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2 HARM DERKSEN

1. Review of category theory

We begin with a short review of the necessary category theory.

Definition 1.1. A category C is

(1) a class of objects, Obj C, and
(2) for all A,B ∈ Obj C, a set HomC(A,B) of morphisms from A to B,
(3) for any A,B,C ∈ Obj C, a composition map

HomC(A,B)× HomC(B,C)→ HomC(A,C),

(f, g) 7→ g ◦ f = gf,

(4) for any A ∈ Obj C, a morphism idA ∈ HomC(A,A),

such that

(a) for any A,B ∈ Obj C and all f ∈ HomC(A,B)

idBf = f = f idA,

(b) for any A,B,C,D ∈ Obj C and any f : A→ B, g : B → C, h : C → D, the composi-
tion is associative:

(hg)f = h(gf).

Note that Obj C may not be a set: for example, the category of sets cannot have the set of
all objects (Russel paradox). If Obj C is a set, then C is small.

Examples 1.2.

• C = Sets: objects are sets, morphisms are functions,
• C = Groups: objects are groups, morphisms are group homomorphisms,
• C = Ring: rings and ring homomorphisms,
• C = Top: topological spaces and continuous maps,
• for a ring R, R-mod: left R-modules with R-module homomorphisms, and mod-R:

right R-modules with R-module homomorphisms,
• C = (A,≤), a poset: Obj C = A and

HomA(x, y) =

{
{1} if x ≤ y,
∅ otherwise,

• C = Ab: abelian groups and group homomorphisms.

Definition 1.3. Fix a category C. If f : A→ B is a morphism, an inverse of f is a morphism
g : B → A such that

gf = idA, fg = idB.

Inverses are unique: if g′ is another inverse, then

g = idAg = (g′f)g = g′(fg) = g′idB = g′.

Definition 1.4. If f has an inverse, we call it an isomorphism, and we write f−1 for that
inverse.
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Definition 1.5. Suppose C is a category. The opposite category, Cop, is defined by

Obj(Cop) = Obj(C)

HomCop(A,B) = {f op | f ∈ HomC(B,A)}
and if in C

A B

C

f

g
fg

then in Cop

A B

C

fop

gop

(fg)op=gopfop

Definition 1.6. A morphism f : B → C is monic if for any A ∈ Obj C and any e1, e2 : A→ B
such that fe1 = fe2, we have e1 = e2.

Example 1.7. In Groups, Sets, Top, a morphism is monic if and only if it is injective.

Definition 1.8. A morphism f : A → B is epi if for any C ∈ Obj C and all g1, g2 : B → C
such that g1f = g2f , we have g1 = g2.

The notions of monic and epi are dual: f is monic in C if and only if f op is monic in Cop.

Example 1.9. In Sets, an epimorphism is a surjective map.

Let C be the category of metric (or at least Hausdorff) topological spaces. Then the inclusion
f : Q→ R is not surjective but it is epi in C. Indeed, suppose g1, g2 : R→ X and g1f = g2f .
For any x ∈ R, there exists a sequence {xn} ⊆ Q with lim

n→∞
xn = x. Then

g1(x) = lim
n→∞

g1(xn) = lim
n→∞

g1(f(xn)) = lim
n→∞

g2(f(xn)) = lim
n→∞

g2(xn) = g2(x)

since both g1 and g2 are continuous.

Similarly, in Rings, f : Z→ Q is epi but not surjective.

Definition 1.10. An object I ∈ Obj(C) is initial if for every A ∈ Obj(C) there is a unique
morphism I → A.

If I, I ′ are initial objects, there is a unique morphism f : I → I ′ and a unique morphism
g : I ′ → I. We then get morphisms fg : I ′ → I ′ and gf : I → I, but idI′ : I

′ → I ′ and
idI : I → I are also such morphisms and hence by uniqueness

fg = idI′ , gf = idI .

This shows initial objects are unique up to unique isomorphism.

Definition 1.11. An object T ∈ Obj(C) is terminal if for all A ∈ Obj(C), there is a unique
morphism A→ T .
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This is the dual notion to initial object:

I ∈ Obj(C) is initial if and only if I ∈ Obj(Cop) is terminal.

Examples 1.12. We provide a few examples of initial and terminal objects in a few cate-
gories:

initial terminal

Sets ∅ {0}
Groups {1} {1}

Ab {0} {0} = 0
Rings with 1 Z 0

Definition 1.13. A zero object is initial and terminal. We denote it by 0.

If C has 0, A,B ∈ Obj(C), we have maps

A 0 B

0

so there is a unique morphism A→ B that factors through 0 ∈ Obj(C), the zero morphism.

Definition 1.14. A monic morphism f : A→ B is called a subobject of B.

Two subobjects f : A→ B, f ′ : A′ → B′ are isomorphic if there is an isomorphism g : A→ A′

such that f = f ′g′:

A B

A′

f

g
f ′

Example 1.15. In Sets: if f : A→ B injective, it is a subobject and we have that

A B

f(A)

f

f

and A→ B and f(A)→ B are isomorphic.
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Definition 1.16. Suppose C has zero object. We say f : A→ B is a kernel of g : B → C if
gf = 0 and for every f ′ : A′ → B with gf ′ = 0, there is a unique morphism h : A′ → A such
that f ′ = fh, i.e. the following diagram

A B C

A′

f

0

g

f ′
h

0

commutes. The dual notion is the cokernel.

The above is an example of a universal property. We can restate it as follows. We define
a category G whose objects are pairs (A, f) with f : A → B and gf = 0 and a morphism
(A, f)→ (A′, f ′) in G is a morphism h : A→ A′ in C such that f ′h = f . Then

(A, f) is the kernel of g if and only if (A, f) is a terminal object in G.

A kernel is a subobject: indeed, if e1, e2 : A′ → A satisfy f ′ = fe1 = fe2, then e1 = e2 by
uniqueness in the universal property

A′

A B C

A′

e1
f ′

0

f

0

g

e2
f ′

0

Example 1.17. In Groups, consider S2 → Sn sending (12) to (12). This map is not an
epimorphism but its cokernel is {1} → Sn (exercise).

Definition 1.18. If A,B ∈ Obj(C) then a product is an object A × B together with mor-
phisms πA : A × B → A and πB : A × B → B with universal property: if C ∈ Obj(C) and
fA : C → A, fB : C → B are morphisms, then there exists a unique morphism h : C → A×B
such that fA = πAh, fB = πBh, i.e. the following diagram

A A×B B

C

πA πB

fA fB
h

commutes.

Similarly, if Ai, i ∈ I are objects, their product is an object
∏
i∈I
Ai together with morphisms

πi :
∏
i∈I
Ai → Ai with analogous universal property.
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Definition 1.19. A coproduct is an object AqB together with iA : A→ AqB and iB : B →
A q B with the dual universal property, and similarly one can define the coproduct of any
family of objects,

∐
i∈I
Ai.

Examples 1.20. In Sets, the product A × B is the Cartesian product with πA(a, b) = a,
πB(a, b) = b, and the coproduct A q B is the disjoint union with iA : A→ A q B, iB : B →
AqB, the inclusion maps.

In Ab, the product and coproduct are the same for finite families of objects. However, for
infinite families we have ∏

i∈I

Ai = {(a1, a2 . . .) | ai ∈ Ai},∐
i∈I

Ai = {(a1, a2, . . .) | ai ∈ Ai and ai = 0 for all but finitely many i}.

In Groups, G ×H is the standard product and G qH is G ∗H, the free group product of
G and H. For example,

Z ∗ Z = 〈a, b〉.

In the category of rings with 1, Rings1, A×B is the standard product and AqB = A⊗ZB
with

iA : A→ A⊗Z B,

a 7→ a⊗ 1.

Note that Z/2⊗Z Z/3 = 0, so the inclusion map

iZ/2 : Z/2→ Z/2⊗Z Z/3

is not monic.

Definition 1.21. A functor F : C → D from category C to D is a rule that

(1) assigns to A ∈ Obj C an object FA ∈ Obj C,
(2) assigns to f ∈ HomC(A,B) a morphism F ∈ HomD(FA,FB)

such that

(a) F(idA) = idFA,
(b) F(gf) = F(g)F(f) if f : A→ B, g : B → C in C.

Example 1.22. If A ∈ Obj C, we have a functor

HomC(A,−) : C → Sets

such that for B ∈ Obj C
HomC(A,−)(B) = HomC(A,B),

and for f : B → C

HomC(A, f) : HomC(A,B)→ HomC(A,C),

g 7→ fg,

which can be represented by the following diagram:
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A

B C

g

f

fg

Then HomC(A, idB) = idHomC(A,B) and

HomC(A, hg) = Hom(A, h) ◦ Hom(A, g),

which can be represented by the following diagram:

A

B C D

f gf h(gf) = (hg)f

g h

hg

Example 1.23. Suppose R is a ring. If M is a left R-module, then we have a functor

HomR(M,−) : R-mod→ Ab,

and if M is a right R-module then we have a functor

M ⊗R − : R-mod→ Ab .

Definition 1.24. A functor F : C → D is faithful (resp. full) if for any A,B ∈ Obj C,

F : HomC(A,B)→ HomD(FA,FB)

is injective (resp. surjective).

What we defined above is actually a covariant functor.

Definition 1.25. A contravariant functor F : C → D from category C to D is a rule that

(1) assigns to A ∈ Obj C an object FA ∈ Obj C,
(2) assigns to f ∈ HomC(A,B) a morphism F ∈ HomD(FB,FA)

such that

(a) F(idA) = idFA,
(b) F(gf) = F(f)F(g) if f : A→ B, g : B → C in C.

For a contravariant functor, a commuting triangle maps to a commuting triangle with arrows
reversed:
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A B

C

f

g
gf

FA FB

FC

Ff

Fg
F(gf)

Example 1.26. There is a contravariant functor D : C → Cop given by D(A) = A for
A ∈ Obj(C), D(f) = f op for f a morphism in C.

Example 1.27. If A ∈ Obj C then HomC(−, A) : C → Sets is a contravariant functor. So
HomC(A,−) is covariant and HomC(−, A) is contravariant.

Definition 1.28. Suppose F ,G : C → D are functors. A natural transformation η : F → G
is a rule that assigns to A ∈ Obj(C) a morphism

η(A) : F(A)→ G(A)

such that for every morphism f : A→ B the following diagram

FA FB

GBGA

Ff

η(A) η(B)

Gf

commutes.

Example 1.29. Let F : Ab→ Ab be given by

FA = {a ∈ A | there exists n ≥ 1 such that na = 0}.
Then η(A) : FA ↪→ A is a natural transformation between F and the identity functor on Ab.

Example 1.30. Fix a category C. Suppose e : A→ B is a morphism. Then

ε : HomC(B,−)→ HomC(A,−)

is a natural transformation given by

ε(C) : HomC(B,C) 3 f 7→ fe ∈ HomC(A,C),

since the following diagram

Hom(B,C) Hom(B,D)

Hom(A,D)Hom(A,C)

HomC(B, f)

ε(C) ε(D)

HomC(A, f)
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commutes.

A functor F : C → D would be an isomorphism if there exists G : D → C such that FG = idD,
GF = idC. However, such maps seldom exist so we weaken the notion slightly.

Definition 1.31. A natural transformation η : F → G is a natural isomorphism if η(A) : F(A)→
G(A) is an isomorphism for all A ∈ Obj(C).

Definition 1.32. A functor F : C → D is an equivalence of categories if there exists a functor
G : D → C such that GF is naturally isomorphic to idC and FG is naturally isomorphic to
idD.

Example 1.33. Let V be the category of finite-dimensional R-vector spaces and C ⊆ V be
the full subcategory with Obj(C) = {Rn | n ≥ 0}. Then C is small while V is not small, so
C and V are not isomorphic. We will show that they are nonetheless equivalent. Define

F = id|C : C → V , the inclusion functor,

G : V → C, G(V ) = RdimV .

We now choose isomorphism
η(V ) : RdimV → V

for every V (we use the meta axiom of choice here). Moreover, there is only one way to
define Gf for a linear map f : V → W to make η a natural transformation, i.e. making the
square

RdimV RdimW

VW

Gf

η(V ) η(W )

f

commute. We then have that
FG : V → V

and we note that η : FG → idV is a natural isomorphism

η(V ) : RdimV = FG(V )→ V.

There is also a natural isomorphism η|C : GF → idC.

1.1. Abelian Categories. The reference for this section is [Fre03]. We introduce a general
framework where we can develop homological algebra, generalizing categories such as Ab
and more generally R-mod.

Definition 1.34. A category C is an Ab-category if for all A,B ∈ Obj C, HomC(A,B) is an
abelian group, and

g(f1 + f2) = gf1 + gf2, f, f1, f2 : A→ B,

(g1 + g2)f = g1f + g2f, g, g1, g2 : B → C.

This makes HomC(A,A) a ring with 1 = idA.
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Definition 1.35. An additive category is an Ab-category with finite products and a zero
object.

In additive categories, finite coproducts exist and are the same as product: if A,B ∈ Obj C,
then we have an object A⊕B = A×B = AqB such that the following diagram

A⊕B

A B

πA πB

iA iB

commutes, so (A⊕B, πA, πB) is a product, (A⊕B, iA, iB) is a coproduct, and

πAiA = idA, πBiB = idB,

πAiB = 0 = πBiA,

iAπA + iBπB = idA⊕B.

Definition 1.36. An additive category is abelian if

(1) every morphism has kernel and cokernel,
(2) every monic morphism is kernel of its cokernel,
(3) every epimorphism is cokernel of its kernel.

Let C be abelian from now on.

Lemma 1.37. A morphism f : A → B is monic if and only if ker f = 0 (i.e. 0 → A is a
kernel of A). Dually, f : A→ B is epi if and only if B → 0 is a cokernel of f .

Proof. Suppose g : K → A is a kernel. If f is monic, then fg = 0 = f0, so g = 0. Hence g
factors through 0→ A, so 0→ A is a kernel of f .

Suppose conversely that 0→ A is a kernel of f : A→ B. If fg1 = fg2, then

0 = fg1 − fg2 = f(g1 − g2),

so g1 − g2 factors through 0→ A, so g1 − g2 = 0 and g1 = g2. �

Definition 1.38. If we have maps

A1

A2 B

f1

f2

then a pull-back is an object P together with maps g1 : P → A1, g2 : P → A2 such that
f1g1 = f2g2 and (P, g1, g2) is universal with this property, i.e. if u1 : C → A1 and u2 : C → A2

satisfy fu1 = fu2 then there exists a unique h : C → P such that g1h = u1 and g2h = u2,
i.e. the following diagram
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C

P A1

A2 B

u1

u2

g1

g2 f1

f2

commutes. The dual notion is called push-out.

An abelian category has pull-backs and push-outs. Explicitly, for a map

A1 ⊕ A2 B
(f1,−f2)

we have that

P A1 ⊕ A2

g1
g2



is the kernel of A1⊕A2 → B. The pushout is a cokernel of an analogous map A1⊕A2 → B.

Lemma 1.39. Suppose

P A1

A2 B

g1

g2 f1

f2

is a pull-back. Then

(1) if g1 is monic, then f2 is monic,
(2) if f1 is epi, then g2 is epi.

Proof. We first prove (1). Indeed, suppose g1 is monic and take u : C → A2 with f2u = 0.
Then there exists unique h : C → P such that g1h = 0 and g2h = u, i.e. the following diagram

C

P A1

A2 B

h

0

u

g1

g2 f1

f2

commutes. But g1 is monic, so this implies h = 0, and hence u = g2h = 0. Hence 0→ A2 is
a kernel of f2, so f2 is monic.
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For (2), suppose f1 is epi. We recall that P → A1 ⊕ A2 is kernel of A1 ⊕ A2 → B, and
A1 ⊕ A2 → B is epi, because A2 → B is epi. Hence A1 ⊕ A2 → B is cokernel of

P → A1 ⊕ A2.

Hence the diagram

P A1

A2 B

g1

g1 f1

f2

is a pushout. By the dual of (a), f1 : A1 → B is epi implies that g2 : P → A2 is epi. �

Lemma 1.40. If g : B → C is a morphism, then there exists a factorization g = vu where
u is epi and v is monic

B I Cu

g

v

Proof. Let f : A ↪→ B be the kernel of g and u : B � I be the cokernel of f . Then, because
gf = 0 and u is the cokernel of f , there exists v such that the following diagram

A B I C
f u

g

v

commutes. We have to show v is monic. Let w : K → I be the kernel of v and let P with
x : P → K, y : P → B be the pullback. Then, since f : A→ B is the kernel of g and

gy = (vu)y = v(uy) = v(wx) = (vw)x = 0x = 0,

we get a unique map z : P → A such that the following diagram

A B I C

P K

f u

g

v

x

y
z

w

commutes. Since P is the pullback and u : B → I is epi, x : P → K is epi. Now,

wx = uy = u(fz) = (uf)z = 0z = 0,

and since x is epi, we have that w = 0. This shows the kernel of I → C is 0→ I and hence v
is monic. �

The image of g is the kernel of the cokernel or equivalently the cokernel of the kernel.
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Remark 1.41. For a ring R, Rop, the opposite ring is Rop = R as a set with multiplication
∗ in Rop defined by a ∗ b = b · a. If M is a left R-module, them M is a right Rop-module: if
m ∈M , a ∈ Rop = R, then m ∗ a = a ·m. This indeed gives a right module, for example:

(m ∗ a) ∗ b = b · (a ·m) = (b · a) ·m = m ∗ (b · a) = m ∗ (a ∗ b).
The category R-mod is isomorphic to mod-Rop and the category Rop-mod is isomorphic to
mod-R. Moreover, if M is a left R-module, we write RM , if M is a right R-module, we write
MR, and if M is a R-S-bimodule, we write RMS.

We work for now in the category mod-R.

Definition 1.42. A sequence

A0 A1 A2 · · · An+1
f0 f1 f2 fn

is exact if im fi−1 = ker fi for i = 1, 2, . . . , n.

Then

• 0 A B
f

is exact if and only if f is injective,

• B C 0
g

is exact if and only if g is surjective,

• 0 A B 0
f

is exact if and only if f is an isomorphism,

• 0 A B C 0
f g

is exact (we call it a short exact sequence) if
and only if f is injective, g is surjective, and C ∼= B/A,

• 0 ker f A B coker f 0
f

is exact for any f .

Theorem 1.43 (Snake Lemma). Suppose the diagram

0 0 0

ker p ker q ker r

A′ B′ C ′ 0

0 A B C

coker p coker q coker r

0 0 0

p q r

has exact rows, exact columns, and commuting squares. Then we have an exact sequence

ker p→ ker q → ker r → coker p→ coker q → coker r,
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i.e. the red sequence in the following diagram

0 0 0

ker p ker q ker r

A′ B′ C ′ 0

0 A B C

coker p coker q coker r

0 0 0

p q r

Moreover, if we add zeros at the end of the two middle exact sequences, then we can add
zeros at the end of the “snake”, i.e. the red sequence in the following diagram exists and is
exact

0 0 0

0 ker p ker q ker r

0 A′ B′ C ′ 0

0 A B C 0

coker p coker q coker r 0

0 0 0

p q r

Proof. The proof is diagram chasing, and we omit it here. �

Theorem 1.44 (Five Lemma). If the diagram

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5
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has exact rows and commuting squares, and f1, f2, f4, f5 are isomorphisms, then f3 is also
an isomorphism.

Proof. This proof is diagram chasing again, and we omit it here. �

We can generalize both of these lemma to an abelian category C. We present the main ideas
below. For more details, see [GM03, Chap. II.5] [Gelfand Manin, II.5 exercises].

Suppose B ∈ Obj C. Consider pairs (A, f) where f : A → B is a morphism. Than (A, f) ∼
(A′, f ′) if there exists C ∈ Obj C and epimorphisms g : C � A and g′ : C � A′ such that
fg = f ′g′:

C A

A B

g

g′ f

f ′

Then ∼ is an equivalence relation. For example, transitivity is proved as follows: if (A, f) ∼
(A′, f ′) and (A′, f ′) ∼ (A′′, f ′′), there exist C and C ′ and C � A, C � A′, C ′ � A′, C � A′′

and hence taking the pullback we get the following commutative diagram

P

C C ′

A′

A A′′

B

f ′

f f ′′

and hence (A, f) ∼ (A′′, f ′′).

Then we say a ∈ B if a is a congruence class of (A, f) for some f : A→ B, i.e. a = [(A, f)].
Suppose g : B → C. With this definition, if a = [(A, f)] then g(a) = [(A, gf)]:

A

B C

f
gf

g

Then 0 = [(0, f)] for the unique map 0→ B.

Lemma 1.45. A morphism g : B → C is monic if and only if for all a ∈ B, g(a) = 0 implies
that a = 0.
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Lemma 1.46. A morphism g : B → C is epi if and only if for all c ∈ C, there exists b ∈ B
such that g(b) = c.

Lemma 1.47. A morphism f : A→ B is equal to 0 if and only if f(a) = 0 for all a ∈ A.

Lemma 1.48. If f : A→ B is a morphism and a, a′ ∈ A such that f(a) = f(a′) then there
exists b ∈ A such that f(b) = 0 and for every g : A→ C with g(a) = 0 we have g(b) = −g(a′)
and for every g : A→ C with g(a′) = 0 we have g(b) = g(a).

Proof. If a = [(D, h)] and a′ = [(D′, h′)], then take b = [D ⊕D′, (h,−h′)]. �

These lemmas suffice to proceed with the diagram chasing arguments, so they show that the
Snake Lemma 1.43 and the Five Lemma 1.44 hold in an abelian category.

2. Algebraic topology

In this chapter, we review the motivating examples of homology and cohomology from alge-
braic topology. For a more detailed introduction to the area, see [Hat02].

2.1. Singular Homology.

Definition 2.1. A geometric n-simplex is

∆n =

{
(x0, x1, . . . , xn) ∈ Rn+1 | xi ≥ 0,

n∑
i=0

xi = 1

}
.

For a topological space X, a singular n-simplex is a continuous function σ : ∆n → X.

We let

Sn(X) = free Z-module with basis of all singular n-simplices on X

and define

fi = fni : ∆n−1 → ∆n

by

fi(x0, . . . , xn−1) = (x0, x1, . . . , xi−1, 0, xi+1, . . . , xn−1).

Then we define a map dn : Sn(X)→ Sn−1(X) by

dn(σ) =
n∑
i=0

(−1)iσ ◦ fi.

Lemma 2.2. For any n, dn−1 ◦ dn = 0, so d2 = 0.
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Proof. If j < i, then fi ◦ fj = fj ◦ fi−1, so

dn−1(dn(σ)) =
n−1∑
j=0

n∑
i=0

(−1)i+jσ ◦ fni ◦ fn−1
j

=
∑

0≤i≤j≤n−1

(−1)i+jσ ◦ fi ◦ fj +
∑

0≤j<i≤n−1

(−1)i+jσ ◦ fi ◦ fj

=
∑

0≤i≤j≤n−1

(−1)i+jσ ◦ fi ◦ fj +
∑

0≤j<i≤n−1

(−1)i+jσ ◦ fj ◦ fi+1

=
∑

0≤i≤j≤n−1

(−1)i+jσ ◦ fi ◦ fj −
∑

0≤j≤i≤n−1

(−1)i+jσ ◦ fj ◦ fi setting i→ i+ 1

= 0

showing d2 = 0. �

We hence get a chain complex S•(X):

· · · Sn+1(X) Sn(X) Sn−1(X) Sn−2(X) · · ·dn+1 dn dn−1

with dn−1dn = 0 for all n. (By convention, Sn(X) = 0 for n < 0.)

