→ Âm

∼=→ ÔX,x,

(2) Am ↪→ Âm and OX,x ↪→ ÔX,x.

Proof. Part (1) follows immediately from Corollary 7.12. In part (2), the assertion for Am

follows by Krull’s intersection theorem since Am is local and Noetherian.

It remains to check the assertion for OX,x. We must prove that if f ∈ OX,x satisfies f ∈
mjOX,x for all j ≥ 1 then f = 0. We know that f ∈ AV for a strictly affinoid neighborhood
V of x. Without loss of generality, V = X and AV = A. We know that

OX,x/mjOX,x ∼= A/mj

for all j. Hence f ∈ mj for all j. This shows that f = 0 in Am by Krull. Hence f = 0 in
OX,x. �

Corollary 7.14. The map A→ AV is flat for any strictly affinoid domain V ⊆ X.
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Proof. It suffices to show that the map Am → (AV )mAV is flat for every maximal ideal m. It

then suffices (by Noetherianity) to show this on the completions: Âm → ̂(AV )mAV is flat for
all m. This map is an isomorphism by Corollary 7.13. �

Theorem 7.15. For a strictly k-affinoid space X, OX,x is Noetherian for x ∈ Xrig.

Sketch of proof. Step 1. We have that ÔX,x ∼= Â is Noetherian since A is Noetherian. We

also know that OX,x ↪→ ÔX,x.

Step 2. Every finitely generated ideal a ⊆ OX,x is mx-adically closed. (Without loss of
generality, a ⊆ A and OX,x/aOX,x ∼= OY,y separated.)

Step 3. Consider a chain a1 ⊂ a2 ⊆ · · · of finitely generated ideals of OX,x. We then have

a chain â1 ⊂ â2 ⊆ · · · ⊆ ÔX,x. Since ÔX,x is Noetherian, âm+1 = âm for m� 0.

Since OX,x ↪→ ÔX,x and am is closed, we have that am = OX,x ∩ âm, so am+1 = am for
m� 0. �

Remark 7.16. The fact that the ring OX,x is faithfully flat over OX,ξ = Am follows from

ÔX,x ∼= Âm.

We have completed the proof of Theorem 7.10 in the strictly k-affinoid, rigid point case.

7.2.2. General case. Suppose X is k-affinoid and x ∈ X. Consider ξ = ker(x) ∈ X.

We can pick an extension k′/k and a point x′ ∈ X ′ ∈ M(A⊗̂kk′) mapping to x ∈ X such
that

• X ′ is strictly k′-affinoid,
• x′ ∈ (X ′)rig.

We have a commutative diagram:

OX′,x′ OX,x

OX′,ξ′ OX,ξ

We can now complete the proof of Theorem 7.10: OX,x is Noetherian and OX,ξ → OX,x is
faithfully flat.

Proof of Theorem 5.4. By Lemma 7.9, the maps

OX,x → OX′,x′
OX′,ξ → OX,ξ

are both faithfully flat. Since we know that OX′,x′ → OX′,ξ′ is faithfully flat by Remark 7.16,
this shows that OX,ξ → OX,x is faithfully flat by the commutative square above.

We just need to show that OX,x is Noetherian. We use a similar argument as above, using
a = aOX′,x′ ∩ OX,x where a is a finitely-generated ideal in OX,x. �
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8. Global Berkovich spaces

Let k be a NA field.

Definition 8.1. The category of k-affinoid spaces consists of:

• objects: X = M(A) where A is a k-affinoid algebra,
• morphisms: M(B) = Y → X = M(A) induced by a map A→ B of k-algebras.

It has

• fiber products : Y ×X Z = M(B⊗̂AC),
• ground field extensions : for an extension K/k, XK = M(A⊗̂kK).

Definition 8.2. A Berkovich space X has a structure sheaf OX . It is defined by

• OX(V ) = AV if A ⊆ X is an affinoid domain,

• OX(V ) = ker

(∏
i

AVi →
∏
i,j

AVi∩Vj

)
if V = V1 ∪ · · ·Vn is a special domain,

• OX(V ) = lim←−
W⊆V special

OX(W ) for a general open subset V ⊆ X.

In this section, we will glue together k-affinoid spaces to get global Berkovich spaces. There
are two different approaches:

(1) Locally ringed spaces : roughly, a Berkovich space is a ringed space (X,OX) which is
locally isomorphic to (M(A),OM(A)) where A is a k-affinoid algebra.

(2) Atlases : roughly, a Berkovich space is a topological space X with an atlas of open
subsets U such that each U is homemorphic to M(A) for a k-affinoid algebra A and
the homeomorphisms are compatible on intersections.

Example 8.3 (Analytification). If X is an algebraic variety, then there is a Berkovich space
Xan associated to it (in the sense of (1)).

Example 8.4. Consider X = {|T1| = 1}∪ {|T2| = 1} ⊆ E2. This is an analytic space in the
sense of (2) but not in the sense of (1).

We will first follow the second approach.

8.1. Nets. We discuss the notion of nets7.

Let X be a locally Hausdorff space, i.e. a space where every point has a neighborhood which
is Hausdorff.

Example 8.5. A space which is locally Hausdorff but not Hausdorff is the interval [0, 1]
with two copies of 1, i.e.

