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2 HARM DERKSEN

1. REVIEW OF CATEGORY THEORY

We begin with a short review of the necessary category theory.

Definition 1.1. A category C is

(1) a class of objects, ObjC, and
(2) for all A, B € ObjC, a set Hom¢(A, B) of morphisms from A to B,
(3) for any A, B,C € ObjC, a composition map

Home (A, B) x Home (B, C) — Home (A, C),

(f,9) = gof=yf,
(4) for any A € ObjC, a morphism id4 € Hom¢(A, A),

such that
(a) for any A, B € ObjC and all f € Hom¢(A, B)
idpf = f = fida,

(b) for any A, B,C,D € ObjC and any f: A— B, g: B— C, h: C' — D, the composi-
tion is associative:

(hg)f = h(gf).

Note that ObjC may not be a set: for example, the category of sets cannot have the set of
all objects (Russel paradozx). If ObjC is a set, then C is small.

Examples 1.2.

e C = Sets: objects are sets, morphisms are functions,

e C = Groups: objects are groups, morphisms are group homomorphisms,

e C = Ring: rings and ring homomorphisms,

e C = Top: topological spaces and continuous maps,

e for a ring R, R-mod: left R-modules with R-module homomorphisms, and mod-R:
right R-modules with R-module homomorphisms,

e C = (A, <), aposet: ObjC = A and

Hom(z,y) = { 0 otherwise,

e C = Ab: abelian groups and group homomorphisms.

Definition 1.3. Fix a category C. If f: A — B is a morphism, an inverse of f is a morphism
g: B — A such that

gf =1ida, fg=idp.
Inverses are unique: if ¢’ is another inverse, then
g=idag=(g'f)g=9g'(f9) =gidp=7"

Definition 1.4. If f has an inverse, we call it an isomorphism, and we write f~! for that
inverse.
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Definition 1.5. Suppose C is a category. The opposite category, C°P, is defined by
Obj(C?) = OBj(C)
Homeor (A, B) = {f? | f € Hom¢(B, A)}
and if in C

A<—B

PN

then in C°P

A—>B

\ l op
(fg)°r=g°P foP

Definition 1.6. A morphism f: B — C'is monicif for any A € ObjC and any e;,e5: A — B
such that fe; = fes, we have e; = es.

Example 1.7. In Groups, Sets, Top, a morphism is monic if and only if it is injective.

Definition 1.8. A morphism f: A — B is epi if for any C' € ObjC and all ¢1,¢90: B — C
such that g, f = gof, we have g; = gs.

The notions of monic and epi are dual: f is monic in C if and only if f°P is monic in C°P.
Example 1.9. In Sets, an epimorphism is a surjective map.

Let C be the category of metric (or at least Hausdorff) topological spaces. Then the inclusion
f: Q — R is not surjective but it is epi in C. Indeed, suppose g1, g2: R — X and g1 f = g2 f.
For any x € R, there exists a sequence {z,} C Q with lim z,, = z. Then

n—oo

gi(z) = lim gi(zn) = lim gi(f(zn)) = lim gao(f(zn)) = lim gs(zn) = ga(z)

n—oo
since both ¢, and g, are continuous.
Similarly, in Rings, f: Z — Q is epi but not surjective.

Definition 1.10. An object I € Obj(C) is initial if for every A € Obj(C) there is a unique
morphism I — A.

If I,I' are initial objects, there is a unique morphism f: I — I’ and a unique morphism
g: I' — I. We then get morphisms fg: I’ — I’ and gf: I — I, but idy: I’ — I’ and
idy: I — I are also such morphisms and hence by uniqueness

fg=idy,  gf =id;.
This shows initial objects are unique up to unique isomorphism.

Definition 1.11. An object T' € Obj(C) is terminal if for all A € Obj(C), there is a unique
morphism A — T.
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This is the dual notion to initial object:
I € Obj(C) is initial if and only if I € Obj(C°P) is terminal.

Examples 1.12. We provide a few examples of initial and terminal objects in a few cate-
gories:

initial terminal
Sets 0 {0}
Groups {1} {1}
Ab {0} {0} =0
Rings with 1 V/ 0

Definition 1.13. A zero object is initial and terminal. We denote it by 0.

If C has 0, A, B € Obj(C), we have maps

A 0 B

\/

0

so there is a unique morphism A — B that factors through 0 € Obj(C), the zero morphism.
Definition 1.14. A monic morphism f: A — B is called a subobject of B.

Two subobjects f: A — B, f': A’ = B’ are isomorphic if there is an isomorphism g: A — A’
such that f = f'¢"

J

A— B
f/

A/
Example 1.15. In Sets: if f: A — B injective, it is a subobject and we have that

S

A— B

and A — B and f(A) — B are isomorphic.
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Definition 1.16. Suppose C has zero object. We say f: A — B is a kernel of g: B — C' if
gf =0 and for every f': A — B with gf’ = 0, there is a unique morphism h: A" — A such
that f" = fh, i.e. the following diagram

il F s B 5 > C
b

~ 0

A/

commutes. The dual notion is the cokernel.

The above is an example of a universal property. We can restate it as follows. We define
a category G whose objects are pairs (A, f) with f: A — B and ¢gf = 0 and a morphism
(A, f) — (A, f') in G is a morphism h: A — A’ in C such that f'h = f. Then

(A, f) is the kernel of g if and only if (A, f) is a terminal object in G.

A kernel is a subobject: indeed, if ej,eqs: A" — A satisty f’ = fe; = feq, then e¢; = ey by
uniqueness in the universal property

Example 1.17. In Groups, consider Sy — S, sending (12) to (12). This map is not an
epimorphism but its cokernel is {1} — S, (exercise).

Definition 1.18. If A, B € Obj(C) then a product is an object A x B together with mor-
phisms m4: A X B — A and mg: A X B — B with universal property: if C' € Obj(C) and
fa: C — A, fg: C — B are morphisms, then there exists a unique morphism h: C' -+ Ax B
such that fa = wah, fg = wph, i.e. the following diagram

A+ AxB -4 B

"
C

Similarly, if A;, ¢ € I are objects, their product is an object [] A; together with morphisms
iel

commutes.

mi: |[ Ai = A; with analogous universal property.
i€l
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Definition 1.19. A coproduct is an object AIl B together withi4: A — AIlB and ig: B —
ATl B with the dual universal property, and similarly one can define the coproduct of any

family of objects, [ A;.
icl

Examples 1.20. In Sets, the product A x B is the Cartesian product with m4(a,b) = a,

mp(a,b) = b, and the coproduct A Il B is the disjoint union with i,: A - AIl B, ig: B —
ATl B, the inclusion maps.

In Ab, the product and coproduct are the same for finite families of objects. However, for
infinite families we have

HAZ = {(al,ag...) | a; € AZ},

icl
HAi ={(a1,as,...) | a; € A; and a; = 0 for all but finitely many }.
il

In Groups, G x H is the standard product and G II H is G * H, the free group product of
G and H. For example,

Z 7 = {a,b).
In the category of rings with 1, Rings,;, A x B is the standard product and AIl B = A®y B
with
14: A— A X7, B,
a—a®l.
Note that Z/2 ®7 Z/3 = 0, so the inclusion map

iz)2: Z/2 — Z/Z X7, Z/S
1S not monic.

Definition 1.21. A functor F: C — D from category C to D is a rule that

(1) assigns to A € ObjC an object FA € ObjC,
(2) assigns to f € Hom¢(A, B) a morphism F € Homp(FA, FB)

such that
(a) ./T"(ldA) = id]:A,
(b) F(gf)=F(g9)F(f)if f: A= B, g: B— CinC.
Example 1.22. If A € ObjC, we have a functor
Hom¢ (A, —): C — Sets
such that for B € ObjC
Home(A, —)(B) = Home (A, B),
and for f: B — C
Home¢ (A, f): Home(A, B) — Home(A, C),
g Iy,
which can be represented by the following diagram:
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A

/ fg

B———C

f

Then Home (A4, idg) = iduome(4,5) and
Home(A, hg) = Hom(A, h) o Hom(A4, g),

which can be represented by the following diagram:

A
L oaf h(gf) = (hg)f
B g oM 3p
\/
hg

Example 1.23. Suppose R is a ring. If M is a left R-module, then we have a functor
Homp(M, —): R-mod — Ab,
and if M is a right R-module then we have a functor
M ®pr —: R-mod — Ab.
Definition 1.24. A functor F: C — D is faithful (resp. full) if for any A, B € ObjC,
F: Home¢(A, B) — Homp(FA, FB)
is injective (resp. surjective).
What we defined above is actually a covariant functor.

Definition 1.25. A contravariant functor F: C — D from category C to D is a rule that

(1) assigns to A € ObjC an object FA € ObjC,
(2) assigns to f € Home(A, B) a morphism F € Homp(FB, FA)

such that

(a) f(ldA) = id]:A,
(b) Flgf)=F(f)F(g)if f: A— B, g: B— CinC.

For a contravariant functor, a commuting triangle maps to a commuting triangle with arrows
reversed:
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/ Ff
A———B FA«——FB
af Flgf)

C FC

Example 1.26. There is a contravariant functor D: C — C° given by D(A) = A for
A € Obj(C), D(f) = fer for f a morphism in C.

Example 1.27. If A € ObjC then Hom¢(—, A): C — Sets is a contravariant functor. So
Home (A, —) is covariant and Home(—, A) is contravariant.

Definition 1.28. Suppose F,G: C — D are functors. A natural transformation n: F — G
is a rule that assigns to A € Obj(C) a morphism

n(A): F(A) = G(4)
such that for every morphism f: A — B the following diagram

Ff
FA—— FB

n(A)h hn(B)

A B
T

commutes.
Example 1.29. Let F: Ab — Ab be given by
FA={ae A] there exists n > 1 such that na = 0}.
Then n(A): FA — A is a natural transformation between F and the identity functor on Ab.
Example 1.30. Fix a category C. Suppose e: A — B is a morphism. Then
e: Home(B,—) — Home(A, —)
is a natural transformation given by
€(C): Home(B,C) > f+— fe € Home(A, C),

since the following diagram

Hom(B, C) Home(B, f) Hom(B, D)
e(C) (D)
Hom(A, C) Hom(A, D)
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commutes.

A functor F: C — D would be an isomorphism if there exists G: D — C such that FG = idp,
GF = id¢. However, such maps seldom exist so we weaken the notion slightly.

Definition 1.31. A natural transformation n: F — G is a natural isomorphismif n(A): F(A) —
G(A) is an isomorphism for all A € Obj(C).

Definition 1.32. A functor F: C — D is an equivalence of categories if there exists a functor
G: D — C such that GF is naturally isomorphic to ide and FG is naturally isomorphic to
idp.

Example 1.33. Let V be the category of finite-dimensional R-vector spaces and C C V be
the full subcategory with Obj(C) = {R™ | n > 0}. Then C is small while V is not small, so
C and V are not isomorphic. We will show that they are nonetheless equivalent. Define

F=ide: C =V, the inclusion functor,

G:V—C, G(V) =RImV,
We now choose isomorphism
n(V): RV - v
for every V' (we use the meta axiom of choice here). Moreover, there is only one way to
define G f for a linear map f: V — W to make n a natural transformation, i.e. making the
square

Ggf

RAmV — =" pdimW

n(V)h hn(W)

W—F7"7>-V

f

commute. We then have that
FG: V=Y

and we note that n: FG — idy is a natural isomorphism
n(V): RV = FG(V) —» V.

There is also a natural isomorphism 7¢: GF — ide.

1.1. Abelian Categories. The reference for this section is [Fre03]. We introduce a general
framework where we can develop homological algebra, generalizing categories such as Ab
and more generally R-mod.

Definition 1.34. A category C is an Ab-category if for all A, B € ObjC, Hom¢(A, B) is an
abelian group, and

g(fr+ f2) = g9fi +9f2, [ fi, f2r A= B,
(g +g)f =9f +9f, 4,91, 92: B — C.

This makes Home (A, A) a ring with 1 = id 4.
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Definition 1.35. An additive category is an Ab-category with finite products and a zero
object.

In additive categories, finite coproducts exist and are the same as product: if A, B € ObjC,
then we have an object A@® B = A x B = Al B such that the following diagram

1A AGBB iB

A B

commutes, so (A @ B, w4, mp) is a product, (A& B, i, ip) is a coproduct, and
Taia = ida, mpip = idp,
maip =0 = Tpia,

iA7TA + iB7TB = idA@B.

Definition 1.36. An additive category is abelian if

(1) every morphism has kernel and cokernel,
(2) every monic morphism is kernel of its cokernel,
(3) every epimorphism is cokernel of its kernel.

Let C be abelian from now on.

Lemma 1.37. A morphism f: A — B is monic if and only if ker f = 0 (i.e. 0 = A is a
kernel of A). Dually, f: A — B is epi if and only if B — 0 is a cokernel of f.

Proof. Suppose g: K — A is a kernel. If f is monic, then fg = 0 = f0, so ¢ = 0. Hence ¢
factors through 0 — A, so 0 — A is a kernel of f.

Suppose conversely that 0 — A is a kernel of f: A — B. If fg; = fgo, then
0=fg1— fg2= f(g1 — 92),

so g1 — go factors through 0 — A, so g1 — g2 = 0 and g1 = gs. U

Definition 1.38. If we have maps

Ay
Js
f2
Ay ——
then a pull-back is an object P together with maps ¢;: P — Ay, go: P — Ay such that
fig1 = fag2 and (P, g1, go) is universal with this property, i.e. if u;: C' — Aj and uy: C' — A

satisfy fu; = fus then there exists a unique h: C' — P such that gi1h = u; and goh = us,
i.e. the following diagram
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commutes. The dual notion is called push-out.

An abelian category has pull-backs and push-outs. Explicitly, for a map

Ao A, Y B

)

P—>= A A

we have that

is the kernel of A; & Ay — B. The pushout is a cokernel of an analogous map A; & A; — B.

Lemma 1.39. Suppose

PL)Al

S

A2—>B
f2

18 a pull-back. Then

(1) if g1 is monic, then fy is monic,
(2) if f1 is epi, then gy is epi.

Proof. We first prove (1). Indeed, suppose g; is monic and take u: C' — Ay with fou = 0.
Then there exists unique h: C' — P such that g;h = 0 and goh = u, i.e. the following diagram

Js

A2—>B
f2

commutes. But g; is monic, so this implies h = 0, and hence u = goh = 0. Hence 0 — A, is
a kernel of f5, so fy is monic.
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For (2), suppose f; is epi. We recall that P — A; @ Aj is kernel of A; & Ay — B, and
Ay ® Ay — B is epi, because Ay — B is epi. Hence A; ® Ay — B is cokernel of

P%Al@AQ.

Hence the diagram

P—— A

l91 lfl
AQ — B
f2

is a pushout. By the dual of (a), fi: A; — B is epi implies that go: P — A is epi. 0

Lemma 1.40. If g: B — C' is a morphism, then there exists a factorization g = vu where
w 1S ept and v 1S monic

B—»I1—""5(C

Proof. Let f: A < B be the kernel of g and u: B — I be the cokernel of f. Then, because
gf = 0 and u is the cokernel of f, there exists v such that the following diagram

At s vy v 0

Y

commutes. We have to show v is monic. Let w: K — I be the kernel of v and let P with
x: P— K, y: P— B be the pullback. Then, since f: A — B is the kernel of g and

gy = (vu)y = v(uy) = v(wz) = (vw)z = 0x = 0,

we get a unique map z: P — A such that the following diagram

g
/\
AL spley g _vIo
T’Z yT wI
Pty K

commutes. Since P is the pullback and u: B — [ is epi, x: P — K is epi. Now,
wr =uy =u(fz) = (uf)z =0z =0,
and since x is epi, we have that w = 0. This shows the kernel of I — C'is 0 — I and hence v

is monic. O

The image of g is the kernel of the cokernel or equivalently the cokernel of the kernel.



Remark 1.41. For a ring R, R°?, the opposite ring is R°® = R as a set with multiplication
* in R°P defined by axb=10-a. If M is a left R-module, them M is a right R°®*-module: if
m e M, a e R® = R, then m xa = a-m. This indeed gives a right module, for example:

(mxa)xb=0b-(a-m)=(b-a)-m=mx(b-a) =mx(axb).

The category R-mod is isomorphic to mod-R°? and the category R°P-mod is isomorphic to
mod-R. Moreover, if M is a left R-module, we write g M, if M is a right R-module, we write

MATH 613: HOMOLOGICAL ALGEBRA

Mg, and if M is a R-S-bimodule, we write pMg.

We work for now in the category mod-R.

Definition 1.42. A sequence

J1

B is exact if and only if f is injective,

0 is exact if and only if g is surjective,

0 is exact if and only if f is an isomorphism,

As

AO f0>A1
is exact if im f; = ker f; for i =1,2,... n.
Then
e 0 s A f>
e B
e 0 s A f>B 5
e 0 v A1 B2, N

f2\ fn\
y Aot

0 is exact (we call it a short exact sequence) if

and only if f is injective, g is surjective, and C' = B/A,
f
> A

e 0 —— kerf

Theorem 1.43

has exact rows, exact columns, and commuting squares. Then we have an exact sequence

B

\

\
7

7

coker f —— 0 is exact for any f.

(Snake Lemma). Suppose the diagram

0 0 0
ker p ker g ker r
A > B’ > (' -
p q r
> A » B > ('
coker p coker q coker r
0 0 0

ker p — ker ¢ — kerr — coker p — coker ¢ — cokerr,
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i.e. the red sequence in the following diagram

0 0 0
kerp — kerq —— kerr)
Al s B’ s > 0
p q r
0 s A > B s C
Qer p — coker ¢ —— cokerr
0 0 0

Moreover, if we add zeros at the end of the two middle exact sequences, then we can add

zeros at the end of the “snake”, i.e. the red sequence in the following diagram exists and is
exact

0 0 0
0 — kerp ——— kerq —— kerr)
0 s A s B’ s O s 0
p q r
0 > A > B > C > 0
Qer p — cokerq —— cokerr —— 0
0 0 0
Proof. The proof is diagram chasing, and we omit it here. O

Theorem 1.44 (Five Lemma). If the diagram

Ay Ay
lfl lf2
B, By

~
i

'Sy
~
N

ot

~

~

As
lf 3 lf 4 lf 5
B; N N




MATH 613: HOMOLOGICAL ALGEBRA 15

has exact rows and commuting squares, and fi, fa, f1, f5 are isomorphisms, then fs3 is also
an isomorphism.

Proof. This proof is diagram chasing again, and we omit it here. 0

We can generalize both of these lemma to an abelian category C. We present the main ideas
below. For more details, see [GMO03, Chap. I1.5] [Gelfand Manin, I1.5 exercises].

Suppose B € ObjC. Consider pairs (A, f) where f: A — B is a morphism. Than (A, f) ~
(A’, ') if there exists C' € ObjC and epimorphisms g: C' — A and ¢': C' — A’ such that
fa=14g"

Then ~ is an equivalence relation. For example, transitivity is proved as follows: if (A, f) ~
(A’, f) and (A', f') ~ (A", f"), there exist C and C" and C' - A, C — A", C" — A', C' — A"
and hence taking the pullback we get the following commutative diagram

P

K .

and hence (A, f) ~ (A", f").

Then we say a € B if a is a congruence class of (A, f) for some f: A — B, ie. a=[(A,f)].
Suppose g: B — C. With this definition, if a = [(4, f)] then g(a) = [(A, gf)]:

I

B —— C

Then 0 = [(0, f)] for the unique map 0 — B.

Lemma 1.45. A morphism g: B — C is monic if and only if for alla € B, g(a) = 0 implies
that a = 0.
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Lemma 1.46. A morphism g: B — C' is epi if and only if for all ¢ € C, there exists b € B
such that g(b) = c.

Lemma 1.47. A morphism f: A — B is equal to 0 if and only if f(a) =0 for all a € A.

Lemma 1.48. If f: A — B is a morphism and a,a’ € A such that f(a) = f(a’) then there
exists b € A such that f(b) = 0 and for every g: A — C with g(a) = 0 we have g(b) = —g(a')
and for every g: A — C with g(a’) = 0 we have g(b) = g(a).

Proof. If a = [(D,h)] and o' = [(D',h')], then take b = [D & D', (h, —h)]. O

These lemmas suffice to proceed with the diagram chasing arguments, so they show that the
Snake Lemma 1.43 and the Five Lemma 1.44 hold in an abelian category.

2. ALGEBRAIC TOPOLOGY

In this chapter, we review the motivating examples of homology and cohomology from alge-
braic topology. For a more detailed introduction to the area, see [Hat(02].

2.1. Singular Homology.

Definition 2.1. A geometric n-simplex is

For a topological space X, a singular n-simplez is a continuous function o: A, — X.

We let
Sp(X) = free Z-module with basis of all singular n-simplices on X
and define
fi= 1" A = Ay
by

fz‘(x(), cee 7$n—1) = ($07 Ty, @im1, 0,240, 7$n—1)-
Then we define a map d,,: S, (X) — S,_1(X) by

n

dn(0) =D (~1)'oo f.

