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Introduction

Recall that a field (F,+,×) satisfies

(F,+) abelian group,
(F ∗,×) abelian group,
a(b+ c) = ab+ ac.

For example, R, C, Q are fields.

Finite fields: Fp = Zp (integers modulo p where p is a prime) and, more generally, for q = pa

there exists a unique field Fq of order q.

The characteristic of a field F is the smallest n ∈ N such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

and is 0 if no such n exists.

For example, char(R) = 0, char(Fq) = p.

Definition. An algebra over F is a vector space over F , with a multiplication (vw ∈ V for
all v, q ∈ V ) satisfying bilinearity rules:

(1) v(w1 + w2) = vw1 + vw2 and (v1 + v2)w = v1w + v2w
(2) λ(vw) = (λv)w = v(λw)

for all vi, wi, v, w ∈ V , λ ∈ F .

Examples.

(1) V = Mn(F ), n× n matrices over F with matrix multiplication.
(2) V = R3, with the vector product vw = v × w.
(3) V any vector space, product vw = 0 for all v, w ∈ V .

Definition. An algebra V is associative if

(xy)z = x(yz)

for all x, y, z ∈ V .

For example, Mn(F ) is associative, but (R3,×) is not.

Definition. A Lie algebra is an algebra V , with product [xy] (sometimes written [x, y] for
clarity), satisfying:

(1) [xx] = 0 for all x ∈ V (skew-symmetric),
(2) [[xy]z] + [[yz]x] + [[zx]y] = 0 for all x, y, z ∈ V (Jacobi identity).

Note. For x, y ∈ V , (1) implies

0 = [x+ y, x+ y] by (1)
= [xx] + [xy] + [yx] + [yy] by bilinearity
= [xy] + [yx] by (1)
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and therefore [yx] = −[xy] (skew-symmetry). However, the converse implication does not
hold in general.

We call [vw] a Lie product or a Lie bracket.

Examples.

(1) Any V with the zero product [vw] = 0 is an abelian Lie algebra.
(2) We have that (R3,×) is a Lie algebra; indeed, recall that

(1) v × v = 0 for all v ∈ R3,
(2) since (u× v)× w = (u · w)v − (v · w)u, we have that

(u×v)×w+(v×w)×u+(w×u)×v = ((u·w)v−(v·w)u)+((v·u)w−(w·u)v)+((w·v)u−(u·v)w) = 0.

(3) Let V be an associative algebra with the product vw. We define a bracket on V by

[vw] = vw − wv
for all v, w ∈ V . Then:
(1) [vv] = vv − vv = 0,
(2) [[uv]w] + [[vw]u] + [[wu]v] = ((uv− vu)w−w(uv− vu)) + ((vw−wv)u−u(vw−

wv)) + ((wu− uw)v − v(wu− uw)) = 0 as V is associative.
Hence [vw] is a Lie product on V .

(4) Apply example (3) to the associative algebra V = Mn(F ), i.e. define [AB] = AB−BA
for all A,B ∈ V . This makes V a Lie algebra, called the general linear Lie algebra,
denoted gl(n, F ). Note. dim gl(n, F ) = n2,

Definition. Let V be an algebra with product vw. We say W ⊆ V is a subalgebra if W is a
subspace and is closed under multiplication, i.e. x, y ∈ W implies xy ∈ W .

(5) Define
sl(n, F ) = {A ∈ gl(n, F ) : Tr(A) = 0}

where Tr(A) =
∑
i

aii for A = (aij). We claim that sl(n, F ) is a subalgebra of

gl(n, F ). It is clearly a subspace. We need to show that for A,B ∈ sl(n, F ), we have
that [AB] ∈ sl(n, F ), i.e. Tr(A) = Tr(B) = 0 implies that Tr(AB −BA) = 0. To see
this, note that

Tr(AB) =
∑
i

∑
j

aijbji,

Tr(BA) =
∑
j

∑
i

bjiaij,

so Tr(AB) = Tr(BA). We call sl(n, F ) the special linear Lie algebra.
Note. dim sl(n, F ) = n2 − 1.

(6) Suppose that char(F ) 6= 2 (i.e. 1 6= −1). Define

o(n, F ) = {A ∈ gl(n, F ) : AT = −A}.
We claim that this is a Lie subalgebra of gl(n, F ), called the orthogonal Lie algebra.
It is clear that o(n, F ) is a subspace. For A,B ∈ o(n, F ), we have that

[AB]T = (AB −BA)T = BTAT − ATBT = (−B)(−A)− (−A)(−B) = BA− AB = −[AB],

and so [AB] = −[AB].
Note. dim o(n, F ) = 1

2
(n2 − n). (Exercise.)
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(7) Define

t(n, F ) = {A ∈ gl(n, F ) : A is upper triangular}.
It is easy to check this is a Lie subalgebra of gl(n, F ).

(8) Define

u(n, F ) = {A ∈ t(n, F )) : aii = 0 for all i}.
It is easy to check this is a Lie subalgebra of t(n, F ).

(9) Let V be a vector space of dimension n over F , and let

L = End(V ),

the vector space of al linear transformations V → V .
Then L is an associative algebra with product being composition of functions. The

corresponding Lie algebra with

[fg] = fg − gf (f, g ∈ L)

is called gl(V ).
Note. The Lie algebras gl(V ) and gl(n, F ) are isomorphic (the definition of an

isomorphism is below).
Similarly, we can define Lie subalgebras of gl(v) : sl(V ), o(V ), t(V ), u(V ).

Why study Lie algebras? We will see more later, but Lie algebras have fundamental connec-
tions with the following topics:

• Lie groups and differential geometry
• Finite simple groups
• Algebraic groups
• Root systems
• Reflection groups

1. Basic theory

A. Homomorphisms and Ideals.

Definition. Let L be a Lie algebra. We say I ⊆ L is an ideal of L if

(1) I is a subspace of L
(2) [IL] ⊆ I, where [IL] = Span{[il] : i ∈ I, l ∈ L} (i.e. [il] ∈ I for all i ∈ I, l ∈ L).

Note. [li] = −[il], so also [IL] ⊆ I.

Examples.

(1) 0, L are ideals.
(2) sl(n) is an ideal of gl(n) as [AB] = AB −BA ∈ sl(n) for all A ∈ sl(n).1

Note. If I is an ideal then I is a subalgebra of L. Not conversely, for example t(2) is a
subalgebra of gl(2) which is not an ideal.

1We write gl(n), sl(n), . . . for gl(n, F ), sl(n, F ), . . ., if we do not wish to specify the underlying field F .
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Definition. Let L be a Lie algebra. The centre of L is

Z(L) = {x ∈ L : [xl] = 0 for all l ∈ L}.

For example, Z(gl(n)) = {A : [AB] = 0 for all B ∈ gl(n)} = {A : AB = BA for all B ∈
gl(n)}. In fact, Z(gl(n)) = {λIn : λ ∈ F} (which is an exercise on Sheet 1).

Note. Z(L) is an ideal of L.

Definition. Let L, M be Lie algebras over F . We say ϕ : L→M is a (Lie) homomorphism
if

(1) ϕ is linear,
(2) ϕ([xy]) = [ϕ(x), ϕ(y)] for all x, y ∈ L.

Moreover, ϕ is an isomorphism if it is a bijective homomorphism.

Example. If V = F n then gl(V ) ∼= gl(n, F ). Fix a basis B of V . Then for T ∈ gl(v)

φ : T 7→ [T ]B

is a (Lie) isomorphism. (Exercise.)

The adjoint homomorphism. Let L be a Lie algebra. For x ∈ L, define

adx : L→ L

by

(adx)(y) = [xy] for all y ∈ L.
Then adx ∈ gl(L).

Proposition 1.1. The map

ad: L→ gl(L)

(sending x to adx) is a Lie homomorphism.

Proof. Clearly, ad is linear, as

ad(x+ y) = ad x+ ad y, ad(λx) = λ adx.

So we need to check that

ad[xy] = [ad x, ad y] = (ad x)(ad y)− (ad y)(adx).

To check this, let l ∈ L. Then

[adx, ad y](l) = [x[yl]]− [y[xl]]
= [[ly]x] + [[xl]y]
= −[[yx]l] by the Jacobi identity
= ad[xy] (l)

�

Proposition 1.2. If ϕ : L → M is a Lie homomorphism, then Kerϕ is an ideal of L and
Imϕ is a Lie subalgebra of M .
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Proof. We have that Kerϕ is a subspace, and for x ∈ Kerϕ, l ∈ L, we have that

ϕ[xl] = [ϕ(x)ϕ(l)] = 0,

and hence [xl] ∈ Kerϕ. Thus Kerϕ is an ideal of L.

Moreover, Imϕ is a subspace, and for x, y ∈ L

[ϕ(x)ϕ(y)] = ϕ[xy] ∈ Imϕ,

hence Imϕ is a Lie subalgebra. �

Note. Ker ad = Z(L).

B. Derivations.

Definition. Let A be an algebra over F . We say a linear map D : A→ A is a derivation if

D(xy) = xD(y) +D(x)y

for all x, y ∈ A.

Let DerA = {all derivations of A}.

Proposition 1.3. The set DerA is a Lie subalgebra of gl(A).

Proof. Clearly, DerA is a subspace: 0 ∈ DerA, and if D,E ∈ DerA, then D + A ∈ DerA
and λD ∈ DerA for λ ∈ F . To show it is a subalgebra, for D,E ∈ DerA, check that
[DE] = DE − ED ∈ DerA. �

Examples.

(1) Let A = C∞(R) be the vector space of infinitely differentiable functions R→ R. This
is an algebra with product (fg)(x) = f(x)g(x). The map D : A → A, D(f) = f ′, is
a derivation.

(2) Let L be a Lie algebra. Let x ∈ L. We claim that adx : L→ L (sending y to [xy]) is
a derivation of L. Indeed, we know that adx is linear, and

(adx)[yz] = [x[yz]]
= −[[yz]x]
= [[xy]z] + [[zx]y] by the Jacobi identity
= [(adx)(y), z] + [y, (adx)(z)]

Therefore, we obtain the following result.

Proposition 1.4. If L is a Lie algebra, then

adL ⊆ DerL ⊆ gl(L)

(where adL = {adx : x ∈ L}), are both Lie subalgebras of gl(L).
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C. Structure constants. Let L be a Lie algebra. Assume that x1, . . . , xn is a basis of L.
The brackets [xixj] for all i, j determine the Lie bracket on L. We write

[xixj] =
n∑
k=1

aijkxk (aijk ∈ F ).

Then the scalars aijk are the structure constants of L with respect to the basis x1, . . . , xn.

Remarks.

(1) The fact that [xy] is a Lie bracket implies conditions on the aijk. For example,
[xixi] = 0 implies that aiik = 0 for all k. (For more, see Sheet 1.)

(2) If L1, L2 are Lie algebras over F , with bases B1, B2, having the same structure
constants, then L1

∼= L2. (For details, see Sheet 1.)

Examples.

(1) Consider sl(2), the Lie algebra of 2× 2 matrices of trace 0. It has dimension 3, and
standard basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

It has structure constants:

[ef ] = ef − fe = h

[eh] = eh− he = −2e

[fh] = fh− hf = 2f

(and [ee] = 0, [fe] = −[ef ]). We can get all the other structure constants from these.
(2) Consider (R3,×), a 3-dimensional Lie algebra over R. It has standard basis:

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

and structure constants

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

(3) Consider o(3), the orthogonal Lie algebra of 3 × 3 matrices A such that AT = −A
(assuming charF 6= 2). It has dimension 3, and standard basis:

S1 =

 0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

 0 −1 0
1 0 0
0 0 0

 .

It has structure constants:

[S1S2] = S1S2 − S2S1 = S3,

[S2S3] = S1,

[S3S1] = S2.

These are the same structure constants as for (R3,×). Hence

(R3,×) ∼= o(3,R).
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D. Quotient Algebras. Let be L a Lie algebra and I be an ideal of L (so I is a subspace
and [IL] ⊆ I).

We have the quotient vector space L/I:

vectors are cosets x+ I (for x ∈ L)
addition: (x+ I) + (y + I) = (x+ y) + I
scalar multiplication: λ(x+ I) = (λx) + I

Proposition 1.5. The vector space L/I is a Lie algebra with bracket

[x+ I, y + I] = [xy] + I for all x, y ∈ L.

Proof. We check that this bracket is well-defined. Suppose x1 + I = x2 + I, y1 + I, y2 + I.
This implies that x1 − x2, y1 − y2 ∈ I, and hence

[(x1 − x2)y1] + [x2(y1 − y2)] ∈ I (since I is an ideal),

so [x1y1]− [x2y2] ∈ I, which means that [x1y1] + I = [x2y2] + I.

Finally, we note that this bracket is bilinear, skew-symmetric, and satisfies the Jacobi identity,
since the original bracket had these properties. �

Proposition 1.6 (First Isomorphism Theorem). If ϕ : L → M is a Lie homomorphism,
then Kerϕ is an ideal of L, Imϕ is a subalgebra of M , and there is a Lie isomorphism

L

Kerϕ
∼= Imϕ.

Proof. Write I = Kerϕ and define α : L
I
→ Imϕ by

α(x+ I) = ϕ(x) for all x ∈ L.
It is easy to check that α is well-defined, bijective, and a Lie homomorphism. �

Example. Let L be a Lie algebra. We know ad: L → gl(L) is a Lie homomorphism, and
Ker(ad) = Z(L), so

L

Z(L)
=

L

Ker(ad)
= adL.