7In the theory of Berkovich spaces, there are two meanings of the word net. Sometimes, when one works
with Berkovich spaces which are not countable. Then there is a topological notion of a net. This is not what
we mean here.



MATH 715: BERKOVICH SPACES 63

There are Berkovich spaces which are only locally Hausdorff, so this is the generality we
want to work in.

Definition 8.6. A quasinet on X is a collection τ of compact subsets V ⊆ X such that
every point x ∈ X has a neighborhood of the form V1 ∪ · · · ∪ Vn where Vj ∈ τ and x ∈ Vj for
all j.

Example 8.7. If X = [−1, 1], we may take

τ = {[−1, 0], [0, 1]}.
Even though 0 is not in the relative interior of either of the sets, this set still forms a quasinet.

Definition 8.8. A quasinet τ on X is a net if for all U, V ∈ τ , the collection

τ |U∩V = {W ∈ τ | W ⊆ U ∩ V }
is a quasinet on U ∩ V .

Example 8.9. If X = [−1, 1], the quasinet

τ = {[−1, 0], [0, 1]}
above is not a net, because τ |[−1,0]∩[0,1] = ∅ is not a quasinet on [−1, 0]∩[0, 1] = {0}. However,
both

τ = {[−1, 1]}
and

τ = {[−1, 0], [0, 1], {0}}
is a net.

Let k be an NA field and X be locally Hausdorff.

Definition 8.10. A k-analytic atlas A on X consists of:

(1) a net τ on X,
(2) for any V ∈ τ , a k-affinoid algebra AV with a homeomorphism V ∼= M(AV ),
(3) for any U, V ∈ τ such that U ⊆ V , we have a morphism

αV/U : AV → AU

that identifies U with an affinoid domain in V .

Remark 8.11. It is automatically ture that if U ⊆ V ⊆ W , then

αW/U = αV/U ◦ αW/V .

Definition 8.12. The triple (X, τ, A) is a k-analytic space.

One can also define a strictly k-analytic space (at least when k is non-trivially valued).

Example 8.13. Suppose X = M(A) is a k-affinoid space and let

τ = {all affinoid domains in X}.
Then X with the natural atlas is a k-analytic space.
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Example 8.14. Suppose X = M(A) is a k-affinoid space and let

τ = {X}.
Then X with the atlas AX = A is a k-analytic space.

We want these two to be isomorphic. We hence must define morphisms.

There are several approaches to this as well. The one which is useful in practice is the
maximal atlas approach. There are two steps:

(X, τ, A) (X, τ,A) (X, τ̂ , A).

Step 1. Given τ we define:

τ = {W ⊆ X compact | W is an affinoid domain in some V ∈ τ}
It is not completely trivial to check that (X, τ,A) is a k-analytic space.

This step will take us from Example 8.13 to Example 8.14. However,

τ = τ ,

so this will not do anything to Example 8.14).

Step 2. We say that W ⊆ X is τ -special if W is compact and

W = W1 ∪ · · · ∪Wn

such that Wi,Wi ∩Wj ∈ τ for all i, j and

AWi
⊗̂AWj

� AWi∩Wj

is an admissible epimorphism. We can then check that

AW = ker

∏
i

AWi
→
∏
i,j

AWi∩Wj


is well-defined (independent of the choice of covering). We then get a map W →M(AW ).

Now, let τ̂ be the collection over τ -special subsets W ⊆ X such that

(1) AW is k-affinoid,

(2) W
∼=→M(AW ),

(3) there is a τ -special covering W = W1 ∪ · · · ∪Wn such that Wi ⊆ W is an affinoid
domain for all i.

We can check that (X, τ̂ , A) is an atlas and ˆ̂τ = τ̂ . This is called the maximal atlas.

The elements of τ̂ are called affinoid domains.

Example 8.15 (The projective line). As over C, the idea is to glue to copies of the (closed)
unit disc along the unit circle.

We describe it as a k-analytic space using a (non-maximal) atlas

τ = {X1, X0, X10 = X01}.
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∞

0

∞

0

over C

over k

X0

X1

X01 = X10

We define

X1 = M(k{S1})
X0 = M(k{S0})
X10 = {|S1| = 1} ⊆ X1

= M(k{S±1
1 })

X01 = {|S0| = 1} ⊆ X0

= M(k{S±1
0 })

where X10 is identified with X01 by

X10

∼=→ X01,

S1 7→ S−1
0 .
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In this example,

τ = {affinoid domains contained in X0 or X1}
τ̂ contains, for example, {1.2 ≤ |S1| ≤ 2}

Example 8.16. One can glue n+ 1 copies of the unit polydisc to construct Pnk .

Example 8.17 (Affine space An
k). At the beginning of the class, we discuss the Berkovich

affine line (Example 1.11). In general, one can similarly define the general affine space and
check that it is in fact a Berkovich space with the above definition.

As a set,

An
k = {semivaluations onk[T ] = k[T1, . . . , Tn] that extend the valuation on k}

The topology is the weakest so that

x 7→ |f(x)|
is continuous for all f ∈ k[T ].

A net is given by

τ = {E(r) | r ∈ (R×+)n}
where

E(r) = {x ∈ An
k | |Ti(x)| ≤ ri}.

The atlas is given by

AE(r) = k{r−1T}.