Definition 2.3. We define

Zn(X) = ker dn, the module of cycles,
Bn(X) = im dn+1, the module of boundaries.

Note that Bn(X) ⊆ Zn(X) ⊆ Sn(X) by the lemma above.

Example 2.4. The boundary of a segment from a to b is b− a

a b
∂
( )

= b− a>

while the boundary of a circle treated as a singular 1-simplex is a− a = 0

a∂ = 0

>

This justifies the names cycle and boundary.

Definition 2.5. The nth singular homology group is defined as

Hn(X) = Hsing,n(X) = Zn(X)/Bn(X) = ker dn/ im dn+1.

One can show that Hn(X) is a topological invariant: if X is homeomorphic to Y then
Hn(X) ∼= Hn(Y ).

Examples 2.6. We have that H0(X) ∼= Zd where d is the number of path-connected com-
ponents of X.
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The homology of a contractible space is trivial, so for example

Hn(∗) = Hn(Rn).

However, we can distinguish between Rn and Rm using homology, because

Hj(Rn \ {∗}) =

{
Z for j = n− 1,
0 for 0 < j < n− 1.

2.2. Relative homology. Suppose Y ⊆ X is a subspace. Then Sn(Y ) ⊆ Sn(X) and we
can define

Sn(X, Y ) = Sn(X)/Sn(Y )

and we get the sequences

0 Sn(Y ) Sn(X) Sn(X, Y ) 0

0 Sn−1(Y ) Sn−1(X) Sn−1(X, Y ) 0

dn dn dn

We then define

Zn(X, Y ) = ker(dn : Sn(X, Y )→ Sn−1(X, Y )),

Bn(X, Y ) = im(dn+1 : Sn+1(X, Y )→ Sn(X, Y )),

Hn(X, Y ) = Zn(X, Y )/Bn(X, Y ).

2.3. Homology with coefficients. If M is a Z-module, we can define homology with
coefficients in M by setting

Sn(X;M) = Sn(X)⊗Z M,

Zn(X;M) = ker(dn : Sn(X;M)→ Sn−1(X;M)),

Bn(X;M) = im(dn+1 : Sn+1(X;M)→ Sn(X;M)),

Hn(X;M) = Zn(X;M)/Bn(X;M).

Note that −⊗Z M and Hn(−) do not commute. Hence taking homology with coefficients is
a non-trivial procedure.

We can write concisely

Hn(X) = Hn(S•(X)),

Hn(X, Y ) = Hn(S•(X, Y )),

Hn(X;M) = Hn(S•(X;M)),

Hn(X, Y ;M) = Hn(S•(X, Y ;M)).
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2.4. Simplicial homology.

Definition 2.7. An abstract simplicial complex is a pair K = (V, S) where V is a set and S
is a set of finite nonempty subsets of V such that

(1) if v ∈ V then {v} ∈ S,
(2) if ∅ 6= τ ⊆ σ ∈ S then τ ∈ S.

If σ ∈ S then dimσ = |σ| − 1.

Definition 2.8. A geometric realization |K| of K = (V, S) is

|K| =
∐
σ∈S

∆σ

/
∼

where ∆σ = ∆dimσ = ∆|σ|−1 with vertices labeled with 〈v〉, v ∈ σ, and if τ ⊆ σ then we have
a linear map f : ∆τ → ∆σ given by f(〈v〉) = 〈v〉, then

∆τ 3 x ∼ f(x) ∈ ∆σ.

Example 2.9. If V = {1, 2, 3} and S = {{1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}}, then |K| is a
triangle with vertices 1, 2, 3 which is homeomorphic to a circle

1 2

3

We set

Cn(K) = Z-module with basis of all n-simplices.

To define dn : Cn(K)→ Cn−1(K), we choose a total ordering on V and write

Cn(K) 3 〈v0v1 . . . vn〉 if v0 < v1 < . . . < vn.

Then we define

dn(〈v0v1 . . . vn〉) =
n∑
i=0

(−1)n〈v0 . . . v̂i . . . vn〉.

Once again, we set

Zn(K) = ker dn

Bn(K) = im dn+1

Hsimp,n(K) = Zn(K)/Bn(K).

Proposition 2.10. For any n, we have that Hsimp,n(K) ∼= Hsing,n(|K|).

Example 2.11. We compute the homology of

1 2

3
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so that |K| = S1. We have that

C0(K) = Z〈1〉+ Z〈2〉+ Z〈3〉 ∼= Z3

C1(K) = Z〈12〉+ Z〈13〉+ Z〈23〉 ∼= Z3

d1 :

 〈12〉 7→ 〈2〉 − 〈1〉
〈13〉 7→ 〈3〉 − 〈1〉
〈23〉 7→ 〈3〉 − 〈2〉

so

Z1(K) = Z(〈13〉 − 〈23〉 − 〈12〉)
B0(K) = {〈a〈1〉+ b〈2〉+ c〈3〉 | a+ b+ c = 0} ∼= Z2

B1(K) = 0

Z0(K) = Z3

and hence

H1(K) ∼= Z,
H0(K) ∼= Z.

Example 2.12. Recall that P2(R) can be thought of as a square with opposite identifications
on opposite edges, so P2(R) = |K| where K is the following simplicial complex

1 2 3 4

5

6

1234

5

6

Then we have that

C2 = Z18, C1 = Z27, C0 = Z10

and the sequence

0→ Z18 → Z27 → Z10 → 0

has ker d2 = 0 so H2(K) = 0.

However, the map

d2 : C2(K;Z/2)→ C1(K,Z/2)

has

d2

(
sum of all 2-simplices
with right orientation

)
= 2(〈12〉+ 〈23〉+ 〈34〉+ 〈45〉+ 〈56〉 − 〈16〉) = 0

so

H2(K;Z/2) = Z/2.

Hence indeed homology with coefficients is a non-trivial construction.



MATH 613: HOMOLOGICAL ALGEBRA 21

2.5. Functoriality. For singular homology, if f : X → Y is continuous , we get an induced
map

Sn(f) = f∗ : Sn(X)→ Sn(Y ) : σ 7→ f ◦ σ.
Moreover, the square

Sn(X) Sn(Y )

Sn−1(X) Sn−1(Y )

f∗

d d

f∗

commutes, and hence

f∗(Bn(X)) ⊆ Bn(Y ),

f∗(Zn(X)) ⊆ Zn(Y ),

so f∗ induces

Hn(f) = f∗ : Hn(X) = Zn(X)/Bn(X)→ Hn(Y ).

Altogether, we have a functor

Hn : Top→ Ab .

2.6. Cohomology. Let M be a Z-module and let

Sn(X;M) = HomZ(Sn(X),M).

We have the following commutative triangle

Sn(X) M

Sn+1(X)

dn+1

which gives a map

δn : Sn(X;M)→ Sn+1(X;M).

Concisely, we apply the functor HomZ(−,M) to both Sn(X) and dn and write

δn = Hom(dn+1,M).

We then get the following cochain complex

· · · Sn−1(X;M) Sn(X;M) Sn+1(X;M) · · ·δn−1 δn δn+1

We then define

Zn(X;M) = ker δn, the cocycles,
Bn(X;M) = im δn−1, the coboundaries,
Hn(X;M) = Zn(X;M)/Bn(X;M), the cohomology group.

We admit the convention

Sn(X) = Sn(X;Z), Hn(X) = Hn(X;Z).
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Example 2.13. For X = P2(R) we have that

H0 = Z, H0 = Z,
H1 = Z/2, H1 = 0,
H2 = 0, H2 = Z/2.

Suppose now X is a smooth manifold and let Ωn(X) be the set of n-forms on X, so an
element of Ωn(X) is gdf1 ∧ df2 ∧ . . . ∧ dfn. We have maps

d : Ωn(X)→ Ωn+1(X)

with d2 = 0, which give a cochain complex

· · · Ωn−1(X) Ωn(X) Ωn+1(X) · · ·dn−1 dn

called the de Rham complex. Its cohomology is called the de Rham cohomology

H•DR(X) = H•(Ω•(X)).

Then
Ω0(X) = {smooth functions X → R}.

Example 2.14. ForX = S1, we have that 2xdx+2ydy = d(x2+y2) = d1 = 0 so xdx = −ydy.
But then

ω =
dx

y
= −dy

x

but ω 6= df for any f which shows H1
DR(S1) 6= 0.

3. Homological algebra

In this chapter, we are in the category of right R-modules, mod-R.

Definition 3.1. A chain complex is a diagram

C• : · · · Cn+1 Cn Cn−1 · · ·dn+1 dn

with dndn+1 = 0 for all n.

We say C• is bounded from below (above) if there exists a such that for any n < a (n > a),
Cn = 0. Moreover, C• is bounded if it is bounded both from below and from above.

Example 3.2. In the topological examples we have seen for homology, all sequences were
bounded from below. For a finite simplicial complex, the chain complex is moreover bounded.

Definition 3.3. We define

Bn(C•) = im dn+1, Zn(C•) = ker dn

and the nth homology group of C• to be

Hn(C•) = Zn(C•)/Bn(C•).

Definition 3.4. A chain complex map C• → D• is a collection of module homomorphisms
un : Cn → Dn for all n ∈ Z such that un−1dn = dnun, so the following diagram
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· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

dn+1

un+1

dn

un un−1

dn+1 dn

commutes. We sometimes write more concisely that ud = du.

For a chain complex map un(Bn(C•)) ⊆ Bn(D•) and un(Zn(C•)) → Zn(D•) and hence un
induces a map

u∗,n : Hn(C•)→ Hn(D•).

Definition 3.5. We define Ch(mod-R) to be the category of chain complexes (of right R-
modules, but we could apply this construction to more general categories) with chain complex
maps as morphisms. This is an abelian category.

We moreover have a homology functor

Hn(−) : Ch(mod-R)→ mod-R.

Example 3.6. If X, Y are topological spaces and f : X → Y is continuous, the maps

f∗,n : Sn(X)→ Sn(Y ) : σ 7→ f ◦ σ

form a chain complex map

f∗ : S•(X)→ S•(Y ).

Then f∗ induces

f∗,n : Hn(X)→ Hn(Y )

and in fact we have a functor

Hn(−) : Top→ Ab .

Theorem 3.7. If we have a short exact sequence of chain complexes

0→ C• → D• → E• → 0

(or, equivalently, 0→ Cn → Dn → En → 0 is exact for any n). Then we have a long exact
sequence

· · · Hn+1(E•) Hn(C•) Hn(D•) Hn(E•) Hn−1(C•) · · ·∂ ∂

Proof. We apply Snake Lemma 1.43 to get the red maps below
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0 0 0

0 Zn(C) Zn(D) Zn(E)

0 Cn Dn En 0

0 Cn−1 Dn−1 En−1 0

Cn−1/Bn−1(C) Dn−1/Bn−1(D) En−1/Bn−1(D) 0

0 0 0

d d d

Then using the exactness of the red sequence above, we get the following commutative dia-
gram, and apply Snake Lemma 1.43 again to get the red maps

0 0 0

Hn(C) Hn(D) Dn(E)

Cn/Bn(C) Dn/Bn(D) En/Bn(E) 0

0 Zn−1(C) Zn−1(D) Zn−1(E)

Hn−1(C) Hn−1(D) Hn−1(D)

0 0 0

d d d

This completes the proof. �

Definition 3.8. A cochain complex is a diagram

· · · Cn−1 Cn Cn+1 Cn+2 · · ·dn−1 dn dn+1

where dn+1dn = 0 for all n.

If C• is a chain complex, setting Cn = C−n with dn = d−n makes C•, d• a cochain complex.

Definition 3.9. For a chain complex C• and p ∈ Z, we define the shift of C• by p to be the
chain complex C[p], d[p] with

C[p]n = Cp+n, d[p]n = (−1)pdp+n.
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Analogously, for a cochain complex C•, we define the shift of C• by p to be the cochain
complex

C[p]n = Cn−p, d[p]n = (−1)pdn−p.

This notation is used for example in the following context: instead of saying that for any n,
the sequence

0→ Zn(C•)→ Cn → Bn−1(C•)→ 0

is exact, we can say that the sequence of chain complexes

0→ Z•(C•)→ C• → B[−1]•(C•)→ 0

is exact.

We get the following analogous statement to Theorem 3.7 for cohomology.

Theorem 3.10. If 0→ C• → D• → E• → 0 is exact, then we have a long exact sequence

· · · → Hn−1(E•)→ Hn(C•)→ Hn(D•)→ Hn(E•)→ Hn+1(C•)→ · · ·

Example 3.11. If X is a topological space and Y ⊆ X is a subset, we have a short exact
sequence

0→ S•(Y )→ S•(X)→ S•(X, Y )→ 0

and by Theorem 3.7, we get the long exact sequence of a pair

· · · → Hn+1(X, Y )→ Hn(Y )→ Hn(X)→ Hn(X, Y )→ · · ·

In some cases, this allows us to calculate homology groups of topological spaces.

Example 3.12. Let X be a manifold and Ωn(X) be the n-forms on X. If X = U ∪ V for
U, V ⊆ X open, we have a short exact sequence

0 Ωn(X) Ωn(U)⊕ Ωn(V ) Ωn(U ∩ V ) 0

ω (ω|U , ω|V )

(ω1, ω2) (ω1)|U∩V − (ω2)|U∩V

Applying Theorem 3.10 to this short exact sequence, we get the Mayer-Vietoris sequence for
de Rham cohomology

· · · → Hn
DR(X)→ Hn

DR(U)⊕Hn
DR(V )→ Hn

DR(U ∩ V )→ Hn−1
DR (X)→ · · ·

3.1. Homotopy. We will define a homotopy of maps of chain complexes, using the motiva-
tion of homotopy from topology.

Let X, Y be topological spaces and f, g : X → Y be continuous maps.

Definition 3.13. A homotopy from f to g is a continuous function h : [0, 1]×X → Y such
that h(0, x) = f(x) and h(1, x) = g(x). We then say f and g are homotopic and being
homotopic is an equivalence relation.
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If σ ∈ X is a 0-simplex, then
h(t, σ) : [0, 1]︸︷︷︸

∼=∆1

→ Y,

so h(t, σ) is a 1-simplex in Y . This gives a group homomorphism

s0 : S0(X)→ S1(X).

If σ is a 1-simplex in X, then h(t, σ) : ∆1 × [0, 1]→ Y , so if ∆1 = [a, b] whence d∆1 = b− a
we get a map

Y

h(1, σ) = g∗σ

h(t, b)

h(0, σ) = f∗σ

h(t, a)

σ1

σ2

Then there exist two 2-simplices σ1 + σ2 such that

d(σ1 +σ2) = g∗σ−h(t, b)−f∗σ+h(t, a) = (g∗−f∗)(σ)+s0(a)−s0(b) = (g∗−f∗)(σ)−s0(dσ).

Define s1 : S1(X)→ S2(Y ) by setting

s1(σ) = σ1 + σ2 ∈ S2(Y ).

Then ds1(σ) = (g∗ − f∗)(σ)− s0(dσ), so

ds1 + s0d = g∗ − f∗.

In general, there exists sn : Sn(X)→ Sn+1(Y ) such that

sd+ sd = g∗ − f∗.

Definition 3.14. Topological spaces X and Y are homotopy equivalent if there exist con-
tinuous f : X → Y and g : Y → X such that gf is homotopic to idX and fg is homotopic to
idY .

Definition 3.15. We say X is contractible if X is homotopy equivalent to a point.

Example 3.16. The Euclidean space Rn is contractible: for

f : {0} → Rn,

g : Rn → {0},
we have gf = id{0} and

fg : Rn → Rn

is constant equal to 0 and a homotopy from fg to idRn is

h(t, x) = tx.

Definition 3.17. Suppose C•, D• are chain complexes and f, g : C• → D• are chain complex
maps. A homotopy from f to g is a collection of functions sn : Cn → Dn+1 for n ∈ Z such
that

dn+1sn + sndn = gn − fn (or, concisely, ds+ sd = g − f),

which can be represented by the diagram
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· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

dn+1

gn+1

dn

fngnsn fn−1sn−1

dn+1 dn

Recall that f, g induce f∗,n, g∗,n : Hn(C•) → Hn(D•). Explicitly, if a ∈ Hn(C•), say a =
x+Bn(C) for x ∈ Zn(C), then

f∗(a) = f(x) +Bn(D) ∈ Hn(D),

g∗(a) = g(x) +Bn(D) ∈ Hn(D).

If f, g are homotopic, then have that

g∗(a)− f∗(a) = gn(x)− fn(x) +Bn(D) = dn+1sn(x) + sn−1dn(X) ∈ Bn(D),

so g∗(a) = f∗(a). Hence if f, g are homotpic, then f∗ = g∗.

Definition 3.18. We say C•, D• are homotopy equivalent if there exist f : C• → D• and
g : D• → C• such that fg and gf are homotopic to the appropriate identity.

By the above, if C•, D• are homotopy equivalent, then for any n, f∗,n : Hn(C•)→ Hn(D•) is
an isomorphism because

g∗f∗ = (gf)∗ = id∗ = id,

f∗g∗ = (fg)∗ = id∗ = id.

Example 3.19. If X is contractible, then

Hn(X) = Hn({∗}) =

{
Z if n = 0,
0 otherwise.

For example,

Hn(Rn) =

{
Z if n = 0,
0 otherwise.

Moreover, Rm \ {0} is homotopy equivalent to Sm−1, the (m− 1)-dimensional sphere.

3.2. Split exact sequences.

Proposition 3.20. Suppose we have a short exact sequence

0 A B C 0
f g

Then the following are equivalent

(1) there exists f ′ : B → A with f ′f = idA
(2) there exists g′ : C → B with gg′ = idC
(3) there exists a submodule C ′ ⊆ B with B ∼= A⊕ C ′ ∼= f(A)⊕ C ′.

Proof. We only show (1) implies (3). The rest are similar and left as exercises. Take C ′ =
ker f ′. For b ∈ B, we have

b = ff ′(b)︸ ︷︷ ︸
∈f(A)

+ (b− ff ′(b))︸ ︷︷ ︸
∈C′

,
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so f ′(b− ff ′(b)) = f ′(b)− f ′ff ′(b) = 0. �

Definition 3.21. A short exact sequence is split if any of the above equivalent conditions
hold.

Example 3.22. The following short exact sequence is not split

0 Z/p Z/p2 Z/p 0

1 + (p) p+ (p2)

1 + (p2) 1 + (p)

Definition 3.23. A chain complex C• is split if there exists sn : Cn → Cn+1 for any n such
that dnsn−1dn = dn for all n (i.e. dsd = d).

Suppose C• is split. Let b ∈ Bn−1. Then b = d(a) for some a ∈ Cn and ds(b) = dsd(a) =
d(a) = b, so ds = idBn−1 .

Then
0→ Bn → Zn → Hn → 0

is also split: if b ∈ Bn then b = d(a) for a ∈ Cn+1 and ds(b) = dsd(a) = d(a) = b, so
ds|Bn = idBn . Hence

Cn ∼= Zn ⊕Bn−1
∼= Bn ⊕Hn ⊕Bn−1

and we have the following diagram

· · · Cn+1 Cn Cn−1 · · ·

Bn

⊕
Bn+1

⊕
Hn+1

Bn−1

⊕
Bn

⊕
Hn

Bn−2

⊕
Bn−1

⊕
Hn−1

∼= ∼= ∼=

∼=

0

∼=

0

The lowest level has maximal homology in the sense that all boundary maps are zero.

3.3. Mapping cone. A cone C(X) over X is

C(X) = [0, 1]×X/ ∼,
where (0, x) ∼ (0, y) for all x, y ∈ X.

Example 3.24. For X = [0, 1], C(X) is a 1-simplex

{0}×[0,1]
∼ = [0, 1]

{1}×[0,1]
∼ = {∗}
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For X = S1, C(X) is an actual cone, justifying the name

{0}×S1

∼ = S1

{1}×S1

∼ = {∗}

Definition 3.25. Suppose f : X → Y is a continuous map. The mapping cone is

C(f) = C(X)q Y/ ∼
where C(x) 3 (1, x) ∼ f(x) ∈ Y .

Examples 3.26. Let f : [0, 2π]→ S1, f(t) = (cos t, sin t). Then C(f) is a 1-simplex with a
circle attached to [0, 1] via f :

Let f : S1 → S1 be the map z 7→ z2. Then C(f) = P2(R), because it is a hemisphere with
the antipodal identification on the boundary circle.

We generalize the topological notion of a cone to a purely algebraic one.

Definition 3.27. Let f : B• → C• be a chain map. We define a new chain complex cone(f)
by setting

cone(f)n = Bn−1 ⊕ Cn
d(b, c) = (−d(b), d(c)− f(b))

or in matrix form

dcone =

(
−dB 0
−f dC

)
.

This is indeed a chain complex:

d2
cone =

(
−dB 0
−f dC

)(
−dB 0
−f dC

)
=

(
d2
B 0

fdB − dCf d2
C

)
= 0.

We have an exact sequence
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0 C cone(f) B[−1] 0

c (0, c)

(b, c) −b

 0

idC


(−idB 0)

Since Hn(B[−1]) = Hn−1(B), we have the long exact sequence (Theorem 3.7)

· · · Hn(B) Hn(C) Hn(cone(f)) Hn−1(B) Hn−1(C) · · ·∂ ∂

Lemma 3.28. The boundary map ∂ above is f∗.

Proof. To prove this statement, we trace through the proof of Theorem 3.7. Let b ∈ B[−1]n+1

be a cycle. This lifts to (−b, 0) ∈ cone(f)n+1. Then

d(−b, 0) = (0, f(b)) ∈ cone(f)n.

This lifts to f(b) ∈ Cn, and actually f(b) ∈ Zn. Hence

∂[b] = [f(b)] = f∗[b],

completing the proof. �

Definition 3.29. A chain map f : C• → D• is a quasi-isomorphism if

f∗ : Hn(B•)→ Hn(C•)

is an isomorphism for all n.

Corollary 3.30. A chain map f : B• → C• is a quasi-isomorphism if and only if cone(f) is
exact (i.e. Hn(cone(f)) = 0 for all n).

Suppose

0 B• C• D• 0
f

is a short exact sequence. Then we have two long exact sequences and in fact they are
isomorphic by the Five Lemma 1.44 applied to the diagram:

· · · Hn(B) Hn(C) Hn(D) Hn−1(B) Hn−1(C) · · ·

· · · Hn(B) Hn(C) Hn(cone(f)) Hn−1(B) Hn−1(C) · · ·

=

f∗

=

f∗

= =

f∗

∼=

f∗
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4. Homological δ-functors

Definition 4.1. A function F : C → D is additive if F : HomC(A,B)→ HomD(FA,FB) is
a group homomorphism.

Definition 4.2. An additive functor F : C → D is left-exact if for every short exact sequence

0→ A→ B → C → 0

in C we have that
0→ FA→ FB → FC.

One can similarly define right-exact and analogous notions for contravariant functors.

Lemma 4.3. If F is left exact and 0→ A→ B → C is exact, then

0→ FA→ FB → FC
is exact.