=0

Lemma 2.2. For anyn, d,_1 od, =0, so d> = 0.
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Proof. If j <4, then f;o f; = fj o fi_1, so
A1 (dn(0) = 2 (1) firo fi!
(-1)*oofiofi+ Y (-)Haofiof,

I
/\M I M:

0<i<j<n—1 0<j<i<n—1
= (—1)%oofiofi+ > (=1)"oofio fin
0<i<j<n—1 0<j<i<n—1
= ogigjzgnfl(_l)iﬂ'g ofiofj— ogjgzzgnﬂ(_l)iﬂa ofjof; settingi—i+1
=0
showing d? = 0. U

We hence get a chain compler Se(X):

dn—l

Sp(X) 2 8, 1(X) b

dp+1

c— S (X)) — Spa(X) —— -+

with d,,_1d,, = 0 for all n. (By convention, S,(X) =0 for n <0.)
Definition 2.3. We define
Zn(X) =kerd,, the module of cycles,
B,(X)=1imd, 1, the module of boundaries.
Note that B,(X) C Z,(X) C S,(X) by the lemma above.

Example 2.4. The boundary of a segment from a to bis b —a

3( > z):b—a

[ ]
a

while the boundary of a circle treated as a singular 1-simplex is a —a =0

This justifies the names cycle and boundary.

Definition 2.5. The nth singular homology group is defined as

H,(X) = Hgingn(X) = Z,(X)/Bn(X) = kerd,/imd,, 1.
One can show that H,(X) is a topological invariant: if X is homeomorphic to Y then
H,(X)= H,(Y).

Examples 2.6. We have that Hy(X) = Z¢ where d is the number of path-connected com-
ponents of X.



18 HARM DERKSEN
The homology of a contractible space is trivial, so for example
H, (%) = H,(R").
However, we can distinguish between R™ and R using homology, because

n | Z forj=n-1,
mE\E)={ 5 BT

2.2. Relative homology. Suppose Y C X is a subspace. Then S,(Y) C S,(X) and we
can define

Sn(X,Y) = 5n(X)/5n(Y)

and we get the sequences

00— S (Y) —— Sp(X) —— S, (X,)Y) —— 0

J= Je J&

00— S 1Y) — Spa(X) — S, 1(X,)Y) —— 0

We then define
Zn(X)Y) =ker(d,: S,(X,Y) = S,1(X,Y)),

Bo(X,Y) = 1im(dps1: Spsr(X,Y) = Su(X,Y)),
Ho(X,Y) = Zo(X,Y)/B.(X,Y).

2.3. Homology with coefficients. If M is a Z-module, we can define homology with
coefficients in M by setting

Sp(X; M) = Sp(X) @7 M,
Zn(X; M) = ker(d,,: S,(X; M) — S,_1(X; M)),
B (X5 M) = im(dni1: Spar (X5 M) = S0 (X5 M)),
Ho(X: M) = Z,(X; M)/B,(X; M).

Note that — ®z M and H,(—) do not commute. Hence taking homology with coefficients is
a non-trivial procedure.

We can write concisely

Hn(X) = Hn(S.(X)),
Hn(X7 Y) = Hn(SG(Xv Y))a
H,(X; M) = H,(S.(X; M)),

) (Se(
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2.4. Simplicial homology.

Definition 2.7. An abstract simplicial complex is a pair K = (V,S) where V is a set and S
is a set of finite nonempty subsets of V' such that

(1) if v € V then {v} € 5,
(2)if0#7CoeSthenTeS.

If o € S then dimo = |o| — 1.

Definition 2.8. A geometric realization |K| of K = (V,S) is

K| =TTa./ ~

oceS
where Ay = Agimo = Ajg|—1 With vertices labeled with (v), v € o, and if 7 C o then we have
a linear map f: A, — A, given by f({v)) = (v), then
A3 x~ f(z) € A,

Example 2.9. If V = {1,2,3} and S = {{1,2},{2,3},{1,3}, {1}, {2}, {3}}, then |K]| is a
triangle with vertices 1, 2,3 which is homeomorphic to a circle

o

We set
Cy(K) = Z-module with basis of all n-simplices.

To define d,,: C,(K) — C,_1(K), we choose a total ordering on V' and write
Cn(K) = <U0’U1...Un> if/l}o < < .. < Uy
Then we define

Once again, we set
Zn(K) = kerd,

B,(K) =imd,
Himpn(K) = Zn(K)/ By (K).
Proposition 2.10. For any n, we have that Hgimpn(K) = Hgngn(|K]).
Example 2.11. We compute the homology of
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so that |K| = S'. We have that
Co(K) = Z(1)

+
C1(K) = Z{12) + Z{13) + 7(23) = Z?

(12) = (2) —(1)

diiq (13) = (3) = (1)

(23) = (3)—(2)

Zy(K) = Z((13) — (23) — (12))
Bo(K) = {{a(l) +b(2) + c(3) | a+ b+ c =0} 2 Z?
Bi(K)=0
Zo(K) =17
and hence

H\(K) 2 Z,
Hy(K) = 7.

Example 2.12. Recall that P?(R) can be thought of as a square with opposite identifications

on opposite edges, so P?(R) = | K| where K is the following simplicial complex

4 3 2 1

Then we have that

Cy=7", Cy =7%, Cy =1"
and the sequence

02" =77 -7 -0

has ker dy = 0 so Hy(K) = 0.
However, the map

dy: Co(K;Z)2) — C1(K,Z/2)
has

sum of all 2-simplices
2\ with right orientation

Ho(K:Z)2) = Z)2.

Hence indeed homology with coefficients is a non-trivial construction.

) = 2((12) + (23) + (34) + (45) + (56) — (16)) =0



MATH 613: HOMOLOGICAL ALGEBRA 21

2.5. Functoriality. For singular homology, if f: X — Y is continuous , we get an induced
map

Su(f) = fe: Sp(X) = S (Y): 00— foo.

Moreover, the square

Su(X) —I s S, (Y)

commutes, and hence

(Y>7
so f, induces
Hn(f) = fu: Hn(X) = Zn(X)/Bn(X) — Hn(Y)

Altogether, we have a functor

H,: Top — Ab.

2.6. Cohomology. Let M be a Z-module and let
S™(X; M) = Homg(S,(X), M).

We have the following commutative triangle

Sp(X) —— M

dn+1T

Sn+1 (X)
which gives a map
& S™(X; M) — S"THX M),
Concisely, we apply the functor Homgz(—, M) to both S,,(X) and d,, and write
0" = Hom(d,, 41, M).

We then get the following cochain complex
L NG M) S sn(XG M) s (G M) 2

We then define

ZM(X; M) = ker §", the cocycles,
B"(X; M) =1im ¢, the coboundaries,
H"(X;M)=2"X;M)/B"(X; M), the cohomology group.

We admit the convention

SY(X) =S"(X:7Z), H"(X)=H"(X;Z).
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Example 2.13. For X = P?(R) we have that

Hy=17, H'°=1Z,
Hy=17/2, H'=0,
Hy=0, H?>=17)2.

Suppose now X is a smooth manifold and let Q"(X) be the set of n-forms on X, so an
element of Q"(X) is gdfy A dfs A ... A df,. We have maps
d: Q"(X) — Q"H(X)

with d? = 0, which give a cochain complex
c— LX) S (X))~ QLX) —— -

called the de Rham complez. Its cohomology is called the de Rham cohomology
Hpp(X) = H*(Q*(X)).

Then
Q(X) = {smooth functions X — R}.

Example 2.14. For X = S, we have that 2zdz+2ydy = d(z*+y?) = d1 = 0 so0 wdz = —ydy.

But then
_dr dy

Y T
but w # df for any f which shows Hpz(S) # 0.

w

3. HOMOLOGICAL ALGEBRA

In this chapter, we are in the category of right R-modules, mod-R.

Definition 3.1. A chain complex is a diagram

dn41 dn
C, : coo — Chaa y O, y Cpy — -+

with d,d,.1 = 0 for all n.

We say C, is bounded from below (above) if there exists a such that for any n < a (n > a),
C,, = 0. Moreover, C, is bounded if it is bounded both from below and from above.

Example 3.2. In the topological examples we have seen for homology, all sequences were
bounded from below. For a finite simplicial complex, the chain complex is moreover bounded.

Definition 3.3. We define
B.(C,) =imd, 1, Z,(C,) = kerd,
and the nth homology group of C, to be
H,(C.) = Z,(C,)/Bn(C,).

Definition 3.4. A chain complex map Cy — D, is a collection of module homomorphisms
Uy : C, — D, for all n € Z such that u,_1d, = d,u,, so the following diagram
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dn+1 d
S — Cn—l—l Cn — Cn—l

s
?

lun+1 lun lunfl
s
?

dn+1 dn
- Dy 5 D, s DYy s

~

~

commutes. We sometimes write more concisely that ud = du.

For a chain complex map u,(B,(C.)) C B,(D,) and u,(Z,(Cs)) = Z,(D,) and hence u,,
induces a map

Uyt Hp(Co) = Hy(Do).

Definition 3.5. We define Ch(mod-R) to be the category of chain complexes (of right R-
modules, but we could apply this construction to more general categories) with chain complex
maps as morphisms. This is an abelian category.

We moreover have a homology functor

H,(—): Ch(mod-R) — mod-R.
Example 3.6. If X, Y are topological spaces and f: X — Y is continuous, the maps

fen: Sn(X) = S,(Y):o0— foo
form a chain complex map

fe: Se(X) = Se(Y).
Then f, induces
fen: Ho(X) = Ho(Y)

and in fact we have a functor
H,(—): Top — Ab.
Theorem 3.7. If we have a short exact sequence of chain complexes
0=2Ce—=De— Eg—0
(or, equivalently, 0 — C,, — D,, — E, — 0 is exact for any n). Then we have a long exact
sequence

o —— Hy 1 (B)) —2 Ho(Cy) —— Hyp(Dy) —— Ho(E)) —2— Hy 1(Cy) — -+

Proof. We apply Snake Lemma 1.43 to get the red maps below
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0 0 0
0O ——— Z,C) —————— Z,(D) ————— Z,(F)

0 )Cn >Dn >En

d d d

2 2 2

0 —4N/)6Yn/ > anl > En,1 — 0
C _1/B (C) B Dn_l/B

n n—1 n—l(D) — En—l/Bn—l(D) — 0

~
[a)

2 2 2

0 0 0
Then using the exactness of the red sequence above, we get the following commutative dia-
gram, and apply Snake Lemma 1.43 again to get the red maps

0 0 0

0 — Zn—1<0 Zn—l(D) e Zn—l(E)
(Hn—l(c) —_— Hn_1<D) e Hn—l(D)
0 0 0
This completes the proof. U

Definition 3.8. A cochain compler is a diagram

n—1 n n+1
. s Om—1 d s O d s Ot d s Ont2 N

where d"T1d” = 0 for all n.

If C, is a chain complex, setting C" = C_,, with d" = d_,, makes C*, d* a cochain complex.

Definition 3.9. For a chain complex C, and p € Z, we define the shift of Cy by p to be the
chain complex Clp|, d[p] with

Clpln = Cpin,  dpln = (=1)"dpin.
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Analogously, for a cochain complex C®, we define the shift of C** by p to be the cochain
complex

Clpl" = "7, dlp]" = (~1)7d".

This notation is used for example in the following context: instead of saying that for any n,
the sequence

0— Z,(Cs) = C,, =& B,_1(Ce) = 0
is exact, we can say that the sequence of chain complexes
0— Zo(Co) - Co — B[—1]s(Cy) — 0
is exact.
We get the following analogous statement to Theorem 3.7 for cohomology.
Theorem 3.10. If0 — C* — D* — E* — 0 s exact, then we have a long exact sequence
oo H"YE®*) — H*(C*) — H"(D*) — H"(E®) — H"™(C*) — - -

Example 3.11. If X is a topological space and Y C X is a subset, we have a short exact
sequence

0= Se(Y) = Se(X) = Se(X,Y)—0
and by Theorem 3.7, we get the long exact sequence of a pair
o> Hy g (XNY) = Hy(Y) - Hy(X) — Hy (X, Y) — -
In some cases, this allows us to calculate homology groups of topological spaces.

Example 3.12. Let X be a manifold and Q"(X) be the n-forms on X. If X = U UV for
U,V C X open, we have a short exact sequence

0 —— QYX) — QU) B (V) ——— O (UNV) ———— 0
w ——— (W, wy)
(W1, wy) —— (Wl)\UﬁV - (WQ)\UHV

Applying Theorem 3.10 to this short exact sequence, we get the Mayer-Vietoris sequence for
de Rham cohomology

- = Hpp(X) = Hpg(U) @ Hpgp(V) = Hpg(UNV) = Hig(X) — -
3.1. Homotopy. We will define a homotopy of maps of chain complexes, using the motiva-
tion of homotopy from topology.
Let X,Y be topological spaces and f,g: X — Y be continuous maps.

Definition 3.13. A homotopy from f to g is a continuous function h: [0,1] x X — Y such
that h(0,z) = f(x) and h(1l,z) = g(x). We then say f and g are homotopic and being
homotopic is an equivalence relation.
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If o € X is a 0-simplex, then
h(t,o): [0,1] =Y,
——
~Aq
so h(t,o) is a 1-simplex in Y. This gives a group homomorphism
So: S()(X) — Sl(X)
If o is a 1-simplex in X, then h(t,0): Ay x [0,1] = Y, so if Ay = [a, b] whence dA; =b—a
we get a map

h(0,0) = fuo

o1

02

h(1l,0) = g«o

Then there exist two 2-simplices o1 + 05 such that
d(o1+02) = g0 —h(t,b) — fro+h(t,a) = (g — fi)(0) +50(a) = 50(b) = (g« — fi)(0) — s0(do).
Define s1: S1(X) — S2(Y) by setting
s1(0) =01+ 02 € Sy(Y).

Then dsi(0) = (g« — f«)(0) — so(do), so

dsi + sod = g« — [
In general, there exists s,,: S, (X) — S,+1(Y) such that

sd+ sd = g, — fs.

Definition 3.14. Topological spaces X and Y are homotopy equivalent if there exist con-
tinuous f: X — Y and ¢g: Y — X such that ¢f is homotopic to idx and fg is homotopic to
idy.

Definition 3.15. We say X is contractible if X is homotopy equivalent to a point.
Example 3.16. The Euclidean space R" is contractible: for

f:{0} = R,
g: R" — {0},
we have ¢gf = idyp and
fg: R" — R"
is constant equal to 0 and a homotopy from fg to idg» is
h(t,z) = tx.

Definition 3.17. Suppose C,, D, are chain complexes and f, g: Cy — D, are chain complex
maps. A homotopy from f to g is a collection of functions s,,: C, — D, 1 for n € Z such
that

dpi18n + Sndn = gn — fn (or, concisely, ds + sd =g — f),
which can be represented by the diagram
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dn n
D Oy 1 € 2 N
gn+lll Sn gnl lfn Sn—1 llfﬂ 1
s Doy "y Dy

Recall that f, ¢ induce fin, gen: Ho(Co) — H,(D,). Explicitly, if a € H,(C,), say a =
x + B, (C) for x € Z,(C), then

fila) = f(z) + Ba(D) € Hn(D),
g«(a) = g(z) + B,(D) € H,(D).
If f, g are homotopic, then have that
g*(a’) - f*(a> = gn('r) - fn(x) + Bn(D) = dn+15n<x) + Snfldn<X) € Bn(D)u
so g«(a) = fi(a). Hence if f, g are homotpic, then f, = g..

Definition 3.18. We say C,, D, are homotopy equivalent if there exist f: Cy — D, and
g: Dy — C, such that fg and ¢gf are homotopic to the appropriate identity.

By the above, if C,, D, are homotopy equivalent, then for any n, f.,: H,(Cs) — H,(D,) is
an isomorphism because
fegs = (f9) = ids = id.

Example 3.19. If X is contractible, then

H,(X) = <{}>{ ifn =0,

0 otherw1se

For example,
m ) Z iftn=0,
HA(R") = { 0 otherwise.

Moreover, R™ \ {0} is homotopy equivalent to S™!, the (m — 1)-dimensional sphere.

3.2. Split exact sequences.

Proposition 3.20. Suppose we have a short exact sequence

0 s A f>B v, C s ()

Then the following are equivalent

(1) there exists f': B — A with f'f =ida
(2) there exists ¢': C' — B with g¢’ = id¢
(3) there exists a submodule C' C B with B= A® C' = f(A) @ C".

Proof. We only show (1) implies (3). The rest are similar and left as exercises. Take C" =

ker f’. For b € B, we have
b=f1(b)+ (b= ffb),
—_—— ——
ef(A) ec’
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so f'(b— ff'(b)) = f'(b) = f'ff'(b) =0. O
Definition 3.21. A short exact sequence is split if any of the above equivalent conditions
hold.

Example 3.22. The following short exact sequence is not split

0 —— Z/p — Z/p* > Z/p > 0

14 (p) — p+ (p*)

1+ (p*) —— 1+ (p)

Definition 3.23. A chain complex C, is split if there exists s,,: C,, — C,41 for any n such
that d,s,_1d, = d, for all n (i.e. dsd = d).

Suppose C, is split. Let b € B,,_;. Then b = d(a) for some a € C,, and ds(b) = dsd(a) =
d(a) =0b,s0 ds =1dg,_,.
Then
0—+B,—~7%,—H,—0

is also split: if b € B, then b = d(a) for a € C,41 and ds(b) = dsd(a) = d(a) = b, so
ds|p, = idp,. Hence

Cn = Zn D Bn—l = Bn D Hn D Bn—l
and we have the following diagram

O » C, oy s -
Bn ~ Bn—]_ Bn—2
® \ @ \ o
BnJrl Bn anl
S¥) ® s>

0 0
Hn+1 Hn Hn—l

The lowest level has mazimal homology in the sense that all boundary maps are zero.

3.3. Mapping cone. A cone C(X) over X is
C(X)=10,1] x X/ ~,

where (0,2) ~ (0,y) for all z,y € X.

Example 3.24. For X = [0, 1], C(X) is a 1-simplex

{rx[o1] {*}

{0}x[0,1] __ [O 1]
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For X = S, C(X) is an actual cone, justifying the name

{1}x.51 _ {*}

{0}><51 — Sl

Definition 3.25. Suppose f: X — Y is a continuous map. The mapping cone is
Clf)=cXx)ny/ ~
where C(z) 3 (1,z) ~ f(z) € Y.

Examples 3.26. Let f: [0,27] — S, f(t) = (cost,sint). Then C(f) is a 1-simplex with a
circle attached to [0, 1] via f:

Let f: S' — S! be the map z + z2. Then C(f) = P*(R), because it is a hemisphere with
the antipodal identification on the boundary circle.
We generalize the topological notion of a cone to a purely algebraic one.

Definition 3.27. Let f: B, — C, be a chain map. We define a new chain complex cone( f)
by setting
cone(f)n, = B,-1 @& Cy,

d(b, c) = (=d(b), d(c) - f (b))

—dg 0
dcone = .
(% &)
This is indeed a chain complex:
2o - —dp 0 —dp 0 _ d% 0 _0
cone —f dc =/ dc fdp —dof d¢ '

We have an exact sequence

or in matrix form
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0
(idc (~idg 0)
> cone(f) ——

¢c — (0,¢)

0 s C

B[-1] —— 0

(b,c) ——— —b

Since H,(B[—1]) = H,_1(B), we have the long exact sequence (Theorem 3.7)

. —— H,(B) —2— H,(C) — H,(cone(f)) —— H,_1(B) —>— H,_(C) — ---

Lemma 3.28. The boundary map O above is f,.

Proof. To prove this statement, we trace through the proof of Theorem 3.7. Let b € B[—1],,11
be a cycle. This lifts to (—b,0) € cone(f),4+1. Then

d(=b,0) = (0, f(b)) € cone(f)y.
This lifts to f(b) € C,, and actually f(b) € Z,. Hence

completing the proof. O
Definition 3.29. A chain map f: Cy — D, is a quasi-isomorphism if

fe: Hy(Bo) — H,(C)
is an isomorphism for all n.

Corollary 3.30. A chain map f: By — C, is a quasi-isomorphism if and only if cone(f) is
exact (i.e. H,(cone(f)) =0 for all n).

Suppose

0 > B, > Co > De > 0

is a short exact sequence. Then we have two long exact sequences and in fact they are
isomorphic by the Five Lemma 1.44 applied to the diagram:

-— H,(B) — H,(C) —— H,(D) —— H, 1(B) —— H,1(C) —— ---

ELoE e e

- — H,(B) —— H,(C) —— H,(cone(f)) —— H,1(B) —— H,1(C) —— ---
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4. HOMOLOGICAL &-FUNCTORS

Definition 4.1. A function F: C — D is additive if F: Home(A, B) — Homp(FA, FB) is
a group homomorphism.