A picture was provided in Example 1.11. The maximal atlas τ̂ consists of all compact subsets
of A1

k that are affinoid domains in some E(r).

8.2. Morphisms. There are two approaches to this:

(1) localization,
(2) maximal atlases.

8.2.1. Localization approach.

Definition 8.18. A strong morphism ϕ : (X, τ, A)→ (X ′, τ ′, A′) is a continuous map

ϕ : X → X ′

such that:

• for any V ∈ τ , there exists V ′ ∈ τ ′ such that ϕ(V ) ⊆ V ′,
• whenever ϕ(V ) ⊆ V ′, there exists a morphism AV ′ → AV ,
• the morphisms are compatible:

U U ′

V V

 

AU A′U ′

AV A′V ′
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We can check that one can compose strong morphisms.

However, we will eventually have to allow a weaker notion of a morphism. Specifically, the
first condition above needs to be relaxed.

Definition 8.19. A strong morphism ϕ is a quasi-isomorphism if

• ϕ : X → X ′ is a homeomorphism,
• whenever ϕ(V ) ⊆ V ′,

ϕV/V ′ : (V,AV )→ (V ′, AV ′)

identifies V with an affinoid domain in V ′.

Definition 8.20. The category of k-analytic spaces is the localization of the category of
k-analytic spaces with strong morphisms with respect to quasi-isomorphisms.

In other words, we formally invert quasi-isomorphisms in this category.

Example 8.21. If X = M(A) is k-affinoid, then the strong morphism

(X, {X}, A)→ (X, {all affinoid domains}, A)

is a quasi-isomorphism.

8.2.2. Maximal atlases approach. A morphism (X, τ, A)
ϕ→ (X ′, τ ′, A′) where τ and τ ′ are

maximal atlases is

• a continuous map ϕ : X → X ′ such that for any x ∈ X, there exist V1, . . . , Vn ∈ τ
and V ′1 , . . . , V

′
m ∈ τ ′ such that

– x ∈ V1 ∩ · · · ∩ Vn,
– x′ = ϕ(x) ∈ V ′1 ∩ · · · ∩ V ′m,
– V1 ∪ · · ·Vn is a neighborhood of x in X,
– V ′1 ∪ · · ·V ′m is a neighborhood of x′ in X ′,
– ϕ(Vi) ⊆ V ′i ,

• a system of compatible morphisms

(V,AV )→ (V ′, A′V ′)

whenever V ∈ τ , V ′ ∈ τ ′ and ϕ(V ) ⊆ V ′.

Furthermore, ϕ is an isomorphism if and only if

• ϕ is a homeomorphism X → X ′,
• ϕ(τ) = τ ′,

• for all V ∈ τ , (V,AV )
∼=→ (V ′, A′V ′) where V ′ = ϕ(V ).

Remark 8.22. One can check that the functor

k-Aff→ k-An

X = M(A) 7→ (X, {X}, A)

is fully faithful.

Definition 8.23. A k-analytic space is good if every point has an affinoid neighborhood.
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Example 8.24. Any k-affinoid space is good.

Example 8.25. The k-analytic spaces Ak
n, Pkn and, more generally, any analytification of a

variety are all good.

Example 8.26. The space X = {|T1| = 1} ∪ {|T2| = 1} ⊆ E2(1) is not good.

8.3. Analytic domains.

Definition 8.27. A subset Y of a k-analytic space X is analytic if τ̂ |Y is a net on Y .
Equivalently, for any y ∈ Y , there exist affinoid domains V1, . . . , Vn in X such that:

• y ∈ Vi ⊆ Y for all i,
• V1 ∪ · · · ∪ Vn is a neighborhood of y in Y .

One sometimes says that we have a G-covering of Y (see below).

Remark 8.28.

(1) Affinoid domains are analytic.
(2) If Y1, Y2 are analytic, then also Y1 ∩ Y2 is analytic.

(3) If X ′
ϕ→ X is a morphism and Y ⊆ X is analytic, then ϕ−1(Y ) ⊆ X ′ is also analytic.

(4) If Y ⊆ X is an analytic domain, then (Y, τ̂ |Y , A) is also a k-analytic space. The map
Y ↪→ X has a universal property:

Y X

Z

as the universal property of open immersions.

8.4. G-topology and the structure sheaf. Any k-analytic space carries a G-topology
(Grothendieck topology):

• admissible open sets are analytic domains,
• admissible coverings (G-coverings) are quasinets.

We define the structure sheaf OXG in the G-topology. We define

OXG(Y ) = Homk-An(Y,A1
k),

Remark 8.29. If Y = V is an affinoid domain, then

Hom(Y,A1
k) = AV .

Hence this definition is consistent with the previous definition.

If X is good, we can restrict OXG to open sets to get a sheaf OX given by

OX(Y ) = Hom(Y,A1
k)

for Y ⊆ X open in the usual topology.

Fact 8.30 (Ducros). We have that:

• OXG is coherent,
• OX is coherent if X is good.
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8.5. Gluing. The idea is that we can glue a family (Xi)i∈I of analytic spaces along analytic

domains Xij

∼=→ Xji in two cases:

(1) if Xij ⊆ Xi is open for all i, j,
(2) if Xi ⊆ X is closed and for all i, we have that Xi,j = ∅ almost all j.