Definition. A Lie algebra L is simple if dimL ≥ 1 and its only ideals are 0 and L.

Example. The Lie algebra sl(2, F ) is simple, provided char(F ) 6= 2. (See Coursework 1.)

2. Lie algebras of small dimension

We classify Lie algebras of dimension less than or equal to 3.

Abelian Lie algebras ([xy] = 0 for all x, y) of same dimension over F are isomorphic. So, up
to isomorphism, there exists a unique Lie algebra over any F of dimension n for all n.

Thus we study non-abelian Lie algebras. We organise the study via two ideals: the centre

Z(L) = {x ∈ L | [xy] = 0 for all y ∈ L}
and the derived algebra

L′ = Span{[xy] : x, y ∈ L}.
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Also, if L1, L2 are Lie algebras over F , their direct sum is

L1 ⊕ L2 = {(x1, x2) : xi ∈ Li}
with bracket

[(x1, x2), (y1, y2)] = ([x1y1], [x2y2])

which makes L1 ⊕ L2 a Lie algebra.

Dimension 1. Any Lie algebra of dimension 1 is abelian (as [xx] = 0).

Dimension 2. There is a unique abelian and a unique non-abelian Lie algebra of dimen-
sion 2.

Proposition 2.1. Up to isomorphism, there exists a unique non-abelian Lie algebra of di-
mension 2 over any F : it has a basis x, y with [xy] = x (which determines all the structure
constants).

Proof. If u, v is a basis of L, then [uv] 6= 0 (as L non-abelian), so L′ = Span([uv]) is a
1-dimensional Lie algebra. Let x = [uv] so L′ = Span(x). Extend to a basis x, y of L. Since
L′ is an ideal:

[xy] = λx for some λ ∈ F ∗.
Replace y by λ−1y to get [xy] = x.

Finally, we check that the axioms (skew-symmetry, Jacobi) hold for this Lie bracket. (See
Sheet 1, Question 2 (ii)) �

Dimension 3. Let L be non-abelian of dimension 3. Then Z(L) has dimension 0, 1 or 2,
and L′ has dimension 1, 2 or 3.

Organise the study by cases for dimL′ and containment between L′ and Z(L).

(A) dimL′ = 1. We consider two cases
(a) L′ ⊆ Z(L),
(b) L′ 6⊆ Z(L).

Proposition 2.2. Up to isomorphism, there exists a unique 3-dimensional Lie alge-
bra L over F such that dimL′ = 1 and L′ ⊆ Z(L), namely

u(3, F ) =


 0 ∗ ∗

0 0 ∗
0 0 0

 ⊆ gl(3, F ).

Proof. Let L′ = Span(z) where z = [fg]. We claim that f, g, z is a basis of L. Since L
is 3-dimensional, we only have to check that they are linearly independent. Suppose
that

αf + βg + γz = 0.

By assumption, z ∈ Z(L). Bracketing the equation with f , we obtain β = 0, and
bracketing the equation with g, we obtain α = 0. Thus also γ = 0. Therefore, L has
a basis f, g, z with structure constants

[fg] = z, [fz] = [gz] = 0.
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Finally, u(3, F ) is such a Lie algebra, taking

f =

 0 1 0
0 0 0
0 0 0

 , g =

 0 0 0
0 0 1
0 0 0

 , z =

 0 0 1
0 0 0
0 0 0

 .

(One can verify this by multiplying the matrices.) �

Definition. We call u(3, F ) the Heisenberg Lie algbera over F .

Proposition 2.3. Up to isomorphism, there exists a unique 3-dimensional Lie alge-
bra L over F such that dimL′ = 1 and L′ 6⊆ Z(L), namely L1⊕L2, where dimL1 = 1
and dimL2 = 2, L2 non-abelian (as in Proposition 2.1).

Proof. Let L′ = Span(x). As x 6∈ Z(L), there exists y ∈ L such that

[xy] = αx, α 6= 0.

Replace y by α−1y to get [xy] = y.
Extend x, y to a basis x, y, w of L. Let

[xw] = ax, [yw] = bx.

We claim that there exists z ∈ Z(L) such that x, y, z is a basis of L. To show this,
observe that

[x, αx+ βy + γz] = (β + γa)x,

[y, αx+ βy + γz] = (−α + γb)x.

Take γ = 1, α = b, β = −a. So if

z = bx− ay + w

then z ∈ Z(L) and x, y, z is a basis of L. Finally

L ∼= Span(x, y)⊕ Span(z) ∼= L2 ⊕ L1,

as required. �

Note. L ∼= t(2, F ) =

{(
∗ ∗
0 ∗

)}
⊆ gl(2, F ). (Exercise)

(B) dimL′ = 2.

Lemma 2.4. Suppose dimL = 3, dimL′ = 2. Then
(1) L′ is abelian,
(2) for x ∈ L \ L′ the map adx : L′ → L′ is an isomorphism.

Proof. For (1), let L′ = Span(y, z) and extend to a basis x, y, z of L. Let [yz] =
αy + βz. The matrix

(ad y)x,y,z =

 0 0 0
∗ 0 α
∗ 0 β

 .

Now, Tr(ad y) = 0 (Sheet 1, Question 4). So β = 0. Similarly α = 0 by considering
ad z. Therefore, [yz] = 0 and L′ is abelian.

For (2), note that as [yz] = 0, L′ = Span([xy], [xz]). Hence ad x : L′ → L′ is
surjective, thus an isomorphism. �
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Assume now F = C. Two cases:
(a) There exists x ∈ L \ L′ such that adx : L′ → L′ is diagonalisable.
(b) Not (a).

Proposition 2.5. Suppose dimL = 3, dimL′ = 2 and (a) holds. Then there exists
µ ∈ F ∗ and a basis x, y, z of L such that

[xy] = y, [xz] = µz, [yz] = 0.

These structure constants define a Lie algebra Lµ, and Lµ ∼= Lν if and only if µ = ν±1.

Proof. By (a), there exist basis y, z of L′ such that

[xy] = λy, [xz] = µz

and λ, µ 6= 0 by Lemma 2.4 (2). Rescale x to take λ = 1. Also [yz] = 0 by
Lemma 2.4 (1). Finally, we need to check the last assertion. (Sheet 1, Questions 2
and 6). �

Proposition 2.6. Suppose F = C, dimL = 3, dimL′ = 2, and (b) holds. There is
a unique (up to isomorphism) Lie algebra L with basis x, y, z and

[xy] = y, [xz] = y + z, [yz] = 0.

Proof. Let x ∈ L \ L′. As F = C, adx : L′ → L′ has an eigenvector y 6= 0, and we
can rescale x to take [xy] = y. Let L′ = Span(y, z) and

[xz] = λy + µz.

By (b), λ 6= 0. Scale z to take λ = 1. So

(adx)y,z =

(
1 1
0 µ

)
.

By (b), µ = 1. Hence

[xy] = y, [xz] = y + z, [yz] = 0.

Finally, we check these define a Lie algebra. (Sheet 1, Question 2(ii)) �

(C) dimL′ = 3. Assume F = C.

Proposition 2.7. Assume F = C, dimL = 3 and L′ = L. Then L ∼= sl(2,C).

Proof. (1) For 0 6= x ∈ L, adx : L→ L has rank 2.
If x, y, z is a basis, then L′ = Span([xy], [xz], [yz]), so [xy] and [xz] are linearly
independent.

(2) There exists h ∈ L such that adh has a nonzero eigenvalue.
Let 0 6= x ∈ L and assume ad x has only eigenvalue 0. As adx has rank 2, by (1),
the Jordan Canonical Form of ad x is 0 1 0

0 0 1
0 0 0


So there exists a basis x, y, z such that [xy] = x, [xz] = y. So ad y has
eigenvalue −1.
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By (2), there exist h, x ∈ L such that [hx] = αx for α 6= 0. As Tr(adh) = 0 (Sheet 1,
Question 4), the eigenvalues of adh are 0, α, −α. So there exists a basis h, x, y with

[hx] = αx, [hy] = −αy.
To find [xy], note that

[h[xy]] = [[hx]y] + [x[hy]] by the Jacobi identity
= α[xy]− α[xy]
= 0

Therefore, [xy] ∈ Ker(adx) = Span(h), so [xy] = λh for λ 6= 0 (as L′ = L). Rescale
h (h 7→ 2

α
h) to take α = 2. Then rescale x (x 7→ 1

λ
x) to take λ = 1. So now

[hx] = 2x, [hy] = −2y, [xy] = h.

These are the structure constants for the basis e, f, h of sl(2,C). So L ∼= sl(2,C), as
required. �

Note. Proposition 2.7 is not true over other fields F .

3. Soluble and nilpotent Lie algebras

Let L be a Lie algebra, I, J be ideals. Define:

I + J = {i+ j : i ∈ I, j ∈ J},
[IJ ] = Span{[ij] : i ∈ I, j ∈ J} ⊆ I ∩ J.

Proposition 3.1. The sets I ∩ J , I + J and [IJ ] are ideals.

Proof. The fact that I∩J , I+J are ideals is left as an exercise. Note that [IJ ] is a subspace,
and for l ∈ L

[[ij]l] = [[il]j]− [[jl]i] by the Jacobi idenitity
∈ [IJ ] since [il] ∈ I and [jl] ∈ J ,

so [IJ ] is an ideal. �

Proposition 3.2.

(1) There exists a Lie isomorphism

I + J

J
∼=

I

I ∩ J
(second isomorphism theorem).

(2) Ideals of quotient L
I

are of the form K
I

where I ⊆ K ⊆ L and K is an ideal.

Proof. For (1), define a map ϕ : I → I+J
J

by ϕ(i) = i + J for i ∈ I. This is a surjective Lie
homomorphism with kernel

Kerϕ = {i ∈ I : i+ J = J} = I ∩ J.
Hence (1) follows from the first isomorphism theorem 1.6.

For (2), let M be an ideal of L
I

and define

K = {x ∈ L : x+ I ∈M}.
To finish the proof, check that I ⊆ K, K is an ideal of L, and M = K

I
. �
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Solubility. Recall L′ = Span{[xy] : x, y ∈ L} is an ideal.

Proposition 3.3. Let L be a Lie algebra. For an ideal I, the quotient L/I is abelian if and
only if L′ ⊆ I. In particular, L/L′ is abelian.

Proof. We have that L/I is abelian if and only if [x + I, y + I] = I for all x, y ∈ L, i.e.
[xy] + I = I for all x, y ∈ L. But this is equivalent to [xy] ∈ I for all x, y ∈ I, which means
L′ ⊆ I. �

Define a series of ideals of L:
L(1) = L′ = [LL],

L(2) =
[
L(1), L(1)

]
,

...

L(i) =
[
L(i−1), L(i−1)

]
.

We have L ⊇ L(1) ⊇ L(2) ⊇ · · · , the derived series of L, and L(i)/L(i+1) is abelian by
Proposition 3.3.

Definition. A Lie algebra L is soluble if L(m) = 0 for some m.

Examples.

(1) If dimL = 2, then by Proposition 2.1 we have dimL′ ≤ 1, so L(2) = 0 and L is
soluble.

(2) If dimL = 3 and dimL′ ≤ 2, then by (1) we have L(3) = 0, and hence L is soluble.
If dimL = 3 and dimL′ = 3, then L(1) = L, so L(i) = L for all i, and L is not soluble.

(3) We have that t(n, F ) and u(n, F ) are soluble (Sheet 1).

Proposition 3.4. Let L be a Lie algebra.

(1) If L is soluble, then all subalgebras of L and quotient algebras L/I are soluble.
(2) If I is an ideal, and both I and L/I are soluble, then L is soluble.
(3) If I, J are soluble ideals of L, then I + J is soluble.

Proof. For (1), suppose L(m) = 0. For a subalgebra M , M (m) = 0, so M is soluble. Also, for
an ideal I, (

L

I

)(i)

=
L(i) + I

I
,

and hence
(
L
I

)(m)
= 0, so L/I is soluble.

For (2), assume I(m) = 0 and
(
L
I

)(n)
= 0. Then(
L

I

)n
=
L(n) + I

I
= I

so L(n) ⊆ I. Hence
0 = (L(n))m = L(n+m),

so L is soluble.
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Finally, to show (3), we assume I and J are soluble. Then by the second isomorphism
theorem (Proposition 3.2 (1)), there exists a Lie isomorphism

I + J

I
→ J

I ∩ J
.

Now, I
I∩J is soluble by (1), and I is soluble. Therefore, I + J is soluble by (2). �

Corollary 3.5. Let L be a finite-dimensional Lie algebra. Then L has a unique soluble ideal
which contains every soluble ideal of L.

Proof. Let R be a soluble ideal of L of maximal dimension. If I is any soluble ideal, then I+R
is a soluble ideal by Proposition 3.4 (3). But by the choice of R, dim(I+R) ≤ dimR. Hence
I +R = R, so I ⊆ R. �

Definition. The unique maximal soluble ideal of L (finite-dimensional Lie algebra) is called
the radical of L, written Rad(L).

Examples.

(1) If L is soluble, then Rad(L) = L.
(2) Take L = sl(2,C). Here, L = L′ (by considering the structure constants [ef ] = h,

[eh] = −2e, [fh] = 2f , we note that any basis vector is contained in L′), so L is
not soluble. Also, L is simple (see Coursework 1), so Rad(L) is 0 or L. Therefore,
Rad(L) = 0.

(3) Take L = gl(2,C). Here Rad(L) = Z(L) = {λI : λ ∈ C} (exercise).

Definition. If Rad(L) = 0, we call L a semisimple Lie algebra.