Definition 4.2. An additive functor F: C — D is left-exact if for every short exact sequence

0>A—>B—-C—0
in C we have that
0—=FA—=FB—= FC.
One can similarly define right-exact and analogous notions for contravariant functors.

Lemma 4.3. If F is left exact and 0 - A — B — C' is ezact, then
0—=+FA—FB— FC

18 exact.

Proof. Let D be the image of g: B — C. Then the following diagram has an exact row and
column

0
0 > A » B > D > 0
\ ¥
C
/D
0
and hence so does the following diagram
0
0 > FA » FB > .7-“D
~ |
FC
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We only have to show exactness at FB. If a is in the kernel of 7 — FC' then since F D — FC
is a injective, a is in the kernel of B — F D and hence a is in the image of FA — FB. U

Definition 4.4. A homological d-functor C — D is a collection of additive functors
T,:C—D, n>Q0,
together with a morphism 6,,: T,,(C) — T,_1(A) for every short exact sequence

f

0 y A » B 2> C > 0
such that
(1) there exists a long exact sequence
s T () 25 Ty (4) 2 By 2 7 (0) 2 T (A) — -

where we set T,,(A) = 0 for n < 0, so Tj is right exact,
(2) for every morphism of exact sequences

0 s A » B’ > C'
lfA lfB lfc
> A » B y

> 0

0

we have a commuting square

T,(C") =2 T, 1(A)
Tn(fC)l lTnfl(fA)
T,(C) =2 T, 1 (A)

Example 4.5. If C is an abelian category and Ch>(C) is the category of non-negative chain
complexes, then the homology functor

H,: Chzo(C) —C
is a homological §-functor.
Example 4.6. Let R be a ring and r € R. Set

To: R-mod — Ab, To(M) = M/rM,
Ti(M)=[r)M ={a€ M | ra =0},

T.,(M)=0 foralln>1.

Then T = {T,} is a homological d-functor. Applying Snake Lemma 1.43 to the following
diagram
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0 0 0
0 A B C
%
0 A B C’ > 0
0 >;1T >E; >\C’*r. > 0

(A/TA —— B/rB—— C/rC —— 0

i
S
S
i
S

we obtain the long exact sequence
showing property (1) holds. Property (2) is trivial.

Definition 4.7. A morphism of homological ¢-functors from S to T is a collection of natural
transformations ¢,: S, — 1,, for all n > 0 such that if

0—A—B—C—70

is exact, then

(C) =2 S, 4(A)

len(C') l&n_l(A)

"

commutes.

Definition 4.8. A homological d-functor T is universal if for every J-functor S and every
natural transformation €y: Sy — Tp, there exists a unique natural transformation ¢,: S, —
T,, n > 1, such that e: S — T is a morphism of J-functors.

Example 4.9. The homology functor H,: Ch>o(C) — C is universal.

5. PROJECTIVES AND LEFT DERIVED FUNCTORS

Let C be an abelian category.

Definition 5.1. An element P is projective if for every epimorphism g: B — C' and every
morphism v: P — C, there exists f: P — B such that go 8 =



34 HARM DERKSEN

P

L

B2y s 0

(Equivalently, if B — C' — 0 is exact, then Hom¢ (P, B) — Home (P, C) — 0 is exact.)

The functor Home (M, —) is always left exact. For projective modules, this functor is more-
over exact.

Lemma 5.2. An element P is projective if and only if Home (P, —) is right-exact (and hence
exact).

Proof. The ‘if” implication is clear. For the ‘only if” implication, suppose 0 - A — B —
C — 0 is exact. Then

0 — Hom(P, A) — Hom(P, B) - Hom(P,C) — 0
is exact by left-exactness together with the projective property. 0
Example 5.3. In R-mod, free modules are projective.

Lemma 5.4. If0 > A — B — P — 0 is exact and P 1is projective, then this short exact
sequence splits.

Proof. For the map id: P — P, there is a unique map P — B as above, showing that the
sequence splits. O

Lemma 5.5. A direct summand of a projective object is projective.

Proof. Suppose P = P, & P, and P is projective. Then since
Home (P, —) = Home (P, —) & Home (P, —)

is exact, both Hom¢(Py, —) and Home(P,, —) are both exact. Indeed, if one of them was
not, then the counterexample would also work for the direct product. O

Example 5.6. For R equal to Z or a field or a division ring, an R-module is free if and only
if it is projective.

Theorem 5.7 (Quillen—Suslin). Projective modules over Fxy, ..., x,] where F is a field are
free.

Examples 5.8. Suppose Ry, Ry are nonzero rings with 1. If R = Ry x Ry then R; and R»
are projective R-modules.

Lemma 5.9. In R-mod, P is projective if and only if it is a direct summand of a free module.
Proof. The ‘if” implication is clear from Lemma 5.5. For the converse, if P is a projective
module, let F'(P) be the free module with generators [a] for @ € P. Define
f: F(P)—> P
by f([a]) = a. The sequence
0—kerf— f(P)—P—=0
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is exact, so it splits by Lemma 5.4. Hence f(P) = ker f & P. O

Definition 5.10. An R-module M is indecomposable if M = M; & M,y implies M; = 0 or
M2 - 0

Moreover, M is simple if for a submodule M; C M we have M; =0 or M; = M.

Theorem 5.11 (Krull-Schmidt). Let F' be a field and R be a finite-dimensional F-algebra.
If M is a finite-dimensional R-module, then M = My & My @ --- & M,., where My, ..., M,
are indecomposable and if M = M| & M} & --- & M. with M{, ..., M. indecomposable, then
r = s and, after reordering, M; = M.

Example 5.12. Taking M = R above, we obtain
R:Pl@Pz@..@PT

where Py, P, ..., P, are projective indecomposables. If P is any projective finite-dimensional
R-modules, then for some M

POM=R=2Rl~2pPigPla.- & P,
soPPoPE®...® P

We will write R-fdmod for the category of finite-dimensional R-modules.
Example 5.13. Let R = M, (F) be the ring of n x n matrices over F'. Then
R=P®P®---®P

n

where
P = F™ are the ¢th columns.

The only indecomposables are actually P.

Example 5.14. Let R C M, (F') be the subset of upper-triangular matrices. Then

where

P; = ith columns = < *

Then the short exact sequence
0—P — P, — 5 —0
is non-split. Hence S5 is not projective.

Definition 5.15. An abelian category C has enough projectives if every M € Obj(C) there
exists an epimorphism f: P — M where P is projective.
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Example 5.16. In the category of finite abelian groups, there are no projectives except 0.
Indeed, the exact sequence

0—=2Z/2—Z/2n —Z/n — 0

is non-split, so Z/n is not projective. But every other non-zero finite abelian group has direct
summand Z/n.

Example 5.17. If R is a ring with 1, then R-mod has enough projectives. If M is a module,
then we have a map F'(M) — M as described above.

If I, I are ideals in a commutative ring with 1, then we have an exact sequence
0—>Ilm[2—)11@12—>11+12—>0.
Example 5.18. Let
Clz, vy, 2]
(xy — 22— 1)
and I} = (z — 1,z), s = (2 + 1,2). These are ideals which are not principal but they are
indecomposable. Then using the equation xy = 22 — 1 = (2 — 1)(z + 1) we obtain

[1 N [2 = (.’13‘)

R=

Since the short exact sequence
0= ()Ll >R—0
splits (R is projective), we have that
L®l,=R& ()= R?

and so I, I, are projective. Hence we obtained two decompositions of R? into indecompos-
ables.

Example 5.19. Take the equation y* = 2* — x, so

Clz, y)
- +a)
Then the maximal ideals of R are projective.

R:

Definition 5.20. A resolution of M € Obj(C) is a nonnegative complex P, together with a
morphism e: Py — M such that
“'%P3—>P2—>P1%P0—>M—>O

is exact. If all P are projective, this is a projective resolution; if all P are free, this is a free
resolution, etc.

In this case,
M ifn=0,
mr)={ o' Hn 20

Proposition 5.21. If C has enough projectives, then every object has a projective resolution.

Proof. Take any M € Obj(C). There is an epi Py — M from a projective Py and, taking the
kernel Kg — Py, we have a projective P; with an epi P, — Ky. We take its kernel K1 — P;
and again get a projective P, — K;. This way, we get that the diagram
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e
N

0

\
7

0
K
p2 > P

\ \
I 7

~
O/ \0

commutes. Continuing, this gives a projective resolution of M. 0

Let C be an abelian category with enough projectives, D be an abelian category, and F: C —
D be a right exact functor. We present the idea behind derived functors first. Given M &
Obj(C), choose projective resolution of M:

o> Py P, — P — Fy— M —0.
Apply F to P to obtain

o= FPy = FP, = FP, — FF — 0.
Define

Li(FM) = H;(F(P,)).
Note that LoF (M) = Ho(F(P,)) = F(M), since
F(P) = F(R) = F(M)—0

1s exact.

Questions: Is L;F (M) well-defined? Is L, F a functor?

Theorem 5.22 (Comparison Theorem). Suppose P, — M is a projective resolution and
Qe — N is any resolution, and f': M — N be a morphism. Then there exists a chain map
f: Py — Qo such that

P,—— M

bl

Qe —— N

commutes. Moreover, f is unique up to homotopy.

Proof. We construct the family fy, fi, ..., making the diagram
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2\
O
no
2\
=
~
O
o
¥
2\
=}

commute, step by step as follows. The map 9 = f'e: Py — N is surjective, so it lifts to
foi Py — Qo. Next,

v1 = fody: P, - imd; = kern
lifts to fi: P, — @1, since Pj is projective. In the next step,

Yo = fldi Py, — imdy = ker d;

lifts to fo: Py — ()9, since P, is projective. We continue this way to construct a chain map
f: Py — Q4 such that the approporiate diagram commutes.

For uniqueness, suppose g: P, — @), is another chain map such that

P, —— M

bl

Qe —— N

commutes. We can replace the pair f, g by the pair h = f — g, 0: if we construct a suitable
collection of maps s; for h and 0, then ds + sd = h — 0 = f — g, as required. We let
so = 0: M — Q9. The map hy factors through kern, since nhy = 0, and since the map
()1 — kern is surjective and Fj is projective, there is a unique map s;: Py — ()1 making the
diagram

2\
e
s
o

2\
]

O
—
=
€]
=
=
O
o
~
[a)

commute. This shows dys; + spe = dys1 = hg. Now, di(s1dy — hy) = hody — dihy = 0, so
s1dy — hy factors through kerd;, and as ()2 — kerd; is surjective and P; is projective, we
get a unique map so: P — ()2 making the triangle in the diagram

y Py M > 0
[ / l’“/ lho/ [s
, QY kerd1 ,y Q, 24 ", N )

commute. Continuing this way, we construct the family s such that ds + sd = f — g, as
required. U

For every object M € ObjC, we can choose a projective resolution. Then L;F is a functor,
called the left derived functor of F'.
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As a consequence of the Comparison Theorem 5.22, if f': M — N, we get a map

P =) >y M
lfl lfo lf !
> (1 Qo > N

which is unique up to homotopy, so we get a well-defined map

LiF(f) = (fo)i: Hi(F(P)) = Hi(F(Qs)) -

Vv VvV
L; FM L;FN

Moreover, if P, and P, are two resolutions of M, then id: M — M gives rise to unique maps
(up to homotopy)

> P > Py > M

o Joof Joee{

> P| > P > M

so we get maps
fo: Ho(FP,) = H.(FP))
gs: Hy(FP)) — H.(FP,)
such that (gf). = g.fx = id
(f9)e = frge =1id
(by uniqueness by to homotopy). Hence the functor is well-defined: for two choices of
projective resolutions of objects, the construction yields isomorphic functors.

Example 5.23. In R-mod, for R = F[z,y] where F is a field, let m = (z,y) C R with
M = R/m = F. Then a projective resolution of M is

)

and we apply F = M ®pr — to this resolution to get

(= v)

0 y R y R? ‘R s M

o

0 vy 0y 2 0 . p

)

SO
F, iftn=0or 2,
H,(F(P))={ F? ifn=1,
0, otherwise.

E/

Theorem 5.24 (Horseshoe Lemma). Suppose 0 - A" - A — A” — 0 is ezact and P, — A’,

PI" 5 A" are projective resolutions. Then there exists a unique projective resolution Py — A
and an ezxact sequence
0—P.—P,—P'—0

such that
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commautes.

Proof. We recursively construct a projective resolution P, = P @® P, using projectivity and
Snake Lemma 1.43. We note that since we have map P — A (composition), P} — A (lift
from €”), we get a map e: P @ Pj — A (using the fact that P} @ P} is both a product and
a coproduct) such that the following diagram

0 0

0 —— keré > é : < A > 0
Pr@ By f 3 A

0 —— kere” > P;g’ SN ¥ > 0
0 0

commutes. Note that P; & Py is projective as a direct sum of projectives and as both ¢
and €’ are surjective, so is €. Hence we get the following diagram and we apply the Snake
Lemma 1.43 (the cokernels here are all 0) to see that the sequence of kernels is exact
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L

S
L
S

(@]
~
]
=
m\
~
oX
o
v
S
~
]

L
S

We then apply the same procedure to the diagram with kernels to construct d,: P| & P —
ker €, where the product is projective and the map is epi onto the kernel

0 0 0 0

~ ~

d
P| ——— ker¢

i

S
i
S

~
ox
a
¥
~
~

2 ~ 2

-
PloP!l My kere — Ple Pl —< A
B

> > 0
v dl v v / ¥
P! ——— ker¢€” » Pl ———» A" —— 0

~ ~

0 0 0 0

Continuing this way, this constructs the sequence P, = P! @ P/ of projectives with the
desired properties. d

Theorem 5.25. The derived functor L;F is a universal homological d-functor.

Proof. For an exact sequence

0 > Pl > Py > Pl

~
=

and we apply F to get

0 > FP, » FP, » FP)

~
<
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On every level n, we have a splitting

0 > P! » P, =P &P/ > P/

e}

which shows that there is a map FP) — FP,. When we take homology, we get the long
exact sequence

. —— Hy(F(P")) —— Hy(F(P)) —— Hy(F(P"))

0
Ho(F(P')) —— Ho(F(P)) —— Ho(F(P")) — 0,

0

or, in other words,
D S IFA —— LLFA 2y Lo FA — 5 [oFA —— LyFA" — 0.

Hence this 4 is an approporiate map and we just have to check naturality and universality.
We omit this here, but the full proof can be found in [Wei94]. O

6. INJECTIVES AND RIGHT DERIVED FUNCTORS

Let C abelian category. For an object M, Hom¢(—, M) is a left-exact contravariant functor.

Lemma 6.1. The following are equivalent

(1) for every monic f: A — B and every morphism g: A — I, there exists h: B — I
such that hf = g, i.e. the following diagram

0 s A f>_B

commutes,
(2) Home(—, I) is exact,
(3) I is projective in C°P.

Definition 6.2. If any (and hence all) conditions in Lemma 6.1 hold, M is called injective.

Proposition 6.3 (Baer’s criterion). In R-mod, I is injective if and only if for every left
tdea J C R and every R-module homomorphism g: J — I, there exists g: R — I such that
hf =g, i.e. the following diagram

f

>_R

N S
@

commutes
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Proof. The ‘only if implication follows directly from the definition. We will use Zorn’s lemma
to prove the ‘4f implication. Suppose we have

Sy

and we want to construct a map B — I. Consider the set
S={(C,h)| f(A) CC C B submodule, and hf = g}
and set (C,h) < (C", 1) if and only if C' C C" and hj, = h. Note that the set is non-empty,
because we can choose C' = f(A). Suppose {(C,, h,) | v € X} is a chain, so for any z,y € X
(Ca, he) < (Cy, hy) or (Co, he) = (Cy, hy).

Define C' = |J C, and h: C — I by setting h(a) = h,(a) if a € C, for some z € X. This is
reX
well-defined since this is a chain, and h|c, = h, for any v € X. Hence (Cy, h,) < (C, h) for

any x € X, showing that (C,h) is an upper bound.

By Zorn’s lemma, S has a maximal element, call it (C,h). Let b € B. We have an exact
sequence

0 s J s RopC —— Rb+-C —— 0

a — (a,—ab)

(a,¢) — (ab+ ¢)

where J ={a € R|abe C}. Welet g: J — I, g(a) = h(ab) and hence there exists a ¢ such
that the diagram

N S
@
=

commutes. We then have the diagram

0 s J sy ROC — s C=Rb+C —— 0

@”h)l
S

s

Now, (C,h) < (C,h), so (C,h) = (C, h). Hence b € C. This shows that B C C, and hence
B = C, so we get the diagram
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f _
0 s A s B=C

A

I

completing the proof. O

Lemma 6.4. If R is a PID, then I is injective if and only if Iis divisible, i.e. for any a € I,
r € R\ {0}, there exists b € I such that rb = a.

Example 6.5. In Ab = Z-mod, the objects Q and Q/Z are injective, and in fact

Q/Z: @ ZP°°7

p prime

where Z~ = Z [ ] /Z.

1
p
Definition 6.6. An abelian category C has enough injectives if for every M € ObjC there

exists a monic M — I where I is injective. So C has enough injectives if and only if C°? has
enough projectives.

Example 6.7. In Ab, we can embed Z — Q and Z/m — Q/Z via 1+ (m) — + + Z. This
does not exactly prove that Ab has enough injectives: it only shows it for finitely generated
abelian groups. The general statement takes some more work.

If M is a left R-modules, N is a Z-module, then

Homp (M, N) —— Hompg(M, Homap(R, N))

f y [(m,r) = f(rm)]
If N is an injective Z-module, then Homuy,(—, V) is exact, and hence
Hompg(—, Homap(R, N))
is exact, showing that Homay, (R, V) is an injective R-module.

Notation. We denote by
AB = the set of functions B — A,
CP? = the category of functors D — C.

By the above, the object Iy = Homup (R, Q/Z) is an injective R-module. The map
O: M — [

(m)(f) = f(m) € .

is injective (as a set map). Hence the category R-mod has enough injectives.

Definition 6.8. A coresolution of M € ObjC is

0 y M y 10 y I!

~
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and an injective resolution of M is a coresolution such that I™ are injective objects.
Proposition 6.9. If C has enough projectives, then any object has an injective resolution.
Proof. This is the dual to Proposition 5.21. U

Example 6.10. In Ab, an injective resolution of Z is

0 > 7, > Q » Q/Z —— 0

and an injective resolution of Z/n is

0 > Z/n > Q/Z > Q/Z > 0

If F is a left exact functor and C has enough injectives, then we define R"F, right derived
functors, where for an injective resolution

0 sy M y [0 y I1

~

we set

R'F(M) = H"(F(I%)),
RF(M) = F(M).

All the results about the left derived functors from Chapter 5 hold dually for right derived
functors.

7. LiMITS

Let A be an abelian category and Z be another category (often a poset).

Definition 7.1. A limit is a functor F: Z — A is an object L € Obj.A together with
morphisms 7;: L — F(i) for all ¢ € ObjZ such that

L " F(i)

commutes for all f: i — j, and (L, ) is universal with this property, i.e. if (L', 7') satisfy

L’L>]-“

N lf

for all f;: i — j, then there exists a unique h: L' — L such that m;h = 7} for all ¢
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/
iy

J/R N . T
We write (L, ) = lim F(i).

\} lf

Example 7.2. If T is a set with no morphisms, then L = [] F(¢) is a product in A.
i€l

Definition 7.3. Dually, the colimit, colim;ez F (i), is an object L together with morphisms
i;: F(j) = L such that the dual universal property holds.

Definition 7.4. A poset Z = (I, <) is directed (filtered) if for all 7,5 € I, there exists k € I
with i <k, j <k (ie.i— k, j — k). Then

colime; F (i) = colim F (i) = lim F (i)
is called the direct limit.
Dually, a poset Z is cofiltered if for all 7, 5 € I there exists k such that £ <4, k£ < 7 and
lzler?]-"(z) = hg]:(z)
is called the inverse limat.
Example 7.5. We have [ = N is a poset with
0—=+1—-2—=-3—- -

and then for F(i) = Z/2" we get

]2 —7]2 - 7]4 — Z]8 — ---
with maps 1 — 2 everywhere, and hence

lim F(i) = im Z/2" = Z[1/2)/Z.
Direct limits “feel like unions”.

Conversely, for
=3 —=>2—=1—=0

and F (i) = Z /2, we get
78 = Z/4—7)2 — Z]/1 ={0}
with the maps 1+ 1 everywhere, and hence (in Rings)
liny Z,/2" = Zo,

the 2-adic numbers. Inverse limits “feel like some sort of completion” and oftentimes one can
also define a topology on them.

Definition 7.6. An abelian category A is complete if [] A; exists for every set I. The dual
i€l
notion is called cocomplete.
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Lemma 7.7. Suppose A is complete, T is a small category, and F: T — A. Then lim F (i)
exists. Similarly, if A is cocomplete, colimits exist.