The properties of the resulting space X:

(1) Xi ⊆ X is open for all i,
(2) Xi ⊆ X is closed for all i; if the Xi are Hausdroff, so is X.

We omit the details of this construction.

Example 8.31 (The projective space, first construction). The idea is to glue copies of En

to get Pnk for 0 ≤ i ≤ n. Specifically:

Xi = M(k{S0, . . . , Ŝi, . . . , Sn}),
Xij = {|Sj| = 1} for i 6= j.

For example, Xi0 = M(k{S±1
0 , S1, . . . , Ŝi, . . . , Sn}). Moreover:

Xij

∼=→ Xji

Sj 7→ S−1
i

S` 7→ S` for ` 6= i, j.

This is exactly what we did in Example 8.15 in the case n = 1. A sketch of the projective
space and the gluing was shown there.

Example 8.32 (The projective space, second construction). We glue n + 1 copies of affine
space An

k . Specifically:

Xi = {semivaluations on k[T0, . . . , T̂i, . . . , Tn] extending the valuation on k} for 0 ≤ i ≤ n,

Xij = {Si 6= 0} for i 6= j

⊆ Xi open.

As before, the identification Xij with Xji is given by Si 7→ S−1
j .

When n = 1, the picture of X0 and X1 is as follows.
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S1 = 0

S1 =∞ X1

S2 = 0

S2 =∞X2

They glue together to P1
n:

Example 8.33. Consider a trivially valued field k, i.e. |k×| = {1}. For 0 < r < 1, we glue
two copies of

E(r) = M(k{r−1T}) ∼= [0, r]

along the open subsets {T < r} ∼= [0, r). We get:

i.e. Example 8.5 of a space which is locally Hausdorff but not Hausdorff.

8.6. Fiber products. Given Y → X and X ′ → X, we can define fiber products as a
pullback in the category of k-analytic spaces:

Y ×X X ′ X ′

Y X.

Example 8.34. We have that Am
k ×M(k) An

k = Am+n
k .
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In the affinoid case, Y ×X X ′ = M(B⊗̂AA′). In general, we use gluing to construct the fiber
products.

8.7. Ground field extensions. Given a k-analytic space and a NA extension K/k, we get
a K-analytic space XK .

In the affinoid case, if X = M(A), then XK = M(A⊗̂kK). In general, we construct them
by gluing.

8.8. Complete residue field. Given x ∈ X, we may associate to it the complete residue
field H(x). We may define it by choosing an affinoid neighborhood x ∈ V ⊆ X and setting

H(x) = HV (x).

8.9. Fibers. Given ϕ : Y → X and x ∈ X, we may view the fiber ϕ−1(x) as anH(x)-analytic
space. Indeed,

ϕ−1(x) = YH(x) ×XH(x)
M(H(x)).

Example 8.35. Consider the projection onto the first coordinate π : E2
k → Ek. Then

π−1(x) ∼= EH(x)

A very schematic picture is:

Ek

EH(x)

8.10. Finite morphisms and closed immersions. In the affinoid case, consider a mor-
phism of k-affinoid spaces M(B)→M(A).

We say that ϕ is a

{
closed immersion

finite
if the mapA→ B is

{
an admissible epimorphism

is finite.

Recall that A→ B is finite if there exists an admissible epimorphism An � B.

Proposition 8.36. If ϕ : Y → X is a morphism of k-analytic spaces, the following are
equivalent:

(1) for any affinoid domain V ⊆ X, the induced map ϕ−1(V )→ V is a finite morphism
(respectively, closed immersion) of k-affinoid spaces,

(2) for any x ∈ X, there exist affinoid domains V1, . . . , Vn ⊆ X such that x ∈ Vi for all
i, V1 ∪ · · · ∪ Vn is a neighborhood of x in X, and ϕ−1(Vi)→ Vi is a finite morphism
(respectively, closed immersion) of k-affinoid spaces for all i.

Definition 8.37. If ϕ satisfies the equivalent properties in the proposition, we say it is finite
(repsectively, a closed immersion).
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Sketch of Proof. It is clear that (1) implies (2). We give a sketch of the proof that (2)
implies (1). The set

τ = {V ⊆ X affinoid domain such that ϕ−1(V )→ V is finite}

is a net. Now, suppose V ⊆ X is an affinoid domain. We must show that ϕ−1(V ) is an
affinoid domain and AV → Aϕ−1(V ) is finite.

For some Vi ∈ τ , we have that V ⊆ V1 ∪ · · ·Vn. Then

V = U1 ∪ · · ·Um
for some affinoid domains Ui ⊆ Vj(i) for some j(i). We construct Aϕ−1(V ) using Kiehl’s
Theorem 8.38. �

Theorem 8.38 (Kiehl). Suppose:

• X = M(A),
• X = V1 ∪ · · · ∪ Vn for affinoid domains Vi ⊆ X,
• for each i, we have a finite (Banach) AVi module Mi,

• for all i, j, we have isomorphisms αi,j : Mi ⊗AVi AVi∩Vj
∼=→Mj ⊗AVj AVi∩Vj such that:

αij|W = αj`|W ◦ α`i|W for every i, j, `, where W = Vi ∩ VjV`.

Then there is a finite A-module M that induces the Mi and the maps αi,j.