Proof. Let D be the image of g : B → C. Then the following diagram has an exact row and
column

0

0 A B D 0

C

C/D

0

and hence so does the following diagram

0

0 FA FB FD

FC

FC/D
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We only have to show exactness at FB. If a is in the kernel of F → FC then since FD → FC
is a injective, a is in the kernel of FB → FD and hence a is in the image of FA→ FB. �

Definition 4.4. A homological δ-functor C → D is a collection of additive functors

Tn : C → D, n ≥ 0,

together with a morphism δn : Tn(C)→ Tn−1(A) for every short exact sequence

0 A B C 0
f g

such that

(1) there exists a long exact sequence

· · · Tn+1(C) Tn(A) Tn(B) Tn(C) Tn−1(A) · · ·δn+1 Tn(f) Tn(g) δn

where we set Tn(A) = 0 for n < 0, so T0 is right exact,
(2) for every morphism of exact sequences

0 A′ B′ C ′ 0

0 A B C 0

fA fB fC

we have a commuting square

Tn(C ′) Tn−1(A)

Tn(C) Tn−1(A)

δn

Tn(fC) Tn−1(fA)

δn

Example 4.5. If C is an abelian category and Ch≥0(C) is the category of non-negative chain
complexes, then the homology functor

H• : Ch≥0(C)→ C

is a homological δ-functor.

Example 4.6. Let R be a ring and r ∈ R. Set

T0 : R-mod→ Ab, T0(M) = M/rM,

T1(M) = [r]M = {a ∈M | ra = 0},

Tn(M) = 0 for all n > 1.

Then T = {Tn} is a homological δ-functor. Applying Snake Lemma 1.43 to the following
diagram



MATH 613: HOMOLOGICAL ALGEBRA 33

0 0 0

0 A B C

0 A B C 0

0 A B C 0

A/rA B/rB C/rC 0

0 0 0

r· r· r·

we obtain the long exact sequence

0→ T1(A)→ T1(B)→ T1(C)→ T0(A)→ T0(B)→ T0(C)→ 0,

showing property (1) holds. Property (2) is trivial.

Definition 4.7. A morphism of homological δ-functors from S to T is a collection of natural
transformations εn : Sn → Tn for all n ≥ 0 such that if

0 −→ A −→ B −→ C −→ 0

is exact, then

Sn(C) Sn−1(A)

Tn(C) Tn−1(A)

δn

εn(C) εn−1(A)

δn

commutes.

Definition 4.8. A homological δ-functor T is universal if for every δ-functor S and every
natural transformation ε0 : S0 → T0, there exists a unique natural transformation εn : Sn →
Tn, n ≥ 1, such that ε : S → T is a morphism of δ-functors.

Example 4.9. The homology functor H• : Ch≥0(C)→ C is universal.

5. Projectives and left derived functors

Let C be an abelian category.

Definition 5.1. An element P is projective if for every epimorphism g : B → C and every
morphism γ : P → C, there exists β : P → B such that g ◦ β = j
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P

B C 0

β
γ

g

(Equivalently, if B → C → 0 is exact, then HomC(P,B)→ HomC(P,C)→ 0 is exact.)

The functor HomC(M,−) is always left exact. For projective modules, this functor is more-
over exact.

Lemma 5.2. An element P is projective if and only if HomC(P,−) is right-exact (and hence
exact).

Proof. The ‘if’ implication is clear. For the ‘only if’ implication, suppose 0 → A → B →
C → 0 is exact. Then

0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C)→ 0

is exact by left-exactness together with the projective property. �

Example 5.3. In R-mod, free modules are projective.

Lemma 5.4. If 0 → A → B → P → 0 is exact and P is projective, then this short exact
sequence splits.

Proof. For the map id: P → P , there is a unique map P → B as above, showing that the
sequence splits. �

Lemma 5.5. A direct summand of a projective object is projective.

Proof. Suppose P = P1 ⊕ P2 and P is projective. Then since

HomC(P,−) = HomC(P1,−)⊕ HomC(P2,−)

is exact, both HomC(P1,−) and HomC(P2,−) are both exact. Indeed, if one of them was
not, then the counterexample would also work for the direct product. �

Example 5.6. For R equal to Z or a field or a division ring, an R-module is free if and only
if it is projective.

Theorem 5.7 (Quillen–Suslin). Projective modules over F [x1, . . . , xn] where F is a field are
free.

Examples 5.8. Suppose R1, R2 are nonzero rings with 1. If R = R1 × R2 then R1 and R2

are projective R-modules.

Lemma 5.9. In R-mod, P is projective if and only if it is a direct summand of a free module.

Proof. The ‘if’ implication is clear from Lemma 5.5. For the converse, if P is a projective
module, let F (P ) be the free module with generators [a] for a ∈ P . Define

f : F (P ) � P

by f([a]) = a. The sequence

0→ ker f → f(P )→ P → 0
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is exact, so it splits by Lemma 5.4. Hence f(P ) ∼= ker f ⊕ P . �

Definition 5.10. An R-module M is indecomposable if M ∼= M1 ⊕M2 implies M1 = 0 or
M2 = 0.

Moreover, M is simple if for a submodule M1 ⊆M we have M1 = 0 or M1 = M .

Theorem 5.11 (Krull-Schmidt). Let F be a field and R be a finite-dimensional F -algebra.
If M is a finite-dimensional R-module, then M ∼= M1 ⊕M2 ⊕ · · · ⊕Mr, where M1, . . ., Mr

are indecomposable and if M ∼= M ′
1 ⊕M ′

2 ⊕ · · · ⊕M ′
s with M ′

1, . . . ,M
′
s indecomposable, then

r = s and, after reordering, Mi
∼= M ′

i .

Example 5.12. Taking M = R above, we obtain

R = P1 ⊕ P2 ⊕ · · · ⊕ Pr
where P1, P2, . . . , Pr are projective indecomposables. If P is any projective finite-dimensional
R-modules, then for some M

P ⊕M ∼= Rd ∼= Rd ∼= P d
1 ⊕ P d

2 ⊕ · · · ⊕ P d
r ,

so P d1
1 ⊕ P d2

2 ⊕ · · · ⊕ P dr
r .

We will write R-fdmod for the category of finite-dimensional R-modules.

Example 5.13. Let R = Mn(F ) be the ring of n× n matrices over F . Then

R = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
n

where

P = F n are the ith columns.

The only indecomposables are actually P .

Example 5.14. Let R ⊆Mn(F ) be the subset of upper-triangular matrices. Then

R = P1 ⊕ P2 ⊕ · · · ⊕ Pn
where

Pi = ith columns =





∗
∗
...
∗
0
...
0




Then the short exact sequence

0→ P1 → P2 → S2 → 0

is non-split. Hence S2 is not projective.

Definition 5.15. An abelian category C has enough projectives if every M ∈ Obj(C) there
exists an epimorphism f : P →M where P is projective.
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Example 5.16. In the category of finite abelian groups, there are no projectives except 0.
Indeed, the exact sequence

0→ Z/2→ Z/2n→ Z/n→ 0

is non-split, so Z/n is not projective. But every other non-zero finite abelian group has direct
summand Z/n.

Example 5.17. If R is a ring with 1, then R-mod has enough projectives. If M is a module,
then we have a map F (M) �M as described above.

If I1, I2 are ideals in a commutative ring with 1, then we have an exact sequence

0→ I1 ∩ I2 → I1 ⊕ I2 → I1 + I2 → 0.

Example 5.18. Let

R =
C[x, y, z]

(xy − z2 − 1)

and I1 = (z − 1, x), I2 = (z + 1, x). These are ideals which are not principal but they are
indecomposable. Then using the equation xy = z2 − 1 = (z − 1)(z + 1) we obtain

I1 ∩ I2 = (x).

Since the short exact sequence

0→ (x)→ I1 ⊕ I2 → R→ 0

splits (R is projective), we have that

I1 ⊕ I2 = R⊕ (x) ∼= R2

and so I1, I2 are projective. Hence we obtained two decompositions of R2 into indecompos-
ables.

Example 5.19. Take the equation y2 = x3 − x, so

R =
C[x, y]

(y2 − x3 + x)
.

Then the maximal ideals of R are projective.

Definition 5.20. A resolution of M ∈ Obj(C) is a nonnegative complex P• together with a
morphism ε : P0 →M such that

· · · → P3 → P2 → P1 → P0 →M → 0

is exact. If all P are projective, this is a projective resolution; if all P are free, this is a free
resolution, etc.

In this case,

Hn(P•) =

{
M if n = 0,
0 if n 6= 0.

Proposition 5.21. If C has enough projectives, then every object has a projective resolution.

Proof. Take any M ∈ Obj(C). There is an epi P0 �M from a projective P0 and, taking the
kernel K0 → P0, we have a projective P1 with an epi P1 → K0. We take its kernel K1 → P1

and again get a projective P2 � K1. This way, we get that the diagram
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0 0

K1

· · · P2 P1 P0 M 0

K0

0 0

commutes. Continuing, this gives a projective resolution of M . �

Let C be an abelian category with enough projectives, D be an abelian category, and F : C →
D be a right exact functor. We present the idea behind derived functors first. Given M ∈
Obj(C), choose projective resolution of M :

· · · → P3 → P2 → P1 → P0 →M → 0.

Apply F to P to obtain

· · · → FP3 → FP2 → FP1 → FP0 → 0.

Define

Li(FM) = Hi(F(P•)).

Note that L0F(M) = H0(F(P•)) = F(M), since

F(P1)→ F(P0)→ F(M)→ 0

is exact.

Questions: Is LiF(M) well-defined? Is LiF a functor?

Theorem 5.22 (Comparison Theorem). Suppose P• → M is a projective resolution and
Q• → N is any resolution, and f ′ : M → N be a morphism. Then there exists a chain map
f : P• → Q• such that

P• M

Q• N

f f ′

commutes. Moreover, f is unique up to homotopy.

Proof. We construct the family f0, f1, . . ., making the diagram
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· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 N 0

d2

γ2
f2

d1

γ1
f1

ε

f0
γ0

f ′

d2 d1 η

commute, step by step as follows. The map γ0 = f ′ε : P0 → N is surjective, so it lifts to
f0 : P0 → Q0. Next,

γ1 = f0d1 : P1 � im d1 = ker η

lifts to f1 : P1 → Q1, since P1 is projective. In the next step,

γ2 = f1d : P2 � im d2 = ker d1

lifts to f2 : P2 → Q2, since P2 is projective. We continue this way to construct a chain map
f : P• → Q• such that the approporiate diagram commutes.

For uniqueness, suppose g : P• → Q• is another chain map such that

P• M

Q• N

g f ′

commutes. We can replace the pair f , g by the pair h = f − g, 0: if we construct a suitable
collection of maps si for h and 0, then ds + sd = h − 0 = f − g, as required. We let
s0 = 0: M → Q0. The map h0 factors through ker η, since ηh0 = 0, and since the map
Q1 → ker η is surjective and P0 is projective, there is a unique map s1 : P0 → Q1 making the
diagram

· · · P1 P0 M 0

· · · Q1 ker η Q0 N 0

h1
s1

ε

h0 0
0

η

commute. This shows d1s1 + s0ε = d1s1 = h0. Now, d1(s1d1 − h1) = h0d1 − d1h1 = 0, so
s1d1 − h1 factors through ker d1, and as Q2 → ker d1 is surjective and P1 is projective, we
get a unique map s2 : P1 → Q2 making the triangle in the diagram

· · · P2 P1 P0 M 0

· · · Q2 ker d1 Q1 Q0 N 0

h2

d1

s2
h1 s1

ε

h0 0
0

d1 η

commute. Continuing this way, we construct the family s such that ds + sd = f − g, as
required. �

For every object M ∈ Obj C, we can choose a projective resolution. Then LiF is a functor,
called the left derived functor of F .
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As a consequence of the Comparison Theorem 5.22, if f ′ : M → N , we get a map

· · · P1 P0 M

· · · Q1 Q0 N

f1 f0 f ′

which is unique up to homotopy, so we get a well-defined map

LiF(f ′) = (f∗)i : Hi(F(P•))︸ ︷︷ ︸
LiFM

→ Hi(F(Q•))︸ ︷︷ ︸
LiFN

.

Moreover, if P• and P ′• are two resolutions of M , then id : M →M gives rise to unique maps
(up to homotopy)

· · · P1 P0 M

· · · P ′1 P ′0 M

f1 f0
idM

g1 g0
idM

so we get maps
f∗ : H•(FP•)→ H∗(FP ′•)
g∗ : H•(FP ′•)→ H∗(FP•)

such that (gf)∗ = g∗f∗ = id
(fg)∗ = f∗g∗ = id

(by uniqueness by to homotopy). Hence the functor is well-defined: for two choices of
projective resolutions of objects, the construction yields isomorphic functors.

Example 5.23. In R-mod, for R = F [x, y] where F is a field, let m = (x, y) ⊆ R with
M = R/m = F . Then a projective resolution of M is

0 R R2 R M 0

−y
x

 (
x y

)

and we apply F = M ⊗R − to this resolution to get

0 F F 2 F 00 0

so

Hn(F(P•)) =

 F, if n = 0 or 2,
F 2, if n = 1,
0, otherwise.

Theorem 5.24 (Horseshoe Lemma). Suppose 0→ A′ → A→ A′′ → 0 is exact and P ′•
ε′→ A′,

P ′′•
ε′′→ A′′ are projective resolutions. Then there exists a unique projective resolution P•

ε→ A
and an exact sequence

0→ P ′• → P• → P ′′• → 0

such that
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0 0

P ′• A′

P• A

P ′′• A′′

0 0

ε′

ε′

ε′′

commutes.

Proof. We recursively construct a projective resolution Pn = P ′0⊕P ′′0 , using projectivity and
Snake Lemma 1.43. We note that since we have map P ′0 → A (composition), P ′′0 → A (lift
from ε′′), we get a map ε : P ′0 ⊕ P ′′0 → A (using the fact that P ′0 ⊕ P ′′0 is both a product and
a coproduct) such that the following diagram

0 0

0 ker ε′ P ′0 A′ 0

P ′0 ⊕ P ′′0 A

0 ker ε′′ P ′′0 A′′ 0

0 0

ε′

ε

ε′′

commutes. Note that P ′0 ⊕ P ′′0 is projective as a direct sum of projectives and as both ε′

and ε′′ are surjective, so is ε. Hence we get the following diagram and we apply the Snake
Lemma 1.43 (the cokernels here are all 0) to see that the sequence of kernels is exact
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0 0 0

0 ker ε′ P ′0 A′ 0

0 ker ε P ′0 ⊕ P ′′0 A 0

0 ker ε′′ P ′′0 A′′ 0

0 0 0

ε′

ε

ε′′

We then apply the same procedure to the diagram with kernels to construct d1 : P ′1 ⊕ P ′′1 →
ker ε, where the product is projective and the map is epi onto the kernel

0 0 0 0

P ′1 ker ε′ P ′0 A′ 0

P ′1 ⊕ P ′′1 ker ε P ′0 ⊕ P ′′0 A 0

P ′′1 ker ε′′ P ′′0 A′′ 0

0 0 0 0

d1 ε′

d1 ε

d1 ε′′

Continuing this way, this constructs the sequence Pn = P ′n ⊕ P ′′n of projectives with the
desired properties. �

Theorem 5.25. The derived functor LiF is a universal homological δ-functor.

Proof. For an exact sequence

0 A′ A A′′ 0,

the Horseshoe Lemma 5.24 gives an exact sequence

0 P ′• P• P ′′• 0,

and we apply F to get

0 FP ′• FP• FP ′′• 0.
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On every level n, we have a splitting

0 P ′n Pn = P ′n ⊕ P ′′n P ′′n 0

which shows that there is a map FP ′′n → FPn. When we take homology, we get the long
exact sequence

· · · H1(F(P ′)) H1(F(P )) H1(F(P ′′))

H0(F(P ′)) H0(F(P )) H0(F(P ′′)) 0,

δ

or, in other words,

· · · L1FA L1FA′′ L0FA′ L0FA L0FA′′ 0.δ

Hence this δ is an approporiate map and we just have to check naturality and universality.
We omit this here, but the full proof can be found in [Wei94]. �

6. Injectives and right derived functors

Let C abelian category. For an object M , HomC(−,M) is a left-exact contravariant functor.

Lemma 6.1. The following are equivalent

(1) for every monic f : A → B and every morphism g : A → I, there exists h : B → I
such that hf = g, i.e. the following diagram

0 A B

I

f

g
h

commutes,
(2) HomC(−, I) is exact,
(3) I is projective in Cop.

Definition 6.2. If any (and hence all) conditions in Lemma 6.1 hold, M is called injective.

Proposition 6.3 (Baer’s criterion). In R-mod, I is injective if and only if for every left
idea J ⊆ R and every R-module homomorphism g : J → I, there exists ĝ : R → I such that
hf = g, i.e. the following diagram

0 J R

I

f

g
ĝ

commutes
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Proof. The ‘only if’ implication follows directly from the definition. We will use Zorn’s lemma
to prove the ‘if’ implication. Suppose we have

0 A B

I

f

g

and we want to construct a map B → I. Consider the set

S = {(C, h) | f(A) ⊆ C ⊆ B submodule, and hf = g}

and set (C, h) ≤ (C ′, h′) if and only if C ⊆ C ′ and h′|C = h. Note that the set is non-empty,

because we can choose C = f(A). Suppose {(Cx, hx) | x ∈ X} is a chain, so for any x, y ∈ X

(Cx, hx) ≤ (Cy, hy) or (Cx, hx) ≥ (Cy, hy).

Define C =
⋃
x∈X

Cx and h : C → I by setting h(a) = hx(a) if a ∈ Cx for some x ∈ X. This is

well-defined since this is a chain, and h|Cx = hx for any x ∈ X. Hence (Cx, hx) ≤ (C, h) for
any x ∈ X, showing that (C, h) is an upper bound.

By Zorn’s lemma, S has a maximal element, call it (C, h). Let b ∈ B. We have an exact
sequence

0 J R⊕ C Rb+ C 0

a (a,−ab)

(a, c) (ab+ c)

where J = {a ∈ R | ab ∈ C}. We let g : J → I, g(a) = h(ab) and hence there exists a ĝ such
that the diagram

0 J R

I

f

g
ĝ

commutes. We then have the diagram

0 J R⊕ C Ĉ = Rb+ C 0

I

(ĝ,h)

ĥ

Now, (C, h) ≤ (Ĉ, ĥ), so (C, h) = (Ĉ, ĥ). Hence b ∈ C. This shows that B ⊆ C, and hence
B = C, so we get the diagram
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0 A B = C

I

f

g
h

completing the proof. �

Lemma 6.4. If R is a PID, then I is injective if and only if Iis divisible, i.e. for any a ∈ I,
r ∈ R \ {0}, there exists b ∈ I such that rb = a.

Example 6.5. In Ab = Z-mod, the objects Q and Q/Z are injective, and in fact

Q/Z =
⊕
p prime

Zp∞ ,

where Zp∞ = Z
[

1
p

]
/Z.

Definition 6.6. An abelian category C has enough injectives if for every M ∈ Obj C there
exists a monic M → I where I is injective. So C has enough injectives if and only if Cop has
enough projectives.

Example 6.7. In Ab, we can embed Z→ Q and Z/m→ Q/Z via 1 + (m) 7→ 1
m

+ Z. This
does not exactly prove that Ab has enough injectives: it only shows it for finitely generated
abelian groups. The general statement takes some more work.

If M is a left R-modules, N is a Z-module, then

HomAb(M,N) HomR(M,HomAb(R,N))

f [(m, r) 7→ f(rm)]

∼=

If N is an injective Z-module, then HomAb(−, N) is exact, and hence

HomR(−,HomAb(R,N))

is exact, showing that HomAb(R,N) is an injective R-module.

Notation. We denote by

AB = the set of functions B → A,

CD = the category of functors D → C.

By the above, the object I0 = HomAb(R,Q/Z) is an injective R-module. The map

Φ: M → I
HomR(M,I0)
0 ,

Φ(m)(f) = f(m) ∈ I0.

is injective (as a set map). Hence the category R-mod has enough injectives.

Definition 6.8. A coresolution of M ∈ Obj C is

0 M I0 I1 · · ·
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and an injective resolution of M is a coresolution such that In are injective objects.

Proposition 6.9. If C has enough projectives, then any object has an injective resolution.

Proof. This is the dual to Proposition 5.21. �

Example 6.10. In Ab, an injective resolution of Z is

0 Z Q Q/Z 0

and an injective resolution of Z/n is

0 Z/n Q/Z Q/Z 0

If F is a left exact functor and C has enough injectives, then we define RnF , right derived
functors, where for an injective resolution

0 M I0 I1 · · ·

we set

RnF(M) = Hn(F(I•)),

R0F(M) = F(M).

All the results about the left derived functors from Chapter 5 hold dually for right derived
functors.

7. Limits

Let A be an abelian category and I be another category (often a poset).

Definition 7.1. A limit is a functor F : I → A is an object L ∈ ObjA together with
morphisms πi : L→ F(i) for all i ∈ Obj I such that

L F(i)

F(j)

πi

πj F(f)

commutes for all f : i→ j, and (L, π) is universal with this property, i.e. if (L′, π′) satisfy

L′ F(i)

F(j)

π′i

π′j
F(f)

for all fi : i→ j, then there exists a unique h : L′ → L such that πih = π′i for all i
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L′ L F(i)

F(j)

π′i

π′j

h πi

πj F(f)

We write (L, π) = lim
i∈I
F(i).

Example 7.2. If I is a set with no morphisms, then L =
∏
i∈I
F(i) is a product in A.

Definition 7.3. Dually, the colimit, colimi∈I F(i), is an object L together with morphisms
ij : F(j)→ L such that the dual universal property holds.

Definition 7.4. A poset I = (I,≤) is directed (filtered) if for all i, j ∈ I, there exists k ∈ I
with i ≤ k, j ≤ k (i.e. i→ k, j → k). Then

colimi∈I F(i) = colimF(i) = lim←−F(i)

is called the direct limit.

Dually, a poset I is cofiltered if for all i, j ∈ I there exists k such that k ≤ i, k ≤ j and

lim
i∈I
F(i) = lim−→F(i)

is called the inverse limit.

Example 7.5. We have I = N is a poset with

0→ 1→ 2→ 3→ · · ·
and then for F(i) = Z/2i we get

Z/Z→ Z/2→ Z/4→ Z/8→ · · ·
with maps 1 7→ 2 everywhere, and hence

lim←−F(i) = lim←−Z/2n = Z[1/2]/Z.

Direct limits “feel like unions”.

Conversely, for

· · · → 3→ 2→ 1→ 0

and F(i) = Z/2i, we get

· · ·Z/8→ Z/4→ Z/2→ Z/1 = {0}
with the maps 1 7→ 1 everywhere, and hence (in Rings)

lim−→Z/2n = Z2,

the 2-adic numbers. Inverse limits “feel like some sort of completion” and oftentimes one can
also define a topology on them.

Definition 7.6. An abelian category A is complete if
∏
i∈I
Ai exists for every set I. The dual

notion is called cocomplete.
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Lemma 7.7. Suppose A is complete, I is a small category, and F : I → A. Then limF(i)
exists. Similarly, if A is cocomplete, colimits exist.

Proof. For a morphism f : j → k,

∏
i∈Obj I

F(i) F(k)
πk−F (f)πj

so that ∏
i∈Obj I

F(i) F(j)

F(k)

πj

πk F(f)

commutes if the above morphism is 0. Hence we can let K be the kernel to get the diagram

0 K
∏

i∈Obj I
F(i)

∏
f : j→k

F(k)

F(i) F(k)

πi

Then K = limF(i) satisfies the universal property. �

8. Sheaves and sheaf cohomology

In this section, we present a brief review the theory of sheaves together with an application
of the above theory, sheaf cohomology. For more details, see [Har77, Chap. 2].

We begin with a motivating example.