Proof. For a morphism f: j — k,

1—[ ./—"(Z) e —F(f)m;

icObj T

F(k)

so that

commutes if the above morphism is 0. Hence we can let K be the kernel to get the diagram

0 F@i) —— J] F(k)
zEObJZ =k
Then K = lim F (i) satisfies the universal property. O

8. SHEAVES AND SHEAF COHOMOLOGY

In this section, we present a brief review the theory of sheaves together with an application
of the above theory, sheaf cohomology. For more details, see [Har77, Chap. 2].

We begin with a motivating example.
Example 8.1. Let X be a topological space and, for U C X open, let
F(U) = set of continuous functions U — R.
If V. C U, then we have a restriction map opy: F(U) — F(V) which maps f € F(U) to
f|V € ./T(V)

We define a category Top(X) whose objects are open sets U C X and the partial ordering
C gives morphisms: for V. C U, iyy: V — U is the inclusion. Define F(iyy) = oyy. This
makes F into a contravariant functor Top(X) — Ab (or even R-mod).
Definition 8.2. A pre-sheaf of abelian groups is a contravariant functor F: Top(X) — Ab
with F(0)) = 0. We have a category Presheaves(X) which is a subcategory of ApToPX)
A morphism n: F — G is a collection of morphisms

n(U): F(U) — G(U) for U € Top(X)
such that
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n(U)

F(U) g(U)

V)

FV) L= g(v)

Definition 8.3. A presheaf F is a sheaf if for every U C X open and open covering U,
1 € 1, of U we have

(1) if f € F(U) and fiy, = 0 for all ¢, then f =0,
(2) if fi € F(U;) for all i and for all i, j we have (f;)jv,nv; = (fj)v,nu, then there exists
f e FU) with fiy, = f; for all 7.
Note that condition (1) can be restated by requiring uniqueness in condition (2).
If I is totally ordered, then (1) and (2) are equivalent to
0 — F(U) — @ FU;,)) —— P FU,NUjy)
i i<j
f - (fUivi € I)

(giie€l) —— (g: — 95,1 <)

being exact.
Definition 8.4. Let F be a pre-sheaf. The stalk of F at x is the direct limit
F, =l {F(U) | U >}
or, equivalently,
Fo={U[) | feFU), zeU}/ ~

where (U, f) ~ (V, g) if and only if there exists W with . € W C U NV and fiw = gw-.
Definition 8.5. If F is a pre-sheaf, then we define F* by

FH(U) = set of all function U — [] F, with f(x) € F, such that

zelU
for every y € U there exists V C U and y € V and g € F(V) -

such that g maps to f(z) € F, forallz € V

The universal property of F*: F is a sheaf and if G is a sheaf and ¢: F — G is a morphism
of pre-sheaves, then there exists a unique morphism ¢*: F* — G such that

F —— F*
g
commutes. Then F* is called the sheafification of F.

Lemma 8.6. Sheafification is exact.



MATH 613: HOMOLOGICAL ALGEBRA 49
Example 8.7. If X = P!(C), the Zariski topology on X is: D C X closed if and only if
D =P!(C) or D is finite.
Define a sheaf Oy on P!(C) by setting

Ox(U)={f € C(t) | f regular on U},
a subring of the function field C(t).
Write the affine line as A' = P!\ {oo} 2 C. Then
Ox(P')=C, Ox(A")=Clt].

Moveover,
1 1

t—a;  t—a,

Ox(P'\ {ay,...,a,}) =C
for ai,...,a, € A
Define a subsheaf Z of Ox by setting
Z(U) = {f € Ox(U) | fivnioeey = 0}

There is an exact sequence

0 s T s Oy » Ox/ZT —— 0

but the last of these, Ox/Z, is not a sheaf. Indeed:
(Ox/I)(A") = Clt]/(t),

osmEon=c | /(3):

Then 0+ (t) and 1+ (1) agree on A'\ {0}, since
(Ox/T)(A"\{0}) =0,
but since (Ox/Z)(P') = C, there is no element there mapping to f; and fo.

Instead, sheafify to get an exact sequence of sheaves

0 > T > Ox » (Ox /)t —— 0

where (Ox/Z)*(P') = C2%

Definition 8.8. The global sections functor I'(X, —): F — F(X) is left exact, and
RT(X,F)=H'(X,F)

is called the sheaf cohomology.

Example 8.9. For the example above, we have the long exact sequence

0 —— (X, ) — I'(X,0x) — I(X,(Ox/I)") —— H'(X,I) — -
=0 =C ) —C? #0
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9. ADJOINT FUNCTORS

Definition 9.1. Let A, B be abelian categories. Then additive functors L: A — B and
R: B — A are adjoint if there exists a natural isomorphism

T: Hompg(L(A), B) = Homy(A, R(B))
of groups.

Proposition 9.2 (Yoneda Lemma). Let A be an abelian category. A sequence

A-—2yB_ "¢

1s exact if for all M,
Hom (M, A) —% Hom (M, B) —=— Hom(M, C)

18 exact.

Proposition 9.3. If L and R are adjoint, then L is right-exact and R is left-exact.

Proof. Suppose

is a short exact sequence in B. We apply
HOIHB(L<A), _) = HOHI_A(A, R(_))
to get

0 — Homg(L(A), B,) — Homp(L(A), By) — Homg(L(A), By)

: ! I

0 —— Homyu(A, R(B;)) —— Hom(A, R(Bs)) —— Homyu(A, R(Bs))

for all A € Obj.A. By Yoneda lemma, we get that
is exact, and so R is left-exact. Similarly, L is right-exact. O

Example 9.4. Let

(1) A right R-module,
(2) B R-S bimodule,
(3) C right S-module.

Then A ®pg B is a right S-module with (¢ ® b)s = (a ® bs) and Homg(B, () is a right
R-module with (fr)(b) = f(rb). There is a natural isomorphism

T: Homg(A ®f B,C) = Hompg(A, Homg(B, C)).
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Indeed, if f: A®r B — C, then for we get

a— [fla®—): B— (]
Conversely, if A — Homg(B, C) is any map, then we get a bilinear map A x B to C' which
factors through a map A®r B — C.

We have that
— ®pg B: mod-R — mod-S
Homg(B, —): mod-S — mod-R
are an adjoint pair, so — ®g B is right exact and Homg(B, —) is left exact.
Then we set
Lz(_ ®R B) = TOI'Z‘(—, B),
and we will show that
Ll(A ®R —) = TOI'i(A, —),
because
Li(— ®gr B) = Li(— ® B)(A).
Definition 9.5. A double complez is a set {C} ;}p.qez of objects with horizontal maps
dhi Cp7q — Cpfl’q
and vertical maps
d’: Cpq — Cpg
such that d"od" =0, d" o d* = 0, and d'd" + d"d" = 0

~ v ~

S Cp—Lq-&-l < C’p,q+1 < Cp-&-l,q—&-l <

~ v ~

S Cp—l,q < Cp,q < Cp+1,q <

v v 2

S Cp—Lq—l < C’;D,q—l < C(p+17q—1 <

The map d”: Coy — Coq—1 is almost a chain map: if we set f,, = (=1)d},: Cpy — Cpy1,
then fo;: Coq — Cey—1 is a chain map. Hence f,, is in Ch(C), and fee is in Ch(Ch(C)).

Definition 9.6. Assume C is cocomplete. We set define the total complex

Tot®(Cos)n = €P Chg

p+q=n
with d = d” + d", whence
d* = (d" 4+ d")? = (d")* + (a°d" + d"d*) + (d")* =0+ 0+ 0= 0.
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If C is complete,
Tot™(Coe)n = [ Cra
ptg=n
with d = d¥ + d".
Proposition 9.7 (Acyclic Assembly Lemma). Suppose Ceq is a double complex in mod-R.

Suppose C' is an upper half plane complez (i.e. C,, = 0 if ¢ < 0) and columns are ezact.
Then Tot™ (C') is acyclic (exact).

Proof. We claim that Hy(Tot™(C,e)) = 0. By symmetry, it is enough to restrict our attention
to the p = 0 portion of the diagram

— Crl,z < C:(;z < C:1’2 <

— C;’Ll < C:(;l < C:lrl <

— O;’I,O < C:(;O < 6:1’0 <
0 0 0

Suppose
(00,01702, .. ) - C()() X 0_171 X 0_2’2 X e

is a cycle. Then
d(cy, c1,¢a,...) = (d"co + d¥cy, d"cy + ey, ...) € C_10xClgqp X -
We want to find
(bo,bl,...) € Clo X Cop X C_qg X+
with
d(bo, bl, .. ) = (dhbg + dvbl, dhbl + dvbQ, .. ) == (Cg, Ci,y .. )
Pick by = 0. Then d¥cy = 0 so ¢y = d’b; for some b;. Then
0=d"co+d’c; = d"d"by + d’c; = —d’d"b; + dc; = d*(c; — d"by).

Hence there exists by € C_; 5 such that d"by = ¢; — d"b,. Then ¢; = d’by + d"b;, and proceed
by induction to construct bz, by, .... This completes the proof. O

Corollary 9.8. If C,e is a double complex in the right half plane with exact rows, then
Tot™(Ces) is exact.

Corollary 9.9. If C,, is a double complex in the right half plane with exact columns, then
Tot?(C, ) is exact.
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Proof. Define new complex 7,,C,e by

Chq it ¢ > n,
(1:C)pg = { kerd”: Cp, = Cpmq ifg=n,
0 if g <n.

Then we get the diagram

2 2 2

0 ¢—— Conta ¢« Crng2 ¢ Crpga — -+~

2 2 2

0 ¢— Copnt1 ¢ Cipg1 < Clpp1 & -

~ ~ ~

0 «—— kerd’ «—— kerd” +—— kerd" <—— ---

2 2

0 0 0

i
S

Hence Tot™(7,,C) = Tot®(7,,C) is exact. This shows that Tot®(C) is exact. O
Theorem 9.10. We have that

Ln(A®r —)(B) = Ln(— ®r B)(A)
and we call them Tor’ (A, B).

We will actually prove a more general statement, following [Wei94, Exer. 2.7.4]. (This was
actually a homework exercise, but we include it here for completeness.)

Theorem 9.11. Suppose C is an abelian category and
T:-Cx---xC—D

1s an additive functor in p variables, some of the covariant and some contravariant. Assume
moreover that T 1s right-balanced:

(1) when any covariant variable is replaced by an injective module, T' becomes exact in
the other variables,

(2) when any contravariant variable is replaced by a projective module, T' becomes exact
in the other variables.

Then for any v, j there is a natural isomorphism
RT(Ay, .. Ay AN (A) = RT(Ay, .. Ay, A (A;)).

~

Proof. Note that if we fix modules A;,..., A

~ ~

T(Ay,... A ..., A

,...,Ap, then the functor

Z’,...,Aj
e Ay)iCxC—D
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is right-balanced, and it is enough to show the assertion for this functor in 2 variables. Hence
suppose that

T:CxC—D
is right-balanced. We mimic the proof of [Wei94, Theorem 2.7.2] to show
R'T(A,—)(B) = R'T(—, B)(A).

If the first variable is covariant, choose an injective resolution ¢: A — P, and if it is con-
travariant, choose a projective resolution e: P, — A. Similarly, if the second variable is
covariant, choose an injective resolution n: A — @, and if it is contravariant, choose a
projective resolution 7: Q4 — A. We then get the double complex:

We will show that the maps

T(e,1): Tot(T(P.,Qs)) — Tot(T(A,Q.)) = T(A, Q)

T(1,n): Tot(T(P,,Qs)) — Tot(T(P., B)) = T(PF., B)
are quasi-isomorphisms, and hence they induce natural isomorphisms

H(Tot(T'(Ps, Qa))) = B (T (A, —))(B),

H*(Tot(T'(Ps, Qa))) = B (T (=, B))(A),

which gives the result.

We only show T'(e,1) is a quasi-isomorphism using the Acyclic Assembly Lemma 9.7; the
fact that T'(1,7n) is a quasi-isomorphism is symmetric. Let Csq be the double complex
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0 —— T(A,Q») Ten, T(Py,Q2) —— T(P1,Q2) —— T(P, Q) — -

4 A 4 A

0 —— T(A, Q) Ten, T(Py,Q1) — T(P1,Q1) —— T(P, Q1) — -

4 A 4 A

0 —— T(A, Qo) ~% T(Py, Qo) —— T(Pr, Qo) —— T(Po,Qp) — -+

4 A 4 A

0 0 0 0

and note that Tot(C,,)[1] is the mapping cone of e®1: Tot(T'(P., @Qs)) — T(A, Q). Hence,
to show that € ® 1 is a quasi-isomorphism, it is enough to show that the mapping cone
Tot(C,e)[1] is acyclic. Finally, since @Q; are injective if the second variable is covariant and
projecitve if the second variable is contravariant, the right-balanced condition shows that
Cee has exact rows. Then by Acyclic Assemply Lemma 9.7, we obtain that Tot(C,)[1] is
acyclic.

This completes the proof. 0

10. Tor AND EXT

We restrict our attention to A = Ab.

Example 10.1. Consider the projective resolution

0 > 7 —— 7 » Z/n —— 0

For an abelian group B, apply — ®z B to P, to get

0 s B "+ B s 0

Hence
Torg(Z/n,B) =7Z/n® B = Hy(P, ® B) = B/nB,
Tory(Z/n, B) = Bln| = {b € B : nb= 0},
Tory(Z/n,B) =0 for k > 2,
Tory(Z, B) = B,
Tory(Z,B) =0 for k > 1,
In general,

Tor;,(Z/n,Z/m) = Z/(n,m) for i =0, 1.
To calculate Ext, we apply Homay(—, B) to P, to get

0 s B —» B s 0
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and then
Ext’(Z/n, B) = H°(P,) = B|n]
Ext'(Z/n, B) = H'(P,) = B/nB
and in particular .
Ext(Z/n,Z/m) = Z/(n,m) for i =0, 1.

If A= li%mAa = colim A,, then
T‘OI'Z'(147 B) = TOl"i(hgl Ao“ B) = hAlTOI‘Z'(Aa, B)
Proposition 10.2. Suppose A and B are abelian group. Then

(1) Tory(A, B) is a torsion group,
(2) Tor,(A,B) =0 forn > 2.

Proof. It A is finitely generated, then
AZZ" ®ZIng & - B ZL/ny,
and the proposition is clear.
Otherwise, A = @Aa for {A,} finitely generated subgroups. The limit of torsion groups is
torsion, so
Tory (A, B) = ligTorl(Aa, B)
is torsion. 0

Example 10.3. We have that

Tory(Q/Z, B)  ling Tor, (z H /2. B) — liny B
Zn

the torsion subgroup of B.

If A is torsion free then A = lime, SO
TOl"l(A, B) = hﬂTOl"l(Zm, B) = 0.

Hence A is torsion-free if and only if Tor; (A, —) = 0 if and only if A ®7 — is exact, or by
definition, A is a flat Z-module.

Definition 10.4. A left R-module B is flat if — ®r B is exact, and a right R-module A is
flat if A ®p — is exact.

In general, a projective module is flat but the converse is not true. For example, Q is a flat
Z-module but it is not projective.

Suppose R is a ring with 1 and

S CZ(R) CR.
——

center
Suppose 1 € S and S is closed under multiplication. The localization of R with respect to
S, STIR, is
STTR={(r,s)|r€R, s€S} ~
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where
(r1,81) ~ (72, s2) if and only if there exists s3 € S such that (1152 — 1251)s3 = 0.
We think of (r,s) as Z. If [(r, s)] is an equivalent class, then
[(r1, s1)] 4 [(r2, s2)] = [(r152 4 7251, 5182)],

[(r1, 1)) - [(r2, 52)] = [(r172, 5152)].
We have a map ¢: R — S!R, setting (r) = [(r,1)]. We then set

S7IM := ST'R®g M, the localization of M at S.

Theorem 10.5. The localization S™'R is a flat R-module, i.e. ST*R®pr— is an ezact functor
from R-mod to S~'R-mod.

Proof. Define category Z with
Obj(Z) = S,
for s1, 80 € S, we set Homz(sy,s2) = {s € S | ss1 = s2}.
This is a filtered category (see definition below)

t1 51
5189 S1 t:; Sog — 8189
2

We then have a functor F: I — R-mod given by F(s) = R for s € Obj(Z) = S and if
$1 = s9 is a morphism then

F(s1) =R 297 F(sy) = R
We claim that colimge; F(s) exists and in fact colim,e; F(s) = S™'R. Indeed, we define
0o F(s)=R— S™'R

by @s(r) = [(r,$)]. Then one can easily check that this gives a map from the colimit to
S~1(R) which is an isomorphism by the universal property of localization.

Therefore, for n > 1
Tor, (S~ 'R, B) = colim Tor, (F(s), B) = colim Tor, (R, B) = 0,
=0
and hence S™'R is flat. O
Definition 10.6. A category C is filtered if

(1) for any A, B, there exists C' with morphisms a: A — C and 5: B — C,
(2)if A %; B then there exists v: B — C such that ya = 0.
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Exercise. The following conditions are equivalent

) Ais a flat right R-module,
) A®pg — is an exact functor,
) Tory(A, B) = 0 for all left R-modules B,

(1
(2
(3
(4) Tor,(A, B) = 0 for all left R-modules B and n > 1.

(The first equivalence is the definition.)

Definition 10.7. If B is a left R-module, then B* = Homay, (B, Q/Z) is the right Pontryagin
dual of B.

If B+#0,let C be a maximal subgroup. Then B/C = Z/p for p prime, and hence
Homay,(B/C,Q/Z) # 0,
and thus B* = Hom(B,Q/Z) # 0.

Lemma 10.8. A morphism f: B — C s injective if and only iof f*: C* — B* is surjective,
where f* = Homay(f, Q/Z).

Proof. Suppose A — B is a kernel of f,s0o 0 - A — B — (' is exact, and hence
C*—=B"—-A"—=0

is exact, since Q/Z is injective. Hence f is injective if and only if A = 0 if and only if A* =0

if and only if f* is surjective. U

Proposition 10.9. The following are equivalent:

B is a flat left R-module,
B* 1s an injective right R-module,
I ®r B 5 IB for every right ideal I C R,

(1)
(2)
(3)
(4) Tory(R/I, B) =0 for every right ideal I C R.

Proof. We first check that (3) is equivalent to (4). Apply — ®g B to the exact sequence

0 > > R » R/II —— 0
to get an exact sequence

Tory (R, B) —— Tory(R/I,B) —— I ®z B —— R®zr B —— R/IQz B —— 0
N———— SN——— N—_———

=0 =B B/IB
and hence

0 —— Tory(R/I,B) —— I®r B —— IB, —— 0
ker ¢
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is exact. This shows (3) is equivalent to (4).
We now show (1) is equivalent to (2). We have

Hompg(A, B*) = Homg(A, Homz(B,Q/7Z))) = Hom(A ®g B,Q/Z) = (A®g B)".
If A” C A is a submodule, then the following diagram

Hompg(A, B*) —— Hom(A', B¥)

: !

(A XRpr B)* e (A/ XRpr B)*
commutes. Now,

B* is injective if and only if Hompg(A, B*) — Hompg(A’, B*) is surjective for all A" C A
if and only if (A ®gr B)* — (A’ ®g B)* is surjective for all A" C A
if and only if A’ ®r B — A ®p B is injective for all A’ C A
if and only if — ®pg B is exact
if and only if B is flat.

—~

We finally show (2) is equivalent to (3). Note that B* is injective if and only if

B* (IoB)*
ﬁomR(R, B*S — ﬁomR(I, B*;

is surjective for all right ideals I C R. But this is equivalent to I ® g B — B is injective for
all I, which holds if and only if I ®zr B = I B. 0

Definition 10.10. A module M is finitely presented if there exists an exact sequence

R™ —- R"— M — 0.
Note that projectivity is not equivalent to flatness. Indeed, Q is a flat Z-module (it is a
localization of Z), but it is not projective.

We will show that for finitely presented modules, flat modules are projective.

For M, A left R-modules, define
0: A" ®r M — Homp(M, A)*

o(f ®@m)(h) = f(h(m))
for f € A*, m € M, h € Homg(M, A).

Proposition 10.11. If M is finitely presented, then o is an isomorphism for all A.
Proof. Clear if M = R". Now, if

R™ > R™ s M

=}

then we have the following commutative diagram
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A QrR" ——— A" Qr " —— A*®@r M >

; : N

Hompg(R™, A)* —— Hompg(R", A)* —— Hompg(M,A)* ——

~

< 1R <

which has exact rows, because Hom(—, A)* and A ®g — are right-exact covariant functors.
By Five Lemma 1.44, we obtain that ¢ is an isomorphism. O

Theorem 10.12. A finitely presented flat R-module is projective.