Fact. If L is simple, then L is semisimple.

Note that we assume that simple Lie algebras have dimension greater than 1. Otherwise,
the abelian Lie algebra of dimension 1 would be a counterexample to this statement.

Proof. If L is simple, then L′ = 0 or L. Hence L′ = L (as abelian Lie algebras of dimension
greater than 1 are not simple). Thus L is not soluble. Also, Rad(L) = 0 or L, and is not L,
because L is not soluble. Therefore, Rad(L) = 0, and L is semisimple. �

Proposition 3.6. Let L be a finite-dimensional Lie algebra. Then L
Rad(L)

is semisimple.

Proof. Let R = Rad(L), and let I be a soluble ideal of L
R

. Then I = J
R

, where J is an ideal
of L containing I by Proposition 3.2. Now, I is soluble, R is soluble, so J is soluble by
Proposition 3.4 (2). Hence J ⊆ Rad(L) = R, and so I = 0. Therefore, Rad

(
L
R

)
= 0. �

Nilpotence. We define another series of ideals of a Lie algebra L:

L1 = L′ = [LL],

L2 = [L,L1],

L3 = [L,L2],
...

Li = [L,Li−1].
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We have L ⊇ L1 ⊇ L2 ⊇ · · · , the lower central series series of L.

Note. That the series is central means Li

Li+1 ⊆ Z
(

L
Li+1

)
. Indeed:[

Li

Li+1
,
L

Li+1

]
=

[LiL]

Li+1
= 0.

Definition. A Lie algebra L is nilpotent if Lm = 0 for some m.

Clearly, if L is nilpotent then L is soluble.

Examples.

(1) Suppose dimL = 2, L is non-abelian. By Proposition 2.1, L has basis x, y with
[xy] = x. So L1 = Span(x), L2 = Span(x), . . ., Li = Span(x) for all i. Hence L is
not nilpotent.

(2) The Lie algebra u(n, F ) is nilpotent, but t(n, F ) is not nilpotent (for n ≥ 2). (Sheet 1).

The future. By Proposition 3.6, if L is a finite-dimensional Lie algebra, L
Rad(L)

is semisimple.

So we need to understand:

• soluble Lie algebras,
• semisimple Lie algebras.

Over C:

(A) Structure of soluble Lie algebras is given by Lie’s Theorem: every soluble Lie algebra
is isomorphic to a subalgebra of t(n,C) for some n. (Chapter 5)

(B) A theorem to come says that every semisimple Lie algebra is isomorphic to L1 ⊕ · · · ⊕ Lr,
a direct sum of simple Lie algebras Li.
We will classify the simple Lie algebras over C: they are

classical types: sln, on, sp2n (Sheet 1)
5 exceptional types: g2, f4, e6, e7, e8

4. Engel’s Theorem

The theorem is an important result about Lie subalgebras of gl(V ).

Definition. A linear map T : V → V is nilpotent if T r = 0 for some r. An n× n matrix A
is nilpotent if Ar = 0 for some r.

Note. A nilpotent linear transformation T : V → V has only eigenvalue 0, so its charac-
teristic polynomial is xn, where n = dimV . Hence T n = 0 by Cayley–Hamilton Theorem.
Also, the Jordan Canonical Form of T is of the form 0 ∗

. . .
0 0

 ,

strictly upper-triangular. Also, such a matrix is nilpotent (as its characteristic polynomial
is xn), and lies in u(n, F ).
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Any Lie subalgebra of u(n, F ) consists of nilpotent matrices. Engel’s theorem gives the
converse.

Theorem 4.1 (Engel’s Theorem). Let V be n-dimensional over F . Suppose L is a Lie
subalgebra of gl(V ) such that every element of L is nilpotent (i.e. T n = 0 for all T ∈ L).
Then there exists a basis B of V with respect to which every T ∈ L is represented by a strictly
upper-triangular matrix, i.e.

L ∼= {[T ]B : T ∈ L} ⊆ u(n, F ).

In particular, L is a nilpotent Lie algebra.

Idea of the proof. Consider the case where L is 1-dimensional, so L = Span(T ), where
T : V → V is nilpotent. The conclusion is that there exists a basis B of V such that

[T ]B =

 0 ∗
. . .

0 0

 ,

(and the same for any λT ). This is true by the Jordan Canonical Form theorem.

How do we prove the Jordan Canonical Form theorem for nilpotent T?

(a) There is an eigenvector 0 6= u ∈ V for T , so T (u) = 0.
(b) Let U = Span(u). Then T induces a linear map T : V

U
→ V

U
by

T (v + U) = T (v) + U for all v ∈ V.

It is well-defined, since T (u) = 0 ∈ U . Observe that since T is nilpotent, T is
nilpotent, and dim V

U
= n− 1.

By induction (on n), there exists a basis B = {v1 + U, . . . , vn−1 + U} of V
U

such that

[
T
]
B

=

 0 ∗
. . .

0 0


(an (n− 1)× (n− 1) matrix). Then B = {u, v1, . . . , vn−1} is a basis of V , and

[T ]B =


0 ∗ . . . ∗
0 0 ∗
...

. . .
0 0 0


(the first row is T (u)), which is strictly upper-triangular.

The proof of Engel’s theorem runs along the same lines, replacing Span(T ) by a whole Lie
algebra L. The hard step is (a): showing that there exists a common eigenvector for all
T ∈ L.

We will now work towards proving this.

Lemma 4.2. Let L be a Lie subalgebra of gl(V ). Let x ∈ L, and suppose x : V → V is
nilpotent. Then adx : L→ L is also nilpotent.
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Proof. Let y ∈ L. Then

(adx)(y) = [xy] = xy − yx
and hence

(adx)2(y) = (ad x)(xy − yx) = [x, xy − yx] = x(xy − yx)− (xy − yx)x = x2y − 2xyx+ yx2.

Similarly, (adx)3 is a linear combination of terms of the form x3y, x2yx, xyx2, xyx2, and in
general, (adx)m(y) is a linear combination of terms of the form xjyxm−j where 0 ≤ j ≤ m.2

By hypothesis, xn = 0 for some n. Then for m = 2n, either xj or xm−j is 0, for all 0 ≤ j ≤ m.
This shows that (adx)2n = 0, hence adx is nilpotent. �

Lemma 4.3. Let L be a Lie subalgebra of gl(V ), and I an ideal of L. Define

W = {v ∈ V : T (v) = 0 for all T ∈ I}.
Then W is L-invariant, i.e. S(W ) ⊆ W for all S ∈ L.

Proof. Let S ∈ L and w ∈ W . For T ∈ I, note [TS] = TS − ST , so

TS(w) = ST (w) + [TS](w) = 0 + 0

since both T and [TS] are in I. Therefore, S(w) ∈ W . �

The following proposition is a key step in the proof of Engel’s Theorem 4.1.

Proposition 4.4. Let L be a Lie subalgebra of gl(V ) consisting of nilpotent elements. Then
there exists 0 6= v ∈ V such that T (v) = 0 for all T ∈ L.

Proof. We proceed by induction on dimL. The base case dimL = 1 is clear since then
L = Span(T ) with T : V → V nilpotent and T has an eigenvector v, so T (v) = 0.

Now, let L be as in the statement. Let A be a maximal Lie subalgebra of L, i.e. if A ≤ B < L
with B a subalgebra, then A = B.

We claim that A is an ideal of L; in fact, there exists y ∈ L \ A such that

L = A⊕ Span(y)

and [A, y] ⊆ A. To show this, let L = L
A

be the quotient vector space (not a Lie algebra).

Define ϕ : A→ gl(L) by

ϕ(a)(x+ A) = [ax] + A for all a ∈ A, x ∈ L.

We check that ϕ(a) is well-defined: if x+A = x′ +A then x− x′ ∈ A, so [a(x− x′)] ∈ A, so
[ax] + A = [ax′] + A.

We check that ϕ is a Lie homomorphism: ϕ is linear, and for a, b ∈ A we have:

[ϕ(a), ϕ(b)](x+ A) = (ϕ(a)ϕ(b)− ϕ(b)ϕ(a))(x+ A)
= [a[bx]]− [b[ax]] + A
= [[ab]x] + A by the Jacobi identity
= ϕ([ab])(x+ A)

2Formally, we can prove this by induction on m.
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Consider the image ϕ(A), a Lie subalgebra of gl(L). For a ∈ A, a : V → V is nilpotent, and
hence ad a is nilpotent by Lemma 4.2, and therefore ϕ(a) ∈ gl(L) is also nilpotent. Thus
ϕ(A) is a Lie subalgebra of gl(L), of dimension less than dimL (as dimA < dimL), and
consisting of nilpotent elements. So we can apply the inductive hypothesis to ϕ(A): there
exists a non-zero y + A ∈ L such that

[ay] + A = ϕ(a)(y + A) = A for all a ∈ A
i.e.

[ay] ∈ A for all a ∈ A.
Let A1 = A ⊕ Span(y). This is a subalgebra of L (as [A, y] ⊆ A), so as A is a maximal
subalgebra of L, L = A1. We have shown that

L = A⊕ Span(y).

Also, [A, y] ⊆ A implies that A is an ideal of L.

By the inductive hypothesis applied to A, there exists 0 6= w ∈ V such that a(w) = 0 for
all a ∈ A. Let

W = {v ∈ V : a(v) = 0 for all a ∈ A}.
Then w ∈ W , so W 6= 0. By Lemma 4.3, W is L-invariant. In particular, y(W ) ⊆ W . Now,
y : V → V is nilpotent, and restricts to a nilpotent map W → W . Therefore, there exists
0 6= v ∈ W such that y(v) = 0. We can write any T ∈ L as T = a + λy for some a ∈ A,
λ ∈ F , and

T (v) = (a+ λy)(v) = 0.

Hence T (v) = 0 for any T ∈ L. �

Proof of Engel’s Theorem 4.1. Let L be a Lie subalgebra of gl(V ) consisting of nilpotent
elements. We aim to show that there exists a basis B such that {[T ]B : T ∈ L} ⊆ u(n, F ). Let
n = dimV . We proceed by induction on n. For n = 1, the claim is clear. By Proposition 4.4,
there exists 0 6= v ∈ V such that T (v) = 0 for all T ∈ L. Let U = Span(v) and V = V

U
. Any

T ∈ L induces T : V → V by

T (x+ U) = T (x) + U for all x ∈ V.
Moreover, since T is nilpotent, T is nilpotent. The map T 7→ T from L → gl(V ) is a Lie
homomorphism, and its image is a Lie subalgebra of gl(V ) consisting of nilpotent elements.
As dimV = n− 1, we can apply the inductive hypothesis to obtain a basis

B = {v1 + U, . . . , vn−1 + U}
of V such that {[

T
]
B

: T ∈ L
}
⊆ u(n− 1, F ).

Then
B = {v, v1, . . . , vn−1}

is a basis of V , and
{[T ]B : T ∈ L} ⊆ u(n, F ),

which completes the proof. �

Engel’s Theorem 4.1 is about subalgebras of gl(V ). There is a second version of Engel’s
theorem that is about abstract Lie algebras.
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Theorem 4.5 (Engel’s Theorem, version II). A (finite-dimensional) Lie algebra L is nilpo-
tent if and only if adx : L→ L is nilpotent for all x ∈ L.

Proof. For the only if implication, recall that L nilpotent means Lm = 0 for some m, so

[x0[x1[. . . [xm−2, [xm−1xm]]] . . .]] = 0

for all xi ∈ L. Hencee (adx)m = 0.

For the if implication, suppose that adx : L → L is nilpotent for all x ∈ L. Recall that
ad: L → gl(L) is a Lie homomorphism, so its image L = ad(L) is a Lie subalgebra of
gl(L) consisting of nilpotent elements adx. By Engel’s Theorem 4.1, L is nilpotent. Also,
Ker(ad) = Z(L), so

L ∼=
L

Z(L)
.

Suppose L
m

= 0. Then 0 = L
m

= Lm+Z(L)
Z(L)

, hence Lm ≤ Z(L). So Lm+1 = [L,Lm] ⊆
[L,Z(L)] = 0. Hence L is nilpotent. �

5. Lie’s Theorem

Recall that t(n, F ) is the Lie algebra of upper-triangular matrices, and is a soluble Lie algebra
(Sheet 1, Question 14).

Theorem 5.1 (Lie’s Theorem). Let V be an n-dimensional vector space over C and let L
be a soluble Lie subalgebra of gl(V ). Then there exists a basis B of V such that

L ∼= {[T ]B : T ∈ L} ⊆ t(n,C).

Notes.

(1) The theorem is false for fields of prime characteristic (Sheet 2).
(2) When dimL = 1, L = Span(T ), then the theorem says that there exists a basis B

such that [T ]B is upper-triangular. This is easily proved by induction on dimV :
(a) There exists an eigenvector 0 6= v ∈ V for T (since the field is C).
(b) Let U = Span(v). Then T induces T : V

U
→ V

U
by T (v + U) = T (v) + U and by

the inductive hypothesis, there exists a basis B = (v1 +U, . . . , vn +U) of V
U

such

that
[
T
]
B

is upper-triangular. Then B = {v, v1, . . . , vn−1} is a basis of V , and
[T ]B is upper-triangular.

As for the proof of Engel’s Theorem 4.1, the main part of the proof of Lie’s Theo-
rem 5.1 is Step (a): finding a common eigenvector for all T in the Lie algebra L.