The proof of this theorem is similar to Tate’s Acyclicity Theorem 6.22: one reduces to a
simple covering by two Laurent domains of a special type.

Definition 8.39. A map ϕ : Y → X is a locally closed immersion if every point x ∈ X has
an open neighborhood U 3 x such that ϕ−1(U)→ U is a closed immersion.

Definition 8.40. A map Y → X is seperated (respectively, locally separated) if the diagonal
map Y → Y ×X Y is a closed immersion (respectively, locally closed immersion).

Proposition 8.41. For ϕ : Y → X,

(1) if ϕ is separated, the associated map ϕ : |Y | → |X| between the underlying topology
spaces is Hausdorff,

(2) the converse is true if ϕ is locally separated.

A map ϕ : Y → X between topological spaces is Hausdorff if for any y1, y2 ∈ Y such that
ϕ(y1) = ϕ(y2) ∈ X, there exist open subsets Ui 3 yi such that U1 ∩ U2 = ∅.

We omit the proof of this proposition.

8.11. Proper morphisms. What does it mean for a map ϕ : Y → X to be proper?

• In algebraic geometry, a morphism is proper if it is separated and universally closed.
• In complex analysis, a morphism is proper if the preimage of any compact set is

compact.
• For Berkovich spaces, we will try to replicate the complex-analytic definition.
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Definition 8.42. Let ϕ : Y → X be a continuous map of topological spaces. Then ϕ is
compact if and only if the preimage of any compact subset of X is compact in Y .

Example 8.43. The spaces X = E1
k , P1

k are compact, i.e. the maps X →M(k) are compact.

We want:

• the projective spaces P1
k to be proper,

• the disk E1
k should not be proper; it has boundary.

The following definition is subject to introducing the notion of relative boundary.

8.11.1. Relative interior and boundary.

Definition 8.44. A morphism ϕ : Y → X of k-analytic spaces is proper if:

(1) ϕ is compact,
(2) ϕ is boundaryless, i.e. ∂(Y/X) = ∅.

Given a morphism Y → X of k-analytic spaces, we want to define:

• Int(Y/X) ⊆ Y relative interior,
• ∂(Y/X) ⊆ Y relative boundary.

When X = M(k), we simply write Int(Y ) and ∂(Y ).

We first define these notions when X, Y are k-affinoid. Let us first discuss what properties
we want these sets to have.

Desirable features:

• Int(Y/X) ⊆ Y is open and ∂(Y/X) = Y \ Int(Y/X) is closed.
• ∂(Y/X) = ∅ when Y → X is a closed immersion or a finite morphism.
• ∂Y 6= ∅ if dimY > 0 (although we have not really defined dimY ).

• Transitivity: if Z
ψ→ Y → X are morphisms, then

Int(Z/X) = Int(Z/Y ) ∩ ψ−1(Int(Y/X)).

• As a consequence: if ϕ : Y → Y is an automorphism, then

ϕ−1(Int(Y )) = Int(Y ),

ϕ−1(∂(Y )) = ∂(Y ).

Let us now discuss a motivating example.

Example 8.45. Consider Y = Ek = M(k{T}). What is ∂Y ?

Guess 1. ∂Y = {|T | = 1} ⊆ Y . However, this is not invariant under T 7→ T + a for
a ∈ k◦ \ k◦◦.

Guess 2. ∂Y = {Gauss points}. This is correct!
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Definition 8.46. Consider ϕ : Y → X induced by a map A → B. Then y ∈ Int(Y/X) if
and only if there is an admissible epimorphism

A{r−1
1 T1, . . . , r

−1
n Tn}� B

such that

|Ti(ψ(x))| < ri for 1 ≤ i ≤ n.

This is illustrated by the following picture:

y
Y = M(B)

ϕ
X = M(A)

x = ϕ(y)

EX(r) = M(A{r−1T})

ψ

ψ(y)

max
i

|Ti|
ri

= 1→

Definition 8.47. The interior of ϕ : Y → X is Int(Y/X). The relative boundary of ϕ : Y →
X is ∂(Y/X) = Y \ Int(Y/X).

It is clear that the interior Int(Y/X) is open in Y . Therefore, ∂(Y/X) is open in Y .

Example 8.48. Suppose k is algebraically closed. Let Y = Ek and X = M(k). If y is not
the Gauss point, then there exists a ∈ k× such that |(T − a)(y)| < 1. We can hence pick
ψ : Y → Ek induced by T 7→ T − a to check that∂Y = {Gauss point}.

Proposition 8.49. Consider ϕ : Y → X associated to a map A→ B. Let y ∈ Y . Then the
following are equivalent:

(1) y ∈ Int(Y/X),
(2) for any morphism A{r−1T} → B extending A→ B, we can find

P = Tm + a1T
m−1 + · · ·+ am ∈ A[T ]

such that
• ϕ(ai) < ri for i = 1, . . . ,m,
• |P (ψ(y))| < rm, where ψ : Y → EX(r) is induced by A{r−1T} → B.

Moreover, if X, Y are strictly k-affinoid, then (1) and (2) are also equivalent to

(3) the ring χ̃y(B̃) is finite over χ̃x(Ã), where:
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B H(y)

A H(x)

χy

χx

B̃ H̃(y)

Ã H̃(x)

χ̃y

χ̃x

Remark 8.50. There is a version of (3) for general k-affinoid spaces. It uses graded reduc-
tion.