Proof. Suppose M is finitely presented, flat, and f: B — C' is surjective, so f*: C* — B* is
injective. Hence the square

CropM —L2 s BroM

| lg

Hom(M, C)* —— Hom(M, B)*

commutes. Since M is flat, f* ® 1 is injective, and hence
Hompg(M, B) — Hompg (M, C)
is surjective. This shows that Homg(M, —) is exact, so M is projective. 0]

Lemma 10.13 (Flat resolution lemma). If --- — F, — F; — Fy - A — 0 is a flat
resolution, then

Tor®(A, B) = H,(F, ® B)
for a right R-module A and a left R-module B.

If F,, are in fact projective, this is how we defined Tor®(A, B), and this lemma shows that
we can compute Tor”(A, B) by considering only a flat resolution.

Proof. For n = 0, we have an exact sequence
F1®RB E— F0®RB — A®RB — 0

and hence Hy(F, ®g B) = A®gr B = Tory(A, B).

We have an exact sequence

We then get a long exact sequence
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—0 =0
—— —
Tory(Fy, B) — Tory(A, B) —— Tory (K, B) —— Tory(Fy, B)

Tory(A,B) —  K®B —— > F@ B —— AQB ——— 0

and hence Tor, (A, B) = Tor,,_1 (K, B). We have the exact sequence

FQ >F1 > K

2\
e}

which gives the exact sequence
KB — N®B — K®B —— 0

and we get that

FL®B

Tor, (A, B) = ker(K ® B Fo® B)=k _—
ori1(A, B) er(K® B — Fy® B) er(dg(F2®B)

By induction on n, we finally obtain:
Tor, (A, B) = Tor,,_1(K,B) = H,_1(F,[1] ® B) = H,(F. ® B),
as required. [l

Proposition 10.14. Suppose R — T is a ring homomorphism and T s flat as a left R-
module. Then for all right R-modules A and left T-modules C', we have that

Torf (A, C) = Torl (A®g T, C).

Proof. Let P, — A be a projective resolution so that
Tor (A, C) = H, (P, @ O).
Note that P, ®g T is a projective T-module: P, & () = F for some free R-module F', whence
FT=(P,®Q)T=(P,T)®(QxT),

so P, ® T is a direct summand of the free T-module /' ® T'. Hence

P,@rT — A®rT
is a projective resolution (since — ®g T is exact). Hence

Torl (AR T,C) = Hy(P, @ T @1 C) = H,(P, @ C) = Tor®(A, C).
This completes the proof. 0]
C

Corollary 10.15. Let R be commutative, T be a flat R-algebra with p: R — T and ¢(R)
Z(T). Then

T @ Tor® (A, B) 2 Torl (A®r T, T @5 B).
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Proof. We have that:
Torl (AR T, T ®p B) = Tor®(A, T ®@r B) = H,(P. @r T @r B) = H,(T ®g P, ®r B)
=T®p H,(P, ®p B) = T @ Tor?(A, B),
as required. OJ

Example 10.16. Suppose p C R is a prime ideal, R is a commutative ring and R, = S™'R
for S =R\ p. If M is an R-module, M, = R, ® M, then

Tor®(A, B), = R, @ Tor?(A, B) = Torf*(A ®p Ry, B ®g R,) = Tor* (A,, By).
In general,
S ' Tor(A, B) = Tor® 'R(S~A, 571 B).

Example 10.17. Suppose A, B are abelian groups. Then there exists IV injective such that

0—+B—=I1'"=1°°B—0
is exact, but since I° is divisible, I' = I%/B is also divisible, so it is injective. Hence

0—=+B—=I"=1"=0

is an injective resolution. This shows that

Ext"(A, B) =0 for n > 2.
For B =7, we get

0-Z—-Q—Q/Z—0,
and hence Ext*(A,Z) is the homology of

0 — Hom(A, Q) — Hom(A,Q/Z) — 0.

If A is torsion, then
Hom(A,Q) = 0.
In that case,
Ext'(A,Z) = Hom(A,Q/Z) = A*,
the Pontryagin dual we defined before.

Proposition 10.18. Let A be a finitely generated R-module over a commutative Noetherian
ring R, B be an R-module, and S C R be a multiplicative system. Then

ST Ext}(A, B) = Ext? 1 4(S7'A, S7'B).
In particular, for a prime p, we have

Recall that, to check if an R-module M is 0, it is enough to check that for any prime ideal p,
M, = 0. So in this case, to check that Ext;(A, B) = 0, it is enough to check that

Ext’ép(Ap, B,) =0
for any prime p.

We know Ext®(M, N) as a measure of failure to Extend maps. It is a derived functor of Hom
in multiple ways. On the one hand, we see the same Ext in lots of different places, but on
the other hand this also means objects of Ext are “slippery’.
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We will compare Ext to something more concrete by asking the following question: When
does a short exact sequence (of R-modules) split?

Given a short exact sequence, it splits if there is a section

E 0 s A s B s O s 0

In the long exact sequence, we get
Homp(C, B) —— Homp(C,C) —— ExtkL(C, A)

? > 1o

1o - > 0

Answer: The short exact sequence F splits if and only if §(1¢) = 0 € Exty,(C, A).
Definition 10.19. The obstruction of E as above is 0(E) := 6(1¢) € Ext,(C, A).

Remark 10.20. We can also compute the obstruction of F as follows. Take 14 and lift it
to a projective resolution of €', and a map to F

d d1

y Py —— Py > Py > C
Fob L
0 > A » B > C > 0

Such a lift is unique up to chain homotopy.

We claim that the map o € Hompg(P;, A) defines the same class as 0(E) = §(1¢). We have
the following diagram:

d(l¢) =u € Hom(P,,A) ——— Hom(P,, B)

[

v € Hom(P,, B) —— Hom(F, C))

[

HOIII(C, C) o 1¢
We choose 1¢ € Hom(C,C), map it to Hom (P, C), lift it to v € Hom(FP, B), map it to
Hom( P, B), and lift it to u € Hom(FPy, A).

The maps u,v,1c give a commutative diagram as above, with « replaced with u and f3
replaced with v. The chain map is chain homotopic to the original map, and hence u and v
give the same class in Extp(C, A).

Definition 10.21. An extension in an abelian category A is a short exact sequence
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E 0 s A > B s C > 0

(an extension of C' by A).

An isomorphism of extensions is a commutative diagram

E 0 > A » B > (' > 0
NG
E: 0 > A > B’ > C > 0

By Five Lemma 1.44, the map B — B’ is an isomorphism.

Definition 10.22. The trivial extension of C' by A is

0 s A (1’0)>A@C s C s 0

Example 10.23. What are the extensions of Z/p by Z (in Z-mod)?

0 y 7 —— 7 j>Z/p—>0

o 7 =7&Z/p, the trivial extension.
e ?=7,i="p, j="-kforany k € (Z/p)*.
If two of these are isomorphic extensions,

0 s 7 L7 Lt 7/p —— 0

RN

0 s 7 » 7 —2 5 Zp —— 0

then £ = k’. So there can be nonisomorphic extensions with isomorphic middles.

We will write ext!(C, A) for the set of isomorphism classes of extensions of C' by A.

If there are enough projectives in A, the obstruction map
0: ext’(C, A) — Ext'(C, A)

is well-defined. (For an isomorphism E = E’, we get an isomorphism of long exact sequenes.)
In fact, more is true.

Theorem 10.24. The map 0: ext'(C, A) — Ext'(C, A) is a bijection if there are enough
projectives in A.

Proof. Let us construct an inverse (we work with R-modules, but the same construction
works in general).

Given n € Ext'(C, A), choose a projective resolution P, — C, and a representative ¢ €
HOHIR(Pl, A)
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P, y Py )Po > C > 0

d
°s C > 0

i 1 R

s C > 0

N

Since ¢ represents a cocycle, it factors through S = P;/im(P,). Hence we have another
pushout square (we give it the same name by abuse of notation):

dy do

0 y S =) > (' > 0

bl

0 s A > B s C > 0

2\

where the map A — B is injective, because S — P, is injective.

We use this short exact sequence in the setting above:

P, s P2y p %, y 0
[ A
E 0 s A s B > C > 0

By the Remark 10.20 earlier, §(E) = [¢] € Exty(C, A).

To conclude that this inverse construction is well-defined, we need to show that the same
Ext'-classes of maps give the same extension.

This follows from the fact that the construction of our extension from ¢ came as a pushout
of

dy do

0 y S B

ool

0 s A > B s C

2\
Q
o

2\

o

since the maps S — A are independent of coboundary. 0

Remark 10.25.

e We can generalize this construction to higher Ext’s (bijective to isomorphism classes
of longer exact sequences).
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e There is a way to add extensions that is compatible with 6.
e We can multiply Ext’(C, A) @ Ext/(D, C') — Ext'*7(D, A) that comes from splicing

exact sequences. '
e We have a notion of Ext" in any abelian category.

11. UNIVERSAL COEFFICIENTS THEOREM

Recall that a right R-module is flat if and only if Tor; (A, M) = 0 for all M if and only if
Tor, (A, M) =0 for all M and all n > 1. Moreover, if

0 s A > B s C

e}

is exact, then

(1) if A, C are flat then B is flat,
(2) if B, C are flat then A is flat.

To see this, we just look at the long exact sequence for Tor.

Set up: let R be a ring, P, a complex of flat R-modules, M an R-module.

Theorem 11.1 (Kiinneth). Assume B, (P.) is R-flat for all n (for example, if R = 7Z or
any PID or a field). There is a natural short exact sequence

0 —— H,(P,)®r M —— H,(P, ®p M) —— Torl(H,_,(P,),M) —— 0
Examples 11.2.

(1) If R is a field, Torf(—, —) = 0, we get the obvious isomorphism
H,(P,) ®p M = H, (P, @ M),

because — ®pr M is exact when R is a field.
(2) Let R=7, P, =7 > 7, M = 7/2. Then

JzZ)2 iti=0
H;(P,) = { 0 otherwise
But
Po@rM=17/22%17/2
and hence
_Jz)2 iti=0,1
Hi(Pe ®@p M) = { 0 otherwise

To see this via Kiinneth Theorem 11.1, we note that
0 —— Hy(P,®@ M) —— Tor’(Z/2,7,/2)

=7/2

(3) (Non-example). Let R = Z/4, M = Z/2, and P, = Z/4 N Z/4. 1f Kiinneth was
true, we would get
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0 —— Hi(P)®r M —— H(P,®r M) —— Torf(Hy(P,), M) —— 0
N—_—— N—_———’ N — “
=7/2®7,42/2=1/2 H1(2/257/2)=1)2 Tory/4(2/2,2/2)=2/2

This is impossible for cardinality reasons.

Above, to find Tor?“(Z/Z, 7./2), we take the resolution

K, : sy Z)4 —25 Z)4 —2 7/4 > 72 — 0
and note that

Tor?"(2,)2,7,/2) = Hy(Ks ©z4 Z,/2) = 7./2.

Proof of Kiinneth Theorem 11.1. Note that Be(P) C Z,(P) C P, are complexes where
Z4(P) and B,.(P) have trivial boundary maps.

We claim that Z,(P,) is a flat R-module. We have a short exact sequence

0 —— Z,(P) sy P, —*— B,_1(P,) —— 0
As each B,_1(P,) is flat, this also shows that Z,(F,) is flat. The long exact sequence in
homology gives
- —— H,(BJP)®@ M) —"— H,(Zy(P)® M) —— H,(P,® M)
R

Hy1(Bo(P)@ M) —~ Hy 1(Zo(P) @ M) ——— -+

and hence we have the short exact sequence

(%) 0 —— coker(a,,) —— H,(P.®gr) — ker(a,—1) —— 0

As Z,(P) has a trivial differential, the same is true for Z,(P) ® M and B,(P) ® M. This
shows that
H,(Zs(P)® M) = Z,(P)® M,

H,(B.(P)® M) = B,(P)® M.

But since B, (P) and Z,(P) are flat, and we have the short exact sequence
0 — B,(P) — Z,(P) —— H,(P) — 0,

this is a flat resolution of H,(P). Therefore
Ho(B,(P)® M %% Z,(P) @ M) = Torl(H,(P), M),
since Tor can be calculated using flat resolutions 10.13. This shows that
coker(a,) = Torl(H,(P), M) = H,(P) ® M,
ker(ay,) = Torf(H, (P), M).
Substituting this into the short exact sequence () completes the proof. O
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Corollary 11.3. Assume R =7 (or B,(P,) is free). Then for all M, the Kinneth sequence
splits (non-canonically), i.e. we have isomorphisms

(Hy(P.) ® M) & Tor{'(H,—1(P), M) = H,(P, ® M).
Proof. We know that each d(FP,) is free. Hence the short exact sequence

0 /s > P, » d(P,) —— 0

splits (non-canonically!), and so P, = Z, & d(P,). Taking — ® M of both sides, we obtain
Zn@M Cker(d,®1) C P, @M=27,0 M®d(P,) ® M.

We hence get that ker(d, ® 1) = Z,, @ M & C, for some complement C'. Taking the quotient
by im(d,4+1 ® 1) = im(d,41) ® M, we get

H,(Po®@ M)=H,(P,)@ M & C.

Hence the Kiinneth exact sequence
0 — H,(P,) ®z M —— H,(P, ®z M) —— Tor’(H,_(P,), M) — 0

splits, with C' = Tor% (H,,_,(P), M). O

Example 11.4. Let X be a topological space and S,(X) be the singular chain complex. If
M is some abelian group,

H,(X; M) = Hy(Sa(X) @ M) = Hy(Su(X)) © M & Tor}(H,_(Su()), M),

and hence
H,(X; M) = H,(X)® M ® Tory(H,_1(X), M).

So, to calculate the homology groups with coefficients in M, it is enough to calculate them
with coefficients in Z (but the splitting is not functorial, so this does not tell us anything
about the maps between the homology groups).

For example, let X = P?(R) and M = Z/2. We then have:
Ho(X) = Z, Hy(X) = Z/2, Hy(X) =0,
and hence

Hy(X:Z,/2) = Hy(X) ©7 /2@ Tor, (Hy(X), Z/2) = Tory(Z/2,2/2) = 2.

~~
=0

There is an analog of the corollary for cohomology.

Theorem 11.5. Suppose P, is a chain complex of left R-modules such that d(P,) is projective
for alln. Then we have

H"(Hompg(P, M)) = Hompg(H,(P,), M) ® Exth(H,_1(P,), M).
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Example 11.6. Again, let X = P?(R). By the above result and knowing the homology
groups of X, we obtain

H(X) =17,
HY(X) = HYX;Z) = Homy(Z/2,7) ® Ext'(Z,Z),
=0 =0

H?*(X) = Hom(0,Z) & Ext"(Z/2,Z) = Z/2.

Let P, be a complex of right R-modules and ), be a complex of left R-modules. We have
the double complex

and the total complex is

(PerQ)w= P B ©Q,

p+gq=n
There is an analog of Kiinneth Theorem for the total complex.

Theorem 11.7. If P,, d(P,) are flat for all n, then

0— @ Hy(P)®H (Q.) — H(Po®Qs) — @ Tori(H,(P,), H) (Q.)) — 0

pt+q=n p+g=n—1
18 exact.

For topological spaces X,Y, (after some Work) this gives the result

WX xY)= D HX)@H(Y)o @ Tol(H,(X), H(Y)).

ptg=n p+g=n—1
12. QUIVERS

Definition 12.1. A quiver is a finite direction graph, consisting of @ = (Qo, @1, h,t), where

e () is a finite set of vertices,
e (), is a finite set of arrows,
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e h: ()1 — Qo is the head map; h(a) € Qo is the head of arrow a € Qq,
o t: Q1 — Qg is the tail map; t(a) € Qp is the tail of arrow a € Q.

Example 12.2. The picture

represents a quiver with Qo = {1,2}, @1 = {a, b, ¢,d} and
t(a) =t(b) = h(c) = t(d) = h(d) =1,
h(a) = h(b) = t(c) = 2.
Definition 12.3. A path p of length d > 1 is a sequence
D= AqQq_1 - - - Q201

where t(a; 1) = h(a;) for i =1,2,...,d — 1. Then h(p) = h(ay) is the head of path p, and
t(p) = t(aq) is the tail of path p. Also, for every x € @)y, we have a path e, of length 0 with
hie,) = t(e,) = x.

Example 12.4. In the example above, p = bdca is a path with t(p) = t(a) = 1 and
h(p) = h(b) = 2.

While the order in which the arrows in a path are written may seem strange at first, note
that it is the same as composition of functions. This will be useful later on, when we discuss
representations of quivers — the arrows will be represented by certain functions and paths
indeed become compositions of them.

Definition 12.5. If p, ¢ are paths and t(p) = h(q), say
P = aqaq—1...a1, ¢ = bebe_1...b1,
then
Pq = aqag_1 ...a10be_1 ... b1
is the composition. If t(p) = x, then pe, = p, and if h(p) =y, then e,p = p.

We can associate a category Py to a quiver Q:

objects are elements of (),

Homp, (y, ) = {paths p from z to y}, i.e. h(p) =y, t(p) = =,

id, = e,

the composition map Homp,(2,y) X Homp,(y,z) — Homp, (2, ) is given by path
composition, as defined above: (p, q) — pq.

Throughout the rest of this section, we will make the following distinction: for a field K, we
will write K-mod for the category of finite-dimensional K-vector spaces, and K-Mod for
the category of all K-vector spaces.
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Definition 12.6. The category of representations of () over a field K is
Repy (Q) = (K-mod)™e.

Explicitly, the objects in Rep, (@) are determined by a set of finite-dimensional vector spaces
V(z) for each z € @y, and K-linear maps

V(a): V(ta) = V(ha)
for each a € ();. Moreover,
Ver) = idy (),
V(agaa-1 - ..aza1) = V(aq)V(ag-1) ... V(az)V(ay).
If V, W are representations, a morphism ¢: V' — W is a collection of linear maps
p(x): V(z) = W(x)
such that

V(t(a)) — V(h(a))

o(t(a)) lw(h(a))
W (a)
W(t(a)) —— W(h(a))
commutes for all arrows a.

Example 12.7. Consider the quiver

] O ]
1 2 3
The paths are ey, es, €9, a, b, ba. The representations of () are triples of finite-dimensional
K-vector spaces V (1), V(2), V(3) together with maps
Via): V(1) = V(2),
V(b): V(2) = V(3).
Definition 12.8. Let ) be a quiver and K be a field. The path algebra K@) is defined as

e K -vector space with a basis consisting of all paths in @,
e if p, g are paths, we define

| pq (the composition) if t(p) = h(q),
Pr4=1 0 otherwise.

Then K@ is an associative K-algebra with 1 = 3" e,.
z€Qo

(O

The paths are ey, a,a? a?, ..., and hence KQ = K]la|, the polynomial ring in a.

Example 12.9. Consider the quiver @):
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Example 12.10. Consider the quiver Q:

Then KQ = K{a,b) is the free associative algebra generated by a and b (non-commutative).

Example 12.11. Consider the quiver

0]

o
1 2

O——>0
n—1 n

wWOo

Then K( is isomorphic to the algebra of lower-triangular n X n matrices.

Theorem 12.12. The categories KQ-mod (finite-dimensional left KQ-modules) and Repx(Q)
are equivalent.

Sketch of the proof. If M is a finite-dimensional K ()-module, then

M=) eM=@eM,

zEQo z€Qo

and we can define V' (x) = e, M. Then

o €z T =Y,
“% =9 0 otherwise,
and for a € Qq, with t(a) = z, h(a) = y, the multiplication by a map restricts to
Via): e;M — e, M .
N~ ~—~—~
V(z) V(y)

Then we can define F: KQ-mod — Repy(Q) by F(M) = V. Conversely, if V' is a represen-

tation of @), let
M= Vi),

z€Qo
and an arrow a € 1 acts on M by
M M
l V(a) T
V(z) V(y)

This defines a map G: Repg(Q) — KQ-mod by letting G(V) = M. Checking the axioms
and that F'o G, G o F' are naturally isomorphic to the identities, the result follows. 0

Note that dimg K@) < oo if and only if there are finitely many paths if and only if there are
no oriented cycles.
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If M is a finite-dimensional K @Q-module, then M = @ M(x), where M (x) = e, M and the

z€Qo
map

a: M —>M
restricts to
M(a): M(t(a)) — M(h(a)).

KQ=P KQe. = P P

z€Qo z€Qo
as left K@-modules. Then P, = KQe, is a projective K(@-module and P, has a basis
consisting of all paths starting at . Note also that P,(y) = e, P, = e, K(Qe, is spanned by
all paths from x to y.

Then

Example 12.13. For the quiver () given by

(O

the category Repy (@) is naturally isomorphic to K[a]-mod.
Example 12.14. For the quiver

we have

Pll K@l y Ka > Kba

b 0 > K > K
P 00— 0 — K
Then note that K@ will be
Xk k
0 * =
0 0 =%

with

*
P1: *
*

—

The map a: x — y corresponds to P, ( (x)
to the path ap.

P,(y) which maps a path p from z to x

Moreover,
HOIHKQ<P33, M) — M(]?)

(p: Pp — M) = ¢(e,) € M(X)
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is an isomorphism, and Homgq (P, —) is an exact functor.