Weight spaces. Let V be a vector space over F . Let A be a Lie subalgebra of gl(V ), and
suppose there exists 0 6= v ∈ V such that v is a common eigenvector for all a ∈ A. So

a(v) = λ(a)v, for all a ∈ A,
where λ(a) ∈ F . The function λ : A→ F is linear, since

λ(αa+ βb)v = (αa+ βb)(v) = αa(v) + βb(v) = (αλ(a) + βλ(b))v for a, b ∈ A, α, β ∈ F.
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Definition. A weight for a Lie subalgebra A of gl(V ) is a linear map λ : A→ F such that

Vλ = {v ∈ V : a(v) = λ(a)v for all a ∈ A} 6= 0.

Such a non-zero subspace Vλ is the weight space for the weight λ.

Example. Let L = d(n, F ) be the set of diagonal matrices. Let e1, . . . , en be the standard
basis of F n. Then for

x =

 α1

. . .
αn

 ∈ L,
we have x(ei) = αiei. So Span(ei) is a weight space for L, with weight λi : L→ F , where

λi

 α1

. . .
αn

 = αi

Proposition 5.2. Let V be a finite-dimensional vector space over F , where char(F ) = 0.
Let L be a Lie subalgebra of gl(V ) and A be an ideal of L. Suppose λ : A → F is a weight
for A, with weight space

Vλ = {v ∈ V : a(v) = λ(a)v for all a ∈ A} 6= 0.

Then Vλ is L-invariant (i.e. l(Vλ) ⊆ Vλ for all l ∈ L).

Note. If λ is the zero weight (λ(a) = 0 for all a ∈ A), Proposition 5.2 is just Lemma 4.3.

Proof of Proposition 5.2. Let y ∈ L, w ∈ Vλ. We want to show that y(w) ∈ Vλ, i.e.

ay(w) = λ(a)y(w).

Now, [ay] ∈ A, since A is an ideal, and ay = ya+ [ay], so

ay(w) = (ya+ [ay])(w) = λ(a)y(w) + [ay](w) = λ(a)y(w) + λ([ay])w.

We need to prove

(1) λ([ay]) = 0.

Let

U = Span(w, y(w), y2(w), . . .).

As U is finite-dimensional, we can choose the minimal m such that w, y(w), . . ., ym(w) are
linearly dependent. Then

B = {w, y(w), . . . , ym−1(w)}
is a basis of U . We claim that if z ∈ A then

(i) z(U) ⊆ U
(ii) if z|U : U → U is the restriction of z to U then

[zU ]B =

 λ(z) ∗
. . .

0 λ(z)


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We need to show that for 0 ≤ r ≤ m− 1,

(2) zyr(w) = λ(z)yr(w) +
∑
i≤r−1

γiy
i(w) (for γi ∈ F ).

We prove this by induction on r. This is true for r = 0, as z(w) = λ(z)w (because z ∈ A).
For the inductive step, assume that the statement is true for r − 1. Observe

(3) zyr(w) = zyyr−1(w) = (yz + [zy])yr−1(w).

By the inductive hypothesis,

zyr−1(w) = λ(z)yr−1(w) +
∑
i≤r−2

γiy
i(w),

so

(4) yzyr−1(w) = λ(z)yr(w) +
∑
i≤r−1

γiy
i(w).

Also [zy] ∈ A, as z ∈ A (because A is an ideal), so by the inductive hypothesis

(5) [zy]yr−1(w) =
∑
i≤r−1

δiy
i(w).

Since, by equation (3), we have zyr = yzyr−1(w) + [zy]yr−1(w), we add equations (4)
and (5) together to obtain the required equality (2). This completes the induction, and
hence proves (i) and (ii).

Let z = [ay] ∈ A. By (i), z(U) ⊆ (U), and by (ii)

Tr(zU) = mλ(z) (m = dimU).

Also,

z = [ay] = ay − ya,
and a(U) ⊆ U by (i), y(U) ⊆ U by definition of U . Thus the restrictions a|U , y|U : U → U
exist, and

z|U = a|Uy|U − y|Ua|U .
Hence

Tr(z|U) = Tr(a|Uy|U)− Tr(y|Ua|U) = 0.

Therefore

mλ(z) = 0.

Since char(F ) = 0, m 6= 0 in F , and hence

λ(z) = λ([ay]) = 0.

This proves equation (1), completing the proof. �

Proposition 5.3. Let V be a finite-dimensional vector space over C. Let L be a soluble Lie
subalgebra of gl(V ). Then there exists 0 6= v ∈ V such that v is a common eigenvector of all
x ∈ L (i.e. x(v) ∈ Span(v) for all x ∈ L).
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Proof. We proceed by induction on dimL. The statement is true for dimL = 1, i.e. L =
Span(T ), as T has an eigenvector (since the field is C).

Now, assume that dimL > 1. As L is soluble, L′ ⊂ L. Choose a subspace A of L such that

L′ ⊆ A and dimA = dimL− 1.

Let z ∈ L \ A, so
L = A⊕ Span(z) (as vector spaces).

Then [AA] ⊆ L′ ⊆ A, and [A, z] ⊆ L′ ⊆ A, so A is an ideal of L. By the inductive hypothesis,
there exists 0 6= w ∈ V such that w is a common eigenvector for all a ∈ A. So

a(w) = λ(a)w for all a ∈ A.
Let

Vλ = {v ∈ V : a(v) = λ(a)v for all a ∈ A}.
Then w ∈ Vλ, so Vλ 6= 0, and hence λ is a weight of A. By Proposition 5.2, Vλ is L-invariant,
so

z(Vλ) ⊆ Vλ.

Therefore, there exists 0 6= v ∈ Vλ such that v is an eigenvector for z; say z(v) = βv. Then
for any a+ αz ∈ L where a ∈ A, α ∈ C, we have

(a+ αz)(v) = λ(a)v + αβv.

Hence v is a common eigenvector for all x ∈ L. �

The proof of Lie’s Theorem 5.1 is completed using Proposition 5.3 and induction on dimV ,
in the same way as the completion of Engel’s Theorem 4.1. (Sheet 2, Question 4)

6. Representations

Definition. Let L be a Lie algebra over F . A finite-dimensional representation of L is a Lie
homomorphism

ρ : L→ gl(V )

where V is a finite-dimensional vector space over F .

A representation ρ is faithful if Ker ρ = 0, in which case L ∼= Im(ρ), a Lie subalgebra of
gl(V ).

If we fix a basis B of V , the map

x 7→ [ρ(x)]B (x ∈ L)

from L to gl(n, F ) (where n = dimV ) is a matrix representation of L.

Examples.

(1) If L is any Lie algebra, the map

ad: L→ gl(L)

sending x to ad x is a representation, called the adjoint representation of L. Its kernel
is Z(L).
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(2) Let L = sl(2, F ) with basis B

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
,

and structure constants [ef ] = h, [eh] = −2e, [fh] = 2f . With respect to this basis,
the adjoint representation of L gives representation of L, sending

e 7→ (ad e)B =

 0 −2 0
0 0 1
0 0 0


h 7→ (adh)B =

 2 0 0
0 0 0
0 0 −2


f 7→ (ad f)B =

 0 0 0
−1 0 0
0 2 0


Now, Z(L) = 0, provided char(F ) 6= 2, so L is isomorphic to the Lie subalgebra of
gl(3, F ), spanned by these 3 matrices.

(3) Let L be the 2-dimensional non-abelian Lie algebra over F , with basis x, y and
structure constant [xy] = x. Define ρ : L→ gl(2, F ) by

ρ(x) =

(
0 1
0 0

)
, ρ(y) =

(
−1 1
0 0

)
and extend it linearly to L, i.e. for all α, β ∈ F

ρ(αx+ βy) =

(
−β α + β
0 0

)
.

One can easily check that ρ is a representation of L. (It suffices to check that
[ρ(x), ρ(y)] = ρ[xy] = ρ(x), which is clear when we multiply out the matrices.)

(4) If L is a Lie subalgebra of gl(V ) for some vector space V , the inclusion map sending
l 7→ l for all l ∈ L is a representation of L, called the natural representation of L.

(5) For any Lie algebra L over F , the zero map L→ F sending l 7→ 0 for all l ∈ L is the
trivial (1-dimensional) representation of L.

Modules. If ρ : L → gl(V ) is a representation, it is notationally convenient to drop the ρ
and instead of ρ(l)v write lv. This defines a map L× V → V sending (l, v) 7→ lv(= ρ(l)(v)),
satisfying

(1) (l1 + l2)v = l1v + l2v,
(2) l(v1 + v2) = lv1 + lv2,
(3) λ(lv) = l(λv) = (λl)v,
(4) [l1l2]v = l1(l2v)− l2(l1v),

for all li, l ∈ L, vi, v ∈ V , λ ∈ F . All these statements are clear. For example, for (1), we
check that

(l1 + l2)v = ρ(l1 + l2)(v) = (ρ(l1) + ρ(l2))(v) = ρ(l1)(v) + ρ(l2)(v) = l1v + l2v,
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and for (4), we note that ρ[l1l2] = [ρ(l1), ρ(l2)] implies that

[l1l2]v = ρ([l1l2])(v) = ρ(l1)ρ(l2)(v)− ρ(l2)ρ(l1)(v) = l1(l2v)− l2(l1v).

Definition. Let L be a Lie algebra over F . A vector space V over F is an L-module if there
exists a map L× V → V sending (l, v) 7→ lv, satisfying (1)–(4) above.

As we have seen, any representation of L gives an L-module. In fact, L-modules and repre-
sentations of L are equivalenct concepts:

(a) Given a representation ρ : L→ gl(V ), defining lv = ρ(l)(v) for l ∈ L, v ∈ V makes V
an L-module.

(b) Given an L-module V , we can define ρ : L→ gl(V ) by

ρ(l)(v) = lv for all l ∈ L, v ∈ V.

Then (1)–(4) imply that ρ is a Lie homomorphism, hence a representation of L.

Examples.

(1) Let L be a 2-dimensional Lie algebra, with basis x, y and [xy] = x. We have a matrix
representation ρ : L→ gl(2, F ) sending

x 7→
(

0 1
0 0

)
, y 7→

(
−1 1
0 0

)
The corresponding L-module is V = F 2 with standard basis e1, e2 and multiplication

xe1 = 0, xe2 = e1,

ye1 = −e1, ye2 = e1.

(2) Let L be any Lie algebra. We have the adjoint representation ad: L → gl(L). The
corresponding L-module, the adjoint module is L itself, with multiplication

lv = (ad l)(v) = [lv] for all l ∈ L, v ∈ L.

Submodules.

Definition. Let L be a Lie algebra, V an L-module. A subspace W of V is a submodule if
W is L-invariant, i.e. lW ⊆ W for all l ∈ L (where lW = {lw : w ∈ W}).

Examples.

(1) Let L be the 2-dimensional Lie algebra with basis x, y and module V = F 2 as above.
Since xe1 = 0, ye1 = −1, W = Span(e1) is a submodule.

(2) Let L be a Lie algebra. Then W is a submodule of the adjoint module L if and only
if LW ⊆ W , i.e. [LW ] ⊆ W , which is equivalent to W being an ideal of L.

Proposition 6.1. Let L be a soluble (finite-dimensional) Lie algebra over C, and let V be
a (finite-dimensional) non-zero L-module. Then V has a 1-dimensional submodule.

In example (1) above, Span(e1) was such a submodule.
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Proof. Let ρ : L → gl(V ) be the corresponding representation of L (so ρ(l)(v) = lv for all
l ∈ L, v ∈ V ). Then

L

ker ρ
∼= Im ρ ⊆ gl(V ).

Now, Im ρ is a soluble Lie subalgebra of gl(V ) by Proposition 3.4, so by Proposition 5.3,
there exists a common eigenvector 0 6= v ∈ V for all ρ(l) ∈ Im ρ. So

lv = ρ(l)(v) ∈ Span(v) for all l ∈ L.

Hence Span(v) is a submodule of dimension 1. �

Irreducible modules.

Definition. An L-module is irreducible if it is nonzero, and the only submodules are 0
and V . We then also say that the corresponding representation ρ : L→ gl(V ) is irreducible.

Examples.

(1) Any 1-dimensional L-module is irreducible.
(2) If L is the adjoint module, we have seen that the submodules are the ideals of L. So the

adjoint L-module is irreducible if and only if L is a simple Lie algebra (or dimL = 1).
For example, the adjoint representation sl(2,C)→ gl(3,C) is irreducible.

Proposition 6.2. Let L be a soluble Lie algebra over C. Then every irreducible L-module
is 1-dimensional.

Proof. This is immediate from Proposition 6.1. �

Quotient modules. Let L be a Lie algebra, V and L-module, and W a submodule. We
can make V

W
into an L-module, called the quotient module, by defining

l(v +W ) = lv +W for l ∈ L, v ∈ V.

We check that the multiplication is well-defined; indeed, if v1+W = v2+W then v1−v2 ∈ W ,
so lv1−lv2 = l(v1−v2) ∈ W since W is a submodule, and hence lv1+W = lv2+W . Moreover,
it is easy to check that V/W satisfies properties (1)–(4), and hence is well-defined.

Composition series. Let L be a Lie algebra and V a (finite-dimensional) nonzero L-
module. Choose a non-zero submodule V1 ⊂ V of minimal dimension. Then V1 is irre-
ducible. Form the quotient V

V1
6= 0. If V

V1
6= 0, find a submodule V2

V1
of minimal dimension,

where V2 ⊂ V is a submodule V1 ⊂ V2. Then V2
V1

is irreducible. Continuing, the sequence

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr = V,

where Vi
Vi−1

are irreducible, terminates, because V is finite-dimensional. This is a composition

series of V .
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Direct sums. Let V be an L-module. Suppose V = U1 ⊕ · · · ⊕ Ur, i.e. V = U1 + · · · + Ur

and Ui ∩
(∑

j 6=i Uj

)
= 0 for all i, where each Ui is a submodule. Then we say V is the direct

sum of the submodules U1, . . . , Ur. If V = U1⊕ · · · ⊕Ur with every Ui irreducible, we call V
a completely reducible L-module.