Example 8.1. Let X be a topological space and, for U ⊆ X open, let

F(U) = set of continuous functions U → R.
If V ⊆ U , then we have a restriction map %UV : F(U) → F(V ) which maps f ∈ F(U) to
f|V ∈ F(V ).

We define a category Top(X) whose objects are open sets U ⊆ X and the partial ordering
⊆ gives morphisms: for V ⊆ U , iV U : V → U is the inclusion. Define F(iV U) = %UV . This
makes F into a contravariant functor Top(X)→ Ab (or even R-mod).

Definition 8.2. A pre-sheaf of abelian groups is a contravariant functor F : Top(X)→ Ab

with F(∅) = 0. We have a category Presheaves(X) which is a subcategory of AbTop(X)op .
A morphism η : F → G is a collection of morphisms

η(U) : F(U)→ G(U) for U ∈ Top(X)

such that
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F(U) G(U)

F(V ) G(V )

η(U)

η(V )

Definition 8.3. A presheaf F is a sheaf if for every U ⊆ X open and open covering Ui,
i ∈ I, of U we have

(1) if f ∈ F(U) and f|Ui
= 0 for all i, then f = 0,

(2) if fi ∈ F(Ui) for all i and for all i, j we have (fi)|Ui∩Uj
= (fj)Ui∩Uj

then there exists
f ∈ F(U) with f|Ui

= fi for all i.

Note that condition (1) can be restated by requiring uniqueness in condition (2).

If I is totally ordered, then (1) and (2) are equivalent to

0 F(U)
⊕
i

F(Ui)
⊕
i<j

F(Ui ∩ Uj)

f (fUi
, i ∈ I)

(gi, i ∈ I) (gi − gj, i < j)

being exact.

Definition 8.4. Let F be a pre-sheaf. The stalk of F at x is the direct limit

Fx = lim−→{F(U) | U 3 x}

or, equivalently,

Fx = {(U, f) | f ∈ F(U), x ∈ U}/ ∼
where (U, f) ∼ (V, g) if and only if there exists W with x ∈ W ⊆ U ∩ V and f|W = g|W .

Definition 8.5. If F is a pre-sheaf, then we define F+ by

F+(U) = set of all function U →
∐
x∈U
Fx with f(x) ∈ Fx such that

for every y ∈ U there exists V ⊆ U and y ∈ V and g ∈ F(V )
such that g maps to f(x) ∈ Fx for all x ∈ V

.

The universal property of F+: F+ is a sheaf and if G is a sheaf and ϕ : F → G is a morphism
of pre-sheaves, then there exists a unique morphism ϕ+ : F+ → G such that

F F+

G

commutes. Then F+ is called the sheafification of F .

Lemma 8.6. Sheafification is exact.
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Example 8.7. If X = P1(C), the Zariski topology on X is: D ⊆ X closed if and only if
D = P1(C) or D is finite.

Define a sheaf OX on P1(C) by setting

OX(U) = {f ∈ C(t) | f regular on U},
a subring of the function field C(t).

Write the affine line as A1 = P1 \ {∞} ∼= C. Then

OX(P1) = C, OX(A1) = C[t].

Moveover,

OX(P1 \ {a1, . . . , an}) = C
[

1

t− a1

, . . . ,
1

t− an

]
for a1, . . . , an ∈ A1.

Define a subsheaf I of OX by setting

I(U) = {f ∈ OX(U) | f|U∩{0,∞} = 0}.
There is an exact sequence

0 I OX OX/I 0

but the last of these, OX/I, is not a sheaf. Indeed:

(OX/I)(A1) ∼= C[t]/(t),

(OX/I)(P1 \ {0}) = C
[

1

t

]/(
1

t

)
.

Then 0 + (t) and 1 +
(

1
t

)
agree on A1 \ {0}, since

(OX/I)(A1 \ {0}) = 0,

but since (OX/I)(P1) = C, there is no element there mapping to f1 and f2.

Instead, sheafify to get an exact sequence of sheaves

0 I OX (OX/I)+ 0

where (OX/I)+(P1) = C2.

Definition 8.8. The global sections functor Γ(X,−) : F 7→ F(X) is left exact, and

RiΓ(X,F) = H i(X,F)

is called the sheaf cohomology.

Example 8.9. For the example above, we have the long exact sequence

0 Γ(X, I)︸ ︷︷ ︸
=0

Γ(X,OX)︸ ︷︷ ︸
=C

Γ(X, (OX/I)+)︸ ︷︷ ︸
=C2

H1(X, I)︸ ︷︷ ︸
6=0

· · ·
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9. Adjoint functors

Definition 9.1. Let A, B be abelian categories. Then additive functors L : A → B and
R : B → A are adjoint if there exists a natural isomorphism

T : HomB(L(A), B) ∼= HomA(A,R(B))

of groups.

Proposition 9.2 (Yoneda Lemma). Let A be an abelian category. A sequence

A B Cα β

is exact if for all M ,

HomA(M,A) HomA(M,B) HomA(M,C)
α∗ β∗

is exact.

Proposition 9.3. If L and R are adjoint, then L is right-exact and R is left-exact.

Proof. Suppose

0 B1 B2 B3 0

is a short exact sequence in B. We apply

HomB(L(A),−) ∼= HomA(A,R(−))

to get

0 HomB(L(A), B1) HomB(L(A), B2) HomB(L(A), B3)

0 HomA(A,R(B1)) HomA(A,R(B2)) HomA(A,R(B3))

∼= ∼= ∼=

for all A ∈ ObjA. By Yoneda lemma, we get that

0→ R(B1)→ R(B2)→ R(B3)

is exact, and so R is left-exact. Similarly, L is right-exact. �

Example 9.4. Let

(1) A right R-module,
(2) B R-S bimodule,
(3) C right S-module.

Then A ⊗R B is a right S-module with (a ⊗ b)s = (a ⊗ bs) and HomS(B,C) is a right
R-module with (fr)(b) = f(rb). There is a natural isomorphism

T : HomS(A⊗R B,C)
∼=→ HomR(A,HomS(B,C)).
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Indeed, if f : A⊗R B → C, then for we get

a 7→ [f(a⊗−) : B → C]

Conversely, if A→ HomS(B,C) is any map, then we get a bilinear map A× B to C which
factors through a map A⊗R B → C.

We have that
−⊗R B : mod-R→ mod-S

HomS(B,−) : mod-S → mod-R

are an adjoint pair, so −⊗R B is right exact and HomS(B,−) is left exact.

Then we set
Li(−⊗R B) = Tori(−, B),

and we will show that
Li(A⊗R −) = Tori(A,−),

because
Li(−⊗R B) ∼= Li(−⊗B)(A).

Definition 9.5. A double complex is a set {Cp,q}p,q∈Z of objects with horizontal maps

dh : Cp,q → Cp−1,q

and vertical maps
dv : Cp,q → Cp,q−1

such that dh ◦ dh = 0, dv ◦ dv = 0, and dvdh + dhdv = 0

...
...

...

· · · Cp−1,q+1 Cp,q+1 Cp+1,q+1 · · ·

· · · Cp−1,q Cp,q Cp+1,q · · ·

· · · Cp−1,q−1 Cp,q−1 Cp+1,q−1 · · ·

...
...

...

The map dv : C•q → C•q−1 is almost a chain map: if we set fpq = (−1)pdvpq : Cpq → Cpq−1,
then f•q : C•q → C•q−1 is a chain map. Hence f•q is in Ch(C), and f•• is in Ch(Ch(C)).

Definition 9.6. Assume C is cocomplete. We set define the total complex

Tot⊕(C••)n =
⊕
p+q=n

Cp,q

with d = dv + dh, whence

d2 = (dv + dh)2 = (dv)2 + (dvdh + dhdv) + (dh)2 = 0 + 0 + 0 = 0.
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If C is complete,

Totπ(C••)n =
∏

p+q=n

Cp,q

with d = dv + dh.

Proposition 9.7 (Acyclic Assembly Lemma). Suppose C•• is a double complex in mod-R.
Suppose C is an upper half plane complex (i.e. Cp,q = 0 if q < 0) and columns are exact.
Then Totπ(C) is acyclic (exact).

Proof. We claim that H0(Totπ(C••)) = 0. By symmetry, it is enough to restrict our attention
to the p = 0 portion of the diagram

...
...

...

· · · C−1,2 C0,2 C1,2 · · ·

· · · C−1,1 C0,1 C1,1 · · ·

· · · C−1,0 C0,0 C1,0 · · ·

0 0 0

Suppose

(c0, c1, c2, . . .) ∈ C00 × C−1,1 × C−2,2 × · · ·
is a cycle. Then

d(c0, c1, c2, . . .) = (dhc0 + dvc1, d
hc1 + cvc2, . . .) ∈ C−1,0 × C−2,1 × · · · .

We want to find

(b0, b1, . . .) ∈ C10 × C01 × C−12 × · · ·
with

d(b0, b1, . . .) = (dhb0 + dvb1, d
hb1 + dvb2, . . .) = (c0, c1, . . .).

Pick b0 = 0. Then dvc0 = 0 so c0 = dvb1 for some b1. Then

0 = dhc0 + dvc1 = dhdvb1 + dvc1 = −dvdhb1 + dvc1 = dv(c1 − dhb1).

Hence there exists b2 ∈ C−1,2 such that dvb2 = c1−dhb1. Then c1 = dvb2 +dhb1, and proceed
by induction to construct b3, b4, . . .. This completes the proof. �

Corollary 9.8. If C•• is a double complex in the right half plane with exact rows, then
Totπ(C••) is exact.

Corollary 9.9. If C•• is a double complex in the right half plane with exact columns, then
Tot⊕(C•,•) is exact.
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Proof. Define new complex τnC•• by

(τnC)p,q =

 Cpq if q > n,
ker dv : Cpn → Cpn−1 if q = n,
0 if q < n.

Then we get the diagram

...
...

...

0 C0,n+2 C1,n+2 C1,n+2 · · ·

0 C0,n+1 C1,n+1 C1,n+1 · · ·

0 ker dv ker dv ker dv · · ·

0 0 0

Hence Totπ(τnC) = Tot⊕(τnC) is exact. This shows that Tot⊕(C) is exact. �

Theorem 9.10. We have that

Ln(A⊗R −)(B) ∼= Ln(−⊗R B)(A)

and we call them TorRn (A,B).

We will actually prove a more general statement, following [Wei94, Exer. 2.7.4]. (This was
actually a homework exercise, but we include it here for completeness.)

Theorem 9.11. Suppose C is an abelian category and

T : C × · · · × C → D
is an additive functor in p variables, some of the covariant and some contravariant. Assume
moreover that T is right-balanced:

(1) when any covariant variable is replaced by an injective module, T becomes exact in
the other variables,

(2) when any contravariant variable is replaced by a projective module, T becomes exact
in the other variables.

Then for any i, j there is a natural isomorphism

R∗T (A1, . . . , Âi, . . . , Ap)(Ai) ∼= R∗T (A1, . . . , Âj, . . . , Ap)(Aj).

Proof. Note that if we fix modules A1, . . . , Âi, . . . , Âj, . . . , Ap, then the functor

T (A1, . . . , Âi, . . . , Âj, . . . , Ap) : C × C → D
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is right-balanced, and it is enough to show the assertion for this functor in 2 variables. Hence
suppose that

T : C × C → D

is right-balanced. We mimic the proof of [Wei94, Theorem 2.7.2] to show

R∗T (A,−)(B) ∼= R∗T (−, B)(A).

If the first variable is covariant, choose an injective resolution ε : A → P• and if it is con-
travariant, choose a projective resolution ε : P• → A. Similarly, if the second variable is
covariant, choose an injective resolution η : A → Q• and if it is contravariant, choose a
projective resolution η : Q• → A. We then get the double complex:

...
...

...
...

0 T (A,Q2) T (P0, Q2) T (P1, Q2) T (P2, Q2) · · ·

0 T (A,Q1) T (P0, Q1) T (P1, Q1) T (P2, Q1) · · ·

0 T (A,Q0) T (P0, Q0) T (P1, Q0) T (P2, Q0) · · ·

0 T (P0, B) T (P1, B) T (P2, B)

0 0 0

T (ε,1)

T (ε,1)

T (ε,1)

T (1,η) T (1,η) T (1,η)

We will show that the maps

T (ε, 1) : Tot(T (P•, Q•))→ Tot(T (A,Q•)) = T (A,Q•)

T (1, η) : Tot(T (P•, Q•))→ Tot(T (P•, B)) = T (P•, B)

are quasi-isomorphisms, and hence they induce natural isomorphisms

H∗(Tot(T (P•, Q•))) ∼= R∗(T (A,−))(B),

H∗(Tot(T (P•, Q•))) ∼= R∗(T (−, B))(A),

which gives the result.

We only show T (ε, 1) is a quasi-isomorphism using the Acyclic Assembly Lemma 9.7; the
fact that T (1, η) is a quasi-isomorphism is symmetric. Let C•• be the double complex
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...
...

...
...

0 T (A,Q2) T (P0, Q2) T (P1, Q2) T (P2, Q2) · · ·

0 T (A,Q1) T (P0, Q1) T (P1, Q1) T (P2, Q1) · · ·

0 T (A,Q0) T (P0, Q0) T (P1, Q0) T (P2, Q0) · · ·

0 0 0 0

T (ε,1)

T (ε,1)

T (ε,1)

and note that Tot(C•,•)[1] is the mapping cone of ε⊗1: Tot(T (P•, Q•))→ T (A,Q•). Hence,
to show that ε ⊗ 1 is a quasi-isomorphism, it is enough to show that the mapping cone
Tot(C•,•)[1] is acyclic. Finally, since Qi are injective if the second variable is covariant and
projecitve if the second variable is contravariant, the right-balanced condition shows that
C•• has exact rows. Then by Acyclic Assemply Lemma 9.7, we obtain that Tot(C•,•)[1] is
acyclic.

This completes the proof. �

10. Tor and Ext

We restrict our attention to A = Ab.

Example 10.1. Consider the projective resolution

0 Z Z Z/n 0n·

For an abelian group B, apply −⊗Z B to P• to get

0 B B 0n·

Hence
Tor0(Z/n,B) = Z/n⊗B = H0(P• ⊗B) = B/nB,

Tor1(Z/n,B) = B[n] = {b ∈ B : nb = 0},
Tork(Z/n,B) = 0 for k ≥ 2,

Tor0(Z, B) = B,

Tork(Z, B) = 0 for k ≥ 1,

In general,
Tori(Z/n,Z/m) = Z/(n,m) for i = 0, 1.

To calculate Ext, we apply HomAb(−, B) to P• to get

0 B B 0n·
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and then
Ext0(Z/n,B) = H0(P•) = B[n]

Ext1(Z/n,B) = H1(P•) = B/nB

and in particular
Exti(Z/n,Z/m) = Z/(n,m) for i = 0, 1.

If A = lim−→Aα = colimAα, then

Tori(A,B) = Tori(lim−→Aα, B) = lim−→Tori(Aα, B).

Proposition 10.2. Suppose A and B are abelian group. Then

(1) Tor1(A,B) is a torsion group,
(2) Torn(A,B) = 0 for n ≥ 2.

Proof. If A is finitely generated, then

A ∼= Zr ⊕ Z/n1 ⊕ · · · ⊕ Z/nk
and the proposition is clear.

Otherwise, A = lim−→Aα for {Aα} finitely generated subgroups. The limit of torsion groups is
torsion, so

Tor1(A,B) = lim−→Tor1(Aα, B)

is torsion. �

Example 10.3. We have that

Tor1(Q/Z, B) = lim−→Tor1

(
Z
[

1

n

] /
Z︸ ︷︷ ︸

Z/n

, B

)
= lim−→B[n],

the torsion subgroup of B.

If A is torsion free then A = lim−→Zm, so

Tor1(A,B) = lim−→Tor1(Zm, B) = 0.

Hence A is torsion-free if and only if Tor1(A,−) = 0 if and only if A ⊗Z − is exact, or by
definition, A is a flat Z-module.

Definition 10.4. A left R-module B is flat if −⊗R B is exact, and a right R-module A is
flat if A⊗R − is exact.

In general, a projective module is flat but the converse is not true. For example, Q is a flat
Z-module but it is not projective.

Suppose R is a ring with 1 and
S ⊆ Z(R)︸ ︷︷ ︸

center

⊆ R.

Suppose 1 ∈ S and S is closed under multiplication. The localization of R with respect to
S, S−1R, is

S−1R = {(r, s) | r ∈ R, s ∈ S}/ ∼
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where

(r1, s1) ∼ (r2, s2) if and only if there exists s3 ∈ S such that (r1s2 − r2s1)s3 = 0.

We think of (r, s) as r
s
. If [(r, s)] is an equivalent class, then

[(r1, s1)] + [(r2, s2)] = [(r1s2 + r2s1, s1s2)],

[(r1, s1)] · [(r2, s2)] = [(r1r2, s1s2)].

We have a map ϕ : R→ S−1R, setting ϕ(r) = [(r, 1)]. We then set

S−1M := S−1R⊗RM, the localization of M at S.

Theorem 10.5. The localization S−1R is a flat R-module, i.e. S−1R⊗R− is an exact functor
from R-mod to S−1R-mod.

Proof. Define category I with
Obj(I) = S,

for s1, s2 ∈ S, we set HomI(s1, s2) = {s ∈ S | ss1 = s2}.
This is a filtered category (see definition below)

s1

s1s2

s2

s2

s1

s1 s2 s1s2

t1

t2

s1

We then have a functor F : I → R-mod given by F(s) = R for s ∈ Obj(I) = S and if

s1
s→ s2 is a morphism then

F(s1) = R F(s2) = R
F(s)=s·

We claim that colims∈I F(s) exists and in fact colims∈I F(s) = S−1R. Indeed, we define

ϕs : F(s) = R→ S−1R

by ϕs(r) = [(r, s)]. Then one can easily check that this gives a map from the colimit to
S−1(R) which is an isomorphism by the universal property of localization.

Therefore, for n ≥ 1

Torn(S−1R,B) = colim Torn(F(s), B) = colim Torn(R,B)︸ ︷︷ ︸
=0

= 0,

and hence S−1R is flat. �

Definition 10.6. A category C is filtered if

(1) for any A,B, there exists C with morphisms α : A→ C and β : B → C,

(2) if A B
α

β
then there exists γ : B → C such that γα = γβ.
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Exercise. The following conditions are equivalent

(1) A is a flat right R-module,
(2) A⊗R − is an exact functor,
(3) Tor1(A,B) = 0 for all left R-modules B,
(4) Torn(A,B) = 0 for all left R-modules B and n ≥ 1.

(The first equivalence is the definition.)

Definition 10.7. If B is a left R-module, then B∗ = HomAb(B,Q/Z) is the right Pontryagin
dual of B.

If B 6= 0, let C be a maximal subgroup. Then B/C ∼= Z/p for p prime, and hence

HomAb(B/C,Q/Z) 6= 0,

and thus B∗ = Hom(B,Q/Z) 6= 0.

Lemma 10.8. A morphism f : B → C is injective if and only if f ∗ : C∗ → B∗ is surjective,
where f ∗ = HomAb(f,Q/Z).

Proof. Suppose A→ B is a kernel of f , so 0→ A→ B → C is exact, and hence

C∗ → B∗ → A∗ → 0

is exact, since Q/Z is injective. Hence f is injective if and only if A = 0 if and only if A∗ = 0
if and only if f ∗ is surjective. �

Proposition 10.9. The following are equivalent:

(1) B is a flat left R-module,
(2) B∗ is an injective right R-module,

(3) I ⊗R B
∼=→ IB for every right ideal I ⊆ R,

(4) Tor1(R/I,B) = 0 for every right ideal I ⊆ R.

Proof. We first check that (3) is equivalent to (4). Apply −⊗R B to the exact sequence

0 I R R/I 0

to get an exact sequence

Tor1(R,B)︸ ︷︷ ︸
=0

Tor1(R/I,B) I ⊗R B R⊗R B︸ ︷︷ ︸
∼=B

R/I ⊗R B︸ ︷︷ ︸
B/IB

0
ϕ

and hence

0 Tor1(R/I,B) I ⊗R B IB︸︷︷︸
kerϕ

0
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is exact. This shows (3) is equivalent to (4).

We now show (1) is equivalent to (2). We have

HomR(A,B∗) = HomR(A,HomZ(B,Q/Z))) ∼= Hom(A⊗R B,Q/Z) = (A⊗R B)∗.

If A′ ⊆ A is a submodule, then the following diagram

HomR(A,B∗) Hom(A′, B∗)

(A⊗R B)∗ (A′ ⊗R B)∗

∼= ∼=

commutes. Now,

B∗ is injective if and only if HomR(A,B∗)→ HomR(A′, B∗) is surjective for all A′ ⊆ A
if and only if (A⊗R B)∗ → (A′ ⊗R B)∗ is surjective for all A′ ⊆ A
if and only if A′ ⊗R B → A⊗R B is injective for all A′ ⊆ A
if and only if −⊗R B is exact
if and only if B is flat.

We finally show (2) is equivalent to (3). Note that B∗ is injective if and only if

B∗︷ ︸︸ ︷
HomR(R,B∗)→

(I⊗B)∗︷ ︸︸ ︷
HomR(I, B∗)

is surjective for all right ideals I ⊆ R. But this is equivalent to I ⊗R B → B is injective for
all I, which holds if and only if I ⊗R B ∼= IB. �

Definition 10.10. A module M is finitely presented if there exists an exact sequence

Rm → Rn →M → 0.

Note that projectivity is not equivalent to flatness. Indeed, Q is a flat Z-module (it is a
localization of Z), but it is not projective.

We will show that for finitely presented modules, flat modules are projective.

For M,A left R-modules, define

σ : A∗ ⊗RM → HomR(M,A)∗

σ(f ⊗m)(h) = f(h(m))

for f ∈ A∗, m ∈M , h ∈ HomR(M,A).

Proposition 10.11. If M is finitely presented, then σ is an isomorphism for all A.

Proof. Clear if M = Rn. Now, if

Rm Rn M 0

then we have the following commutative diagram



60 HARM DERKSEN

A∗ ⊗R Rm A∗ ⊗R Rn A∗ ⊗RM 0 0

HomR(Rm, A)∗ HomR(Rn, A)∗ HomR(M,A)∗ 0 0

∼= ∼= σ ∼= ∼=

which has exact rows, because Hom(−, A)∗ and A ⊗R − are right-exact covariant functors.
By Five Lemma 1.44, we obtain that σ is an isomorphism. �

Theorem 10.12. A finitely presented flat R-module is projective.

Proof. Suppose M is finitely presented, flat, and f : B → C is surjective, so f ∗ : C∗ → B∗ is
injective. Hence the square

C∗ ⊗RM B∗ ⊗M

Hom(M,C)∗ Hom(M,B)∗

f∗⊗1

∼= ∼=

commutes. Since M is flat, f ∗ ⊗ 1 is injective, and hence

HomR(M,B)→ HomR(M,C)

is surjective. This shows that HomR(M,−) is exact, so M is projective. �

Lemma 10.13 (Flat resolution lemma). If · · · → F2 → F1 → F0 → A → 0 is a flat
resolution, then

TorRn (A,B) = Hn(F• ⊗B)

for a right R-module A and a left R-module B.

If Fn are in fact projective, this is how we defined TorRn (A,B), and this lemma shows that
we can compute TorRn (A,B) by considering only a flat resolution.

Proof. For n = 0, we have an exact sequence

F1 ⊗R B F0 ⊗R B A⊗R B 0

and hence H0(F• ⊗R B) = A⊗R B = Tor0(A,B).