Consider m C K@, the (two-sided) ideal generated by all arrow. Then m is spanned by all
paths of length > 1, and, in general, m? is the ideal spanned by all paths of length > d.

An ideal J C KQ is admissible if m?® C J C m? for some d. Then A = KQ/J is a finite-
dimensional K-algebra.

Definition 12.15. Two rings A, B are called Morita equivalent if A-Mod and B-Mod are
equivalent categories.

Theorem 12.16. A finite-dimensional K -algebra is Morita equivalent to KQ/J where J is
an admissible ideal for some quiver Q).

Denote e, + J by e, and m + J/J by m. Then
A= Ae, = P P
z€Qo z€Qo
where P, = Ae, is projective. Again,
Homu(P,, M) = M(z) = e, M
and P, is indecomposable (in fact, the only indecomposable ones).

We then see that A-mod (the category of finite-dimensional left A-modules) has enough
projectives.

Note that A°°-mod = mod-A is equivalent to A-mod via the map
M +— D(M) = M*"=Homg(M, K),
f=D(f)=rf"
Then I, = (e, A)*, x € Qy are the indecomposable injectives.

If @ is a quiver, the simple representations are P,/mP, = S, with

| K ity=u,
Sﬂf(y)_{o if y £ 1,

and mS, = 0.

We then have an exact sequence

0 —— @ Puo > P, > S,

a, tla)=z

e}

Pp@y > p —— pa

which gives a projective resolution of the simple module S,. In general, if M is any module,
a projective resolution is
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~

0 —— @ P(h(a)) @x M(t(a)) —— D,cq, P ®x M(x) > M

acQ

pOw > pa @ W —p R aw

PRV —— pu

Then
Ext?(Q(M, N)=0ifn > 2.

Example 12.17. Take the quiver

1 2 3
again and let A = KQ/(ba). Then
P K y I > 0,
P 0 y K y K,
P 0 > 0 >

We then have that

0 > Py > P > Py > S > 0

and applying Hom 4(—, S3) to P,, we get

0 —— HOH1A<P1,53) E— HOHIA(PQ,SP,) e HOIHA(Pg,S3) — 0.
—_———

=0 =0 ~K

Hence
EXtZ(Sl, Sg) =K.

Example 12.18. Take the quiver ()
o

and consider J = (a*) C KQ = K[a]. Then
P =A=KQ/J = Kla]/(a*).

In this case,

and Ext"(5;,51) = K for any n > 0.

If we look at A-mod for A = K@Q/J, how can we recover the quiver Q7

75
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e The simple representations are S,, x € (Jp.
e BExt}(5,,S,) = K! where [ is the number of arrows z — y.

13. HOMOLOGICAL DIMENSION

Definition 13.1. Let A be a right R-module.

(1) The projective (resp. flat) dimension , pd(A) = n (resp. fd(A)) is the smallest n such
that there is a resolution
0 s P, s Py s P > Py s A > 0
such that Py, ..., P, are projective (resp. flat).
(2) The injective dimension, id(A) is the smallest n such that there is an injective reso-

lution
0 > A y BY y b1 ; > B > 0.
Lemma 13.2. The following are equivalent
(1) pd(4) <
(2) Exti(A, B) 0 for n > d and all right R-modules B,
(3) Extd“(A B) =0 for all B,
(4) of
0 > Ay y Py > Py y Py > Py > A > 0
1s a resolution of A with Py, ..., P;_1 projective, then Ay is projecitve.

Proof. We note that trivially, (4) implies (1) implies (2) implies (3). We show (3) implies (4).
Suppose (3) is true. Let Ay = A and define Py projective and Ay recursively so that

0 —— Arna > Py > Ay > 0
is exact. Then the long exact sequence for Ext gives

Ext’(P, B) — Ext‘(Ap;1, B) — Ext®™ (A, B) —— Ext™™ (P, B).
N e’ N e/

=0 =0

Then Ext'(Ag, B) = --- = Ext™™(Aq, B) = 0 for all B, and hence Ext'(A4y4, B) = 0, so Aq is
projective. 0

Dually, we get the following statement.

Lemma 13.3. The following are equivalent:

d(B) <
Xty (A, B) =0 forn >d and all A,

E
Ext4™ (A, B) = 0 for all A,

(1) i
(2)
(3)
(4) if
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0 y A y E° y B y Fd-1 > Ad

is exact and E°, ..., B are injective then A? is injective.

~
=)}

Note that
sup{id(B) | B right R-module} = sup{d | Ext?(A, B) # 0 for some right R-modules A, B}
= sup{pd(A) | A right R-module}.

Definition 13.4. This is called the right global dimension of R, rgldim(R).

If R is left and right Noetherian, then lgldim(R) = rgldim(R).

Recall that for a path algebra K@), there is a 2-step resolution of any M:
0— P —FP—M—D0,

and hence the global dimension K@) is at most 1. Moreover, K () is semisimple if the global
dimension is 0.

We immediately get the following corollary to Baer’s criterion for injectivity 6.3.
Corollary 13.5. We have that
rgldim(R) = sup{pd(R/I) | I right R-ideal}.

We also have a similar construction for Tor (and A ®p B). The following numbers are the
same:

sup{fd(A) | A right R-module}

= sup{d | Tor}(A, B) # 0 for some A € mod-R, B € R-mod}
= sup{fd(B) | B left R-module}

= sup{fd(R/J) | J right ideal}

= sup{fd(R/J) | J left ideal}

Definition 13.6. This number is the Tor-dimension of R, tordim(R).
Proposition 13.7. Assume that R is right Noetherian. Then:

(1) for every finitely-generated right R-module A, pd(A) = fd(A),
(2) tordim(R) = rgldim(R).

Proof. We first prove (1). Note that any finitely generated projective module is flat, so
fd(A) < pd(A). If fd(A) = d < oo, take a resolution of A

0 » Ay > Py_q > Py > Py s A

o

with Py, ..., Py finitely generated and free. Then Ay is finitely generated (by a lemma
analogous to Lemmas 13.2 and 13.3 but for flat dimension), and A, is flat. Hence A, is
finitely presented and flat, which shows that it is projective. Hence pd(A) < d.

Then (2) immediately follows:

rgldim(R) = sup{pd(R/J) | J right ideal}
= sup{fd(R/J) | J right ideal}
= tordim(R),
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completing the proof. O

Global dimension 0.

Definition 13.8. A ring R is semi-simple if every right (equivalently, left) ideal is a direct
summand of R.

Theorem 13.9 (Wedderburn’s Theorem). If R is semi-simple, then
R = [ [Maty, ., (Ds),

i=1

for division rings D;.
Theorem 13.10. The following are equivalent:

(1) R is semi-simple,

(2) R has right (left) global dimension 0,
(3) every R-module is projective,

(4) every R-module is injective,

(5) all exact sequences split.

Proof. The proof is clear. O

Example 13.11. Let @) be a quiver and K be a path algebra. We have seen that for any
K@Q-module A, we have a projective resolution

0 y Py » Py > A > 0

and hence lgldim(K Q) = rgldim(KQ) < 1.

If R = KQ/J (a finite-dimensional K-algebra) with m? C J C m? (so J is admissible). If
J =0, gldim K@Q <1 and in fact

0 if @) has no arrows,

gldim KQ = { 1 if @ has arrows.
If J # 0, then in fact gldim KQ/J > 2.

13.1. Von Neumann regular rings.

Definition 13.12. A ring R is von Neumann regular if for any a € R, there exists b € R
such that aba = a.

Example 13.13. Let kX be the set of functions X — k where k is a field and X is a set.
For a: X — k, define
L if a(z) #0
—J a@ ! ’
() { 0 ifa(z)=0,
whence aba = a*b = a.

Example 13.14. The ring Mat,,,, (k) for a field k. For a matrix A, we have a map k" — im A
and we can choose a splitting B: im A — k™. Extend B to k™ — k™ to get ABA = A.
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Suppose R is von Neumann regular. If a € R, then there exists b € R such that aba = a.
Then e = ab is an idempotent, € = ababa = ab = e. We then have that

aR D abR =eR O abaR = aR,
so aR = eR.

Lemma 13.15. A finitely generated right (or left) ideal is generated by one idempotent.

Proof. Suppose R is commutative. If e, f are both idempotent,

(€+f—6f):(€,f),

since e(e+f—ef) = e2+ef—e*f = e+ef—ef = e and similarly for f. The non-commutative
case is similar. O

Example 13.16. Define R C R® be the ring
R ={f | f almost constant},

so for f € R, there exists ¢ such that f(z) = ¢ for all but finitely many z. Then R is von
Neumann regular. However,

I={feR| f(x)=0forz e R\Z}

is not finitely generated; indeed, we need elements with f(a) # 0 for arbitrarily large a € Z,
but for finitely many f € I will have f(a) = 0 for a large enough.

If I is a finitely generated right ideal then for an idempotent e
I =eR
and hence
R=eR®(l—e)R=1®R/I,
so R/I is projective, and hence flat.

If I is not finitely generated, then
I = liﬂ]a for I, finitely generated ideal

and
R/I = hgl R/I,,
For all left R-modules M, we have

Tory (R/1, M) = liny Tor; (R/ Lo, M) = 0
and hence R/I is flat. Therefore, fd(M) = 0, and hence
tordim(R) = 0.
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13.2. Global dimension of polynomial rings. We will show that for a field &,
(1) gldim(k[xq, ..., x,]) = n.
Hilbert showed that if M is finitely generated, then it has a free resolution of length n

0 > F,

2\
2\
&
~
™
~
=
~
2\
e}

showing that the global dimension is at most n.

Writing R = k[z1, ..., x,], the R-module k has the Koszul resolution

n

0 —— Rr() s RG) . pn s R

ol
)

of length n. Taking Hom(—, k) of this sequence of this resolution, we get

showing that
Torf(k, k) = k().

In particular, this will show equation (1).

Proposition 13.17. If f: R — S is a ring homomorphism and M is an S-module, then

pdp(M) < pdg(M) + pdg(S).

Proof. Let pdg(M) = n, pdg(S) = d and choose a projective S-resolution of M,

0 > Qn > ()1 > Qo > M > 0

and let My = M and
0—>Mz+1—>Qz—>Mz—>O
Choose projective R-resolutions of M;’s. Then the Horseshoe Lemma 5.24 gives projective

resolutions P,; — ();. We then have a double complex (by adjusting the signs of the maps
appropriately)
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with exact rows. The total complex gives a map Tot(P,,) — M but this projective resolution
could be large, even infinite. However, note that pd(Q1) < pdz(S) = d because Q; is a
direct summand of a free S-module. We replace P;; by Py;/im Pyi1; to get

Tot(Pee) — M,
a projective R-resolution of M. Then we obtain
pdg(M) < n+d=pdg(M) + pdg(S),
as required. O

Lemma 13.18. Suppose

0 s A s B

Q
o

is an exact sequence of R-modules. Then
pdg(B) < max{pdy(A4),pdx(C)}
and if the inequality is strict, then pdz(C) = pdz(A) + 1.

Proof. By the long exact sequence for Ext, we get

- —— Bxt(C,M) —— Ext(B,M) —— Ext'(A, M)

I

Ext™(C,M) —— Ext""(B,M) —— Ext""'(A, M) — ---

If i = pdg(B), then for some R-module M, we obtain Ext’(B, M) # 0, and hence one of
the neighboring terms in the long exact sequence above are non-zero, so Ext'(C, M) # 0 or
Ext'(A, M) # 0, showing that pd,(C) > i or pdgz(A) > i.
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If the inequality is strict, then for any i > pdz(B), we get Ext(B, M) = Ext™™(B, M) = 0,
so Ext’(A, M) = Ext""(C, M) by the long exact sequence above, which shows that pdz(C) =
pdg(A4) + 1. O

Let R be a ring, x € R be central, A a left R-module.

Definition 13.19. An element z is a nonzero divisor on A if zy = 0 implies that y = 0 for
all y € A.

Suppose x is a nonzero divisor on R. We have a short exact sequence

0 » R—— R » R/fx —— 0.

We apply — ®r A to get

A—5 A » AJtA —— 0

~

Tory (R, A) —— Tor1(R/z, A)
— ———

=0 {yeA | zy=0}

and x is a nonzero divisor on A if and only if Tor,(R/z, A) = 0.
Let (R, m) be a commutative Noetherian local ring with m its unique maximal ideal.

Definition 13.20. A regular sequence in a finitely-generated R-module A is a sequence
x1,...,T, € msuch that x; is a nonzero divisor on A/(z1,...,x;—1)A.

The depth of A, depth(A) is the largest n such that there exists a regular sequence of length
n on A.

Theorem 13.21 (Auslander—Buchsbaum). If R is a commutative Noetherian local ring and
A is a finitely generated R-module with pd(A) < oo, then

depth(R) = depth(A) + pd(A).

Definition 13.22. The Krull dimension, dim R, of R is the maximal n such that there exists
a chain of prime ideals
pPoCp1 C--Cpy CR.

If k= R/m, a field, we get

dimy(m/m?) > dim R.
Definition 13.23. The local ring R is regular if dimy(m/m?) = dim R.
We also have that

depth(R) < dim R.

Definition 13.24. A local ring R is called Cohen—Maccaulay if depth(R) = dim R.
There are various relationships between regular rings and Cohen-Maccaulay rings, even
though they are not equivalent.

For a proof of Theorem 13.21, see [Fis95, Chap. 19]. The general idea is to understand what
happens when we go from an R-module A to the R/z-module A/xA.
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Theorem 13.25 (First Change of Rings Theorem). Let R be a ring, © € R be central,
nonzero divisor, A is an R/x-module with pdp,,(A) finite. Then pdg(A) =1+ pdg,,(A).

Sketch of proof. If pdg,,(A) = 0, A is a projective R/z-module, and then A is not a projec-
tive R-module, because zA = 0. Then

1 < pdg(A4) < pdp(A4/z) =1,
since 0 = R — R — R/x — 0 is a projective resolution of R/x.

The general argument now goes by induction of pdg,,(A). Assume pdp,,(A) > 1. Take P
projective R/z-module with an exact sequence

0 s M s P s A s 0.

Since 1+ pdg,, (M) = pdp/,(A), we can apply the inductive hypothesis to get
pdgp(M) =1+ pdg/,(M).
By Lemma 13.18, we get that
pdg(P) < max{pd(M),pds(A)}

and either equality holds or pdg(A) = pdz(M) + 1. In the first case, we get a contradiction.
In the second case,

pdg(A) = pdp(M) + 1 =pdg,,(A) + 1,
as required. O

Theorem 13.26 (Second Change of Rings Theorem). Let x € R be a central nonzero divisor
on R and on A. Then

pdp(A4) > de/x(A/mA).
Corollary 13.27. If A is an R-module and we write Alx] = R[x] ®g A, we get that
pd gy, (Alz]) = pdR(A).

Proof. The > inequality follows from Second Change of Rings Theorem 13.26. The < is
immediate, since a projective resolution P, — A of A gives a projective resolution

P,[z] — Alx]
of Alx]. O
Theorem 13.28. We have that gldim R[z] = gldim R + 1.

Proof. If M is an R[z]-module, then M is an R-module, and we will write M for M as an
R-module. We have the following exact sequence

0 —— R[z] g M —— Rlz] ©p M —— Rlz] @pg M — 0
=M

PRV ——— pr®v —p RV
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By a similar result to Lemma 13.18: if we have a short exact sequence 0 -+ A - B — C — 0,
we get

pd(C) < max{pd(B), pd(A) + 1}.
Hence

pd g (M) < pdgy(Rlr] @r M) +1 < pdp(M) +1=pdg(M) +1 < gldim R + 1.

Taking the supremum over all M, we get one inequality. We skip the proof of the other
inequality. 0

Corollary 13.29. For a field k, we have that

gldim k[zq, ..., x,] = n.

Let R be a ring and R* be the group of unites of R. We define the Jacobson radical as
J(R)={re R|forany se R, 1 —rs € R*}
and one can prove that

J(R)y={reR|foranyse€ R, 1 —sre R"}
J(R)=(m

where the intersection can be over left maximal ideals m or over right maximal ideals m.

Example 13.30. If R = KQ/I for an admissible ideal I so that m¢ C I C m?, then
J(R) =m.

If (R, m) is a local commutative ring, clearly J(R) = m.

Proposition 13.31 (Nakayama Lemma). Let m be the Jacobson radical of R. If B is a
finitely generated left R-module and mB = B then B = 0.

Proof. Suppose B # 0, {b1,...,b,} minimal set of generators over B. Then b, € B = mB,
and we can write

n
bn = Z Tibi for r; € m.
=1

Then

n—1

(L—rn)b=> rib; € Rby+ -+ + Rby
i=1
but r, €mso1—r, € R*, and so

by € Rby + -+ Rb,_1,

and hence by, ..., b, 1 generate B. This contradicts minimality of the set of generators. [J

In what follows, assume (R, m) is a local Noetherian, commutative ring and k = R/m.

Corollary 13.32. Let B be a left finitely generated R-module. FElements by,...,b, € B
generate B if and only if the images by, ..., b, in B/mB span B/mB as a k-vector space.
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Note that the finitely-generated assumption is necessary: Qs is a Zs-module with

mQ; = (2)Q2 = Q,
so Q2/mQy = 1 which is spanned by the only element as a k-vector space, but Qg over Z, is
not finitely generated.

Proof. For the ‘only if’ direction, if A = Rb; +---+ Rb, and B= A+ mB. Then m-B/A =
B/A, so B/A =0 and hence A = B. O

Corollary 13.33. Elements by,...,b, € B are a minimal set of generators if and only if
the images of by, ..., b, in B/mB form a basis of B/mB as a k-vector space.

Proposition 13.34. If P is a finitely generated projective R-module, then P is free.

Proof. Let n = dimy(P/mP). By lifting the generators of P/mP as a k-vector space, we get
a minimal set of generators for P, giving a short exact sequence

0 y K s R™ s P > 0

where K is the kernel of the map R" — P. Since P is projective, this sequence splits, so
R"=ZPaK.
Taking — @z R/m, we get
k"= P/mP & K/mK = k" & K/mK
and hence K = mK, so by Nakayama Lemma 13.31, K = 0. This shows R" = P. U

If A is a finitely generated R-module. Let Ag = A and, recursively, having defined A;, let

and define A;,; as the following kernel

0 —— Aipq > RS y A, > 0.
This gives a free resolution of A:
. —— RP > RP » R y A > 0.
Apply — ®r R/m to
- — RP > R% > RPo > 0
to get
s kP2 Oy A Dy fo > 0

(checking that the maps are indeed 0 is an exercise). This shows that
Torf (A, R/m) = k.
Definition 13.35. The numbers [3; are called Betti numbers of A.
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Lemma 13.36. [fdepth(R) =0 and A is a finitely generated R-module, then pd(A) =0 or
pd(4) = cc.

Proof. Suppose 0 < pd(A) = n < oo. Take a resolution

0 » B > F,_o

\,
]
3!
]
&
]
3
]
'
]
()

with Fy, ..., F,_s free. Then
pd(B)=n—(n—1)=1.

Let ¢t = dimy B/mB and consider

Then P is projective (since pd(P) = pd(B) —1 = 0), so it finitely generated, and hence free.

Since depth(R) = 0, every element in m is a zero divisor. By [Eis95, Cor. 3.2], there exists
sem,

{reR|rs=0}=m.
Now, P C mR!, and hence sP C smR' = 0, but P is free, so P = 0. Since P = 0, this shows
that pd(B) = 0, a contradiction. O

The Auslander—Buchsbaum Theorem 13.21 follows from similar arguments to this lemma
and Change of Rings Theorems 13.25 and 13.26.

If depth(R) = 0, then pd(A) = 0, so A is projective, and hence free, so depth(A) =
depth(R) = 0.

Theorem 13.37. A ring R is reqular if and only if gldim R < oo, and in that case
gldim R = dim R = pdg(R/m).

Note that R = k[z]/(2?) has infinite global dimension and it is not regular, and in this case

the Krull dimension is 0.

Theorem 13.38. A regular local ring is Cohen-Macaulay.

Proof. In general, depth(R) < dim R. If R is regular, let
m=(T1,...,%,),
where n = dimgm/m? and x4, ..., z, is a regular sequence, so
depth(R) > n = dim R,
and hence depth(R) = dim(R). O



MATH 613: HOMOLOGICAL ALGEBRA 87

13.3. Koszul resolution. Let R be regular and pdgz(R/m) = n. The minimal free R-
resolution of R/m is the Koszul resolution.