Examples.

(1) Let L = d(2, F ) =

{(
α 0
0 β

)
: α, β ∈ F

}
, an abelian Lie algebra. Let V = F 2, the

natural L-module with standard basis e1, e2. Then V1 = Span(e1), V2 = Span(e2) are
submodules, as (

α 0
0 β

)
e1 = αe1,

(
α 0
0 β

)
e2 = βe2,

and V = V1 ⊕ V2. Each Vi is irreducible, so V is completely reducible.
(2) Let L = t(2, F ), V = F 2 be the natural L-module. The only nontrivial (not 0 and

not V ) submodule of V is Span(e1), so V is not completely reducible.

Homomorphisms.

Definition. Let L be a Lie algebra, V and W be L-modules. A linear map ϕ : V → W is a
homomorphism if

ϕ(lv) = lϕ(v) for all l ∈ L, v ∈ V.
An isomorphism is a bijective homomorphism.

We want to interpret the notion of homomorphism in terms of representations. Let ρV : L→
gl(V ) and ρW : L → gl(V ) be the corresponding representations of L. Then ϕ is a homo-
morphism if

ϕ(ρV (l)(v)) = ρW (l)(ϕ(v)) for all l ∈ L, v ∈ V
i.e. ϕ ◦ ρV (l) = ρW (l) ◦ ϕ for all l ∈ L. If ϕ is an isomorphism, this says

ρW (l) = ϕ ◦ ρV (L) ◦ ϕ−1.

So we can choose bases BV of V and BW of W such that the corresponding matrices are
equal:

[ρV (l)]Bv = [ρW (l)]Bw for all l ∈ L,
i.e. the matrix representations

l 7→ [ρV (l)]BV

l 7→ [ρW (l)]BW
are identical.

This is a way to tell whether two L-modules are isomorphic.

Example. Let L = Span(x), a 1-dimensional Lie algebra. Then L has matrix representations

ρ1 : x 7→
(
−1 0
0 1

)
, ρ2 : x 7→

(
−1 1
0 1

)
.

The corresponding L-modules are isomorphic as the matrices ρ1(x), ρ2(x) are similar.
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7. Representations of sl(2,C)

Let L = sl(2,C), with basis e, f, h and structure constants

[ef ] = h, [he] = 2e, [hf ] = −2f.

We will classify all the irreducible L-modules (up to isomorphism), showing there is exactly
one of each dimension.

Construction. Let C[X, Y ] be the vector space of all polynomials in X, Y . For each d ≥ 0,
define

Vd = Span(Xd, Xd−1Y, . . . , XY d−1, Y d),

the subspace of all homogeneous polynomials of degree d. So dimVd = d+ 1. Define

ϕ : L→ gl(Vd)

by

ϕ(e) = X
∂

∂Y
, ϕ(f) = Y

∂

∂X
, ϕ(h) = X

∂

∂X
− Y ∂

∂Y
.

So, explicitly

ϕ(e) : XaY b 7→ bXa+1Y b−1 (b ≥ 1)
Xd 7→ 0

ϕ(f) : XaY b 7→ aXa−1Y b+1 (a ≥ 1)
Y d 7→ 0

ϕ(h) : XaY b 7→ (a− b)XaY b

and extend ϕ to a linear map L→ gl(V ).

Proposition 7.1. The map ϕ is a representation of L = sl(2,C). Hence Vd is an L-module
of dimension d+ 1.

Proof. We need to check:

(1) [ϕ(h)ϕ(e)] = ϕ([he]) = 2ϕ(e),
(2) [ϕ(h)ϕ(f)] = −2ϕ(f),
(3) [ϕ(e)ϕ(f)] = ϕ(e).

We check (1). For b ≥ 1, we have

[ϕ(h)ϕ(e)](XaY b) = ϕ(h)(bXa+1Y b−1)− ϕ(e)((a− b)XaY b)
= b(a− b+ 1)Xa+1Y b−1 − (a− b)bXa+1Y b−1

= 2bXa+1Y b−1

= 2ϕ(e)(XaY b)

and

[ϕ(h)ϕ(e)](Xd) = ϕ(h)(0)− ϕ(e)(dXd) = 0 = 2ϕ(e)(Xd).

Hence (1) is verified. Similarly, one can check (2) and (3). (Exercise.) �
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Matrix representations. Let B = {Xd, Xd−1Y, . . . , Y d}. The corresponding matrix rep-
resentation is

e 7→ [ϕ(e)]B =


0 1

0 2
. . . . . .

0 d
0



f 7→ [ϕ(f)]B =


0
d 0

d− 1
. . .
. . .

1 0



h 7→ [ϕ(h)]B =


d 0

d− 2
. . .
−(d− 2)

0 −d


Examples. The module V0 is the trivial representation e, f, g 7→ 0. The module V1 is given
by

e 7→
(

0 1
0 0

)
, f 7→

(
0 0
1 0

)
, h 7→

(
1 0
0 −1

)
and it is equal to the natural L-module. The module V2 is given by:

e 7→

 0 1 0
0 0 2
0 0 0


h 7→

 2 0 0
0 0 0
0 0 −2


f 7→

 0 0 0
2 0 0
0 1 0


and is isomorphic to the adjoint L-module. (Exhibiting the isomorphism is an exercise:
Sheet 3, Question 6.)

Proposition 7.2. The module Vd is irreducible.

Proof. Recall that

[ϕ(h)]B =


d 0

d− 2
. . .
−(d− 2)

0 −d

 .
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Suppose U is a non-zero submodule of Vd. Then ϕ(e), ϕ(f), ϕ(h) send U to U . Since ϕ(h) has
d+ 1 distinct eigenvalues, the eigenvalues of the restriction ϕ(h)|U : U → U are also distinct,
and U contains an eigenvector for ϕ(h). The eigenspaces of ϕ(h) are the 1-dimensional spaces
spanned by the basis vectors in B. Hence

XaY b ∈ U for some a, b.

Apply ϕ(e) to this successively to get

Xa+1Y b−1, Xa+2Y b−2, . . . , Xd ∈ U,
and apply ϕ(f) to this successively to get

Xa−1Y b+1, Xa−2Y b+2, . . . , Y d ∈ U.
Hence U = Vd. This shows Vd is irreducible. �

Theorem 7.3. If V is an irreducible finite-dimensional L-module, then V ∼= Vd for some d.

We first prove a lemma.

Notation. For an L-module V , write e(ev) = e2v, e(e2v) = e3v, and so on, ekv = e(ek−1v).

Lemma 7.4. Let V be a finite-dimensional L-module.

(1) If v ∈ V with hv = λv then

h(ev) = (λ+ 2)ev, h(fv) = (λ− 2)fv.

(2) The L-module V contains an eigenvector w 6= 0 for h such that ew = 0.

Proof. For (1), observe that

h(ev) = e(hv) + [he]v = e(λv) + 2ev = (λ+ 2)ev,

and similarly for h(fv).

For (2), note that the linear map v 7→ hv has an eigenvector (since the field is C). Say
hv = λv. Consider

v, ev, e2v, . . . .

If all of them are non-zero, by (1), these are eigenvectors for h with distinct eigenvalues,
hence they are linearly independent. Hence, as V is finite-dimensional, there exists k such
that ekv 6= 0, but ek+1v = 0. Put w = ekv to complete the proof. �

Proof of Theorem 7.3. Let V be an irreducible finite-dimensional L-module. By Lemma 7.4 (2),
there exists w 6= 0 such that

hw = λw, ew = 0.

By the proof of Lemma 7.4, there exists d such that

fdw 6= 0, fd+1w = 0.

(A) The elements w, fw, . . . , fdw form a basis of V , consisting of h-eigenvectors with
eigenvalues λ, λ− 2, . . . , λ− 2d.

Indeed, by Lemma 7.4, these are eigenvectors for h with the given eigenvalues,
hence they are linearly independent. To show they span V , we set

U = Span(w, fw, . . . , fdw).
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We show U is a submodule. Well, clearly

fU ⊆ U,

hU ⊆ U.

We will show that efkw ∈ Span(w, fw, . . . , fk−1w) for all k ≤ d by induction on k.
This is clearly true for k = 0, as ew = 0. Assume this is true for k − 1. Then

efkw = e(f(fk−1w))
= (fe+ [ef ])(fk−1w)
= (fe+ h)fk−1w.

By the inductive hypothesis, efk−1w ∈ Span(w, . . . , fk−2w), and hence

fefk−1w ∈ Span(w, . . . , fk−1w),

and so is hfk−1w. This completes the induction and shows that eU ⊆ U . We have
hence shown that U is a submodule of V and, as V is irreducible, we have U = V .

(B) If B is the basis in (A), then

[h]B =


λ

λ− 2
. . .

λ− 2d

 .

Also, h = [ef ] ∈ L′, so Tr[h]B = 0 (by Sheet 1, Question 4). Hence

λ+ λ− 2 + · · ·+ λ− 2d = 0.

Thus (d+ 1)λ = d(d+ 1), which shows that λ = d.
(C) We have that V ∼= Vd.

The L-module V has a basis w, fw, . . . , fdw, and the L-module Vd has a basis
Xd, fXd, . . . , fdXd. Both bases consist of h-eigenvectors with eigenvalues d, d −
2, . . . ,−d. Define ϕ : V → Vd by

ϕ(fkw) = fkXd for 0 ≤ k ≤ d.

We show that ϕ is an isomorphism of L-modules. We need to show that

ϕ(lv) = lϕ(v) for all v ∈ V

for l = e, f, h. For f :

fϕ(fkw) = f(fkXd) = fk+1Xd = ϕ(fk+1w).

For h:

hϕ(fkw) = h(fkXd) = (d− 2k)fkXd = ϕ(h(fkw)).

For e, we show that

eϕ(fkw) = ϕ(efkw)

by induction on k. For k = 0, we have

eϕ(w) = eXd = 0 = ϕ(ew)
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as ew = 0. We assume the equation holds for k − 1. Then

ϕ(efkw) = ϕ((fe+ h)fkw)
= fϕ(efk−1w) + hϕ(fk−1w)
= feϕ(fk−1w) + hϕ(fk−1w) by the inductive hypothesis
= efϕ(fk−1w)
= eϕ(fkw)

which completes the induction and shows that V ∼= Vd.

This completes the proof. �

8. The Killing form

Let L be a Lie algebra over C and ad: L→ gl(L) be the adjoint representation. The Killing
form is the map K : L× L→ C given by

(x, y) 7→ Tr(ad(x) ad(y)).

Remark. This is a symmetric bilinear form. (Symmetric because Tr(AB) = Tr(BA), and
bilinear because ad is linear.)

Jordan decomposition. If f : V → V is a linear transformation of a complex vector
space V , then there is a basis B of V in which f is given by the matrix [f ]B which is a direct
sum of Jordan blocks: 

Jr1(λ1) 0 0 0
0 Jr2(λ2) 0 0

0 0
. . . 0

0 0 0 Jrk(λk)


where

Jr(λ) =



λ 1 0 0
λ 1 0

λ 1
. . .

λ 1

0 λ


Rewrite this matrix as D +N where

D = diag(λ1, . . . , λ1, λ2, . . . , λk, . . . , λk)

and

N =


0 1

0 1
. . .

0 1
0


is strictly upper triangular. Clearly, N is a nilpotent matrix (N l = 0 for some l). We have
DN = ND.
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The Jordan normal form theorem says that any linear transformation f : V → V is uniquely
written as f = d+ n (the Jordan decomposition), where d : V → V is a diagonalisable linear
transformation and n : V → V is a nilpotent linear transformation and such that dn = nd.

A Jordan basis B of V is a basis in which [d]B = D and [n]B = N .

Lemma 8.1. Let x : V → V be a linear transformation with Jordan decomposition x = d+n.

(1) Then there is a polynomial p(X) ∈ C[X] such that p(x) = d.
(2) Define a linear transformation d : V → V by [d]B = D =

⊕
i

λiIri (the complex

conjugate of D). Then there is a polynomial q(X) ∈ C[X] such that q(x) = d.

Proof. Let λ1, . . . , λk be eigenvalues of the linear transformation x. Let ai be the size of the
largest Jordan block with eigenvalue λi. Let Vi ⊆ V be the subspace Vi = Ker(x − λiI)ai .
In terms of Jordan basis, Vi is spanned by the basis elements associated to λi. Then V =

V1 ⊕ · · · ⊕ Vk. Then d acts on Vi as λiIvi . Therefore, d =
k⊕
i=1

λiIvi .

Observe that (X − λi)
ai , for i = 1, . . . , k, are pairwise coprime. The Chinese Remainder

Theorem3 says that the natural map

C[X]→
k⊕
i=1

C[X]
/(

(X − λi)ai
)

is surjective.

Hence, for λ1, . . . , λk, we can find a polynomial p(X) such that

p(X) ≡ λi mod (X − λi)ai , for i = 1, 2, . . . , k.

Then we have that

p(X) = λi + ϕi(X)(X − λi)ai , for some ϕi(X) ∈ C[X],

and hence for v ∈ Vi we have p(x)v = λiv + ϕ(x)(x− λiI)aiv = λiv. Therefore,

p(x) =
k⊕
i=1

λiIVi = d.