Remark 8.51. If Y = Ek, X = M(k), then (2) says that the image of y under ψ : Ek →
Ek(r) is not equal to the Gauss point.

8.11.2. Reduction map and the interior. Let X = M(A) be a strictly k-affinoid space. Con-
sider

X̃ = Spec(Ã).

We have a reduction map

red: X → X̃

defined by: χx : A → H(x) induces χ̃x : Ã → H̃(x); then redx = ker(χ̃x), which is a prime
ideal.

Theorem 8.52 (Berkovich, Tate).

• The reduction map red: X → X̃ is surjective.

• The reduction map red: Xrig → X̃cl is surjective.

Corollary 8.53. If Y = M(B) is strictly k-affinoid, then y ∈ Int(Y ) if and only if red(y) ∈
Ỹ is a closed point.

Proof. Here, A = k, Ã = k̃. Using Proposition 8.49 (3), y ∈ Int(Y ) if and only if χ̃y(B̃) is

finite over k̃. By nullstellensatz, this is equivalent to ker(χ̃y) being a maximal ideal. �

Example 8.54. Consider Y = Ek. Then the branches coming down from the Gauss point
are in ‘1-1’ correspondence with the closed points of A1

k̃
.

8.11.3. Some further properties. We have that:

(1) Int(Y/X) = Y if and only if the morphism Y → X is finite,
(2) if Y ↪→ X is an affinoid domain, then Int(Y/X) is equal to the topological interior,

(3) if Z
ψ→ Y → X are maps, then Int(Z/X) = Int(Z/Y ) ∩ ψ−1(Int(Y/X)),

(4) if X =
⋃
i

Xi is a finite covering by affinoid domains and Yi = ϕ−1(Xi), then

∂(Y/X) =
⋃

∂(Yi/Xi).

8.11.4. Global versions.

Definition 8.55. If ϕ : Y → X is a morphism of k-analytic spaces, then y ∈ Int(Y/X) if
for every affinoid domain U ⊆ X such that x = ϕ(y) ∈ U , there exists an affinoid domain
V ⊆ ϕ−1(U) such that y ∈ Int(V/U).

We call Int(Y/X) the relative interior and ∂(Y/X) = Y \ Int(Y/X) the relative boundary.
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Definition 8.56. If ∂(Y/X) = ∅, the morphism Y → X is boundaryless or closed.

Remark 8.57. The properties (1)–(4) above show that the global definition is compatible
with the local ones. Also, some versions of (2)–(4) still hold globally.

Examples 8.58. Both An
k and Pnk are boundaryless (where X = M(k)).

We can finally state the proper definition of proper morphisms.

Definition 8.59. A morphism Y → X of k-analytic spaces is proper if it is compact and
boundaryless.

Note the a proper morphism is separated.

Example 8.60. Glue to copies of M(k{S}), M(k{T}) of E along the unit circle {|S| =
1} = {|T | = 1}.

If we use the identification S = T−1, we get P1
k. If we use S = T , we get a Hausdorff space

X which is not separated and not good.

9. Analytification

There are 3 sources of k-analytic spaces:

• gluing,
• analytification,
• formal schemes over the special fiber.

We already discussed the first and we now discuss the second. We will discuss the last one
towards the end of the class.

Given a scheme X over k of finite time, we want to construct a k-analytic space Xan associated
to X.

As a set,

Xan = {(ξ, x) | ξ ∈ X, | · |x valuation on κ(ξ) extending the valuation on k}.
We have a kernel map

ker : Xan → X,

(ξ, x) 7→ ξ.

If X = Spec(A), then

Xan = {semivaluations on A extending valuations on k}.

For example, when X = An
k so A = k[T1, . . . , Tn], we have already seen this as the definition

of (An
k)an although we denoted it simply An

k .

Alternatively, Xan can be defined as:

Xan =
⋃
K/k

X(K)/ ∼
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where K/k is a NA extension and x′ ∼ x′′ for x′ ∈ X(K ′), x′′ ∈ X(K ′′) if and only if x′ and
x′′ come from some point in X(K) via K ↪→ K ′, K ′′.

We endow Xan with the weakest topology such that

• ker : Xan → X is continuous,
• for any open affine U = A ⊆ X and any f ∈ A,

Uan 3 x 7→ |f(x)| ∈ R+

is continuous.

Finally, we discuss the k-analytic space structure on Xan.

Step 1. Suppose X = An
k . We have seen that Xan is:

• as a topological space, as above,
• the net is given by polydiscs,
• the atlas is given by AE(r) = k{r−1T}.

Step 2. Suppose X = Spec(A) where A is a finitely-generated k-algebra:

A = k[T1, . . . , Tn]/I.

• As a topological space, Xan is as above.
• The net is given by intersecting with En(r),
• The atlas is given by AEn(r)∩Xan = k{r−1T}/Ik{r−1T}.

One check that this is a functor: given X→ Y, we get an associated morphism Xan → Yan.
It takes:

{affine k-schemes of finite type} → {boundaryless k-analytic spaces},
{open immersions} → {open immersions}.

Step 3. Suppose X is a general scheme of finite type. Then Xan is constructed by gluing.