Let £ € m be a nonzero divisor and consider

K(z) : 0 » R ——> R > 0

a resolution of R/(z). Suppose x1, z3 is a regular sequence, and consider K (x1) ®p K (z2):

R+“— R
s
e
and the total complex gives a resolution of R/(z1,z2):
0 » R ) s Ro R~ > 0
In general, if z = (x1,...,2,) is a regular sequence, we let K(x) = K(z1,...,x,) be the

total complex of K(x1) ®r K(x3) ®g -+ @ K(x,). Explicitly, we can write it as

0—— ) 9. ... 2 pG) 2, gD 2, ()

where we identify

and 0 = Y x5, s0
ey N Nej — E Y s A N N Ney,

Theorem 13.39. The resolution K(g) is a free resolution of R/(x1,...,x,) and

_J 0 if ¢ >0,
Hy(K (2) _{ R/(x1,...,z,) if q=0.

We first prove the theorem in the n =1 case.

Proposition 13.40. If x € m is a nonzero divisor, C, is a chain complex of R-module, then
we have an exact sequence

0 —— Ho(K(z) ® Hy(C,)) —— Hy(K(z) ®@r Cy) —— Hyi(K(z) ®r Hy—1(Co)) —— 0.

Proof. We have an exact sequence of complexes



88 HARM DERKSEN

=

ha

&
O4—— O —— O
[ [

8
O JW—
O4—— O <«— O

=
|
=
V

2\
2\
~
2\

Taking — ®g C,, we get

0 > Co > K(2) @p Co —— Co|—1] —— 0
and the long exact sequence of this complex gives the desired result. O

Proof of Theorem 13.39. The case n = 1 is the Proposition 13.40. We apply the Proposi-
tion 13.40 with
C. = K(l’l, ce ,ZL’n_l)
xr=1x,

to get the exact sequence

0 — Ho(K(2n) ® Hy(K (21, ..., 201))) —— H,(K(z))

H\(K (2) 5 Hyy(K (21, ..., 2n_1))) —— 0.

For ¢ > 2, both the kernel and the cokernel in this exact sequence are 0, so H,(K(x)) = 0.
For ¢ = 1, the kernel is 0 and the cokernel is
Hi(K(2,) @ R/(x1,...,201)) = ker(R/(x1,...,7p 1) — R/(21,...,2n_1)) =0,
and hence H;(K(x)) = 0.
For gy, we have
0 —— R/(x,) @r R/(x1,. .., w0 1) — Hy(K(z)) — 0

-~

>R/ (21,..sTn)

which completes the proof. O
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Tensoring the resolution

O_>R<Z) a;... a;R(g) a;R(Tll) a}R(S)—)O

with — ®r R/m, we get

0 s k() 0y 0y g (B) 0y k() 0y k() g
and hence
Tor;(R/(x1,...,xn), k) = k().
If m = (xq,...,2,), this gives
Tor,(k, k) = k(7).
The resolution

0—>R(Z) 9 , ... 8>R(3)L>R(l) > m > 0

is called the Koszul resolution of m.

Definition 13.41. Suppose (R, m) is a local Noetherian ring and A is a finitely generated
R-module. We say z1,...,x, € mis a maximal A-sequence if

Af(xy, ..., xn)A
has no nonzero divisors in m.

Proposition 13.42. All maximal A-sequences have same length, and this length is equal to
depth(A).

Proof. The proof is in [Wei94] and we omit it here. O

14. LOCAL COHOMOLOGY

Let R be a commutative ring, I C R be an ideal. We define a functor
Fr: R—mod —+ R—mod

by
Fi(A) = {a € A| there exists d such that ‘a = 0}.
and if f: A — B is an R-module homomorphism, the square

Fi(4) 7 F(p)
[ |
A B

commutes. Then F7 is left exact and
H}(A) = R*Fi(A)
is called the local cohomology. If I¢ C J and J® C I, then
Fr=Fy

S
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S0
H; = Hj.
Moreover, we have that
Fi(A) = HY(A) = {a € A | there exists d such that [%a =0} = liﬂHomR(R/Id, A).

In general,
Hy(A) = lim Extj(R/ 19, A).

15. SPECTRAL SEQUENCES

This chapter largely follows [Wei94], but another reference for this topic is [McCO01].
In this chapter, we work in the category of R-modules.

Definition 15.1. A spectral sequence consists of

e objects R, for p,q € Z, r > a,

e differentials d,: B}, — EJ . ., satisfying d" od" =0,

ker d; q

im(d”

° Rr-i—l — .
pa priq—r+1)

On a diagram, we can represent d°, d*, d? as follows

d° EY

] pyq+1 I
I Ez?q E1(9)+1
° ° °
d! o Bl e
® < E;q ¢ E;—i-l
® < o < ®
d2 [ ] \Eg,q—i-l [
° L2 E§+1
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and similarly for d" for » > 3. We can think of these pictures as “pages” or “sheets”: for each
r, there is a “page” with arrows d" as follows

[ ]
d4
[
x
o <—— o
dl

We let E" = @ EJ,. Then E™' is a subquotient of E".

P,qEZ

Suppose that for r = a, we have B* =0, Z% = E°.

Zr+1 —+1

Let Z™+! O B" such that kerd” = %z~ and B"*' D B” such that imd" = B;T . and then
Bt C 7™, We then have

BagBa-l—lgBa—l—Qg_._gBOOQZOOg_”gza—agza—lgza:Ra

where

B*=|JB, z*=(\Z', E*=2%/B>

Definition 15.2. A spectral sequence is bounded if for any n, there are finitely many p such
that E¢ _ #0.

pn—p

Definition 15.3. A bounded spectral sequence converges to H, if for every n there is a
filtration

0=F,H, - ngHnng—}—lHng -« I H, = H,
such that
E;; = FpHpiq/ Fp1Hpiq

In that case, we write E;q = Hp,yq.

Note that E;q converges to the (p+¢)th homology group, which can be represented as follows:

. N

H, —— ptqg=n
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15.1. Homology spectral sequences. We construct a spectral sequence from a filtration
of a chain complex. Let Cy be a chain complex with a filtration
ngCo ng+1Co g

and assume

JEC.=cC..
p
We construct a spectral sequence with
EO — FCpig
Mo pflcerq

and

E;q = Hp+q(Ego)-
Note that E) in E9, has degree p + ¢, and, to compute the homology, we note that the
boundary maps to compute the homology are induced by the boundary maps in Cl:

pCpiq _ FpCpig-1 — R0
Fp—10p+q Fp—10p+q—1 pa=t

In general, E;;l will be the homology of EJ, .

0 _
qu_

In what follows, we drop the “¢” from the notation and simply write

EO — FPC
P EF, 0
and so on. We let O
- F,C LA
771? p - Fp_qc p

be the projection and set
Al ={ce F,C | d(c) € F,_.C},

A+ F, C
77 — At _ P p EO
p 77p( p) prlC € P>
d(AY) + F,_,_:C
r+1 r p 0
Bity =ty dA)) = =5 € By
dATZ )+ F, \C
BT = d Ar—l _ p+r—1 p cC .
D 7717( ( p+r—1)) Fp—l(c) = 7P

This will simplify calculations, for example:
g _ AY+ F, 1 C ~ A7 _ Aj
P F, .C ArnF, . C AL
In what follows, we will use that, for B C A, we have AN (B +C) =B+ (ANC). We set

b Z, A+ FaC Ar B Ar
"By d(A ) B C AN (d(AT ) + B C) (A )+ AT
and since .
Er — AP

p r—1 r—17
dA 1+ AL
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AT

Er = ik
p—r r—1 r—1 )

dAy" ] + A

p—r—1

the boundary map d induces
d,: B, = E}_.
We claim that .
Bl — ker d, ‘
" m dlq;+7"q—r+1
For that sake, we will compute the kernel of the map dj. It
a+ dA?

—1 —1
ptr—1 + A;—l € ker d;,

then without loss of generality, assume that
d(a) € A”"}

p—r—1

(otherwise, we could choose a different representative a that would satisfy this).

a € A;“. This shows that
r+1 r—1 r+1 r—+1
Ap+ + A Ap+ + F,,1C N Zp+

ker d; = o ~ ‘

Pood(AL, dAT  +F,.C B

Then »
ZT Zr Br Zr
d'r: Er — _p s p o~ p—r SN p—r _ ET_T
PP B; Z;ﬂ Br_, Br_, P
and so

imd, = B

and shifting the index
Br+1 Zr+1
P

: T _ p _ T
imd,,, = o C o= ker d,.
P P
Hence .
T T
ker d; _ Z, _ gl
3 T r+1 p
imdy,,, B

This shows that E;“ is the homology of EJ.

r+1
Zp o~ Bpor

T = B with a similar calculation, but we omit it here.
P p—r

One can also show that

Assume that a filtration is bounded, i.e. for every n there exist s, such that

O:Fanng+lCnggFtCn:Cn

93

Then

Then qu is bounded and for any n, there are only finitely many p such that Egm_p # 0.

Theorem 15.4 (Spectral Convergence). There exists a filtration on H,(C,),
-+ C F,H,(Cy) C Fp1Ho(Cy) € - -
such that
FyHp1q(Co)/ Fp1 Hpig(Ca) = Epy.
Concisely, we write
Epy = Hyiy(F,Co/F, 1 C) — Hyiy(Cl).
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1 . . o0 .
Here, £/, is homology of the associated graded, £y is the associated graded of homology.

Proof. Recall that we had
0 1 0 0 1 0 __
0C BYC B! c---ng CzrC...CzCcZl=FC,
where B>° = U =(1%,, and

B =FE,=27/B
EX =277/By.
Suppose p + ¢ = n. Then
AL, =1{ce F,C, | d(c) € F,_.Cy}.
For r > ry(n,p) (when F,_,C, =0, ie. p—1r <s), so
AL, =kerdN F,C, = A%

Then
kerd N F,C,, + F,_ 1C’

plC

Z;;q = np(qu) = np(A;Z) = Z;Z =

Note that in general, f <ﬂA + ﬂ f(4;), but because of boundedness from below these

are finite intersections, so equality does hold.

Moreover,
- r d(AT 7, r) + [ —1071
Bp(}i_l - np(Ap—l-rq r) = ot qp—lcn 2 )
Boo - (U Ap—H"q r + FP—1<CTL))
pq p71Cn )
Define:
FHA(C) = kerd, N f,C,, _ A;Z
L N im dn+1 N fpcn N r '
d U A r,p—r+1
Then we have that -
F,HA(C)) A

Fp1Ho(C) - d (Ur A;+q,q—r+1> + Agilvq—l '
Applying 7, to the right hand side of the above, we get

1p(Apg) ~ 1p(Apy) _ Zpg
Ty (d (Ur A;Jrq,qfwl) + Ajcoxil,qfl) N Tlp (Ur A;Hq,qf?”rl) ng;'
We claim that 7, actually gives an isomorphism above. Indeed, consider
Up(AZZ
"o (d (Ur A;+q7q—7"+1)) .

np:A;Z—>

Suppose a € Apy, so

at fpaCed(JApurgorn) + B
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and we can write a = b 4+ ¢ for

bed (U A;-ﬁ-r,q—r-‘rl)
cE Fp_lo N A;g = A;iq—l
which completes the proof. 0]

Example 15.5. Suppose

0 > A > B, S ON > 0

is an exact sequence of complexes. We will recover the long exact sequence in homology
using the Convergence Theorem 15.4. Consider the following filtration on B:

O:F_lBQFOBQFlB:B
~—~

=A
Hhen B B B
EO — 2074 _ p g0 _ Z17arl _ Tatl &
00 FB, UM RB, Agq Y
SO qu can be represented as

0 As Cs 0

d° d°
0 Ay Cy 0

d° °
0 Ao C1 0

dO
0 0 Co 0
0 0 0 0

Hence Ej, = Hy(A), E|, = Hy41(C) and in general E}  can be represented as
0 «—— Hi(A) — Hy(C) «—0

0 «—— Hy(A) — H(C)+—0
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Moreover, by definition of E? , we get the following exact sequence

1q°

0 > B3, » Hy1(C) —— Hy(A) > Eg, > 0.

Finally, looking at the diagram for E° , we see that the maps d": B, — E] for r > 2

pq’ p—r,q+r—1
are all 0, and hence
2 00
By = Epy-
By the Convergence Theorem 15.4, there is a filtration on H,(B) such that

FOH‘I(B) Eoo

F(]Hq<B) = F IH (B) Op>
- q

Hy41(B) _ FiHgi(B) _ oo
FoHy(B) — FoHgn(B) 7

since [1H,1(B) = Hy41(B) and F_1H,(B) = 0. We then have

Hy(B)

— FyH(B) —— H,(B y 4 » 0.
0 L(B) o(B) FoH,(B)
:Ego T

q,9—1

We then obtain

+— H(A) ——— H/(B) ———  H,/(C) —— H,1(A) — ---

NSNS

Eg, ET5, 1
which recovers the long exact sequence of homology.

15.2. Cohomology spectral sequences. One can dualize all the results in the previous
section to cohomology.

The objects are EPY, r > a, and the maps are
X +r,g—r+1
drt: Pt — prrhar

and
ker dP4

qu —
r+1 p—r,qg+r—1"°
im d;

Similarly to the Convergence Theorem 15.4, one can prove that if the spectral sequence is
bounded, then

EP4 I_Ip+q7
i.e. there exists filtration F*H" C F'"1H™ C --- with quotients E??.
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15.3. Spectral sequences in topology. We show an example of a spectral sequence in
topology and an application of that spectral sequence.

Definition 15.6. A mapping p: E — B has the homotopy lifting property (HLP) for space
Y if given a homotopy G: Y x [0,1] — B and a mapping g: Y x {0} — E with po g(y,0) =

G(y,0), then there exists a homotopy G: Y x [0,1] - E with G(y,0) = g and po G = G,
i.e. the two triangles

Yx{O}L;E

e

Y x[0,1] > B
commute.

Definition 15.7. We say p is a (Hurewicz) fibration if p has HLP for all Y. We say p is a
Serre fibration if p has HLP for all n-cells.

Proposition 15.8. Suppose p is a fibration and if B is path-connected then all fibers p~*(b),
b € B are homotopy equivalent.

In particular, p is surjective. Moreover, H,(p~(b)) does not depend on b.

Theorem 15.9 (Leray Spectral Sequence). Suppose m: E — B is a fibration with F =
7= 1(b) for some b € B, with B simply connected. Let M be an abelian group. There is a
spectral sequence

Eiq = H,(B; H,(F; M) — H,,(E; M).

Corollary 15.10. Suppose w: E — S™ is a fibration and F is a fiber, with n > 2. Then
there exists a long exact sequence

- —— H(F) —— H/(F) —— H, (F) —— H, 1 (F) —— H,1(E) —— ---

Proof. We have

H,(F) ifp=0,n
otherwise

B2 = Hy(S" H,(F)) = {

which gives the following diagram of qu
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Hy(F) 0 0 Hy(F) 0
H,(F) 0 0 H,(F) 0
Hy(F) 0 0 Hy(F) 0
p=0 p=1 p=n-—1 p=n p=n+1

- 2 _ 3 _ 2 :
and if n > 2 then d* = 0 and E;, = E , and in general

2— 3—...— n
qu—qu_ _qu‘

For £, the map d" is non-trivial:

H,_1(F) 0

0
0
0
p=20 p=1 p=n-—1 p=n p=n-+1
This gives the exact sequence
(%) 0 — Entl —— Hy(F) —%= Hyppr(F) — Byl —— 0

Moreover, for r > n, we have that d” = 0 again. Therefore,
Ex = BN

This gives the diagram
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Egy 0 0 EX
E5y 0 0 EX
Eg 0 0 Ers

which gives a short exact sequence

(xx) 0 > ESy » H(E) — £, —— 0

n,g—n

We then splice the exact sequences (x) and (%) to get the long exact sequence required. [

15.4. Spectral sequences of double complexes and their applications. Suppose C,,
is a double complex, with nonzero terms only in the first quadrant. Let Tot(C') be the total
complex. We define a bounded filtration on Tot(C)

-« C F,Tot(C) C F,qq Tot(C) C - --
where
k
F, Tot(C) = @D Cpnyp.
p=0
Let d" be the horizontal maps and d” be the vertical maps in the double complex, with
d=d"+ d’ and d"d” + d°d" = 0. We set

Fo(Tot(C)pyg
Fyp1(Tot(C))prg

qu = = Cpq

and d° = d°. Then
E,, = Hy(Cpe) — Hpiy(Tot(Caa))

by Theorem 15.4. We have
d': E,, = H}(C,) = E,

p—1lyq

= H;(Cp—q,-)
is induced by d", and so we write d' = d". Then also

E} = H'H'(Cu) — Hpiq(Tot(Cla)).

We could also define D,, = C,, (the transposition of the double complex) and apply the
above construction to that. This gives the two spectral sequences

"E? = H'H'(Cu) — Hpiq(Tot(Caa))

'Epy = HyH{(Cos) — Hyiy(Tot(Cla))
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Let A be a right R-module and B be a left R-module. Then
F=A®pg— is right exact

Gg=—-—Q®rB is right exact
We already proved (Theorem 9.10) that
L,F(B)= L,G(A) = Tor,(A, B)

but the proof can be reinterpreted using spectral sequences of double complexes.

Alternative proof of Theorem 9.10. Suppose P, — A, Qs — B are two projective resolutions,
and P ® @ is the double complex. Applying the above result to this double complex, we
obtain

"E;, = HYH!(P® Q) — H,o(Tot(P ® Q)),

'E2 = H'H}(P ® Q) — Hyio(Tot(P ® Q)).

We have that

H,(Pe®Q.) = Po® Hy(Q.) :{ oP°®B EZ;S

Then
T2 _ H}(P.® B) = L,G(A) ifqg=0
pa 0 ifqg#0

. I 2 .
Hence the diagram for "E7 is

0 0 0
0 0 0
LoG(A) L1G(A) LyG(A)

from which it is clear that d"™ = 0 for n > 2. Hence
2 3 o
qu_qu_"'_qu‘
This shows that
H,(Tot(P ® Q)) = Epy = L,G(A).
Similarly, we obtain that
M2 _ _
E,, = H,(Tot(P® Q)) = L,F(B),

which proves the theorem. O
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One can also prove Kiinneth’s Formula 11.1 using spectral sequences. Suppose P is a complex
of flat R-modules, bounded from below. Let M be an R-module. Then there is a convergent
spectral sequence

Ez%q = Tor,(H,(P), M) — Hpyo(P @ M),

called the Kiinneth spectral sequence.

Alternative proof of Kunneth’s Formula 11.1. Let P be a complex of flat R-modules, bounded
from below. Assume that B, = d(P,41) is flat for all n. We show that there is an exact
sequence

0 — H(P)® M —— H,(P® M) — Tor{(H, (P),M) — 0

Let Z, = ker(d: P, — P,_1). We showed before that 7, is also flat, and we have a short
exact sequence

0 > B, > L > H,(P) —— 0

which gives a flat resolution of H, (P), showing that the tor dimension of H, (P) is at most 1.
Then

EZ, = Tor,(H,(P),M) =0, for p > 2 and p < 0.
The diagram for E> is

0 Hay(P)® M Tory (Ha(P), M) 0
0 Hi(P)® M Tory (Hy(P), M) 0
0 Ho(P)® M Tory (Ho(P), M) 0
which shows that d> = d* = --- = 0, and hence E;> = E2 . Thus H,(P ® M) has a filtration

with quotients E§, and E7 _,. This gives the short exact sequence

0 — H(P)® M —— H,(P® M) — Torf'(H, 1(P), M) — 0
as required. [l

Another application is the base change for Tor.
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Theorem 15.11 (Base change for Tor). Let f: R — S be a ring homomorphism. If A is a
right R-module, B is a left S-module, then

2 _ oS (TR R
E,, = Tor, (Tor, (A, S), B) — Tor

p+q

(A, B).

Proof. Let P, — A be a projective R-resolution and (), — B be a projective S-resolution.
Consider the double complex P ®g ). Then

H,(P ® B) = Tor}(A,B) if ¢ =0,

0 if ¢ # 0.
Note that P ® g — commutes with homology, because P is a projective and hence flat R-
module.

By, = HyHJ (P @r Q) = Hy (P or Hy(Q)) = {

Then, by the usual argument, d* = d* = --- = 0 and so 'E2 ="' E>*, and hence

H,(Tot(P ® Q) = E3 = H,(P ®g B) = Tor’ (A, B).

Moreover,
"By, = HyHJ (P @ Q) = HyH) (P ®r S) ®5 Q) = Hy(H} (P @5 S) @5 Q).

Here, () is a projective and hence flat S-module, but not necessarily a flat R-module, so we
have to tensor with S first. Hence

"E2 = H)(H}(P®rS) ®s Q) = H!(Torl (A, S) ®s Q) = Tor (Torl (A, S), B),
completing the proof. O
15.5. Hyperhomology and hyperderived functors. Let A be an abelian category with
enough projectives and A, be a chain complex in A.