We have an exact sequence

0 K F0 A 0.

We then get a long exact sequence
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=0︷ ︸︸ ︷
Tor2(F0, B) Tor2(A,B) Tor1(K,B)

=0︷ ︸︸ ︷
Tor1(F0, B)

Tor1(A,B) K ⊗B F0 ⊗B A⊗B 0

and hence Torn(A,B) ∼= Torn−1(K,B). We have the exact sequence

F2 F1 K 0

which gives the exact sequence

F2 ⊗B F1 ⊗B K ⊗B 0

and we get that

Tor1(A,B) = ker(K ⊗B → F0 ⊗B) = ker

(
F1 ⊗B

d2(F2 ⊗B)
→ F0 ⊗B

)
= H1(F• ⊗B).

By induction on n, we finally obtain:

Torn(A,B) = Torn−1(K,B) = Hn−1(F•[1]⊗B) = Hn(F• ⊗B),

as required. �

Proposition 10.14. Suppose R → T is a ring homomorphism and T is flat as a left R-
module. Then for all right R-modules A and left T -modules C, we have that

TorRn (A,C) ∼= TorTn (A⊗R T,C).

Proof. Let P• → A be a projective resolution so that

TorRn (A,C) = Hn(P• ⊗R C).

Note that Pn⊗R T is a projective T -module: Pn⊕Q = F for some free R-module F , whence

F ⊗ T = (Pn ⊕Q)⊗ T = (Pn ⊗ T )⊕ (Q⊗ T ),

so Pn ⊗ T is a direct summand of the free T -module F ⊗ T . Hence

P• ⊗R T → A⊗R T

is a projective resolution (since −⊗R T is exact). Hence

TorTn (A⊗R T,C) = Hn(P• ⊗R T ⊗T C) = Hn(P• ⊗R C) = TorRn (A,C).

This completes the proof. �

Corollary 10.15. Let R be commutative, T be a flat R-algebra with ϕ : R→ T and ϕ(R) ⊆
Z(T ). Then

T ⊗R TorRn (A,B) ∼= TorTn (A⊗R T, T ⊗R B).
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Proof. We have that:

TorTn (A⊗R T, T ⊗R B) = TorRn (A, T ⊗R B) = Hn(P• ⊗R T ⊗R B) = Hn(T ⊗R P• ⊗R B)

= T ⊗R Hn(P• ⊗R B) = T ⊗R TorRn (A,B),

as required. �

Example 10.16. Suppose p ⊆ R is a prime ideal, R is a commutative ring and Rp = S−1R
for S = R \ p. If M is an R-module, Mp = Rp ⊗RM , then

TorRn (A,B)p = Rp ⊗ TorRn (A,B) = TorRp
n (A⊗R Rp, B ⊗R Rp) = TorRp

n (Ap, Bp).

In general,

S−1 TorRn (A,B) ∼= TorS
−1R

n (S−1A, S−1B).

Example 10.17. Suppose A,B are abelian groups. Then there exists I0 injective such that

0→ B → I0 → I0/B → 0

is exact, but since I0 is divisible, I1 = I0/B is also divisible, so it is injective. Hence

0→ B → I0 → I1 → 0

is an injective resolution. This shows that

Extn(A,B) = 0 for n ≥ 2.

For B = Z, we get
0→ Z→ Q→ Q/Z→ 0,

and hence Ext∗(A,Z) is the homology of

0→ Hom(A,Q)→ Hom(A,Q/Z)→ 0.

If A is torsion, then
Hom(A,Q) = 0.

In that case,
Ext1(A,Z) = Hom(A,Q/Z) = A∗,

the Pontryagin dual we defined before.

Proposition 10.18. Let A be a finitely generated R-module over a commutative Noetherian
ring R, B be an R-module, and S ⊆ R be a multiplicative system. Then

S−1 ExtnR(A,B) = ExtnS−1R(S−1A, S−1B).

In particular, for a prime p, we have

ExtnR(A,B)p = ExtnRp
(Ap, Bp).

Recall that, to check if an R-module M is 0, it is enough to check that for any prime ideal p,
Mp = 0. So in this case, to check that ExtnR(A,B) = 0, it is enough to check that

ExtnRp
(Ap, Bp) = 0

for any prime p.

We know Ext•(M,N) as a measure of failure to Extend maps. It is a derived functor of Hom
in multiple ways. On the one hand, we see the same Ext in lots of different places, but on
the other hand this also means objects of Ext are “slippery”.
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We will compare Ext to something more concrete by asking the following question: When
does a short exact sequence (of R-modules) split?

Given a short exact sequence, it splits if there is a section

E : 0 A B C 0

C

1C

In the long exact sequence, we get

HomR(C,B) HomR(C,C) Ext1
R(C,A)

? 1C

1C 0

δ

?

Answer: The short exact sequence E splits if and only if δ(1C) = 0 ∈ Ext1
R(C,A).

Definition 10.19. The obstruction of E as above is θ(E) := δ(1C) ∈ Ext1
R(C,A).

Remark 10.20. We can also compute the obstruction of E as follows. Take 1C and lift it
to a projective resolution of C, and a map to E

· · · P2 P1 P0 C

0 A B C 0

d2 d1

α β 1C

Such a lift is unique up to chain homotopy.

We claim that the map α ∈ HomR(P1, A) defines the same class as θ(E) = δ(1C). We have
the following diagram:

δ(1C) = u ∈ Hom(P1, A) Hom(P1, B)

v ∈ Hom(P0, B) Hom(P0, C))

Hom(C,C) 3 1C

We choose 1C ∈ Hom(C,C), map it to Hom(P0, C), lift it to v ∈ Hom(P0, B), map it to
Hom(P1, B), and lift it to u ∈ Hom(P1, A).

The maps u, v, 1C give a commutative diagram as above, with α replaced with u and β
replaced with v. The chain map is chain homotopic to the original map, and hence u and v
give the same class in Ext1

R(C,A).

Definition 10.21. An extension in an abelian category A is a short exact sequence



64 HARM DERKSEN

E : 0 A B C 0

(an extension of C by A).

An isomorphism of extensions is a commutative diagram

E : 0 A B C 0

E ′ : 0 A B′ C 0

= =

By Five Lemma 1.44, the map B → B′ is an isomorphism.

Definition 10.22. The trivial extension of C by A is

0 A A⊕ C C 0
(1,0)

Example 10.23. What are the extensions of Z/p by Z (in Z-mod)?

0 Z ? Z/p 0i j

• ? = Z⊕ Z/p, the trivial extension.
• ? = Z, i = ·p, j = ·k for any k ∈ (Z/p)×.

If two of these are isomorphic extensions,

0 Z Z Z/p 0

0 Z Z Z/p 0

=

p ·k

=

·k′

then k = k′. So there can be nonisomorphic extensions with isomorphic middles.

We will write ext1(C,A) for the set of isomorphism classes of extensions of C by A.

If there are enough projectives in A, the obstruction map

θ : ext1(C,A)→ Ext1(C,A)

is well-defined. (For an isomorphism E ∼= E ′, we get an isomorphism of long exact sequenes.)
In fact, more is true.

Theorem 10.24. The map θ : ext1(C,A) → Ext1(C,A) is a bijection if there are enough
projectives in A.

Proof. Let us construct an inverse (we work with R-modules, but the same construction
works in general).

Given η ∈ Ext1(C,A), choose a projective resolution P• → C, and a representative φ ∈
HomR(P1, A):
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P2 P1 P0 C 0

A

d1

φ

d0

Take the pushout and extend it to an isomorphism of its cokernel:

P2 P1 P0 C 0

A B C 0

d1

φ

d0

=

Since φ represents a cocycle, it factors through S = P1/ im(P2). Hence we have another
pushout square (we give it the same name by abuse of notation):

0 S P0 C 0

0 A B C 0

d1

φ

d0

=

where the map A→ B is injective, because S → P0 is injective.

We use this short exact sequence in the setting above:

P2 P1 P0 C 0

E : 0 A B C 0

d1

φ

d0

=

By the Remark 10.20 earlier, θ(E) = [φ] ∈ Ext1
R(C,A).

To conclude that this inverse construction is well-defined, we need to show that the same
Ext1-classes of maps give the same extension.

This follows from the fact that the construction of our extension from φ came as a pushout
of

0 S P0 C 0

0 A B C 0

d1

φ

d0

=

since the maps S → A are independent of coboundary. �

Remark 10.25.

• We can generalize this construction to higher Ext’s (bijective to isomorphism classes
of longer exact sequences).
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• There is a way to add extensions that is compatible with θ.
• We can multiply Exti(C,A) ⊗ Extj(D,C) → Exti+j(D,A) that comes from splicing

exact sequences.
• We have a notion of Exti in any abelian category.

11. Universal coefficients theorem

Recall that a right R-module is flat if and only if Tor1(A,M) = 0 for all M if and only if
Torn(A,M) = 0 for all M and all n ≥ 1. Moreover, if

0 A B C 0

is exact, then

(1) if A,C are flat then B is flat,
(2) if B,C are flat then A is flat.

To see this, we just look at the long exact sequence for Tor.

Set up: let R be a ring, P• a complex of flat R-modules, M an R-module.

Theorem 11.1 (Künneth). Assume Bn(P•) is R-flat for all n (for example, if R = Z or
any PID or a field). There is a natural short exact sequence

0 Hn(P•)⊗RM Hn(P• ⊗RM) TorR1 (Hn−1(P•),M) 0

Examples 11.2.

(1) If R is a field, TorR1 (−,−) = 0, we get the obvious isomorphism

Hn(P•)⊗RM ∼= Hn(P• ⊗RM),

because −⊗RM is exact when R is a field.

(2) Let R = Z, P• = Z 2→ Z, M = Z/2. Then

Hi(P•) =

{
Z/2 if i = 0
0 otherwise

But

P• ⊗RM = Z/2 2→ Z/2
and hence

Hi(P• ⊗RM) =

{
Z/2 if i = 0, 1
0 otherwise

To see this via Künneth Theorem 11.1, we note that

0 H1(P• ⊗M) TorZ1 (Z/2,Z/2)︸ ︷︷ ︸
=Z/2

∼=

(3) (Non-example). Let R = Z/4, M = Z/2, and P• = Z/4 2→ Z/4. If Künneth was
true, we would get



MATH 613: HOMOLOGICAL ALGEBRA 67

0 H1(P•)⊗RM︸ ︷︷ ︸
=Z/2⊗Z/4Z/2=Z/2

H1(P• ⊗RM)︸ ︷︷ ︸
H1(Z/2 2→Z/2)=Z/2

TorR1 (H0(P•),M)︸ ︷︷ ︸
Tor

Z/4
1 (Z/2,Z/2)=Z/2

0

This is impossible for cardinality reasons.

Above, to find Tor
Z/4
1 (Z/2,Z/2), we take the resolution

K• : · · · Z/4 Z/4 Z/4 Z/2 0·2 ·2

and note that

Tor
Z/4
1 (Z/2,Z/2) = H1(K• ⊗Z/4 Z/2) = Z/2.

Proof of Künneth Theorem 11.1. Note that B•(P ) ⊆ Z•(P ) ⊆ P• are complexes where
Z•(P ) and B•(P ) have trivial boundary maps.

We claim that Zn(P•) is a flat R-module. We have a short exact sequence

0 Zn(P•) Pn Bn−1(P•) 0d

As each Bn−1(P•) is flat, this also shows that Zn(P•) is flat. The long exact sequence in
homology gives

· · · Hn(B•(P )⊗M) Hn(Z•(P )⊗M) Hn(P• ⊗M)

Hn−1(B•(P )⊗M) Hn−1(Z•(P )⊗M) · · ·

αn

αn

and hence we have the short exact sequence

(∗) 0 coker(αn) Hn(P•⊗R) ker(αn−1) 0

As Z•(P ) has a trivial differential, the same is true for Z•(P ) ⊗M and B•(P ) ⊗M . This
shows that

Hn(Z•(P )⊗M) = Zn(P )⊗M,

Hn(B•(P )⊗M) = Bn(P )⊗M.

But since Bn(P ) and Zn(P ) are flat, and we have the short exact sequence

0 Bn(P ) Zn(P ) Hn(P ) 0,

this is a flat resolution of Hn(P ). Therefore

H•(Bn(P )⊗M αn→ Zn(P )⊗M) = TorR• (Hn(P ),M),

since Tor can be calculated using flat resolutions 10.13. This shows that

coker(αn) = TorR0 (Hn(P ),M) = Hn(P )⊗M,

ker(αn) = TorR1 (Hn(P ),M).

Substituting this into the short exact sequence (∗) completes the proof. �
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Corollary 11.3. Assume R = Z (or Bn(P•) is free). Then for all M , the Künneth sequence
splits (non-canonically), i.e. we have isomorphisms

(Hn(P•)⊗M)⊕ TorR1 (Hn−1(P ),M) ∼= Hn(P• ⊗M).

Proof. We know that each d(Pn) is free. Hence the short exact sequence

0 Zn Pn d(Pn) 0

splits (non-canonically!), and so Pn ∼= Zn ⊕ d(Pn). Taking −⊗M of both sides, we obtain

Zn ⊗M ⊆ ker(dn ⊗ 1) ⊆ Pn ⊗M ∼= Zn ⊗M ⊕ d(Pn)⊗M.

We hence get that ker(dn⊗ 1) ∼= Zn⊗M ⊕C, for some complement C. Taking the quotient
by im(dn+1 ⊗ 1) = im(dn+1)⊗M , we get

Hn(P• ⊗M) ∼= Hn(P•)⊗M ⊕ C.

Hence the Künneth exact sequence

0 Hn(P•)⊗Z M Hn(P• ⊗Z M) TorZ1 (Hn−1(P•),M) 0

splits, with C ∼= TorZ1 (Hn−1(P ),M). �

Example 11.4. Let X be a topological space and S•(X) be the singular chain complex. If
M is some abelian group,

Hn(X;M) = Hn(S•(X)⊕M) = Hn(S•(X))⊗M ⊕ TorZ1 (Hn−1(S•(x)),M),

and hence

Hn(X;M) = Hn(X)⊗M ⊕ TorZ1 (Hn−1(X),M).

So, to calculate the homology groups with coefficients in M , it is enough to calculate them
with coefficients in Z (but the splitting is not functorial, so this does not tell us anything
about the maps between the homology groups).

For example, let X = P2(R) and M = Z/2. We then have:

H0(X) = Z, H1(X) = Z/2, H2(X) = 0,

and hence

H2(X;Z/2) = H2(X)⊗Z Z/2︸ ︷︷ ︸
=0

⊕Tor1(H1(X),Z/2) = Tor1(Z/2,Z/2) = Z/2.

There is an analog of the corollary for cohomology.

Theorem 11.5. Suppose P• is a chain complex of left R-modules such that d(Pn) is projective
for all n. Then we have

Hn(HomR(P,M)) ∼= HomR(Hn(P•),M)⊕ Ext1
R(Hn−1(P•),M).



MATH 613: HOMOLOGICAL ALGEBRA 69

Example 11.6. Again, let X = P2(R). By the above result and knowing the homology
groups of X, we obtain

H0(X) = Z,
H1(X) = H1(X;Z) = HomZ(Z/2,Z)︸ ︷︷ ︸

=0

⊕Ext1(Z,Z)︸ ︷︷ ︸
=0

,

H2(X) = Hom(0,Z)⊕ Ext1(Z/2,Z) = Z/2.

Let P• be a complex of right R-modules and Q• be a complex of left R-modules. We have
the double complex

...
...

...

· · · P0 ⊗Q2 P1 ⊗Q2 P2 ⊗Q2 · · ·

· · · P0 ⊗Q1 P1 ⊗Q1 P2 ⊗Q1 · · ·

· · · P0 ⊗Q0 P1 ⊗Q0 P2 ⊗Q0 · · ·

...
...

...

and the total complex is

(P ⊗R Q)n =
⊕
p+q=n

Pp ⊗Qq.

There is an analog of Künneth Theorem for the total complex.

Theorem 11.7. If Pn, d(Pn) are flat for all n, then

0
⊕

p+q=n

Hp(P•)⊗Hq(Q•) Hn(P• ⊗Q•)
⊕

p+q=n−1

Tor1(Hp(P•), Hq(Q•)) 0

is exact.

For topological spaces X, Y , (after some work) this gives the result

Hn(X × Y ) ∼=
⊕
p+q=n

Hp(X)⊗Hq(Y )⊕
⊕

p+q=n−1

TorZ1 (Hp(X), Hq(Y )).

12. Quivers

Definition 12.1. A quiver is a finite direction graph, consisting of Q = (Q0, Q1, h, t), where

• Q0 is a finite set of vertices,
• Q1 is a finite set of arrows,
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• h : Q1 → Q0 is the head map; h(a) ∈ Q0 is the head of arrow a ∈ Q1,
• t : Q1 → Q0 is the tail map; t(a) ∈ Q0 is the tail of arrow a ∈ Q1.

Example 12.2. The picture

b

a

c

d
1 2

represents a quiver with Q0 = {1, 2}, Q1 = {a, b, c, d} and

t(a) = t(b) = h(c) = t(d) = h(d) = 1,

h(a) = h(b) = t(c) = 2.

Definition 12.3. A path p of length d ≥ 1 is a sequence

p = adad−1 . . . a2a1

where t(ai+1) = h(ai) for i = 1, 2, . . . , d − 1. Then h(p) = h(ad) is the head of path p, and
t(p) = t(a1) is the tail of path p. Also, for every x ∈ Q0, we have a path ex of length 0 with
h(ex) = t(ex) = x.

Example 12.4. In the example above, p = bdca is a path with t(p) = t(a) = 1 and
h(p) = h(b) = 2.

While the order in which the arrows in a path are written may seem strange at first, note
that it is the same as composition of functions. This will be useful later on, when we discuss
representations of quivers — the arrows will be represented by certain functions and paths
indeed become compositions of them.

Definition 12.5. If p, q are paths and t(p) = h(q), say

p = adad−1 . . . a1, q = bebe−1 . . . b1,

then
pq = adad−1 . . . a1bebe−1 . . . b1

is the composition. If t(p) = x, then pex = p, and if h(p) = y, then eyp = p.

We can associate a category PQ to a quiver Q:

• objects are elements of Q0,
• HomPQ

(y, x) = {paths p from x to y}, i.e. h(p) = y, t(p) = x,
• idx = ex,
• the composition map HomPQ

(z, y) × HomPQ
(y, x) → HomPQ

(z, x) is given by path
composition, as defined above: (p, q) 7→ pq.

Throughout the rest of this section, we will make the following distinction: for a field K, we
will write K-mod for the category of finite-dimensional K-vector spaces, and K-Mod for
the category of all K-vector spaces.
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Definition 12.6. The category of representations of Q over a field K is

RepK(Q) = (K-mod)PQ .

Explicitly, the objects in RepK(Q) are determined by a set of finite-dimensional vector spaces
V (x) for each x ∈ Q0, and K-linear maps

V (a) : V (ta)→ V (ha)

for each a ∈ Q1. Moreover,
V (ex) = idV (x),

V (adad−1 . . . a2a1) = V (ad)V (ad−1) . . . V (a2)V (a1).

If V , W are representations, a morphism ϕ : V → W is a collection of linear maps

ϕ(x) : V (x)→ W (x)

such that

V (t(a)) V (h(a))

W (t(a)) W (h(a))

ϕ(t(a))

V (a)

ϕ(h(a))

W (a)

commutes for all arrows a.

Example 12.7. Consider the quiver

a b

1 2 3

The paths are e1, e2, e2, a, b, ba. The representations of Q are triples of finite-dimensional
K-vector spaces V (1), V (2), V (3) together with maps

V (a) : V (1)→ V (2),

V (b) : V (2)→ V (3).

Definition 12.8. Let Q be a quiver and K be a field. The path algebra KQ is defined as

• K-vector space with a basis consisting of all paths in Q,
• if p, q are paths, we define

p · q =

{
pq (the composition) if t(p) = h(q),
0 otherwise.

Then KQ is an associative K-algebra with 1 =
∑
x∈Q0

ex.

Example 12.9. Consider the quiver Q:

1a

The paths are e1, a, a
2, a2, . . ., and hence KQ = K[a], the polynomial ring in a.
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Example 12.10. Consider the quiver Q:

a a

Then KQ = K〈a, b〉 is the free associative algebra generated by a and b (non-commutative).

Example 12.11. Consider the quiver

. . .
1 2 3 n− 1 n

Then KQ is isomorphic to the algebra of lower-triangular n× n matrices.

Theorem 12.12. The categories KQ-mod (finite-dimensional left KQ-modules) and RepK(Q)
are equivalent.

Sketch of the proof. If M is a finite-dimensional KQ-module, then

M =
∑
x∈Q0

exM =
⊕
x∈Q0

exM,

and we can define V (x) = exM . Then

exey =

{
ex x = y,
0 otherwise,

and for a ∈ Q1, with t(a) = x, h(a) = y, the multiplication by a map restricts to

V (a) : exM︸︷︷︸
V (x)

→ eyM︸︷︷︸
V (y)

.

Then we can define F : KQ-mod→ RepK(Q) by F(M) = V . Conversely, if V is a represen-
tation of Q, let

M =
⊕
x∈Q0

V (x),

and an arrow a ∈ Q1 acts on M by

M M

V (x) V (y)
V (a)

This defines a map G : RepK(Q) → KQ-mod by letting G(V ) = M . Checking the axioms
and that F ◦G, G ◦ F are naturally isomorphic to the identities, the result follows. �

Note that dimK KQ <∞ if and only if there are finitely many paths if and only if there are
no oriented cycles.
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If M is a finite-dimensional KQ-module, then M =
⊕
x∈Q0

M(x), where M(x) = exM and the

map
a· : M →M

restricts to
M(a) : M(t(a))→M(h(a)).

Then
KQ =

⊕
x∈Q0

KQex =
⊕
x∈Q0

Px

as left KQ-modules. Then Px = KQex is a projective KQ-module and Px has a basis
consisting of all paths starting at x. Note also that Px(y) = eyPx = eyKQex is spanned by
all paths from x to y.

Example 12.13. For the quiver Q given by

1a

the category RepK(Q) is naturally isomorphic to K[a]-mod.

Example 12.14. For the quiver

1 2 3

we have

P1 : Ke1 Ka Kba

K K K1 1

P2 : 0 K K

P3 : 0 0 K

Then note that KQ will be ∗ ∗ ∗0 ∗ ∗
0 0 ∗


with

P1 =

∗∗
∗

 , P2 =

∗∗
0

 , P3 =

∗0
0

 .

The map a : x → y corresponds to Pz(a) : Pz(x) → Pz(y) which maps a path p from z to x
to the path ap.

Moreover,
HomKQ(Px,M)→M(x)

(ϕ : Px →M) 7→ ϕ(ex) ∈M(X)



74 HARM DERKSEN

is an isomorphism, and HomKQ(Px,−) is an exact functor.

Consider m ⊆ KQ, the (two-sided) ideal generated by all arrow. Then m is spanned by all
paths of length ≥ 1, and, in general, md is the ideal spanned by all paths of length ≥ d.

An ideal J ⊆ KQ is admissible if md ⊆ J ⊆ m2 for some d. Then A = KQ/J is a finite-
dimensional K-algebra.

Definition 12.15. Two rings A, B are called Morita equivalent if A-Mod and B-Mod are
equivalent categories.

Theorem 12.16. A finite-dimensional K-algebra is Morita equivalent to KQ/J where J is
an admissible ideal for some quiver Q.