The end results is that Xan is a good, boundaryless k-analytic space. This construction is
functorial:

{k-schemes of finite type} → {k-analytic spaces}.

Question. Is the assignment X 7→ Xan canonical?

Answer. Yes, it represents a functor. Given a good k-analytic space Y , consider

FX(Y ) = {morphisms (Y,OY )→ (X,OX)}.
Then Xan represents the functor FX(Y ):

FX(Y ) = Hom(Y,Xan).

In fact, this is also try when Y is K-analytic for a NA extension K over k.

The kernel ker : Xan → X is:

• surjective (cf. Theorem 7.5),
• the map OX,ξ → OXan,x where ξ = ker(x) is faithfully flat (cf. Theorem 7.10).
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Also, for any finite extension K of k, we have that

Xan(K) = X(K).

9.1. The Proj construction. Consider a graded ring A =
⊕
d≥0

Ad which is a finitely-

generated k-algebra. Recall the Proj construction from algebraic geometry:

Proj(A) = {homogenous prime ideals of A}.
Definition 9.1.

(1) A seminorm on A is homogeneous if∣∣∣∣∣∣
∑
d

ad

∣∣∣∣∣∣ = max
d
|ad|

where ad ∈ Ad.
(2) Two homogeneous semivaluations | · |, | · |′ are equivalent if there exists C > 0 such

that
|f ′| = |f | · Cd

for f ∈ Ad.
(3) The trivial homogeneous valuation is | · | ≡ 0 on

⊕
d>0

Ad.

Then:
Proj(A)an =

{
equivalence classes of non-trivial

homogeneous semivaluations on A

}
.

This gives an alternative description of the k-analytic space Pnk as:

Pnk = (An+1
k \ {0})/ ∼

where semivaluations | · |, | · |′ on k[T0, . . . , Tn] are equivalent, | · | ∼ | · |′, if and only if there
exists C > 0 such that |f |′ = Cd|f | for all homogeneous polynomials f of degree d.

9.2. The GAGA principle. Consider a morphism ϕ : Y → X of k-schemes of finite type.
It has an analytification

ϕan : Yan → Xan.

We will write Y = Yan, X = Xan.

Theorem 9.2. The morphisms ϕ, ϕan have the following properties simultaneously,

(1) flat [in the locally ringed sense],
(2) unramified [Yx = M(K) where K is a finite separated H(x)-

algebra],
(3) étale [unramified and flat],
(4) smooth [flat with non-empty fibers of dimension n],
(5) separated [Y → Y ×X Y is a closed immersion],
(6) injective, surjective
(7) isomorphism,
(8) finite,
(9) proper.
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The proof of this theorem required quite a lot of work and preparation so we will omit it
here. We mention that one key ingredient is to related the fibers:

Yx = (Yξ ×Spec(K(ξ)) Spec(H(x)))an

which follows from the universal property.

Theorem 9.3. Let X be a scheme over k. Then:

(1) X is separated if and only if Xan is Hausdorff,
(2) X is proper if and only if Xan is compact,
(3) X is connected if and only if Xan is pathwise connected,

Once again, we omit the proof. We only mention that the ingredients for part (3) include:

• E1 is (uniquely) pathwise connected,
• En is pathwise connected (by induction),
• Noether normalization theorem 5.18 etc.

Theorem 9.4. The functor X 7→ Xan is fully faithful on the category of proper k-schemes
of finite type.

This is false when X is not proper. For example, there are non-polynomial maps A1,an
k →

A1,an
k . However, if k is trivially valued (|k×| = 1), we can drop the properness assumption.

9.3. Coherent sheaves. We can define a notion of coherent OX,G-modules where X is a
k-analytic space. We can also define coherent OX-modules if X is good.

If X is a scheme of finite type over k and F is a coherent sheaf on X, we can define

Fan = coherent OXan-module.

Theorem 9.5. If X is proper, then there is an equivalence of categories:

Coh(X)
∼=→ Coh(Xan).

10. Generic fibers of formal schemes

This is like doing analytic geometry over the valuation ring k◦.

To discuss formal schemes, one makes standard definitions:

• A formal scheme is a topologically ringed space (X,OX) which is locally isomorphic
to an affine formal scheme.
• An affine formal scheme (X,OX) is ...

We will take these are granted and see the theory in practice.

Consider a (non-trivially valued) NA field k with valuation ring k◦ = {| · | ≤ 1}, maximal
ideal k◦◦ = {| · | < 1}, and residue field

k̃ = k◦/k◦◦.

Fix π ∈ k◦◦ \ {0}, a uniformizer.
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Definition 10.1. A k◦-algebra A is topologically of finite presentation (tfp) if

A = k◦{T1, . . . , Tn}/I
where I is a finitely-generated8 ideal.

Definition 10.2. A k◦ algebra A which is tfp is admissible if it is flat over k◦.

If A is tfp/admissible:

• A⊗k◦ k̃ = A/k◦◦A is a finitely generated k̃-algebra,
• A⊗k◦ k is a strictly k-affinoid algebra,
• X = Spf(A) is a tpf/admissible affine formal scheme,

• Xs = Spec(A⊗k◦ k̃) is the special fiber of X,
• Xη = Spec(A⊗k◦ k) is the generic fiber of X.