Definition 15.12. A Cartan—FEilenberg resolution (CE resolution) is an upper half plane
double complex P,, of projectives together with augmentation e: P,y — A,

— P_11 < P01 < PH < P21 <
— P_10 < P()() < PlO < P20 <
< A_l < AO < Al < A2 <

such that
(1) Pye — A, is a resolution and if we define
By(Pag, d") = im(d": Pyi1,4 — Ppy)
Zp(Pag,d") = ker(d": Ppg — Pp_1,)
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Hp(Poqa dh) = ZP(P-m dh)/Bp(P-qv dh)
then
By(Pag,d") = By(As)

Hy(Pog,d") — H,(As)

are projective resolutions (which implies that Z,(P.,,d") — Z,(A.) is a projective
resolution),
(2) it A, =0 then P,, is the zero complex.

Lemma 15.13. Every chain complex has a CE-resolution.

Proof. The proof is omitted but can be found in [Wei94]. It is similar to the proof that any
A € A has a projective resolution 5.21. U

Definition 15.14. Suppose F: A — B is a right exact functor. We define the left hyper-
derived functor L,F: Ch(A) — B of F as follows: if A, is a chain complex in A, then

Ly F(As) = Hy(Tot(F(F)))

where P,, is a CE-resolution of A,. Dually, we can define the right hyperderived functor R,G
for a left exact functor G.

There are a lot of details which we will leave out: the fact that this functor is well-defined,
what this functor does to morphisms and so on. These are analogous to these properties for
left derived functors presented in Chapter 5.

Suppose for simplicity that A is bounded from below. We consider the two spectral sequences
for the double complex F P, from Section 15.4. We have

'y, = HyH{(F(P)) = Hy(L,F(Ad)),
since P,e — A, is a projecitve resolution, so
H;}(‘F(PPO)) = Lq(]:Ap>
by definition. For the other spectral sequence, we note that
Hy(F(Peoo)) = FH/(Pus)

because the exact sequences

pq p—lq 0
K N
0 > Bpg > Zpq > Hp, » 0

split. We then have
UE2 = HYH!(F(Pu)) = HY(FH(Pa)) = (L,F)(H}(As))
because
H}(P.) = Hy(Ad)

is a projective resolution.
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Both of these spectral sequences converge to
Hyiq(Tot(F(Fos))) = LypygF (As),
ie.
'E2 = H (L, F(Ad) — Ly F(Ad),
NEp, = (LpF)(Hy (As)) — Lypy F(As).
Dually, if 7: A — B is a left exact functor, A® is a cochain complex, bounded from below,
then

'EY? = HP(R1F(A%)) — RPFIF(A®),
"NEP = RPF(HY(A®)) — RPTIF(A®).

Theorem 15.15 (Grothendieck spectral sequence). Suppose A, B, C be abelian categories
where A, B have enough injectives, and

G- A— B
F:B—=¢C
be left exact functors where G sends injectives to F-acyclic objects (RPF(A) =0 forp >0):
I, injective y G1, F-acyclic
A g > B

RPF(G(I)) =0, p>0

We then have that
B3 = (RPF)(RIG)(A) — RFF(FG)(A).

The idea is that we can compute the derived functors using acyclic objects, instead of pro-
jective resolutions. For example, we showed that to compute Tor, it is enough to consider
flat resolutions, and, indeed, flat objects are acyclic with respect to tensor products.

Proof. Suppose A — I*® is an injective resolution. Then G(I°) is a cocomplex, and we can
apply the above construction to it. We obtain

Byt = HP((RUF)(G(I*))) — (RFFIF)(G(I%)).
Now, G(I°*) is F-acyclic by assumption, and hence

RIF(G(I") = { fg(m i 3 / 8?

This shows that

Lppa _ RP(FG)(A) ifq=0,
2 0 if ¢ # 0.
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Hence
(RFHFNG(I)) = RTH(FG)(A).
Using the second spectral sequence, we immediately get that
UEY = RF((GU") = RF(RIGA).
Altogether, this shows that
RPF(RIG(A)) — RFTI(FG)(A),
as required. O

Example 15.16. Let X, Y be topological spaces and f: X — Y be a continuous map.
Then the functor

f«: Sheaves(X) — Sheaves(Y'),

(LF)U) = F(f7HU)),
for a sheaf F on X, sends injectives to injectives. Then
[(X5F) = F(X)
gives a functor
I'(X; —): Sheaves(X) — Ab
and
RPT(X,F)=HP(X;F)

the sheaf cohomology.

Then
(RPT)(Rf.)(F) = HY(Y; R f. F),
and since
Lf.F = f£F(Y)=F(f1(Y)) = F(X) = T(X),
we get that

RPFIDL)(F) = HP*9(X F),

Then the Grothendieck spectral sequence 15.15 gives

HP(Y; RIf,F) — H"(X; F).

In particular, if R/f,F =0 for ¢ > 0, then

HY(Y; fuF) = HP(X; F).
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16. TRIANGULATED CATEGORIES

Let A be an abelian category and Ch(.A) be the category of cochain complexes on A. We
recall a few definitions.

Suppose f: A* — B*®. The cone of f is given by
An+2 —da An+1
&)
5 O
Bn+1 y B"
B

cone( )" 24— cone(f)"

and the boundary map d: cone(f)" — cone(f)"™! is given by the matrix
—dsg O
d= :
( —f dB)

0 > B* s cone(f)* —— A[-1]* — 0.

We then have an exact sequence

Similarly, we define the cylinder of f:

An-‘,—l ; d‘.“ An
P da g

An+2 ; —da An+1
S5
% ©
Bn—l—l = B"

eyl(f)" 2 eyl(f)"

and the boundary map d: cyl(f)" — cyl(f)""! is given by the matrix

dy idy 0
d=|0 —dis 0
0 —f dg

We have exact sequences

0 —— A* —— cyl(f)* —— cone(f)* —— 0

0 > B® —— cyl(f)* —— cone(—id4)®* —— 0
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with

0

a=1| 0|, p = (ids 0 idp)

idp
and aff ~ idg, fa = idg, so a and [ are homotopy equivalences.
We construct a quotient category K = K(A) of Ch = Ch(A) by

Obj(K) = Obj(Ch)

Homy (A®, B®*) = Homcy (A%, B®)/ ~

where ~ is the chain homotopy equivalence. It is easy to check that composition in K is
well-defined.

This makes K into an additive category with an additive functor
Ch — K.

The cohomology functor H": Ch(A) — A factors through K because homotopy equivalent
maps induce the same maps on cohomology, and hence the triangle

Ch 5 A

|

K
commutes.

The category K is universal with this property. Suppose F: Ch — B is a functor such that if
f: A®* — B°* is a chain homotopy equivalence, then F(f) is an isomorphism, then F factors
through K.

To show this, we first note that we have maps

«

/ﬁ\
B* «—— cyl(idp)
\/_/(
where
0 id
a=10], o =10
id 0

We then have that
id = F(id) = F(fa) = F(B)F(a),
so F(«a) and F(B) are inverses, and similarly F'(«/) and F(S). Hence:
F(d) = F(a)F(B)F(d) = Fla).
Suppose f,g: B — C and f ~ g, so
f—g=ds+ sd.
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Then v = (f s g): cyl(B) — C'is a chain map, and
ya=g, o =/

SO

If i: A* — B® is a map, then we have a triangle

cone(u)
/ ‘\
A* “ > B*

We will call this a strict exact triangle.

Definition 16.1. For u: A* — B*, v: B* — C*, w: C* — A[—1]°, the triangle

N

A 4 > B®

is called an exact triangle if there exists u: A* — B* and an isomorphism in K
f:A— A, g: B— B, h: C' — cone(u)
such that the diagram

w

I
s
vyl
N4
Q

\
7

A[-1]
R
v A[-1]

commutes.

Example 16.2. The diagram

SN

A ———F— A

is an exact triangle, because the diagram
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commutes and letting C' = cone(id4)
_ (0 —dy o (—da 0
*TNo 0 )T \ida da

o fidg 0 .
Sdc—l—dcs = ( 0 ldA) —ldc,

we get

so idg ~ 0.

Example 16.3. Suppose

7N

A 4 y B

is exact. We show that

Al-1]
—u y N
B L > C
is exact. Assume without loss of generality that C' = cone(u) and

0 .
v = (id3>’ w =279 =(id4 0).

Letting D = cone(v), we get that

Aty By 05y Al 2 gl
oAk
B —— C > D > B[—1]
where
—u
7=(0id4 0), h = |id4 |,
0
and the map C' — D is given by the matrix
0 0
ida O
0 idgp
We have that
id u 0
idD—hﬂ': 0 0 0 :SdD+dDS
0 0 id

109
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for the map

Similarly, we obtain that

—w[l\

Cl-1

is an exact triangle.

Definition 16.4. An additive category K is called a triangulated category if it has an auto-
morphism 7': K — K and distinguished triples (u, v, w), called ezact triangles, where

u:A—- B, v:B—->C, w:C—>TA

for some A, B, C', such that the following axioms are satisfied:

(TR 1) Every u: A — B can be embedded in a triangle (u, v, w)

C
w r v
W
A “ » B
and
0
A da A

is an exact triangle, and if (u,v,w) is isomorphic to (v/,v',w’) and (u,v,w) is an
exact triangle, then (v',v’,w’) is an exact triangle.
(TR 2) If (u,v,w) is an exact triangle, then

(v, w, —Tu) and (=T 'w,u,v)

are exact triangles.
(TR 3) If

N N

are exact triangles and f: A — A’, g: B — B’ with gu = «/ f are morphisms, then
there exists h: C'— C” such that

(fyg,h): (u,v,w) = (', 0, W)

is a morphism of exact triangles, i.e. the following diagram
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A > B g C > TA
lf lg vh le
A » B’ > (' > T A

commutes.
(TR 4) Suppose A, B,C, A’ B',C" are objects in K and
e (u,j,0) is an exact triangle on (A, B,C"),
e (v,x,1) is an exact triangle on (B, C, A’),
e (vu,y,0) is an exact triangle on (A, C, B'),
then there exists an exact triangle (f, g, (77)i) on (C', B', A’) such that

0=90f, v =gy, ig = (Tu)d.

We can represent this as the diagram

in which all the triangles commute. (Note that, as described above, only some of
these triangles are exact. We distinguish in blue the arrows that go to T" applied to
the objects.)

Theorem 16.5. For an abelian category A, the quotient IC(A) is a triangulated category
with the automorphism T(A) = A[—1].

Proof. Axioms (TR1), (TR2), (TR3) have already been verified in the discussion above. We
only have to show that (TR4) holds.

Without loss of generality,
C' = cone(u), B’ = cone(vu), A" = cone(v)

and we can represent the maps as follows

. 0 / . !
j:(idB>:B—>C', 8:(1dA 0):C — A,

O / . /
y—(idc):C—)B, (5:(1d,4 0):B — A,
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0 ) .
x:<idc)10—>A’, i=(idg 0):A — B.

~(id4 0 (u 0
f= ( 0 v)’ 9= (0 idc)’

5f:(idA o):a, gy =,

Taking

one can easily verify that

yv = (S) = fj, ig= (Tu)d.

We have to prove that (f, g, (T7)i). We have

idg O
0 v

C’ > B > > C'[—1]
0 0
id
= = h=| ' _
0 0
0 idg
(o » B » D > C'[—1]
ida 0 0 0 ida 0 0 0
0w 0 0 0 idp 0 0
ida 0
0 ide

where D = cone(f). We construct a chain map

C(0idy u 0 ,
7'('—(0 0 0 idc).cone(f)—>A,

and claim that this gives an inverse map in the quotient category. We have that
da 0 0 0
da — —id, 0 A — v —dg 0 0
A7\ v de) TP -ida 00 —da O
0 —v  —ou deo

and dDh = hdA/7 dA/’]T = 7TdD, Th = idA,

0 0 0 0
hir — 0 ldB u 0

0 0 0 0

0 0 0 ide
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Setting
0 0 —idg O
s 00 0 O
00 O O
00 0 O
we get that
idg 0 0 O
sdp+dps=| ¢ ¢ o 0| =idp — i
0O 0 0 O
This shows that idp ~ hm, and hence h,7m are homotopy equivalences, i.e. isomorphisms
in . Finally, 7p = g, p = hnp = hg (in K). O

Similarly, K* = Ch® / ~, bounded chain complexes, K, positive chain complexes, K~ nega-
tive chain complexes, are all triangulated categories.

Definition 16.6. If H: K — A is an additive functor where K is a triangulated category
and A is an abelian category, then H is called a cohomological functor if for every exact
triangle A

C
A v y B

we have a long exact sequence

s H(T0) —— 7T A) M gy P grioy M gty ——

We will then write H'(A) = H(T'A) and H'(u) = H(T"u).
Example 16.7. The functor

KA — A
A* —— H°(A*)
is a cohomological functor. Indeed, for an exact triangle

cone

(u)
RN
A > B

we have a long exact sequence

% HI(A*) —— HI(B*) —— Hi(cone(u)) —— H*(A*) = H(A[-1]) —— ---
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Proposition 16.8. If K is a triangulated category, X € ObjK, then Homy(X,—) is a
cohomological functor K — A.

Proof. Suppose

7 X

A 4 » B

is an exact triangle. By (TR 1), there is an extra triangle

and by (TR 3), there exists h such that the squares in

id

~

U:HT:L

O vo 2574

Jo

d :h
' s 025 TA

e s

2\
~

commute, so that vu = h0 = 0. By (TR 2), we also get that wv = (T'u)w = 0.

We have a chain complex

s A s B s C
TA ——TB s TC

and this gives a chain complex

2\

- — Homyg (X, A) —— Homyg (X, B) —— Homg (X, C)

I

Homy (X, TA) —— Homy(X,TB) —— Homy(X,7C) —— ---
Suppose b: X — B with vb = 0. We have

TX —9 X

lTB
<

v o174 = TR

2\

~
~

D><T><
=
Q+——o
>

Uu B v

~
~
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then by (TR 3) we get —(Tu)h = —Tb, so u(T'—1h) = b. This shows exactness at
Homy (X, B). We can first rotate the triangles, and then shift using 7' to show exactness
everywhere. 0

Example 16.9. In K£(Ab), we have

Z]0] > 0 > 7 > 0 > 0 >
— AT A0 Ly qt y A2 S

and so
Homcy, (Z[0], A®) = ker(d")

Homy (Z[0], A*) = ker(d®)/ ~ = ker(d®)/im(d~') = H°(A).

This shows that the cohomology functor is representable.

17. DERIVED CATEGORIES

Suppose C is a category and S is a collection of morphisms.

Definition 17.1. A localization of C with respect to S is a category S™1C together with a
functor ¢: C — S~1C such that

(1) q(s) is an isomorphism in S7!C for all s € S,
(2) (S71C,q) is universal with property (1), i.e. for every category D and functor

F:C—>D

such that F(s) is an isomorphism for all s € S, there exists a unique functor
F: S7IC — D such that the diagram

c — S7IC

D

commutes.

If C is a small category, then S™C exists. Indeed, let S7!C be the free category on ObjC
generated by all morphisms in C and all s, s € S, modulo relations from C and ss = id,
55 =id for all s € S. Morphisms in S~!C are of the form 5;535,5; and so on.

Example 17.2. If S is the collection of chain homotopy equivalences in Ch(.A), then
K =S"1Ch(A).

Definition 17.3. If @ is the collection of all quasi-isomorphisms in Ch(.A), then the derived
category of A is

D(A) = Q' Ch(A).
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This definition is very abstract so we will try to go via the quotient category K to get a
better understanding.

Let R be the collection of quasi-isomorphisms in K(A), then R71K(A) = D(A):

Ch(A) —— 571 Ch(A) = K(A) —— R7K(A)

where we get the dotted arrows from the universal properties, and they are unique so they
are inverses.

Definition 17.4. Let C be any category. A set of morphisms S is a multiplicative system if

(1) S is closed under composition,

(2) idy € S so any z € ObjC,

(3) Ore condition: if t: Z — Y isin S and g: X — Y (in C), then there exists a
commuting square

w otz
X 2.y

for s € S, f € Mor(C) and also the dual statement holds,
(4) if f,g: X — Y in C, then: there exists s € S such that sf = sg if and only if there
exists t € S such that ft = gt.

The idea behind this definition is to represent morphisms in S~!C in the form fs=! = fs
with s € S, f € C:

The Ore condition shows that we can write s ' f, where s; € S as fzs3' where s3 € S, and
we can write the composition in the same form again

(fist)(fos2 ') = fifasy sy = (fifs)(siss) ™
Define a category D with Obj(D) = Obj(C) and Homp(A, B) as the set of all diagrams

A« 1B

with s € S and f € C, modulo = where
A< 0D B =A< ¢, 25 B
if there exist ti1,10 € S with fltl = fgtg and sity = Satg:
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Ch
thT &
A D B
2

The composition is defined by considering the following diagram

and letting

Al <§v231 D f2JF1 y A3

117

to be the composition. One can check that = is an equivalence relation and composition is

well-defined.
We have a functor F: C — D, sending f: A — B in C to

F(f)=[A¥2 AL B] € Homp(A, B).
We claim that if s € S, then F(s) is an isomorphism in D. Indeed,

Fls)=[A & A2 B
has inverse
(B« A4y
because the composition
B+ A B
is equivalent to
(B2 B 18 pi

via the diagram
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Finally, one can show that (D, F) has the universal property of localization. This gives a
very concrete description of a localization with respect to a multiplicative system.

For an abelian category A, we can hence describe the derived category as follows:

(1) K(A) = U Ch(A) where U is a collection of homotopy equivalences (so we replace
morphisms by equivalence classes, making the set of morphisms smaller),

(2) D(A) = ST'K(A) where S is a collection of quasi-isomorphisms (this S is actually a
multiplicative system, and hence morphisms in D(A) can be described as fractions
of morphisms in IC(A)).

We still have to show that the collection of quasi-isomorphisms is a mulitplicative system.
We do this in more generality.

Proposition 17.5. Suppose K is a triangulated category, A is an abelian category, and
H: K — Ais a cohomological functor. Let S be the collection of all s such that H"(s) is an
isomorphism for all n. Then S is a multiplicative system.

Proof. We check the axioms:

(1), (2) By functoriality of H, S is closed under composition and id, € S.
(3) Ore property. Given s € S, f € K, we want to find t € S, g € K such that

W Lty 7
g lf
X —2-Y

commutes. Embed s in an exact triangle

C
/ 'X
Z = > Y

and then embed uf in an exact triangle and rotate it to get an exact triangle

C
o N
w L X

Together, by (TR 3), there exists g: W — Z such that the following diagram

Wt x ot TW —— TX
L S
J ==Y 2“5 C s TZ s TY

commutes. Since H"(s) is an isomorphism for all n, we get
HZ) —— H"(Y) — H"(C) —— H"Y(Z) —— H""(Y)

so H"(C') = 0, and hence H"(t) is an isomorphism for all n. The dual property holds
by considering the dual category (the dual category of a triangulated category is also
triangulated).
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(4) If f,g: X = Y, we show that sf = sg for some s € S if and only if ft = gt for some
tesS.
We show the ‘only if implication; the other implication is symmetric. Suppose
s: Y — Y/ satisfies sf = sg and s € S. Let h = f — g and embed s in an exact
triangle

From the long exact sequence, as above, we get H*(Z) = 0. Since Homg (X, —) is a
cohomological functor, we have the exact sequence

Homy (X, Z) —— Homg(X,Y) —— Homy (X, Y’)

) >uv =h ——— sh =10

and, since sh, by exactness, there exists v: X — Z such that uv = h. Now, v lies in
an exact triangle

7z
X’/t\X

But vt = 0, so 0 = uvt = ht = ft — gt. Hence ft = gt. Finally, since H*(Z) = 0,
H"(t) is an isomorphism for all n, and hence t € S.

This shows that S is a multiplicative system. 0

By the above discussion, this shows that morphisms in S™!K are of the form fs=! for s € S,
f € K. A morphism between X and Y is

and is sometimes referred to as a roof.

Proposition 17.6. The derived category D(A) = STKC(A) is a triangulated category with
T(fsh) =T(f)T(s)"".

Proof. First note that T is well-defined: if fis;' = fosy ', then T(f1)T(s1)™" = T(f2)T(s2)7 .
An exact triangle in D(A) is a triangle that is isomorphic to an exact triangle in I(A). We
need to check the 4 axioms, but we will only check some of them, the rest can be found
in [Wei94].

(TR 1) Suppose f = us™! is a morphism X — Y in D(A):
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Z

<
/

X Y

We have that u lies in a exact triangle in KC(.A)

and we have the diagram

Then

U
s[_]y N
X ! .Y

is an exact triangle.

The (TR 2) axioms is clear. The axioms (TR 3) and (TR 4) require a proof, but we omit it
here. U

Similarly, we can define D°(A) from bounded chain complexes and DT (A) from positive
chain complexes.

Proposition 17.7. Suppose I® is a cochain complex of injectives, bounded from below, Z°
is a cochain complex. If t: I* — Z° is a quasi-isomorphism in K(A), then there ezists
s: Z* — I* with st =1id in K(A).

Corollary 17.8. Suppose I® is a cochain complex of injectives, bounded from below, in D(A).
Then HOII]D(A) (X, ]) = HOHI)C(A) (X, I)
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