This proves (1).

To prove (2), define q(X) to be the polynomial equivalent to λi modulo (X − λi)
ai , for

i = 1, . . . , k. The same argument now shows that q(x) = d. �

Lemma 8.2. Suppose that x : V → V is a linear transformation with Jordan decomposition
x = d + n. Consider ad(x) : gl(V ) → gl(V ) (recall that ad(x) sends y to [x, y] = xy − yx.)
Then ad(x) has Jordan decomposition ad(d) + ad(n).

3Recall the proof of the Chinese Remainder Theorem. For k = 2, if f(X), g(X) are coprime polynomials,
then there exist polynomials p(X) and q(X) such that 1 = p(X)f(X) + q(X)g(X). Then the polynomial
b(X)p(X)f(X)+a(X)q(X)g(X) is congruent to a(X) modulo f(X) to b(X) modulo g(X). The general case
k ≥ 2 is done by induction.
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Proof. By linearity of ad, we have ad(x) = ad(d) + ad(n). Next, by Lemma 4.2, ad(n) is
nilpotent, because n is nilpotent. We claim that ad(d) is diagonalisable. Consider the basis
in which d is diagonal. Recall that Eij (the matrix with 1 in the ij entry and 0 everywhere
else) is the standard basis of gl(V ). For this basis of gl(V ), ad(d) is diagonal. Finally,
[ad(d), ad(n)] = ad([dn]) = 0. By the Jordan canonical form theorem, ad(d) and ad(n) are
the diagonalisable and the nilpotent parts of ad(x), respectively. �

Recall that a Lie algebra L is soluble if L(N) = 0 for some N , where L(i) is the derived series
of L, i.e. L(0) = L, L(1) = [L,L], . . ., L(n+1) = [L(n), L(n)], and we have

L ⊇ L(1) ⊇ · · · ⊇ L(n) ⊇ · · · ⊇ L(N) = 0.

Remark. We have that ad(L) = L/Z(L), where Z(L) is the center of L. Since Z(L) is
abelian, it is always soluble, and hence L is soluble if and only if ad(L) is soluble.

Theorem 8.3 (Cartan’s first criterion). Let L be a Lie algebra over C. Then L is soluble if
and only if K(x, y) = 0 for any x ∈ L, y ∈ L′.

We will work towards proving this theorem.

Proposition 8.4. Let V be a finite-dimensional vector space over C, and let L ⊆ gl(V ) be
a soluble Lie subalgebra. Then Tr(xy) = 0 for x ∈ L, y ∈ L′.

Proof. By Lie’s Theorem 5.1, there is a basis B of V such that [x]B is an upper-triangular ma-
trix for all x ∈ L. Then [x1]B[x2]B−[x2]B[x1]B is strictly upper-triangular for all x1, x2 ∈ L.
Hence for any y ∈ L′, [y]B is strictly upper-triangular, hence [x]B[y]B is strictly upper-
triangular. Therefore, Tr(xy) = Tr([x]B[y]B) = 0. �

This allows us to prove on implication of Theorem 8.3: if L is soluble then K(x, y) = 0 for
x ∈ L, y ∈ L′.

Proof of the “only if” implication in Theorem 8.3. Consider ad: L → gl(L). Now, ad(L) is
a Lie subalgebra of gl(V ). By the remark above, the solubility of L is equivalent to the
solubility of ad(L). We are given that L is soluble, hence ad(L) ⊆ gl(V ) is soluble. Thus
Tr(ad(x) ad(y)) = 0 for any x ∈ L and any y ∈ L′ by Proposition 8.4. �

To prove the other implication of the theorem, we first prove a lemma.

Lemma 8.5. Let V be a finite-dimensional vector space over C. If x, y, z : V → V are linear
maps, then Tr([xy]z) = Tr(x[yz]).

Note that this implies that K([xy], z) = K(x, [yz]), which will be useful later on.

Proof. We have that Tr([xy]z) = Tr(xyz − yxz) = Tr(xyz) − Tr(yxz) and Tr(x[yz]) =
Tr(xyz − xzy) = Tr(xyz)−Tr(xzy), so we only have to check that Tr(yxz) = Tr(xzy). But
this is clear, since Tr(AB) = Tr(BA):

Tr(yxz) = Tr(y(xz)) = Tr((xz)y) = Tr(xzy),

which completes the proof. �
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Proposition 8.6. Let V be a finite-dimensional vector space over C. Let L be a Lie subal-
gebra of gl(V ). Suppose Tr(xy) = 0 for x ∈ L, y ∈ L. Then L is soluble.

Proof. The idea is to show that every x ∈ L′ is nilpotent. Then Engel’s Theorem 4.1 implies
that L′ is a nilpotent algebra. Hence L′ is soluble, therefore L is soluble.

Let x ∈ L′. Consider the Jordan decomposition x = d + n. There exists a basis B of V
with respect to which d = diag(λ1, . . . , λn) and [n]B is strictly upper-triangular. We need to

prove that d = 0, i.e. λi = 0 for all i. This will follow if we show that
n∑
i=1

λiλi = 0. Define

d : V → V by [d]B = diag(λ1, . . . , λn). Let us note that

Tr(dx) =
n∑
i=1

λiλi.

It is enough to prove that

Tr(d[yz]) = 0

for any y, z ∈ L, because x ∈ L′ = Span{[yz] : y, z ∈ L}. By Lemma 8.5,

Tr(d[yz]) = Tr([dy]z).

By Lemma 8.2, the Jordan decomposition of ad(x) is ad(d)+ad(n). By Lemma 8.1 (2), there

is a polynomial q(X) ∈ C[X] such that ad(d) = q(ad(x)). But it is clear that ad(d) = ad(d).
Therefore, ad(d) maps L to L (because this is a polynomial in ad(x) and ad(x) : L → L).
In particular, ad(d)(y) = [dy] ∈ L. Since Tr(xy) = 0 for any x, y ∈ L, we conclude that
Tr([dy]z) = 0. We have seen above that this implies λ1 = · · · = λn = 0, so that x is
nilpotent. �

Finally, we complete the proof of Theorem 8.3.

Proof of the “if” implication in Theorem 8.3. We are given that Tr(ad(x) ad(y)) = 0 for any
x ∈ L, y ∈ L′. By Proposition 8.6, we obtain that L(2) is soluble. But this implies that L′ is
soluble so L is soluble. �

A digression into linear algebra. Let V be a vector space over C of dimension dimV = n
(C can be replaced by any field). Define the dual vector space V ∗ as the set of linear maps
α : V → C. This a vector space over C. If v1, . . . , vn is a basis of V , then there is a natural
basis f1, . . . , fn of V ∗ defined by the condition

fi(vj) = δij =

{
1 if i = j
0 if i 6= j

,

the Krönecker delta. This basis {f1, . . . , fn} is called the dual basis. In particular, dimV ∗ =
dimV .

A bilinear form V × V → C is a function (u, v) which is linear in each argument. A bilinear
form ( , ) : V × V → C is symmetric if (u, v) = (v, u) for all u, v ∈ V . Let W ⊆ V be a
vector subspace. Then

W⊥ = {v ∈ V | (v, x) = 0 for all x ∈ W}.
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Remark. The set W⊥ is a vector subspace.

Definition. A bilinear form ( , ) : V × V → C is called non-degenerate if V ⊥ = 0.

If we choose a basis v1, . . . , vn of V , then ( , ) is given by a n × n matrix A = (aij), where
aij = (vi, vj) for all 1 ≤ i, j ≤ n. Then for v =

∑
λivi, w =

∑
µjvj, we have

(v, w) =
∑

aijλiµj.

Exercise. A bilinear form ( , ) is non-degenerate if and only if A is invertible.

Proposition 8.7. Let ( , ) be a non-degenerate bilinear form V . For u ∈ V , define fu ∈ V ∗
by the rule

fu(x) = (u, x) for all x ∈ V.
Then the map V → V ∗ given by u 7→ fu is an isomorphism of vector spaces.

Proof. Linearity follows from the linearity of ( , ) in the first argument. (That fu ∈ V ∗

follows from the linearity of ( , ) in the second argument.)

Since dimV ∗ = dimV , it is enough to show that the kernel is 0. But the kernel of this map
is V ⊥, and this is 0 since ( , ) is non-degenerate. �

Proposition 8.8. Let ( , ) be a non-degenerate bilinear form on V . Let W ⊆ V be a vector
subspace. Then

(1) dimW + dimW⊥ = dimV ,
(2) if W ∩W⊥ = {0}, then V = W ⊕W⊥.

Proof. For (1), choose a basis v1, . . . , vr of W , and then extend it to a basis v1, . . . , vn of V .
By definition, u ∈ W⊥ means that fu(x) = (u, x) = 0 for all x ∈ W , which is equivalent
to fu(vi) = 0 for i = 1, . . . , r. This happens if and only if fu ∈ Span(fr+1, . . . , fn) (where
we recall that fi(vj) = δij). Hence the image of W⊥ in V ∗ has dimension n − r. But by
Proposition 8.7, the map V → V ∗ that sends u to fu is an isomorphism. Thus

dimW⊥ = n− r = dimV − dimW.

This proves (1).

If we have subspaces V1 ⊆ V and V2 ⊆ V such that dimV1+dimV2 = dimV and V1∩V2 = {0},
then V = V1 ⊕ V2. We apply this to V1 = W and V2 = W⊥ to get (2). �

Definition. If W ∩W⊥ = {0}, let us call W a non-degenerate subspace of V .

Let L be a Lie algebra over C. Recall that we defined the bilinear Killing form K : L×L→ C
by K(x, y) = Tr(ad(x) ad(y)).

We recall Theorem 8.3.

Theorem 8.9. A Lie algebra L over C is soluble if and only if then K(L,L′) = 0.
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Example. Let L be a Lie algebra such that dimL = 2 and L has a vector space basis
B = {x, y} with [xy] = x. Recall that adx is a linear transformation L → L sending z to
[xz]. Then

[adx]B =

(
0 1
0 0

)
, [ad y]B =

(
−1 0
0 0

)
.

Let us write down the matrix of the Killing form of L. We have

K(x, x) = Tr(ad(x) ad(x)) = Tr 0 = 0,

K(x, y) = Tr(ad(x) ad(y)) = Tr 0 = 0,

K(y, y) = Tr(ad(y) ad(y)) = Tr

(
1 0
0 0

)
= 1.

Therefore, the matrix associated to K is(
0 0
0 1

)
.

We have that K(x, x) = K(y, x) = 0, so K(L,L′) = 0 (since L′ = Span(x)), and hence
Cartan’s criterion 8.3 says that the Lie algebra is soluble. This can be confirmed by noting
that L′ = Span(x), so L(2) = 0.

Ideals. Let L be a Lie algebra over F . For an ideal L of L, let KI be the Killing form of I
(as a Lie algebra itself). For x, y ∈ I, what is the relationship between KI(x, y) and K(x, y)?

Lemma 8.10. Let I be an ideal of L.

(1) For x, y ∈ I, KI(x, y) = K(x, y).
(2) Define

I⊥ = {x ∈ L : K(x, i) = 0 for all i ∈ I}.
Then I⊥ is an ideal of L.

Proof. For (1), let B be a basis of I, and x, y ∈ I. Let

[adx]B = Mx, [ad y]B = My.

So KI(x, y) = Tr(MxMy) by definition. Extend B to a basis B′ of L. As I is an ideal, adx
maps L→ I, so

[adx]B′ =

(
Mx Nx

0 0

)
, [ad y]B′ =

(
My Ny

0 0

)
.

So

[(adx)(ad y)]B′ =

(
MxMy MxNy

0 0

)
and hence K(x, y) = Tr((adx)(ad y)) = Tr(MxMy) = KI(x, y).

For (2), let x ∈ I⊥. Then

0 = K(x, i) = Tr((adx)(ad i)) for all i ∈ I.
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Let y ∈ L, i ∈ I. Then

K([xy], i) = Tr(ad[xy] ad i)
= Tr([adx, ad y] ad i)
= Tr(adx[ad y, ad i]) by Lemma 8.5
= Tr(adx ad[yi])
= K(x, [yi])
= 0 since [yi] ∈ I

Hence [xy] ∈ I⊥ for all x ∈ I⊥, y ∈ L. So I⊥ is an ideal. �

Semisimplicity. Recall that a Lie algebra L is semisimple if Rad(L) = 0, i.e. L has no
nonzero soluble ideals.

Theorem 8.11. A finite dimensional Lie algebra L over C is semisimple if and only if its
Killing form is non-degenerate.

Proof. Suppose L is semisimple. By Lemma 8.10, L⊥ is an ideal of L. Also,

K(x, y) = 0 for all x, y ∈ L⊥.

This implies that L⊥ is soluble by Theorem 8.9. Therefore, L⊥ = 0, which means that K is
non-degenerate.

For the converse implication, we show that if L is non-semisimple, then K is degenerate (i.e.
L⊥ 6= 0). Suppose R = Rad(L) 6= 0. Let the derived series of R be

R ⊃ R(1) ⊃ R(2) ⊃ · · · ⊃ R(t) = 0.

Then A = R(t−1) is a nonzero abelian ideal of L. We will show that A ⊆ L⊥.

We claim that the map (ad a)(adx) : L → L is nilpotent for any a ∈ A, x ∈ L. For l ∈ L,
the composition (ad a)(adx)(ad a) sends

l 7→ [al]︸︷︷︸
∈A

7→ [x[al]]︸ ︷︷ ︸
∈A

7→ 0

as A is abelian. Therefore, (ad a)(adx)(ad a) = 0, so ((ad a)(adx))2 = 0.