Denote ex + J by ex and m + J/J by m. Then

A =
⊕
x∈Q0

Aex =
⊕
x∈Q0

Px

where Px = Aex is projective. Again,

HomA(Px,M) = M(x) = exM

and Px is indecomposable (in fact, the only indecomposable ones).

We then see that A-mod (the category of finite-dimensional left A-modules) has enough
projectives.

Note that Aop-mod = mod-A is equivalent to A-mod via the map

M 7→ D(M) = M∗ = HomK(M,K),

f 7→ D(f) = f ∗.

Then Ix = (exA)∗, x ∈ Q0 are the indecomposable injectives.

If Q is a quiver, the simple representations are Px/mPx = Sx with

Sx(y) =

{
K if y = x,
0 if y 6= x,

and mSx = 0.

We then have an exact sequence

0
⊕

a, t(a)=x

Ph(a) Px Sx 0

Ph(a) 3 p pa

which gives a projective resolution of the simple module Sx. In general, if M is any module,
a projective resolution is
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0
⊕
a∈Q1

P (h(a))⊗K M(t(a))
⊕

x∈Q0
Px ⊗K M(x) M 0

p⊗ w pa⊗ w − p⊗ aw

p⊗ v pv

Then
ExtnKQ(M,N) = 0 if n ≥ 2.

Example 12.17. Take the quiver

1 2 3

again and let A = KQ/(ba). Then

P1 : K K 0,

P2 : 0 K K,

P3 : 0 0 K.

We then have that

0 P3 P2 P1 S1 0

and applying HomA(−, S3) to P•, we get

0 HomA(P1, S3)︸ ︷︷ ︸
=0

HomA(P2, S3)︸ ︷︷ ︸
=0

HomA(P3, S3)︸ ︷︷ ︸
∼=K

0.

Hence
Ext2

A(S1, S3) = K.

Example 12.18. Take the quiver Q

1a

and consider J = (a2) ⊆ KQ = K[a]. Then

P1 = A = KQ/J = K[a]/(a2).

In this case,

· · · P1 P1 P1 S1 0·a ·a

and Extn(S1, S1) = K for any n ≥ 0.

If we look at A-mod for A = KQ/J , how can we recover the quiver Q?
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• The simple representations are Sx, x ∈ Q0.
• Ext1

A(Sx, Sy) = K l where l is the number of arrows x→ y.

13. Homological dimension

Definition 13.1. Let A be a right R-module.

(1) The projective (resp. flat) dimension , pd(A) = n (resp. fd(A)) is the smallest n such
that there is a resolution

0 Pn · · · P2 P1 P0 A 0

such that P0, . . . , Pn are projective (resp. flat).
(2) The injective dimension, id(A) is the smallest n such that there is an injective reso-

lution

0 A E0 E1 · · · En 0.

Lemma 13.2. The following are equivalent

(1) pd(A) ≤ d,
(2) ExtnR(A,B) = 0 for n > d and all right R-modules B,
(3) Extd+1

R (A,B) = 0 for all B,
(4) if

0 Ad Pd−1 · · · P2 P1 P0 A 0

is a resolution of A with P0, . . . , Pd−1 projective, then Ad is projecitve.

Proof. We note that trivially, (4) implies (1) implies (2) implies (3). We show (3) implies (4).
Suppose (3) is true. Let A0 = A and define Pk projective and Ak+1 recursively so that

0 Ak+1 Pk Ak 0

is exact. Then the long exact sequence for Ext gives

Ext`(Pk, B)︸ ︷︷ ︸
=0

Ext`(Ak+1, B) Ext`+1(Ak, B) Ext`+1(Pk, B)︸ ︷︷ ︸
=0

.

Then Ext1(Ad, B) = · · · = Extd+1(A0, B) = 0 for all B, and hence Ext1(Ad, B) = 0, so Ad is
projective. �

Dually, we get the following statement.

Lemma 13.3. The following are equivalent:

(1) id(B) ≤ d,
(2) ExtnR(A,B) = 0 for n > d and all A,
(3) Extd+1

R (A,B) = 0 for all A,
(4) if
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0 A E0 E1 · · · Ed−1 Ad 0

is exact and E0, . . . , Ed−1 are injective then Ad is injective.

Note that

sup{id(B) | B right R-module} = sup{d | Extd(A,B) 6= 0 for some right R-modules A,B}
= sup{pd(A) | A right R-module}.

Definition 13.4. This is called the right global dimension of R, rgldim(R).

If R is left and right Noetherian, then lgldim(R) = rgldim(R).

Recall that for a path algebra KQ, there is a 2-step resolution of any M :

0→ P1 → P0 →M → 0,

and hence the global dimension KQ is at most 1. Moreover, KQ is semisimple if the global
dimension is 0.

We immediately get the following corollary to Baer’s criterion for injectivity 6.3.

Corollary 13.5. We have that

rgldim(R) = sup{pd(R/I) | I right R-ideal}.

We also have a similar construction for Tor (and A ⊗R B). The following numbers are the
same:

sup{fd(A) | A right R-module}
= sup{d | TorRd (A,B) 6= 0 for some A ∈ mod-R,B ∈ R-mod}
= sup{fd(B) | B left R-module}
= sup{fd(R/J) | J right ideal}
= sup{fd(R/J) | J left ideal}

Definition 13.6. This number is the Tor-dimension of R, tordim(R).

Proposition 13.7. Assume that R is right Noetherian. Then:

(1) for every finitely-generated right R-module A, pd(A) = fd(A),
(2) tordim(R) = rgldim(R).

Proof. We first prove (1). Note that any finitely generated projective module is flat, so
fd(A) ≤ pd(A). If fd(A) = d <∞, take a resolution of A

0 Ad Pd−1 · · · P1 P0 A 0

with P0, . . . , Pd−1 finitely generated and free. Then Ad is finitely generated (by a lemma
analogous to Lemmas 13.2 and 13.3 but for flat dimension), and Ad is flat. Hence Ad is
finitely presented and flat, which shows that it is projective. Hence pd(A) ≤ d.

Then (2) immediately follows:

rgldim(R) = sup{pd(R/J) | J right ideal}
= sup{fd(R/J) | J right ideal}
= tordim(R),
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completing the proof. �

Global dimension 0.

Definition 13.8. A ring R is semi-simple if every right (equivalently, left) ideal is a direct
summand of R.

Theorem 13.9 (Wedderburn’s Theorem). If R is semi-simple, then

R ∼=
r∏
i=1

Matni,ni
(Di),

for division rings Di.

Theorem 13.10. The following are equivalent:

(1) R is semi-simple,
(2) R has right (left) global dimension 0,
(3) every R-module is projective,
(4) every R-module is injective,
(5) all exact sequences split.

Proof. The proof is clear. �

Example 13.11. Let Q be a quiver and KQ be a path algebra. We have seen that for any
KQ-module A, we have a projective resolution

0 P1 P0 A 0

and hence lgldim(KQ) = rgldim(KQ) ≤ 1.

If R = KQ/J (a finite-dimensional K-algebra) with md ⊆ J ⊆ m2 (so J is admissible). If
J = 0, gldimKQ ≤ 1 and in fact

gldimKQ =

{
0 if Q has no arrows,
1 if Q has arrows.

If J 6= 0, then in fact gldimKQ/J ≥ 2.

13.1. Von Neumann regular rings.

Definition 13.12. A ring R is von Neumann regular if for any a ∈ R, there exists b ∈ R
such that aba = a.

Example 13.13. Let kX be the set of functions X → k where k is a field and X is a set.
For a : X → k, define

b(x) =

{
1

a(x)
if a(x) 6= 0,

0 if a(x) = 0,

whence aba = a2b = a.

Example 13.14. The ring Matn×n(k) for a field k. For a matrix A, we have a map kn → imA
and we can choose a splitting B : imA→ kn. Extend B to kn → kn to get ABA = A.
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Suppose R is von Neumann regular. If a ∈ R, then there exists b ∈ R such that aba = a.
Then e = ab is an idempotent, e2 = ababa = ab = e. We then have that

aR ⊇ abR = eR ⊇ abaR = aR,

so aR = eR.

Lemma 13.15. A finitely generated right (or left) ideal is generated by one idempotent.

Proof. Suppose R is commutative. If e, f are both idempotent,

(e+ f − ef) = (e, f),

since e(e+f−ef) = e2+ef−e2f = e+ef−ef = e and similarly for f . The non-commutative
case is similar. �

Example 13.16. Define R ⊆ RR be the ring

R = {f | f almost constant},

so for f ∈ R, there exists c such that f(x) = c for all but finitely many x. Then R is von
Neumann regular. However,

I = {f ∈ R | f(x) = 0 for x ∈ R \ Z}

is not finitely generated; indeed, we need elements with f(a) 6= 0 for arbitrarily large a ∈ Z,
but for finitely many f ∈ I will have f(a) = 0 for a large enough.

If I is a finitely generated right ideal then for an idempotent e

I = eR

and hence

R = eR⊕ (1− e)R ∼= I ⊕R/I,

so R/I is projective, and hence flat.

If I is not finitely generated, then

I = lim−→ Iα for Iα finitely generated ideal

and

R/I = lim−→R/Iα,

For all left R-modules M , we have

Tor1(R/I,M) = lim−→Tor1(R/Iα,M) = 0

and hence R/I is flat. Therefore, fd(M) = 0, and hence

tordim(R) = 0.
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13.2. Global dimension of polynomial rings. We will show that for a field k,

(1) gldim(k[x1, . . . , xn]) = n.

Hilbert showed that if M is finitely generated, then it has a free resolution of length n

0 Fn · · · F2 F1 F0 M 0

showing that the global dimension is at most n.

Writing R = k[x1, . . . , xn], the R-module k has the Koszul resolution

0 R(n
n) · · · R(n

2) Rn R k 0

of length n. Taking Hom(−, k) of this sequence of this resolution, we get

0 k(n
n) · · · k(n

2) k(n
1) k(n

0) 00 0 0 0 0

showing that

TorRj (k, k) = k(n
j).

In particular, this will show equation (1).

Proposition 13.17. If f : R→ S is a ring homomorphism and M is an S-module, then

pdR(M) ≤ pdS(M) + pdR(S).

Proof. Let pdS(M) = n, pdR(S) = d and choose a projective S-resolution of M ,

0 Qn · · · Q1 Q0 M 0

and let M0 = M and

0 −→Mi+1 −→ Qi −→Mi −→ 0.

Choose projective R-resolutions of Mi’s. Then the Horseshoe Lemma 5.24 gives projective
resolutions P•j → Qj. We then have a double complex (by adjusting the signs of the maps
appropriately)
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...
...

...

0 Q2 P02 P12 · · ·

0 Q1 P01 P11 · · ·

0 Q0 P01 P10 · · ·

M

0

with exact rows. The total complex gives a map Tot(P••)→M but this projective resolution
could be large, even infinite. However, note that pdR(Q1) ≤ pdR(S) = d because Qi is a
direct summand of a free S-module. We replace Pd,i by Pd,i/ imPd+1,i to get

Tot(P••)→M,

a projective R-resolution of M . Then we obtain

pdR(M) ≤ n+ d = pdS(M) + pdR(S),

as required. �

Lemma 13.18. Suppose

0 A B C 0

is an exact sequence of R-modules. Then

pdR(B) ≤ max{pdR(A), pdR(C)}

and if the inequality is strict, then pdR(C) = pdR(A) + 1.

Proof. By the long exact sequence for Ext, we get

· · · Exti(C,M) Exti(B,M) Exti(A,M)

Exti+1(C,M) Exti+1(B,M) Exti+1(A,M) · · ·

If i = pdR(B), then for some R-module M , we obtain Exti(B,M) 6= 0, and hence one of
the neighboring terms in the long exact sequence above are non-zero, so Exti(C,M) 6= 0 or
Exti(A,M) 6= 0, showing that pdR(C) ≥ i or pdR(A) ≥ i.
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If the inequality is strict, then for any i > pdR(B), we get Exti(B,M) = Exti+1(B,M) = 0,
so Exti(A,M) ∼= Exti+1(C,M) by the long exact sequence above, which shows that pdR(C) =
pdR(A) + 1. �

Let R be a ring, x ∈ R be central, A a left R-module.

Definition 13.19. An element x is a nonzero divisor on A if xy = 0 implies that y = 0 for
all y ∈ A.

Suppose x is a nonzero divisor on R. We have a short exact sequence

0 R R R/x 0.x·

We apply −⊗R A to get

Tor1(R,A)︸ ︷︷ ︸
=0

Tor1(R/x,A)︸ ︷︷ ︸
{y∈A | xy=0}

A A A/xA 0x·

and x is a nonzero divisor on A if and only if Tor1(R/x,A) = 0.

Let (R,m) be a commutative Noetherian local ring with m its unique maximal ideal.

Definition 13.20. A regular sequence in a finitely-generated R-module A is a sequence
x1, . . . , xn ∈ m such that xi is a nonzero divisor on A/(x1, . . . , xi−1)A.

The depth of A, depth(A) is the largest n such that there exists a regular sequence of length
n on A.

Theorem 13.21 (Auslander–Buchsbaum). If R is a commutative Noetherian local ring and
A is a finitely generated R-module with pd(A) <∞, then

depth(R) = depth(A) + pd(A).

Definition 13.22. The Krull dimension, dimR, of R is the maximal n such that there exists
a chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn ⊂ R.

If k = R/m, a field, we get
dimk(m/m

2) ≥ dimR.

Definition 13.23. The local ring R is regular if dimk(m/m
2) = dimR.

We also have that
depth(R) ≤ dimR.

Definition 13.24. A local ring R is called Cohen–Maccaulay if depth(R) = dimR.

There are various relationships between regular rings and Cohen–Maccaulay rings, even
though they are not equivalent.

For a proof of Theorem 13.21, see [Eis95, Chap. 19]. The general idea is to understand what
happens when we go from an R-module A to the R/x-module A/xA.
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Theorem 13.25 (First Change of Rings Theorem). Let R be a ring, x ∈ R be central,
nonzero divisor, A is an R/x-module with pdR/x(A) finite. Then pdR(A) = 1 + pdR/x(A).

Sketch of proof. If pdR/x(A) = 0, A is a projective R/x-module, and then A is not a projec-
tive R-module, because xA = 0. Then

1 ≤ pdR(A) ≤ pdR(A/x) = 1,

since 0→ R→ R→ R/x→ 0 is a projective resolution of R/x.

The general argument now goes by induction of pdR/x(A). Assume pdR/x(A) ≥ 1. Take P
projective R/x-module with an exact sequence

0 M P A 0.

Since 1 + pdR/x(M) = pdR/x(A), we can apply the inductive hypothesis to get

pdR(M) = 1 + pdR/x(M).

By Lemma 13.18, we get that

pdR(P ) ≤ max{pd(M), pdR(A)}
and either equality holds or pdR(A) = pdR(M) + 1. In the first case, we get a contradiction.
In the second case,

pdR(A) = pdR(M) + 1 = pdR/x(A) + 1,

as required. �

Theorem 13.26 (Second Change of Rings Theorem). Let x ∈ R be a central nonzero divisor
on R and on A. Then

pdR(A) ≥ pdR/x(A/xA).

Corollary 13.27. If A is an R-module and we write A[x] = R[x]⊗R A, we get that

pdR[x](A[x]) = pdR(A).

Proof. The ≥ inequality follows from Second Change of Rings Theorem 13.26. The ≤ is
immediate, since a projective resolution P• → A of A gives a projective resolution

P•[x]→ A[x]

of A[x]. �

Theorem 13.28. We have that gldimR[x] = gldimR + 1.

Proof. If M is an R[x]-module, then M is an R-module, and we will write M̃ for M as an
R-module. We have the following exact sequence

0 R[x]⊗R M̃ R[x]⊗R M̃ R[x]⊗R[x] M︸ ︷︷ ︸
=M

0

p⊗ v px⊗ v − p⊗ xv
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By a similar result to Lemma 13.18: if we have a short exact sequence 0→ A→ B → C → 0,
we get

pd(C) ≤ max{pd(B), pd(A) + 1}.
Hence

pdR[x](M) ≤ pdR[x](R[x]⊗R M̃) + 1 ≤ pdR(M̃) + 1 = pdR(M) + 1 ≤ gldimR + 1.

Taking the supremum over all M , we get one inequality. We skip the proof of the other
inequality. �

Corollary 13.29. For a field k, we have that

gldim k[x1, . . . , xn] = n.

Let R be a ring and R∗ be the group of unites of R. We define the Jacobson radical as

J(R) = {r ∈ R | for any s ∈ R, 1− rs ∈ R∗}

and one can prove that

J(R) = {r ∈ R | for any s ∈ R, 1− sr ∈ R∗}

J(R) =
⋂
m

m

where the intersection can be over left maximal ideals m or over right maximal ideals m.

Example 13.30. If R = KQ/I for an admissible ideal I so that md ⊆ I ⊆ m2, then
J(R) = m.

If (R,m) is a local commutative ring, clearly J(R) = m.

Proposition 13.31 (Nakayama Lemma). Let m be the Jacobson radical of R. If B is a
finitely generated left R-module and mB = B then B = 0.

Proof. Suppose B 6= 0, {b1, . . . , bn} minimal set of generators over B. Then bn ∈ B = mB,
and we can write

bn =
n∑
i=1

ribi for ri ∈ m.

Then

(1− rn)b =
n−1∑
i=1

ribi ∈ Rb1 + · · ·+Rbn−1

but rn ∈ m so 1− rn ∈ R∗, and so

bn ∈ Rb1 + · · ·+Rbn−1,

and hence b1, . . . , bn−1 generate B. This contradicts minimality of the set of generators. �

In what follows, assume (R,m) is a local Noetherian, commutative ring and k = R/m.

Corollary 13.32. Let B be a left finitely generated R-module. Elements b1, . . . , bn ∈ B
generate B if and only if the images b1, . . . , bn in B/mB span B/mB as a k-vector space.
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Note that the finitely-generated assumption is necessary: Q2 is a Z2-module with

mQ2 = (2)Q2 = Q2,

so Q2/mQ2 = 1 which is spanned by the only element as a k-vector space, but Q2 over Z2 is
not finitely generated.

Proof. For the ‘only if’ direction, if A = Rb1 + · · ·+Rbn and B = A+mB. Then m ·B/A =
B/A, so B/A = 0 and hence A = B. �

Corollary 13.33. Elements b1, . . . , bn ∈ B are a minimal set of generators if and only if
the images of b1, . . . , bn in B/mB form a basis of B/mB as a k-vector space.

Proposition 13.34. If P is a finitely generated projective R-module, then P is free.

Proof. Let n = dimk(P/mP ). By lifting the generators of P/mP as a k-vector space, we get
a minimal set of generators for P , giving a short exact sequence

0 K Rn P 0

where K is the kernel of the map Rn → P . Since P is projective, this sequence splits, so

Rn ∼= P ⊕K.
Taking −⊗R R/m, we get

kn ∼= P/mP ⊕K/mK ∼= kn ⊕K/mK
and hence K = mK, so by Nakayama Lemma 13.31, K = 0. This shows Rn ∼= P . �

If A is a finitely generated R-module. Let A0 = A and, recursively, having defined Ai, let

βi = dimk Ai/mAi <∞
and define Ai+1 as the following kernel

0 Ai+1 Rβi Ai 0.

This gives a free resolution of A:

· · · Rβ2 Rβ1 Rβ0 A 0.

Apply −⊗R R/m to

· · · Rβ2 Rβ1 Rβ0 0

to get

· · · kβ2 kβ1 kβ0 00 0

(checking that the maps are indeed 0 is an exercise). This shows that

TorRi (A,R/m) = kβi .

Definition 13.35. The numbers βi are called Betti numbers of A.
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Lemma 13.36. If depth(R) = 0 and A is a finitely generated R-module, then pd(A) = 0 or
pd(A) =∞.

Proof. Suppose 0 < pd(A) = n <∞. Take a resolution

0 B Fn−2 · · · F2 F1 F0 A 0

with F0, . . . , Fn−2 free. Then

pd(B) = n− (n− 1) = 1.

Let t = dimk B/mB and consider

0 P Rt B 0.

Then P is projective (since pd(P ) = pd(B)− 1 = 0), so it finitely generated, and hence free.

Since depth(R) = 0, every element in m is a zero divisor. By [Eis95, Cor. 3.2], there exists
s ∈ m,

{r ∈ R | rs = 0} = m.

Now, P ⊆ mRt, and hence sP ⊆ smRt = 0, but P is free, so P = 0. Since P = 0, this shows
that pd(B) = 0, a contradiction. �

The Auslander–Buchsbaum Theorem 13.21 follows from similar arguments to this lemma
and Change of Rings Theorems 13.25 and 13.26.

If depth(R) = 0, then pd(A) = 0, so A is projective, and hence free, so depth(A) =
depth(R) = 0.

Theorem 13.37. A ring R is regular if and only if gldimR <∞, and in that case

gldimR = dimR = pdR(R/m).

Note that R = k[x]/(x2) has infinite global dimension and it is not regular, and in this case
the Krull dimension is 0.

Theorem 13.38. A regular local ring is Cohen-Macaulay.

Proof. In general, depth(R) ≤ dimR. If R is regular, let

m = (x1, . . . , xn),

where n = dimRm/m2 and x1, . . . , xn is a regular sequence, so

depth(R) ≥ n = dimR,

and hence depth(R) = dim(R). �
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13.3. Koszul resolution. Let R be regular and pdR(R/m) = n. The minimal free R-
resolution of R/m is the Koszul resolution.

Let x ∈ m be a nonzero divisor and consider

K(x) : 0 R R 0x·

a resolution of R/(x). Suppose x1, x2 is a regular sequence, and consider K(x1)⊗R K(x2):

R R

R R

x2

x1

−x2

x1

and the total complex gives a resolution of R/(x1, x2):

0 R R⊕R R 0
(−x2

x1
) (x1,x2)

In general, if x = (x1, . . . , xn) is a regular sequence, we let K(x) = K(x1, . . . , xn) be the
total complex of K(x1)⊗R K(x2)⊗R · · · ⊗R K(xn). Explicitly, we can write it as

0 R(n
n) · · · R(n

2) R(n
1) R(n

0) 0∂ ∂ ∂ ∂

where we identify

R(n
1) =

⊕
Rei,

R(n
2) =

⊕
i<j

R(ei ∧ ej),

...

R(n
n) = R(e1 ∧ · · · ∧ en),

and ∂ =
∑
xi

∂
∂ei

, so

ei1 ∧ · · · ∧ eik 7→
∑
j

(−1)j−1xjei1 ∧ · · · ∧ êij ∧ · · · ∧ eik .

Theorem 13.39. The resolution K(x) is a free resolution of R/(x1, . . . , xn) and

Hq(K(x)) =

{
0 if q > 0,
R/(x1, . . . , xn) if q = 0.

We first prove the theorem in the n = 1 case.

Proposition 13.40. If x ∈ m is a nonzero divisor, C• is a chain complex of R-module, then
we have an exact sequence

0 H0(K(x)⊗Hq(C•)) Hq(K(x)⊗R C•) H1(K(x)⊗R Hq−1(C•)) 0.

Proof. We have an exact sequence of complexes
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0

R · · · 0 0 R 0 · · ·

K(x) · · · 0 R R 0 · · ·

R[−1] · · · 0 R 0 0 · · ·

0

x

Taking −⊗R C•, we get

0 C• K(x)⊗R C• C•[−1] 0

and the long exact sequence of this complex gives the desired result. �

Proof of Theorem 13.39. The case n = 1 is the Proposition 13.40. We apply the Proposi-
tion 13.40 with

C• = K(x1, . . . , xn−1)

x = xn

to get the exact sequence

0 H0(K(xn)⊗Hq(K(x1, . . . , xn−1))) Hq(K(x))

H1(K(xn)⊗R Hq−1(K(x1, . . . , xn−1))) 0.