We have a reduction map red: Xη → Xs. Indeed, any x ∈ Xη defines a character A⊗k◦k →
H(x). We also have a contractive morphism A→ A⊗k◦ k such that:

• the image of A lies in (A⊗◦k k)◦,
• the image of k◦◦A lies ins (A⊗◦k k)◦◦.

We get an induced character
A/k◦◦A→ H(x),

and hence a point
red(x) ∈ Xs.

Example 10.3. Consider A = k◦/πk◦, which is tfp, but not admissible. Then:

A⊗k0 k̃ = k̃ Xs = {pt},
A⊗k0 k = 0 Xη = ∅.

The reduction map is the unique map ∅ → {pt}.

Example 10.4. Consider A = k◦{T}, which is admissible. Then

A⊗k◦ k̃ = k̃[T ] Xs = A1
k̃
,

A⊗k◦ k = k{T} Xη = E1
k .

The reduction map red: E1
k → A1

k̃
is the usual one.

We now globalize these concepts.

Definition 10.5. A formal scheme X over Spf(k◦) is tpf/admissible if X is a locally finite
union of open affine formal schemes Xi that are tpf/admissible.

We may then glue (Xi)s and (Xi)η to obtain a scheme Xs over k̃ which is locally of finite
type and a paracompact k-analytic space Xη.

The reduction maps glue to
red: Xη → Xs.

8Note that A might not be Noetherian, because we did not assume k◦ is.
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Theorem 10.6 (Reynaud). Every paracompact strictly k-analytic space is a generic fiber of
a formal scheme over k◦.

Example 10.7. Glue Spf(k0{S}), Spf(k0{T}) along the open subsets where S, T do not
vanish via S 7→ T−1. Then

• Xs is two copies of A1
k̃

glued along A1
k̃
\ {0}, and hence Xs = P1

k̃
,

• Xη is two copies of E1
k glued along |S|, |T | = 1, and hence Xη = P1

k as a k-analytic
space.

10.1. Models of schemes. Let X be a (separated) scheme of finite type over k. Then Xan

is the analytification of X (as strictly k-analytic space without boundary).

Goal. Investigate the properties of Xan.

Tool. Nice models of X over k◦.

Definition 10.8. A model of X (over k◦) is a flat scheme X over k◦ together with an
isomorphism

Xη = X×Spec(k◦) Spec(k)
∼=→ X

(as schemes).

Example 10.9. An integral model of X = Pnk is X = Pnk◦ .

We are mainly interested in the case when X is proper (or projective) over k.

Theorem 10.10 (Nagata). If X is proper, then X admits a proper model over k◦.

Remark 10.11. If X ⊆ Pnk is a projective, then we may take X as the schematic closure
of X in Pnk◦ .

Models are not unique. There is a partial ordering: X′ ≥ X if we have a commutative
diagram:

X′ X

X′η Xη

X X

∼= ∼=

=

Lemma 10.12. Any two models can be dominated by a third.

However, there is no maximal one.

There are 2 types of analytic models. Given an algebraic model X of X, we can take the

formal completion X̂ along the special fiber Xs = X×Speck◦ Spec k̃.

Locally, if X = SpecA, then

X̂ = Spf
(

lim←−A/π
nA
)
.

We now have two k-analytic spaces associated to X:
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• Xan,
• X̂η (the generic fiber of the formal completion of an algebraic model).

Fact 10.13.

(1) In general, X̂η is a closed subspace of Xan,
(2) Equality holds when X is a proper model.

Example 10.14. When X = P1
k, we saw that X = P1

k◦ is an integral model. Then

X̂η = Xan

is the Berkovich space P1
k.

Example 10.15. When X = P1
k and we take the integral model X = P1

k \ {∞} where
∞ ∈ P1

k̃
. Then

X̂η = E1
k ( P1

k.

We have a reduction map
red: X̂η → X̂s

∼= Xs.

If X is proper, then, we get a reduction map

redX : Xan → Xs.

This does depend on the choice of model X.

10.2. Nicer models. We want to consider nicer models X of X. We make the following
assumptions (for now):

• k is discretely valued,

• k̃ has characteristic 0 (and hence so does k).

Example 10.16. Consider k = C((t)) where C is discretely valued. Then t ∈ k◦◦ is a
uniformizer.

Assume X is smooth and proper over k, of dimension n ≥ 1. Given a proper smooth model
X over k◦, the special fiber Xs is the support of the Cartier divisor div(t).

We write Ei, i ∈ I, for the irreducible components of Xs.

Definition 10.17. We say that X is an snc (simple normal crossings) model if X is regular
and the divisor Xs = div(t) has simple normal crossings support: for all ξ ∈ Xs, let E0, . . . , Ep
be the irreducible components containing ξ, then there exist algebraic coordinates z0, . . . , zq
at ξ such that Ei = (zi = 0) for 0 ≤ i ≤ p ≤ q.

Example 10.18. Take k = C((t)) and

X = {t(x3 + y3 + z3) + xyz = 0} ⊆ P2
C((t)).

Then the model
X = {t(x3 + y3 + z3) + xyz = 0} ⊆ P2

CJtK

has the special fiber:
Xs = (x = 0) ∪ (y = 0) ∪ (z = 0),

so X is snc.
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The class continued remotely from here on, but I stopped typing the notes.
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