Therefore, Tr((ad a)(adx)) = 0. Hence

K(a, x) = Tr((ad a)(adx)) = 0 for all a ∈ A, x ∈ L,

which shows A ⊆ L⊥, hence L⊥ 6= 0. �

Example. The Lie algebra sl(2,C) is semisimple (because it is simple), and the matrix of
its Killing form with respect to the basis e, h, f is 0 4 0

4 0 0
0 0 8

 .

(Checking this is left as an exercise.)
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Structure of semisimple Lie algebras.

Theorem 8.12. Let L be a finite dimensional Lie algebra over C. Then L is semisimple if
and only if

L = L1 ⊕ · · · ⊕ Lr,
a direct sum of simple ideals Li.

Note. This means

(1) L = L1 ⊕ · · · ⊕ Lr as vector spaces,
(2) [Li, Lj] ⊆ Li ∩ Lj = 0 for all i 6= j.

Note. For any finite dimensional Lie algebra L over C, this means

• Rad(L) is the maximal soluble ideal of L,
• L/Rad(L) is semisimple, so it is the direct sum of simple ideals.

Lemma 8.13. Let L be a semisimple Lie algebra over C. Suppose I is a non-zero ideal.
Then

L = I ⊕ I⊥ (perp. with respect to K)

and I is itself semisimple.

Proof. Since K(x, y) = 0 for any x, y ∈ I ∩ I⊥, Theorem 8.9 shows that I ∩ I⊥ is soluble.
As L is semisimple, I ∩ I⊥ = 0. Hence, as K is non-degenerate by Theorem 8.11, L = I⊕ I⊥
by Proposition 8.8.

As I ∩ I⊥ = 0, the restriction of K to I is non-degenerate. Hence so is KI , the Killing form
of I, by Lemma 8.10. Therefore, I is semisimple by Theorem 8.11. �

Proof of Theorem 8.12. We first proceed by induction on dimL to show that if L is semisim-
ple, then L is a direct sum of simple ideals. The statement is trivial when L is simple (in
particular, when dimL = 1). So let 0 6= I ( L be an ideal. Then by Lemma 8.13, L = I⊕I⊥
and the ideals I, I⊥ are semisimple. By the inductive hypothesis:

I = L1 ⊕ · · · ⊕ Lm, I⊥ = M1 ⊕ · · · ⊕Mn

where Li, Mi are simple ideals of I, I⊥, respectively. Then

[Li, L] = [Li, I + I⊥] = [Li, I] + [Li, I
⊥] = [L, I] ⊆ Li

since [Li, I
⊥] ⊆ [I, I⊥] ⊆ I ∩ I⊥ = 0. Hence all Li are ideals of L, and similarly, Mi are ideals

of L. Hence
L = L1 ⊕ · · · ⊕ Lm ⊕M1 ⊕ · · · ⊕Mn

is a direct sum of simple ideals.

Conversely, let L = L1 ⊕ · · · ⊕ Lr, where Li are simple ideals. Let I be a soluble ideal of L.
Then

[ILi] ⊆ I ∩ Li,
so [ILi] = 0, since Li is simple and I is soluble. Hence

[IL] = [IL1]⊕ · · · ⊕ [ILr] = 0
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and I ⊆ Z(L) =
⊕
i

Z(Li) = 0. �

9. Jordan decomposition in semisimple Lie algebras

Let L be a Lie subalgebra of gl(V ). Each x ∈ L has a Jordan decomposition x = d+n where
d : V → V is diagonalizable, n : V → V is nilpotent, and dn = nd.

Note that d, n need not be in L.

Example. If L = Span(x), an abelian 1-dimensional Lie algebra (x ∈ gl(V )), then d, n 6∈ L
(unless x = d or x = n).

But: if L is semisimple, then d, n do lie in L.

Theorem 9.1. Let L be a finite dimensional semisimple Lie algebra over C. Then every
x ∈ L can be expressed uniquely as

x = d+ n

where

(1) d, n ∈ L,
(2) ad d : L→ L is diagonalizable, and adn : L→ L is nilpotent,
(3) [dn] = 0.

Moreover, for y ∈ L
[xy] = 0 implies that [dy] = [ny] = 0.

Definition. We call x = d + n the Jordan decomposition of x. We call d a semisimple
element of L and n a nilpotent element.

The next proposition shows that this agree with the old notion of Jordan decomposition
when L ⊆ gl(V ).

Proposition 9.2. Let L ⊆ gl(V ) be a semisimple Lie subalgebra over C. Then the Jordan
decomposition

x = d+ n

in Theorem 9.1 is the same as the Jordan decomposition of x as a linear map V → V .

Proof. Let
x = d′ + n′

be the Jordan decomposition of x : V → V . So d′ : V → V is diagonalizable, n′ : V → V is
nilpotent, and d′n′ = n′d′. By Lemma 8.2,

ad(x) = ad(d′) + ad(n′)

is the Jordan decomposition of adx : L→ L. If x = d+n as in Theorem 9.1, then by (1)–(3)

ad(x) = ad(d) + ad(n)

is also the Jordan decomposition of adx : L→ L. By uniqueness of Jordan decomposition,

ad(d′) = ad(d), ad(n′) = ad(n).

As L is semisimple, Z(L) = 0, so ad: L→ gl(V ) is injective. Therefore, d′ = d, n′ = n. �
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Proposition 9.3. Let L be a semisimple Lie algebra over C, and let ρ : L → gl(V ) be a
representation of L. Suppose x ∈ L has Jordan decomposition

x = d+ n

as in Theorem 9.1. Then

ρ(x) = ρ(d) + ρ(n)

is the Jordan decomposition of ρ(x) : V → V .

Proof. Set as an exercise on Sheet 4. �

Derivations. Recall that for a Lie algebra L, a derivation of L is a linear map δ : L → L
such that

δ[xy] = [x, δ(y)] + [δ(x), y] for all x, y ∈ L.
The set DerL of all derivations of L is a Lie subalgebra of gl(L) by Proposition 1.3.

Also, adx ∈ DerL by Proposition 1.4.

Proposition 9.4. The set adL = {adx : x ∈ L} is an ideal of DerL.

Proof. Let δ ∈ DerL and x, y ∈ L. Then

[δ, adx](y) = δ[xy]− [x, δ(y)] = [x, δ(y)] + [δ(x), y]− [x, δ(y)] = [δ(x), y] = (ad(δ(x))(y).

Hence

[δ, adx] = ad δ(x)

so adL is an ideal. �

Proposition 9.5. If L is a semisimple Lie algebra over C, then

adL = DerL.

Proof. Let M = adL. As Z(L) = 0, ad: L→M is an isomorphism, so M is also semisimple,
and M is an ideal of DerL.

Let K be the Killing form of DerL. We claim that M⊥ = 0. By Lemma 8.10, the Killing
form KM of M is the restriction of K to M . By Theorem 8.11, KM is non-degenerate, so
M ∩M⊥ = 0. Note that

[M,M⊥] ⊆M ∩M⊥ = 0,

and hence for δ ∈M⊥ and adx ∈M , we have [δ, adx] = 0. By the proof of Proposition 9.4,

ad δ(x) = [δ, adx] = 0,

so δ(x) = 0 for all x ∈ L, i.e. δ = 0. Hence we have shown that M⊥ = 0.

This simplies that

(DerL)⊥ ⊆M⊥ = 0,

and therefore K is non-degenerate, so by Proposition 8.8,

dim(DerL) = dimM + dimM⊥ = dimM,

as dimM⊥ = 0, which implies that M = DerL. �
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Proposition 9.6. Let L be a Lie algebra over C. Let δ ∈ DerL have Jordan decomposition
(as a linear map L→ L)

δ = σ + ν

where σ : L→ L is diagonal, ν : L→ L is nilpotent, and σν = νσ. Then σ, ν ∈ DerL.

Proof. Let λ1, . . . , λr be distinct eigenvalues of δ : L → L, and mi be the size of the largest
λi-Jordan block. Then

L =
r⊕
i=1

Lλi

where

Lλi = Ker(δ − λiI)mi .

On each Lλi , σ acts as λiI, and ν as a strictly upper-triangular matrix. For each λ ∈ C,
define

Lλ = {x ∈ L : (δ − λI)k(x) = 0 for some k} =

{
Lλi if λ = λi,
0 if λ 6= λi.

We claim that

[Lλ, Lµ] ⊆ Lλ+µ.

We show that for any n ∈ N,

(1) (δ − (λ+ µ)I)n[xy] =
n∑
k=0

(
n

k

)
[(δ − λI)k(x), (δ − µI)n−k(y)]

by induction on n. The base case n = 1 is clear:

RHS = [x, (δ − µ)(y)] + [(δ − λ)(x), y]
= [x, δy] + [δx, y]− (λ+ µ)[xy]
= δ([xy])− (λ+ µ)[xy]
= LHS

The inductive step is left as an exercise.

By equation (1), for x ∈ Lλ, y ∈ Lµ,

(δ − (λ+ µ)I)n[xy] = 0

for sufficiently large n. Hence [xy] ∈ Lλ+µ, which shows that [Lλ, Lµ] ⊆ Lλ+µ.

Now, we use this to show that σ ∈ DerL. Recall that Lλ is a λ-eigenspace for σ. For x ∈ Lλ,
y ∈ Lµ, [xy] ∈ Lλ+µ, so

σ(x) = λx, σ(y) = µy and σ[xy] = (λ+ µ)[xy].

Hence

[σ(x), y] + [x, σ(y)] = λ[xy] + µ[xy] = (λ+ µ)[xy] = σ[xy],

showing that σ ∈ DerL. Hence ν = δ − σ ∈ DerL. �

We can finally prove Theorem 9.1.
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Proof of Theorem 9.1. Let L be a semisimple Lie algebra over C and let x ∈ L. Then
adx ∈ DerL. Let the Jordan decomposition of adx : L→ L be

adx = σ + µ

(for σ diagonalizable, ν nilpotent, σν = νσ). By Proposition 9.6, σ, ν ∈ DerL. By Proposi-
tion 9.5, DerL = adL, so there exist d, n ∈ L such that

σ = ad(d), ν = ad(n).

Hence

adx = ad(d) + ad(n) = ad(d+ n).

As Z(L) = 0, ad: L→ adL = DerL is an isomorphism, so

x = d+ n.

As d, n ∈ L, part (1) of Theorem 9.1 holds. As σ = ad d, ν = adn, part (2) holds.

Also

ad[dn] = [ad(d), ad(n)] = [σ, ν] = 0,

hence [dn] = 0, so part (3) holds.

As σ and ν are unique (by uniqueness of Jordan decomposition), so are d and n.

We finally prove the last part of Theorem 9.1. Let y ∈ L with [xy] = 0. By Lemma 8.1, σ
and ν = σ − adx are polynomials in adx. Say

ν = cr(adx)r + · · ·+ c1 adx+ c0I.

As (ad(x))(y) = [xy] = 0, this means

ν(y) = c0y.

Since ν is nilpotent, c0 = 0, so ν(y) = 0. Hence

0 = ν(y) = (adn)(y) = [ny],

so [ny] = 0, and then [dy] = 0 as [xy] = 0. �

10. Cartan subalgebras and root spaces

We now work towards the classification of simple Lie algebras over C.

We have seen one such: sl(2,C). Features: basis e, f , h with:

• adh is diagonalizable — i.e. h is a semisimple element
• e, f , h are a basis of eigenvectors for adh.

For sl(3,C), replace h by

H = {diagonal matrices} =

h =

 a1 0 0
0 a2 0
0 0 a3

 :
∑

ai = 0

 ,

a 2-dimensional abelian subalgebra.
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Let Eij ∈ sl(2,C) be the matrix with 1 in the ij-entry and 0 elsewhere (i 6= j). Check that

(adh)(Eij) = [hEij] = (ai − aj)Eij.
Hence

sl(3,C) = H ⊕
⊕
i+j

Span(Eij)

a direct sum of weight spaces for adH. The weights of H corresponding to each of these
weight spaces are

space weight

H 0
Span(Eij) εi − εj, where εi : H → C, h 7→ ai.

Note also: H consists of semisimple4 elements.

The general strategy to understand structure of a simple Lie algebra L is:

(1) find an abelian subalgebra H consisting of semisimple elements,
(2) decompose L into a direct sum of weight spaces for adH,
(3) use decomposition to pin down structure constants.

First steps. Suppose L is a Lie algebra over C, and H is an abelian subalgebra of L
consisting of semisimple elements.

Lemma 10.1. The Lie algebra L has a basis of common eigenvectors for all adh, h ∈ H.

Proof. Let h1, . . . , hr be a basis for H and αi = adhi : L→ L. Then

[αi, αj] = ad[hihj] = 0

since H is abelian. So α1, . . . , αr are commuting, diagonalizable linear maps L → L. Such
maps have a basis of common eigenvectors. (Standard linear algebra fact, see Sheet 4,
Question 5). �

Let x ∈ L be a common eigenvector for adH. Define weight α : H → C (i.e. α ∈ H∗) by

(adh)(x) = [hx] = α(h)x (h ∈ H).

The weight space of α is

Lα = {x ∈ L : [hx] = α(h)x for all h ∈ H}
By Lemma 10.1, L is the direct sum of these weight spaces. One of them is the 0-weight
space

L0 = {x ∈ L : [hx] = 0 for all h ∈ H}.
Note that H ⊆ L0. Define

Φ = set of nonzero weights α ∈ H∗ for which Lα 6= 0.