For q ≥ 2, both the kernel and the cokernel in this exact sequence are 0, so Hq(K(x)) = 0.

For q = 1, the kernel is 0 and the cokernel is

H1(K(xn)⊗R/(x1, . . . , xn−1)) = ker(R/(x1, . . . , xn−1)
·xn−→ R/(x1, . . . , xn−1)) = 0,

and hence H1(K(x)) = 0.

For q0, we have

0 R/(xn)⊗R R/(x1, . . . , xn−1)︸ ︷︷ ︸
∼=R/(x1,...,xn)

H0(K(x)) 0
∼=

which completes the proof. �
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Tensoring the resolution

0 R(n
n) · · · R(n

2) R(n
1) R(n

0) 0∂ ∂ ∂ ∂

with −⊗R R/m, we get

0 k(n
n) · · · k(n

2) k(n
1) k(n

0) 00 0 0 0

and hence
Tori(R/(x1, . . . , xn), k) = k(n

k).

If m = (x1, . . . , xn), this gives

Tori(k, k) = k(n
i).

The resolution

0 R(n
n) · · · R(n

2) R(n
1) m 0∂ ∂ ∂

is called the Koszul resolution of m.

Definition 13.41. Suppose (R,m) is a local Noetherian ring and A is a finitely generated
R-module. We say x1, . . . , xn ∈ m is a maximal A-sequence if

A/(x1, . . . , xn)A

has no nonzero divisors in m.

Proposition 13.42. All maximal A-sequences have same length, and this length is equal to
depth(A).

Proof. The proof is in [Wei94] and we omit it here. �

14. Local cohomology

Let R be a commutative ring, I ⊆ R be an ideal. We define a functor

FI : R−mod→ R−mod

by
FI(A) = {a ∈ A | there exists d such that Ida = 0}.

and if f : A→ B is an R-module homomorphism, the square

FI(A) FI(B)

A B

FI(f)

f

commutes. Then FI is left exact and

H•I (A) = R•FI(A)

is called the local cohomology. If Id ⊆ J and Je ⊆ I, then

FI = FJ
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so

H•I = H•J .

Moreover, we have that

FI(A) = H0
I (A) = {a ∈ A | there exists d such that Ida = 0} = lim−→HomR(R/Id, A).

In general,

Hn
I (A) = lim−→ExtnR(R/Id, A).

15. Spectral sequences

This chapter largely follows [Wei94], but another reference for this topic is [McC01].

In this chapter, we work in the category of R-modules.

Definition 15.1. A spectral sequence consists of

• objects Rr
pq for p, q ∈ Z, r ≥ a,

• differentials drpq : Er
pq → Er

p−r,q+r−1 satisfying dr ◦ dr = 0,

• Rr+1
pq =

ker drpq
im(drp+r,q−r+1)

.

On a diagram, we can represent d0, d1, d2 as follows

d0 • E0
p,q+1 •

• E0
pq E0

p+1

• • •

d1 • E1
p,q+1 •

• E1
pq E1

p+1

• • •

d2 • E2
p,q+1 •

• E2
pq E2

p+1

• • •
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and similarly for dr for r ≥ 3. We can think of these pictures as “pages” or “sheets”: for each
r, there is a “page” with arrows dr as follows

•

•

•

• •

•
d0

d1

d2

d4

We let Er =
⊕
p,q∈Z

Er
pq. Then Er+1 is a subquotient of Er.

Suppose that for r = a, we have Ba = 0, Za = Ea.

Let Zr+1 ⊇ Br such that ker dr = Zr+1

Br and Br+1 ⊇ Br such that im dr = Br+1

Br , and then
Br+1 ⊆ Zr+1. We then have

Ba ⊆ Ba+1 ⊆ Ba+2 ⊆ · · · ⊆ B∞ ⊆ Z∞ ⊆ · · · ⊆ Za−a ⊆ Za−1 ⊆ Za = Ra

where
B∞ =

⋃
i

Bi, Z∞ =
⋂
i

Zi, E∞ = Z∞/B∞.

Definition 15.2. A spectral sequence is bounded if for any n, there are finitely many p such
that Ea

p,n−p 6= 0.

Definition 15.3. A bounded spectral sequence converges to H• if for every n there is a
filtration

0 = FsHn · · · ⊆ FpHn ⊆ Fp+1Hn ⊆ · · ·FtHn = Hn

such that
E∞pq = FpHp+q/Fp−1Hp+q.

In that case, we write E1
pq ⇒ Hp+q.

Note that E1
pq converges to the (p+q)th homology group, which can be represented as follows:

• • • •

• • • •

• • • •

• • • •

Hn p+ q = n
p

q
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15.1. Homology spectral sequences. We construct a spectral sequence from a filtration
of a chain complex. Let C• be a chain complex with a filtration

· · · ⊆ FpC• ⊆ Fp+1C• ⊆ · · ·
and assume ⋃

p

FpC• = C•.

We construct a spectral sequence with

E0
pq =

FpCp+q
Fp−1Cp+q

and
E1
pq = Hp+q(E

0
p•).

Note that E0
pq in E0

p• has degree p + q, and, to compute the homology, we note that the
boundary maps to compute the homology are induced by the boundary maps in C•:

E0
pq =

FpCp+q
Fp−1Cp+q

→ FpCp+q−1

Fp−1Cp+q−1

= E0
pq−1.

In general, Er+1
pq will be the homology of Er

pq.

In what follows, we drop the “q” from the notation and simply write

E0
p =

FpC

Fp−1C

and so on. We let

ηp : FpC →
FpC

Fp−qC
= E0

p

be the projection and set
Arp = {c ∈ FpC | d(c) ∈ Fp−rC},

Zr
p = ηp(A

t
p) =

Arp + Fp−1C

Fp−1C
∈ E0

p ,

Br+1
p−r = ηp−r(d(Arp)) =

d(Arp) + Fp−r−1C

Fp−r−1C
∈ E0

p−r,

Br
p = ηp(d(Ar−1

p+r−1)) =
d(Ar−1

p+r−1) + Fp−1C

Fp−1(C)
⊆ Zr

p .

This will simplify calculations, for example:

Zr
p =

Arp + Fp−1C

Fp−1C
∼=

Arp
Arp ∩ Fp−1C

=
Arp

Ar−1
p−1

.

In what follows, we will use that, for B ⊆ A, we have A ∩ (B + C) = B + (A ∩ C). We set

Er
p =

Zr
p

Br
p

=
Arp + Fp−1C

d(Ar−1
p+r−1) + Fp−1C

=
Arp

Arp ∩ (d(Ar−1
p+r−1) + Fp−1C)

=
Arp

d(Ar−1
p+r−1) + Ar−1

p−1

and since

Er
p =

Arp

dAr−1
p+r−1 + Ar−1

p−1

,



MATH 613: HOMOLOGICAL ALGEBRA 93

Er
p−r =

Arp−r

dAr−1
p−1 + Ar−1

p−r−1

,

the boundary map d induces
drp : Er

p → Er
p−r.

We claim that

Er+1
pq =

ker drpq
im drp+rq−r+1

.

For that sake, we will compute the kernel of the map drp. If

a+ dAr−1
p+r−1 + Ar−1

p−1 ∈ ker drp,

then without loss of generality, assume that

d(a) ∈ Ar−1
p−r−1

(otherwise, we could choose a different representative a that would satisfy this). Then
a ∈ Ar+1

p . This shows that

ker drp =
Ar+1
p + Ar−1

p

d(Ar−1
p+r−1

∼=
Ar+1
p + Fp−1C

dAr−1
p+r−1 + Fp−1C

∼=
Zr+1
p

Br
p

.

Then

drp : Er
p =

Zr
p

Br
p

�
Zr
p

Zr+1
p

∼=
Br+1
p−r

Br
p−r

↪→
Zr
p−r

Br
p−r

= Er
p−r

and so

im drp =
Br+1
p−r

Br
p−r

and shifting the index

im drp+r =
Br+1
p

Br
p

⊆
Zr+1
p

Br
p

= ker drp.

Hence
ker drp

im drp+r
=
Zr+1
p

Br+1
p

= Er+1
p .

This shows that Er+1
p is the homology of Er

p .

One can also show that
Zr
p

Zr+1
p

∼= Br+1
p−r

Br
p−r

with a similar calculation, but we omit it here.

Assume that a filtration is bounded, i.e. for every n there exist s, t such that

0 = FsCn ⊆ Fs+1Cn ⊆ · · · ⊆ FtCn = Cn.

Then E0
pq is bounded and for any n, there are only finitely many p such that E0

p,n−p 6= 0.

Theorem 15.4 (Spectral Convergence). There exists a filtration on Hn(C•),

· · · ⊆ FpHn(C•) ⊆ Fp+1Hn(C•) ⊆ · · ·
such that

FpHp+q(C•)/Fp−1Hp+q(C•) ∼= E∞pq .

Concisely, we write
E1
pq = Hp+q(FpC•/Fp−1C•) −→ Hp+q(C•).
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Here, E1
pq is homology of the associated graded, E∞pq is the associated graded of homology.

Proof. Recall that we had

0 ⊆ B0
p ⊆ B1

p ⊆ · · · ⊆ B∞p ⊆ Z∞p ⊆ · · · ⊆ Z1
p ⊆ Z0

p = FpC,

where B∞p =
⋃
i

Bi
p, Z

∞
p =

⋂
Zi
p, and

Er
p = Er

p• = Zr
p/B

r
p,

E∞p = Z∞p /B
∞
p .

Suppose p+ q = n. Then

Arpq = {c ∈ FpCn | d(c) ∈ Fp−rCn}.
For r ≥ r0(n, p) (when Fp−rCn = 0, i.e. p− r ≤ s), so

Arpq = ker d ∩ FpCn = A∞pq.

Then

Zr
pq = ηp(A

r
pq) = ηp(A

∞
pq) = Z∞pq =

ker d ∩ FpCn + Fp−1Cn
Fp−1Cn

.

Note that in general, f

(⋂
i

Ai

)
6=
⋂
i

f(Ai), but because of boundedness from below these

are finite intersections, so equality does hold.

Moreover,

Br+1
pq = ηp(A

r
p+r,q−r) =

d(Arp+r,q−r) + Fp−1Cn

Fp−1Cn
,

B∞pq =
d
(⋃

Arp+r,q−r + Fp−1(Cn)
)

Fp−1Cn
.

Define:

FpHn(C) =
ker dn ∩ fpCn

im dn+1 ∩ fpCn
=

A∞pq

d

(⋃
r

Arpr,p−r+1

) .
Then we have that

FpHn(C))

Fp−1Hn(C)
=

A∞pq

d
(⋃

r A
r
p+q,q−r+1

)
+ A∞p−1,q−1

.

Applying ηp to the right hand side of the above, we get

ηp(A
∞
pq)

ηp
(
d
(⋃

r A
r
p+q,q−r+1

)
+ A∞p−1,q−1

) ∼= ηp(A
∞
pq)

ηp
(⋃

r A
r
p+q,q−r+1

) =
Z∞pq
B∞pq

.

We claim that ηp actually gives an isomorphism above. Indeed, consider

ηp : A∞pq →
ηp(A

∞
pq

ηp
(
d
(⋃

r A
r
p+q,q−r+1

)) .
Suppose a ∈ A∞pq, so

a+ fp−1C ∈ d
(⋃

Arp+r,q−r+1

)
+ Fp−1C
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and we can write a = b+ c for

b ∈ d
(⋃

Arp+r,q−r+1

)
c ∈ Fp−1C ∩ A∞pq = A∞p+q−1

which completes the proof. �

Example 15.5. Suppose

0 A• B• C• 0

is an exact sequence of complexes. We will recover the long exact sequence in homology
using the Convergence Theorem 15.4. Consider the following filtration on B:

0 = F−1B ⊆ F0B︸︷︷︸
=A

⊆ F1B = B.

Then

E0
0q =

F0Bq

F−1Bq

= Aq, E
0
1q =

F1Bq+1

F0Bq

=
Bq+1

Aq+1

= Cq+1,

so E0
pq can be represented as

...
...

...
...

0 A2 C3 0

0 A1 C2 0

0 A0 C1 0

0 0 C0 0

0 0 0 0

d0 d0

d0 d0

d0

Hence E1
0q = Hq(A), E1

1q = Hq+1(C) and in general E1
pq can be represented as

...
...

...
...

0 H1(A) H2(C) 0

0 H0(A) H1(C) 0

0 0 H0(C) 0

d1

d1
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Moreover, by definition of E2
1q, we get the following exact sequence

0 E2
1q Hq+1(C) Hq(A) E2

0q 0.

Finally, looking at the diagram for E0
pq, we see that the maps dr : Er

pq → Er
p−r,q+r−1 for r ≥ 2

are all 0, and hence

E2
pq = E∞pq .

By the Convergence Theorem 15.4, there is a filtration on H•(B) such that

F0Hq(B) =
F0Hq(B)

F−1Hq(B)
= E∞0p ,

Hq+1(B)

F0Hq+1(B)
=
F1Hq+1(B)

F0Hq+1(B)
= E∞1q ,

since F1Hq+1(B) = Hq+1(B) and F−1Hq(B) = 0. We then have

0 F0H1(B)︸ ︷︷ ︸
=E∞0

Hq(B)
Hq(B)

F0Hq(B)︸ ︷︷ ︸
=H∞q,q−1

0.

We then obtain

· · · Hq(A) Hq(B) Hq(C) Hq−1(A) · · ·

E∞0q E∞1,q−1

which recovers the long exact sequence of homology.

15.2. Cohomology spectral sequences. One can dualize all the results in the previous
section to cohomology.

The objects are Epq
r , r ≥ a, and the maps are

dpqr : Epq
r → Ep+r,q−r+1

r

and

Epq
r+1 =

ker dpqr
im dp−r,q+r−1

r

.

Similarly to the Convergence Theorem 15.4, one can prove that if the spectral sequence is
bounded, then

Epq
r −→ Hp+q,

i.e. there exists filtration F tHn ⊆ F t−1Hn ⊆ · · · with quotients Epq
∞ .
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15.3. Spectral sequences in topology. We show an example of a spectral sequence in
topology and an application of that spectral sequence.

Definition 15.6. A mapping p : E → B has the homotopy lifting property (HLP) for space
Y if given a homotopy G : Y × [0, 1]→ B and a mapping g : Y ×{0} → E with p ◦ g(y, 0) =

G(y, 0), then there exists a homotopy G̃ : Y × [0, 1] → E with G̃(y, 0) = g and p ◦ G̃ = G,
i.e. the two triangles

Y × {0} E

Y × [0, 1] B

g

p

G

G̃

commute.

Definition 15.7. We say p is a (Hurewicz) fibration if p has HLP for all Y . We say p is a
Serre fibration if p has HLP for all n-cells.

Proposition 15.8. Suppose p is a fibration and if B is path-connected then all fibers p−1(b),
b ∈ B are homotopy equivalent.

In particular, p is surjective. Moreover, H•(p
−1(b)) does not depend on b.

Theorem 15.9 (Leray Spectral Sequence). Suppose π : E → B is a fibration with F =
π−1(b) for some b ∈ B, with B simply connected. Let M be an abelian group. There is a
spectral sequence

E2
pq = Hp(B;Hq(F ;M) −→ Hp+q(E;M).

Corollary 15.10. Suppose π : E → Sn is a fibration and F is a fiber, with n ≥ 2. Then
there exists a long exact sequence

· · · Hq(F ) Hq(E) Hq−n(F ) Hq−1(F ) Hq−1(E) · · ·

Proof. We have

E2
pq = Hp(S

n;Hq(F )) =

{
Hq(F ) if p = 0, n
0 otherwise

which gives the following diagram of E2
pq
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...
...

...
...

...

H2(F ) 0 · · · 0 H2(F ) 0 · · ·

H1(F ) 0 · · · 0 H1(F ) 0 · · ·

H0(F ) 0 · · · 0 H0(F ) 0 · · ·

p = 0 p = 1 · · · p = n− 1 p = n p = n+ 1

and if n > 2 then d2 = 0 and E3
pq = E2

pq, and in general

E2
pq = E3

pq = · · · = En
pq.

For En
pq, the map dn is non-trivial:

Hn−1(F ) 0

...
...

...
...

...

H2(F ) 0 · · · 0 H2(F ) 0 · · ·

H1(F ) 0 · · · 0 H1(F ) 0 · · ·

H0(F ) 0 · · · 0 H0(F ) 0 · · ·

p = 0 p = 1 · · · p = n− 1 p = n p = n+ 1

dn

This gives the exact sequence

(∗) 0 En+1
np Hq(F ) Hq+n−1(F ) En+1

0,q+n−1 0dn

Moreover, for r > n, we have that dr = 0 again. Therefore,

E∞pq = En+1
pq .

This gives the diagram
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E∞0n 0 · · · 0 E∞nn

...
... · · · ...

E∞01 0 · · · 0 E∞n1

E∞00 0 · · · 0 E∞n0

which gives a short exact sequence

(∗∗) 0 E∞0q Hq(E) E∞n,q−n 0

We then splice the exact sequences (∗) and (∗∗) to get the long exact sequence required. �

15.4. Spectral sequences of double complexes and their applications. Suppose C••
is a double complex, with nonzero terms only in the first quadrant. Let Tot(C) be the total
complex. We define a bounded filtration on Tot(C)

· · · ⊆ Fp Tot(C) ⊆ Fp+1 Tot(C) ⊆ · · ·

where

Fk Tot(C)n =
k⊕
p=0

Cp,n−p.

Let dh be the horizontal maps and dv be the vertical maps in the double complex, with
d = dh + dv and dhdv + dvdh = 0. We set

E0
pq =

Fp(Tot(C)p+q
Fp−1(Tot(C))p+q

= Cpq

and d0 = dv. Then

E1
pq = Hq(Cp•) −→ Hp+q(Tot(C••))

by Theorem 15.4. We have

d1 : E1
pq = Hv

q (Cp)→ E1
p−1,q = Hv

q (Cp−q,•)

is induced by dh, and so we write d1 = dh. Then also

E2
pq = Hh

pH
v
p (C••) −→ Hp+q(Tot(C••)).

We could also define Dpq = Cqp (the transposition of the double complex) and apply the
above construction to that. This gives the two spectral sequences

IIE2
qp = Hv

qH
h
p (C••) −→ Hp+q(Tot(C••))

IE2
pq = Hh

pH
v
q (C••) −→ Hp+q(Tot(C••))
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Let A be a right R-module and B be a left R-module. Then

F = A⊗R − is right exact

G = −⊗R B is right exact

We already proved (Theorem 9.10) that

LpF(B) ∼= LpG(A) = Torp(A,B)

but the proof can be reinterpreted using spectral sequences of double complexes.

Alternative proof of Theorem 9.10. Suppose P• → A, Q• → B are two projective resolutions,
and P ⊗ Q is the double complex. Applying the above result to this double complex, we
obtain

IIE2
qp = Hv

qH
h
p (P ⊗Q) −→ Hp+q(Tot(P ⊗Q)),

IE2
pq = Hh

pH
v
q (P ⊗Q) −→ Hp+q(Tot(P ⊗Q)).

We have that

Hv
q (P• ⊗Q•) = P• ⊗Hq(Q•) =

{
P• ⊗B if q = 0,
0 if q 6= 0.

Then

IE2
pq =

{
Hh
p (P• ⊗B) = LpG(A) if q = 0

0 if q 6= 0

Hence the diagram for IE2
pq is

...
...

...

0 0 0 · · ·

0 0 0 · · ·

L0G(A) L1G(A) L2G(A) · · ·

from which it is clear that dn = 0 for n ≥ 2. Hence

E2
pq = E3

pq = · · · = E∞pq .

This shows that

Hn(Tot(P ⊗Q)) = E∞n0 = LnG(A).

Similarly, we obtain that

IIE2
pq = Hn(Tot(P ⊗Q)) = LnF(B),

which proves the theorem. �
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One can also prove Künneth’s Formula 11.1 using spectral sequences. Suppose P is a complex
of flat R-modules, bounded from below. Let M be an R-module. Then there is a convergent
spectral sequence

E2
pq = Torp(Hq(P ),M) −→ Hp+q(P ⊗M),

called the Künneth spectral sequence.

Alternative proof of Kunneth’s Formula 11.1. Let P be a complex of flatR-modules, bounded
from below. Assume that Bn = d(Pn+1) is flat for all n. We show that there is an exact
sequence

0 Hq(P )⊗M Hq(P ⊗M) TorR1 (Hq−1(P ),M) 0

Let Zn = ker(d : Pn → Pn−1). We showed before that Zn is also flat, and we have a short
exact sequence

0 Bn Zn Hn(P ) 0

which gives a flat resolution of Hn(P ), showing that the tor dimension of Hn(P ) is at most 1.
Then

E2
pq = Torp(Hq(P ),M) = 0, for p ≥ 2 and p < 0.

The diagram for E2
pq is

...
...

...
...

0 H2(P )⊗M Tor1(H2(P ),M) 0

0 H1(P )⊗M Tor1(H1(P ),M) 0

0 H0(P )⊗M Tor1(H0(P ),M) 0

which shows that d2 = d3 = · · · = 0, and hence E∞pq = E2
pq. Thus Hq(P ⊗M) has a filtration

with quotients E2
0q and E2

1,q−1. This gives the short exact sequence

0 Hq(P )⊗M Hq(P ⊗M) TorR1 (Hq−1(P ),M) 0

as required. �

Another application is the base change for Tor.
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Theorem 15.11 (Base change for Tor). Let f : R→ S be a ring homomorphism. If A is a
right R-module, B is a left S-module, then

E2
pq = TorSp (TorRq (A, S), B) −→ TorRp+q(A,B).

Proof. Let P• → A be a projective R-resolution and Q• → B be a projective S-resolution.
Consider the double complex P ⊗R Q. Then

IE2
pq = Hv

pH
h
q (P ⊗R Q) = Hv

p (P ⊗R Hh
q (Q)) =

{
Hp(P ⊗R B) = TorRp (A,B) if q = 0,
0 if q 6= 0.

Note that P ⊗R − commutes with homology, because P is a projective and hence flat R-
module.

Then, by the usual argument, d2 = d3 = · · · = 0 and so IE2
pq =I E∞pq , and hence

Hp(Tot(P ⊗Q)) = E∞p0 = Hp(P ⊗R B) = TorRp (A,B).

Moreover,
IIE2

pq = Hv
pH

h
q (P ⊗R Q) = Hv

pH
h
q ((P ⊗R S)⊗S Q) = Hv

p (Hh
q (P ⊗R S)⊗S Q).

Here, Q is a projective and hence flat S-module, but not necessarily a flat R-module, so we
have to tensor with S first. Hence

IIE2
pq = Hv

p (Hh
q (P ⊗R S)⊗S Q) = Hv

p (TorRq (A, S)⊗S Q) = TorSp (TorRq (A, S), B),

completing the proof. �

15.5. Hyperhomology and hyperderived functors. Let A be an abelian category with
enough projectives and A• be a chain complex in A.

Definition 15.12. A Cartan–Eilenberg resolution (CE resolution) is an upper half plane
double complex P•• of projectives together with augmentation ε : P•0 → A•

...
...

...
...

· · · P−11 P01 P11 P21 · · ·

· · · P−10 P00 P10 P20 · · ·

· · · A−1 A0 A1 A2 · · ·

such that

(1) Pp• → Ap is a resolution and if we define

Bp(P•q, d
h) = im(dh : Pp+1,q → Ppq)

Zp(P•q, d
h) = ker(dh : Ppq → Pp−1,q)
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Hp(P•q, d
h) = Zp(P•q, d

h)/Bp(P•q, d
h)

then

Bp(P•q, d
h)→ Bp(A•)

Hp(P•q, d
h)→ Hp(A•)

are projective resolutions (which implies that Zp(P•q, d
h) → Zp(A•) is a projective

resolution),
(2) if Ap = 0 then Pp• is the zero complex.

Lemma 15.13. Every chain complex has a CE-resolution.

Proof. The proof is omitted but can be found in [Wei94]. It is similar to the proof that any
A ∈ A has a projective resolution 5.21. �

Definition 15.14. Suppose F : A → B is a right exact functor. We define the left hyper-
derived functor LpF : Ch(A)→ B of F as follows: if A• is a chain complex in A, then

LpF(A•) = Hp(Tot(F(P•)))

where P•• is a CE-resolution of A•. Dually, we can define the right hyperderived functor RpG
for a left exact functor G.

There are a lot of details which we will leave out: the fact that this functor is well-defined,
what this functor does to morphisms and so on. These are analogous to these properties for
left derived functors presented in Chapter 5.

Suppose for simplicity that A is bounded from below. We consider the two spectral sequences
for the double complex FP•• from Section 15.4. We have

IE2
pq = Hh

pH
v
q (F(P )) = Hh

p (LqF(A•)),

since Pp• → Ap is a projecitve resolution, so

Hv
q (F(Pp•)) = Lq(FAp)

by definition. For the other spectral sequence, we note that

Hq(F(P••)) = FHv
q (P••)

because the exact sequences

0 Zh
pq Ppq Bh

p−1q 0

0 Bpq Zpq Hh
pq 0

split. We then have

IIE2
pq = Hv

pH
h
q (F(P••)) = Hv

p (FHh
q (P••)) = (LpF)(Hh

q (A•))

because

Hh
q (P••)→ Hq(A•)

is a projective resolution.
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Both of these spectral sequences converge to

Hp+q(Tot(F(P••))) = Lp+qF(A•),

i.e.
IE2

pq = Hh
p (LqF(A•)) −→ Lp+qF(A•),

IIE2
pq = (LpF)(Hh

q (A•)) −→ Lp+qF(A•).

Dually, if F : A → B is a left exact functor, A• is a cochain complex, bounded from below,
then

IEpq
2 = Hp(RqF(A•)) −→ Rp+qF(A•),

IIEpq
2 = RpF(Hq(A•)) −→ Rp+qF(A•).

Theorem 15.15 (Grothendieck spectral sequence). Suppose A, B, C be abelian categories
where A, B have enough injectives, and

G : A → B

F : B → C
be left exact functors where G sends injectives to F-acyclic objects (RpF(A) = 0 for p > 0):

I, injective GI,F-acyclic

A B

C

RpF(G(I)) = 0, p > 0

G

FG F

We then have that
Epq

2 = (RpF)(RqG)(A) −→ Rp+q(FG)(A).

The idea is that we can compute the derived functors using acyclic objects, instead of pro-
jective resolutions. For example, we showed that to compute Tor, it is enough to consider
flat resolutions, and, indeed, flat objects are acyclic with respect to tensor products.

Proof. Suppose A → I• is an injective resolution. Then G(I•) is a cocomplex, and we can
apply the above construction to it. We obtain

IEpq
2 = Hp((RqF)(G(I•))) −→ (Rp+qF)(G(I•)).

Now, G(I•) is F -acyclic by assumption, and hence

RqF(G(Ip)) =

{
FG(Ip) if q = 0,
0 if q 6= 0.

This shows that
IEpq

2 =

{
Rp(FG)(A) if q = 0,
0 if q 6= 0.
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Hence

(Rp+qF)(G(I•)) = Rp+q(FG)(A).

Using the second spectral sequence, we immediately get that

IIEpq
2 = RpF(Hq(G(I•))) = RpF(RqG(A)).

Altogether, this shows that

RpF(RqG(A)) −→ Rp+q(FG)(A),

as required. �

Example 15.16. Let X, Y be topological spaces and f : X → Y be a continuous map.
Then the functor

f∗ : Sheaves(X)→ Sheaves(Y ),

(f∗F)(U) = F(f−1(U)),

for a sheaf F on X, sends injectives to injectives. Then

Γ(X;F) = F(X)

gives a functor

Γ(X;−) : Sheaves(X)→ Ab

and

RpΓ(X,F) = Hp(X;F)

the sheaf cohomology.

Then

(RpΓ)(Rqf∗)(F) = Hp(Y ;Rqf∗F),

and since

Γf∗F = f∗F(Y ) = F(f−1(Y )) = F(X) = Γ(X),

we get that

Rp+q(Γf∗)(F) = Hp+q(X;F).

Then the Grothendieck spectral sequence 15.15 gives

Hp(Y ;Rqf∗F) −→ Hp+q(X;F).

In particular, if Rqf∗F = 0 for q > 0, then

Hp(Y ; f∗F) = Hp(X;F).



106 HARM DERKSEN

16. Triangulated categories

Let A be an abelian category and Ch(A) be the category of cochain complexes on A. We
recall a few definitions.

Suppose f : A• → B•. The cone of f is given by

An+2 An+1

⊕ ⊕
Bn+1 Bn

cone(f)n+1 cone(f)n

−dA

−f

dB

d

and the boundary map d : cone(f)n → cone(f)n+1 is given by the matrix

d =

(
−dA 0
−f dB

)
.

We then have an exact sequence

0 B• cone(f)• A[−1]• 0.δ

Similarly, we define the cylinder of f :

An+1 An

⊕ ⊕
An+2 An+1

⊕ ⊕
Bn+1 Bn

cyl(f)n+1 cyl(f)n

dA

−dA

idA

−f

dB

d

and the boundary map d : cyl(f)n → cyl(f)n+1 is given by the matrix

d =

dA idA 0
0 −dA 0
0 −f dB

 .

We have exact sequences

0 A• cyl(f)• cone(f)• 0

0 B• cyl(f)• cone(−idA)• 0α

β
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with

α =

 0
0

idB

 , β = (idA 0 idB)

and αβ ∼ idB, βα = idB, so α and β are homotopy equivalences.

We construct a quotient category K = K(A) of Ch = Ch(A) by

Obj(K) = Obj(Ch)

HomK(A•, B•) = HomCh(A•, B•)/ ∼
where ∼ is the chain homotopy equivalence. It is easy to check that composition in K is
well-defined.

This makes K into an additive category with an additive functor

Ch→ K.

The cohomology functor Hn : Ch(A) → A factors through K because homotopy equivalent
maps induce the same maps on cohomology, and hence the triangle

Ch A

K

Hn

Hn

commutes.

The category K is universal with this property. Suppose F : Ch→ B is a functor such that if
f : A• → B• is a chain homotopy equivalence, then F (f) is an isomorphism, then F factors
through K.

To show this, we first note that we have maps

B• cyl(idB)

α

α′

β

where

α =

 0
0
id

 , α′ =

id
0
0

 .

We then have that

id = F(id) = F(βα) = F(β)F(α),

so F(α) and F(β) are inverses, and similarly F (α′) and F (β). Hence:

F(α′) = F(α)F(β)F(α′) = F(α).

Suppose f, g : B → C and f ∼ g, so

f − g = ds+ sd.
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Then γ = (f s g) : cyl(B)→ C is a chain map, and

γα = g, γα′ = f,

so

F(g) = F(γα) = F(γ)F(α),

F(f) = F(γα′) = F(γ)F(α′).

If i : A• → B• is a map, then we have a triangle

cone(u)

A• B•

δ

u

v

We will call this a strict exact triangle.

Definition 16.1. For u : A• → B•, v : B• → C•, w : C• → A[−1]•, the triangle

C•

A• B•

w

u

v

is called an exact triangle if there exists ũ : Ã• → B̃• and an isomorphism in K

f : A→ Ã, g : B → B̃, h : C → cone(ũ)

such that the diagram

A B C A[−1]

Ã B̃ cone(ũ) Ã[−1]

u

f

v

g

w

h f [−1]

ũ ṽ

commutes.

Example 16.2. The diagram

0

A• A•
idA

is an exact triangle, because the diagram

A A 0 A[−1]

A A cone(idA) A[−1]

=

idA

= =

idA
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commutes and letting C = cone(idA)

s =

(
0 −id
0 0

)
, dC =

(
−dA 0
idA dA

)
we get

sdC + dCs =

(
idA 0
0 idA

)
= idC ,

so idC ∼ 0.

Example 16.3. Suppose

C

A B

w

u

v

is exact. We show that

A[−1]

B C

−u[−1]

v

w

is exact. Assume without loss of generality that C = cone(u) and

v =

(
0

idB

)
, w = δ = (idA 0).

Letting D = cone(v), we get that

A B C A[−1] B[−1]

B C D B[−1]

u v

=

δ

= h

−u[−1]

=

v

π

where

π = (0 idA 0), h =

−uidA
0

 ,

and the map C → D is given by the matrix 0 0
idA 0
0 idB

 .

We have that

idD − hπ =

id u 0
0 0 0
0 0 id

 = sdD + dDs
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for the map

s =

0 0 −id
0 0 0
0 0 0

 .

Similarly, we obtain that

B

C[−1] A

v

−w[1]

u

is an exact triangle.

Definition 16.4. An additive category K is called a triangulated category if it has an auto-
morphism T : K → K and distinguished triples (u, v, w), called exact triangles, where

u : A→ B, v : B → C, w : C → TA

for some A,B,C, such that the following axioms are satisfied:

(TR 1) Every u : A→ B can be embedded in a triangle (u, v, w)

C

A B

w

u

v

and

0

A A
idA

is an exact triangle, and if (u, v, w) is isomorphic to (u′, v′, w′) and (u, v, w) is an
exact triangle, then (u′, v′, w′) is an exact triangle.

(TR 2) If (u, v, w) is an exact triangle, then

(v, w,−Tu) and (−T−1w, u, v)

are exact triangles.
(TR 3) If

C

A B

w

u

v

C ′

A′ B′

w′

u′

v′

are exact triangles and f : A → A′, g : B → B′ with gu = u′f are morphisms, then
there exists h : C → C ′ such that

(f, g, h) : (u, v, w)→ (u′, v′, w′)

is a morphism of exact triangles, i.e. the following diagram
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A B C TA

A′ B′ C ′ TA′

f g h Tf

commutes.
(TR 4) Suppose A,B,C,A′, B′, C ′ are objects in K and

• (u, j, ∂) is an exact triangle on (A,B,C ′),
• (v, x, i) is an exact triangle on (B,C,A′),
• (vu, y, δ) is an exact triangle on (A,C,B′),

then there exists an exact triangle (f, g, (Tj)i) on (C ′, B′, A′) such that

∂ = δf, x = gy, ig = (Tu)δ.

We can represent this as the diagram

B′ C ′

A

C B

A′

δ

g

∂

f

vu u

x

y j

v
(Tj)i

i

in which all the triangles commute. (Note that, as described above, only some of
these triangles are exact. We distinguish in blue the arrows that go to T applied to
the objects.)

Theorem 16.5. For an abelian category A, the quotient K(A) is a triangulated category
with the automorphism T (A) = A[−1].

Proof. Axioms (TR1), (TR2), (TR3) have already been verified in the discussion above. We
only have to show that (TR4) holds.

Without loss of generality,

C ′ = cone(u), B′ = cone(vu), A′ = cone(v)

and we can represent the maps as follows

j =

(
0

idB

)
: B → C ′, ∂ =

(
idA 0

)
: C ′ → A,

y =

(
0

idC

)
: C → B′, δ =

(
idA 0

)
: B′ → A,
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x =

(
0

idC

)
: C → A′, i =

(
idB 0

)
: A′ → B.

Taking

f =

(
idA 0
0 v

)
, g =

(
u 0
0 idC

)
,

one can easily verify that

δf =
(
idA 0

)
= ∂, gy = x,

yv =

(
0
v

)
= fj, ig = (Tu)δ.

We have to prove that (f, g, (Tj)i). We have

C ′ B′ A′ C ′[−1]

C ′ B′ D C ′[−1]

=

idA 0

0 v



=

u 0

0 idC



h=


0 0

idB 0

0 0

0 idC



 0 0

idB 0



=

idA 0

0 v

 
0 0

0 0

idA 0

0 idC



idA 0 0 0

0 idB 0 0



where D = cone(f). We construct a chain map

π =

(
0 idb u 0
0 0 0 idC

)
: cone(f)→ A′,

and claim that this gives an inverse map in the quotient category. We have that

dA′ =

(
−idb 0
−v dC

)
, dD =


dA 0 0 0
u −dB 0 0
−idA 0 −dA 0

0 −v −vu dC


and dDh = hdA′ , dA′π = πdD, πh = idA,

hπ =


0 0 0 0
0 idB u 0
0 0 0 0
0 0 0 idC

 .
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Setting

s =


0 0 −idB 0
0 0 0 0
0 0 0 0
0 0 0 0


we get that

sdD + dDs =


idA 0 0 0
0 0 −u 0
0 0 idA 0
0 0 0 0

 = idD − hπ.

This shows that idD ∼ hπ, and hence h, π are homotopy equivalences, i.e. isomorphisms
in K. Finally, πp = g, p = hπp = hg (in K). �

Similarly, Kb = Chb / ∼, bounded chain complexes, K+, positive chain complexes, K− nega-
tive chain complexes, are all triangulated categories.

Definition 16.6. If H : K → A is an additive functor where K is a triangulated category
and A is an abelian category, then H is called a cohomological functor if for every exact
triangle ∆

C

A B

w

u

v

we have a long exact sequence

· · · H(T i−1C) H(T iA) H(T iB) H(T iC) H(T i+1A) · · ·H(T iu) H(T iv) H(T iw)

We will then write H i(A) = H(T iA) and H i(u) = H(T iu).

Example 16.7. The functor

K(A) A

A• H0(A•)

is a cohomological functor. Indeed, for an exact triangle

cone(u)

A Bu

we have a long exact sequence

· · · H i(A•) H i(B•) H i(cone(u)) H i+1(A•) = H i(A[−1]) · · ·
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Proposition 16.8. If K is a triangulated category, X ∈ ObjK, then HomK(X,−) is a
cohomological functor K → A.

Proof. Suppose

C

A B

w

u

v

is an exact triangle. By (TR 1), there is an extra triangle

0

A A
idA

and by (TR 3), there exists h such that the squares in

A A 0 TA

A B C TA

id

id

0

u h

0

id

u v w

commute, so that vu = h0 = 0. By (TR 2), we also get that wv = (Tu)w = 0.

We have a chain complex

· · · A B C

TA TB TC · · ·

and this gives a chain complex

· · · HomK(X,A) HomK(X,B) HomK(X,C)

HomK(X,TA) HomK(X,TB) HomK(X,TC) · · ·
Suppose b : X → B with vb = 0. We have

X X 0 TX TX

A B C TA TB

id

T−1h b

−id

h TB

u v w −Tu
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then by (TR 3) we get −(Tu)h = −Tb, so u(T−1h) = b. This shows exactness at
HomK(X,B). We can first rotate the triangles, and then shift using T to show exactness
everywhere. �

Example 16.9. In K(Ab), we have

Z[0] · · · 0 Z 0 0 · · ·

· · · A−1 A0 A1 A2 · · ·d0

and so

HomCh(Z[0], A•) = ker(d0)

HomK(Z[0], A•) = ker(d0)/ ∼ = ker(d0)/ im(d−1) = H0(A).

This shows that the cohomology functor is representable.

17. Derived categories

Suppose C is a category and S is a collection of morphisms.

Definition 17.1. A localization of C with respect to S is a category S−1C together with a
functor q : C → S−1C such that

(1) q(s) is an isomorphism in S−1C for all s ∈ S,
(2) (S−1C, q) is universal with property (1), i.e. for every category D and functor

F : C → D

such that F(s) is an isomorphism for all s ∈ S, there exists a unique functor

F̃ : S−1C → D such that the diagram

C S−1C

D

q

F
F̃

commutes.

If C is a small category, then S−1C exists. Indeed, let S−1C be the free category on Obj C
generated by all morphisms in C and all s̃, s ∈ S, modulo relations from C and ss̃ = id,
s̃s = id for all s ∈ S. Morphisms in S−1C are of the form s̃4s3s2s̃1 and so on.

Example 17.2. If S is the collection of chain homotopy equivalences in Ch(A), then

K = S−1 Ch(A).

Definition 17.3. If Q is the collection of all quasi-isomorphisms in Ch(A), then the derived
category of A is

D(A) = Q−1 Ch(A).
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This definition is very abstract so we will try to go via the quotient category K to get a
better understanding.

Let R be the collection of quasi-isomorphisms in K(A), then R−1K(A) = D(A):

Ch(A) S−1 Ch(A) = K(A) R−1K(A)

Q−1 Ch(A)

where we get the dotted arrows from the universal properties, and they are unique so they
are inverses.

Definition 17.4. Let C be any category. A set of morphisms S is a multiplicative system if

(1) S is closed under composition,
(2) idX ∈ S so any x ∈ Obj C,
(3) Ore condition: if t : Z → Y is in S and g : X → Y (in C), then there exists a

commuting square

W Z

X Y

f

s t

g

for s ∈ S, f ∈ Mor(C) and also the dual statement holds,
(4) if f, g : X → Y in C, then: there exists s ∈ S such that sf = sg if and only if there

exists t ∈ S such that ft = gt.

The idea behind this definition is to represent morphisms in S−1C in the form fs−1 = fs̃
with s ∈ S, f ∈ C:

A B C

in S−1C

s f

The Ore condition shows that we can write s−1
1 f2 where s1 ∈ S as f3s

−1
3 where s3 ∈ S, and

we can write the composition in the same form again

(f1s
−1
1 )(f2s

−1
2 ) = f1f3s

−1
3 s−1

1 = (f1f3)(s1s3)−1.

Define a category D with Obj(D) = Obj(C) and HomD(A,B) as the set of all diagrams

A C Bs f

with s ∈ S and f ∈ C, modulo ≡ where

[A
s1←− C1

f1−→ B] ≡ [A
s2←− C2

f2−→ B]

if there exist t1, t2 ∈ S with f1t1 = f2t2 and s1t2 = s2t2:
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C1

A D B

C2

s1 f1
t1

t2s2 f2

The composition is defined by considering the following diagram

D C2 A3

C1 A2

A1

f̃1

s̃2 s2

f2

f1

s1

h2∈D

h1∈D

and letting

A1 D A3
s̃2s1 f2f̃1

to be the composition. One can check that ≡ is an equivalence relation and composition is
well-defined.

We have a functor F : C → D, sending f : A→ B in C to

F(f) = [A
idA←− A

f−→ B] ∈ HomD(A,B).

We claim that if s ∈ S, then F(s) is an isomorphism in D. Indeed,

F(s) = [A
idA←− A

s−→ B]

has inverse

[B
s←− A

idA−→ A]

because the composition

[B
s←− A

s−→ B]

is equivalent to

[B
idB←− B

idB−→ B]

via the diagram

A

B A B

B

s a
idA

s
idB idB
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Finally, one can show that (D,F) has the universal property of localization. This gives a
very concrete description of a localization with respect to a multiplicative system.

For an abelian category A, we can hence describe the derived category as follows:

(1) K(A) = U−1 Ch(A) where U is a collection of homotopy equivalences (so we replace
morphisms by equivalence classes, making the set of morphisms smaller),

(2) D(A) = S−1K(A) where S is a collection of quasi-isomorphisms (this S is actually a
multiplicative system, and hence morphisms in D(A) can be described as fractions
of morphisms in K(A)).

We still have to show that the collection of quasi-isomorphisms is a mulitplicative system.
We do this in more generality.

Proposition 17.5. Suppose K is a triangulated category, A is an abelian category, and
H : K → A is a cohomological functor. Let S be the collection of all s such that Hn(s) is an
isomorphism for all n. Then S is a multiplicative system.

Proof. We check the axioms:

(1), (2) By functoriality of H, S is closed under composition and idx ∈ S.
(3) Ore property. Given s ∈ S, f ∈ K, we want to find t ∈ S, g ∈ K such that

W Z

X Y

t

g f

s

commutes. Embed s in an exact triangle

C

Z Y

δ

s

u

and then embed uf in an exact triangle and rotate it to get an exact triangle

C

W X

v

t

uf

Together, by (TR 3), there exists g : W → Z such that the following diagram

W X C TW TX

Z Y C TZ TY

t

g

uf

f =

v

Tg Tf

s u

commutes. Since Hn(s) is an isomorphism for all n, we get

Hn(Z) Hn(Y ) Hn(C) Hn+1(Z) Hn+1(Y )
∼= ∼=

so Hn(C) = 0, and hence Hn(t) is an isomorphism for all n. The dual property holds
by considering the dual category (the dual category of a triangulated category is also
triangulated).
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(4) If f, g : X → Y , we show that sf = sg for some s ∈ S if and only if ft = gt for some
t ∈ S.

We show the ‘only if’ implication; the other implication is symmetric. Suppose
s : Y → Y ′ satisfies sf = sg and s ∈ S. Let h = f − g and embed s in an exact
triangle

Y ′

Z Y

δ

u

s

From the long exact sequence, as above, we get H•(Z) = 0. Since HomK(X,−) is a
cohomological functor, we have the exact sequence

HomK(X,Z) HomK(X, Y ) HomK(X, Y ′)

v uv = h sh = 0

and, since sh, by exactness, there exists v : X → Z such that uv = h. Now, v lies in
an exact triangle

Z

X ′ X

w

t

v

But vt = 0, so 0 = uvt = ht = ft − gt. Hence ft = gt. Finally, since H•(Z) = 0,
Hn(t) is an isomorphism for all n, and hence t ∈ S.

This shows that S is a multiplicative system. �

By the above discussion, this shows that morphisms in S−1K are of the form fs−1 for s ∈ S,
f ∈ K. A morphism between X and Y is

X ′

X Y

s f

and is sometimes referred to as a roof.

Proposition 17.6. The derived category D(A) = S−1K(A) is a triangulated category with
T (fs−1) = T (f)T (s)−1.

Proof. First note that T is well-defined: if f1s
−1
1 = f2s

−1
2 , then T (f1)T (s1)−1 = T (f2)T (s2)−1.

An exact triangle in D(A) is a triangle that is isomorphic to an exact triangle in K(A). We
need to check the 4 axioms, but we will only check some of them, the rest can be found
in [Wei94].

(TR 1) Suppose f = us−1 is a morphism X → Y in D(A):
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Z

X Y

s u

We have that u lies in a exact triangle in K(A)

U

Z Y

w

u

v

and we have the diagram

Z Y U Z[−1]

X Y U X[−1]

u

s−1

f v

= =

s[−1]

s−1[−1]

Then

U

X Y

s[−1]w

f

v

is an exact triangle.

The (TR 2) axioms is clear. The axioms (TR 3) and (TR 4) require a proof, but we omit it
here. �

Similarly, we can define Db(A) from bounded chain complexes and D+(A) from positive
chain complexes.

Proposition 17.7. Suppose I• is a cochain complex of injectives, bounded from below, Z•

is a cochain complex. If t : I• → Z• is a quasi-isomorphism in K(A), then there exists
s : Z• → I• with st = id in K(A).

Corollary 17.8. Suppose I• is a cochain complex of injectives, bounded from below, in D(A).
Then HomD(A)(X, I) = HomK(A)(X, I).
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