Then

(1) L = L0 ⊕
⊕
α∈Φ

Lα

4Recall that x ∈ L is semisimple if adx is diagonalizable
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Note: Φ is a finite set, since L is finite dimensional.

Let K be the Killing form of L (i.e. K(x, y) = Tr((adx)(ad y))).

Proposition 10.2. Let α, β ∈ H∗.

(1) [Lα, Lβ] ⊆ Lα+β

(2) If α + β 6= 0 then K(Lα, Lβ) = 0.
(3) Suppose L is semisimple. Then the restriction of K to L0 is non-degenerate (i.e.

L0 ∩ L⊥0 = 0).

Proof. For (1), let x ∈ Lα, y ∈ Lβ. For h ∈ H,

h[xy] = [[hx]y] + [x[hy]] by the Jacobi identity
= α(h)[xy] + β(h)[xy]
= (α + β)(h)[xy]

and hence [xy] ∈ Lα+β.

For (2), let h ∈ H with (α + β)(h) 6= 0. For x ∈ Lα, y ∈ Lβ,

α(h)K(x, y) = K([hx], y) as K is bilinear
= −K([xh], y) as K is bilinear
= −K(x, [hy]) by Lemma 8.5
= −β(h)K(x, y) as K is bilinear

Hence (α + β)(h)K(x, y) = 0, so K(x, y) = 0.

For (3), let y ∈ L0 ∩ L⊥0 . Then K(L0, y) = 0. For x ∈ L, use the weight space decomposi-
tion (1), to write

x = x0 +
∑
α∈Φ

xα (xα ∈ Lα).

By (2), K(L0, Lα) = 0 if α 6= 0. So K(xα, y) = 0 for all α ∈ Φ. Also, K(x0, y) = 0 by
assumption. Hence

K(x, y) = 0 for all x ∈ L.
So y ∈ L⊥. As L is semisimple, K is non-degenerate, so L⊥ = 0. Hence y = 0. �

Corollary 10.3. If x ∈ Lα, where α 6= 0, α ∈ H∗, then adx is nilpotent.

Proof. For any weight β ∈ Φ ∪ {0}, we have

(adx)(Lβ) ⊆ Lα+β,

(adx)2(Lβ) ⊆ L2α+β,

...

(adx)r(Lβ) ⊆ Lrα+β

...

by Proposition 10.2 (1). But Φ is finite, so for some r we will have rα+ β 6∈ Φ. This means
that (adx)r(Lβ) = 0.
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Once again, since Φ is finite and for each β ∈ Φ∪{0}, we can find r such that (adx)r(Lβ) = 0,
we can take the maximum of these r to obtain one r such that

(adx)r(Lβ) = 0

for any β ∈ Φ ∪ {0}.

Since

L = L0 ⊕
⊕
α∈Φ

Lα

(equation (1)), we see that (adx)r is the zero transformation L → L. �

Cartan subalgebras. Each choice of an abelian subalgebra H ⊆ L gives rise to a direct
sum decomposition

L = L0 ⊕
⊕
α∈Φ

Lα.

Definition. A subalgebra H of a Lie algebra L is called a Cartan subalgebra if

(1) H is abelian,
(2) every element h ∈ H is semisimple,
(3) H is maximal among subalgebras H ⊆ L satisfying properties (1) and (2).

Proposition 10.4. Let L be a finite dimensional semisimple Lie algebra over C. Then L
has a Cartan subalgebra.

Proof. Recall that each x ∈ L has a Jordan decomposition x = s + n where s is semisimple
and n is nilpotent, s, n ∈ L and [s, n] = 0.

Suppose that the semisimple part of any x ∈ L is zero. Then all elements of L are nilpotent.
Then ad x is nilpotent for any x ∈ L. Engel’s Theorem 4.1 implies now that L is a nilpotent
Lie algebra. This contradicts the fact that L is semisimple.

Hence there exists x ∈ L whose semisimple part is nonzero. So semisimple elements exist.
Let s ∈ L be a semisimple element. Consider Span(s). It is an abelian subalgebra of L.
Hence subalgebras H ⊆ L satisfying properties (1) and (2) exist. A maximal dimensional
such subalgebra is a Cartan subalgebra. �

Definition. For a subset X ⊆ L, define the centralizer of X in L by the formula

CL(X) = {l ∈ L | [lx] = 0 for all x ∈ X}.

Exercise. CL(X) is a Lie subalgebra of L.

Lemma 10.5. Suppose H is a Lie subalgebra of L such that

(1) H consists of semisimple elements,
(2) CL(H) = H.

Then H is a Cartan subalgebra in L.
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Proof. Note that clearly H is abelian if and only if H ⊆ CL(H). Thus H is abelian.

We claim that H is the maximal subalgebra with properties (1) and (2). Otherwise, there
exists subalgebra H1 such that H $ H1. Then H1 ⊆ CL(H). But we are given that
CL(H) = H, so H1 = H, a contradiction. �

Example. Let L = sl(n,C) = {n× n matrices with trace 0}. Consider

H = {diagonal n× n matrices with trace 0}.
Then H ⊆ L is an abelian subalgebra. Then

sl(n,C) = H ⊕
⊕

1≤i,j≤n

i 6=j

CEij.

One can check that CL(H) = H (Sheet 4). Hence H is a Cartan subalgebra.

On Sheet 4, we will find a Cartan subalgebra in so(n,C).

Theorem 10.6. Let L be a semisimple Lie algebra over C. Let H be a Cartan subalgebra
in L. Then CL(H) = H.

Consequence. In the decomposition

L = L0 ⊕
⊕
α∈Φ

Lα,

we know that
L0 = {x ∈ L | [h, x] = 0 for all h ∈ H} = CL(H) = H

if H is a Cartan subalgebra.

The elements α ∈ Φ are called roots. It turns out that semisimple Lie algebras will be
classified according to so-called root systems.

Proof of Theorem 10.6. Let L be semisimple with Cartan subalgebra H.

Step 1. Choose h ∈ H such that dimCL(h) is minimal. We will show that

CL(h) = CL(H).

Suppose this is false, i.e. CL(h) 6= CL(H) so there exists s ∈ H such that CL(h) 6⊆ CL(s). So

CL(h) ∩ CL(s) $ CL(h).

(The aim is to find linear combinations of h, s with smaller centralizer than h.)

Choose basis c1, . . . , cn of CL(h)∩CL(s). Since s ∈ H ⊆ CL(H) and s is semisimple, we can
extend to a basis

c1, . . . , cn, x1, . . . , xp of CL(h)

consisting of eigenvectors for ad(s). Also, we can extend to a basis

c1, . . . , cn, y1, . . . , yq of CL(s)

of eigenvectors for ad(h). So

c1, . . . , cn, x1, . . . , xp, y1, . . . , yq
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is a basis of CL(h) +CL(s). Also, adh and ad s commute (since [hs] = 0), so we can extend
to a basis of L:

c1, . . . , cn, x1, . . . , xp, y1, . . . , yq, z1, . . . , zr
consisting of simultaneous ad(h) and ad(s) eigenvectors.

Note [sxi] 6= 0, since xi 6∈ CL(s), and similarly [hyi] 6= 0. Let

[hzi] = αizi, [szi] = βizi

where αi, βi 6= 0.

We have the following table of eigenvalues.

ci xi yi zi

ad(s) 0 6= 0 0 βi
ad(h) 0 0 6= 0 αi

ad(s) + λ ad(h) 0 6= 0 6= 0 βi + λαi
(λ 6= 0)

Choose λ ∈ C such that βi + λαi 6= 0 for all i. Then CL(s+ λh) = CL(s)∩CL(h) which has
smaller dimension than CL(h), a contradiction.

We have hence concluded Step 1, showing that

CL(h) = CL(H).

Step 2. CL(h) is nilpotent.

Let x ∈ CL(h), with Jordan decomposition x = d+ n. By Theorem 9.1,

[hx] = 0 implies that [hd] = [hn] = 0.

So d, n ∈ CL(h). Also, d ∈ H: this is because by Step 1, [d,H] = 0, so H + Span(d)
is abelian and consists of semisimple elements, so d ∈ H as H is a Cartan subalgebra
(maximality condition).

Now, the restriction ad d : CL(h) → CL(h) is the zero map (as d ∈ H), so the restriction
adx : CL(h) → CL(h) is the restriction of adn to CL(h), so is nilpotent. Hence adCL(h)
consists of nilpotent linear maps CL(h) → CL(h), hence by Engel’s Theorem 4.5, CL(h) is
nilpotent. This completes Step 2.

Step 3. CL(h) ⊆ H.

By Step 2, CL(h) is nilpotent, hence soluble, so by Lie’s Theorem 5.1, there exists a basis B
of CL(h) such that

{(adx)B : x ∈ CL(h)} ⊆ t(n,C)

(where n = dimCL(h)) consists of upper-triangular matrices. Let x ∈ CL(h), with Jordan
decomposition

x = d+ n

where d ∈ H (by proof of Step 2), and n ∈ CL(h) with adn nilpotent. Then

(adn)B ∈ u(n,C)

is strictly upper-triangular.
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Let K be the Killing form of L. For all y ∈ CL(h),

K(n, y) = Tr(ad(n) ad(y)) = 0.

By Proposition 10.2 (3), the restriction of K to L0 = CL(H) is non-degenerate. Hence n = 0,
and so

x = d ∈ H.
Therefore, CL(h) = H, finishing Step 3.

By Steps 1 and 3, CL(H) = H. �

11. sl(2)-subalgebras

Let L be a semisimple Lie algebra over C and H be a Cartan subalgebra.

We have the root space decomposition

L = H ⊕
⊕
α∈Φ

Lα

where

Lα = {x ∈ L : [hx] = α(h)x for all h ∈ H}
and Φ ⊆ H∗ \ {0}, the set of roots of L (with respect to H).

Aim. To pin down the structure constants; so far we know that

[H,H] = 0,

[H,Lα]: structure constants α(h),

[Lα, Lβ] ⊆ Lα+β.

There is still a long way to go.

Proposition 11.1. Let α ∈ Φ. Then

(1) −α ∈ Φ,
(2) Let 0 6= x ∈ Lα. Then there exists y ∈ L−α such that

Span(x, y, [xy])

is a subalgebra of L isomorphic to sl(2,C).

Proof. For (1), let 0 6= x ∈ Lα. As K is non-degenerate, there exists y ∈ L such that
K(x, y) 6= 0. Write

y = y0 +
∑
β∈Φ

yβ (y0 ∈ H, yβ ∈ Lβ).

By Proposition 10.2 (2), K(Lα, Lβ) = 0, unless α + β = 0. Therefore, y−α 6= 0, and so
−α ∈ Φ.

For (2), let x ∈ Lα, y ∈ L−α satisfy

K(x, y) 6= 0.
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We claim that [xy] ∈ H and [xy] 6= 0. First, [xy] ∈ [Lα, L−α] ⊆ L0 = H by Proposi-
tion 10.2 (1). As α 6= 0, there exists u ∈ H such that α(u) 6= 0. Then

K(u, [xy]) = K([ux], y) by Lemma 8.5
= α(u)K(x, y)
6= 0

Therefore [xy] 6= 0.

Now, we claim that S = Span(x, y, [xy]) is a subalgebra of L. As [xy] ∈ H, we have that

[[xy]x] = α([xy])x,

[[xy]y] = −α([xy])y,

and hence S is indeed a subalgebra.

Finally, we claim that S ∼= sl(2,C). To show this, we will show that S ′ = S, and refer to
the classification of Lie algebras of small dimension from Chapter 2. Let h = [xy] ∈ H \ {0}.
Suppose for a contradiction that α(h) = 0, so [hx] = [hy] = 0. Then dimS ′ = 1, so S is
soluble. By Lie’s Theorem 5.1, there exists a basis B of L such that

{(ad(s))B : s ∈ S} ⊆ t(3,C)

are upper-triangular matrices. Then

(adh)B = (ad[xy])B ∈ u(3,C),

so adh is nilpotent. As h is semisimple, adh is diagonalizable, hence h = 0, a contradiction.

Hence α(h) 6= 0, so [hx], [hy] 6= 0, and so S ′ is 3-dimensional. Now, S ∼= sl(2,C) by
Proposition 2.7. �

Notation. Rescale x, y to take

S = Span(eα, e−α, hα)

where
eα ∈ Lα, e−α ∈ L−α

hα = [eα, e−α], [hαeα] = 2eα, [hαe−α] = −2e−α

(i.e. α(hα) = 2). Define
S = sl(α) ∼= sl(2,C).

Example. Take L = sl(3,C). We have the root space decomposition

L = H ⊕
⊕
i 6=j

Span(Eij)

with roots εi − εj where

εi :

 a1 0 0
0 a2 0
0 0 a3

 7→ ai.

For α = εi − εj, we have that

sl(α) = Span(Eij, Eji, hij)

where hij = Eii − Ejj.
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We can regard L as an sl(α)-module with multiplication

sl = [sl] (s ∈ S, l ∈ L).

Proposition 11.2. Let α ∈ Φ and β ∈ Φ ∪ {0}. Define

M =
∑
c∈Z

β+cα∈Φ

Lβ+cα.

Then M is an sl(α)-submodule of L.

Proof. By Proposition 10.2 (1),

[Lβ+cα, L±α] ⊆ Lβ+(c±1)α

and [Lβ+cα, H] ⊆ Lβ+cα. �

Definition. We call the set of roots

{β + cα : c ∈ Z} ∩ Φ

the α-string through β.

Example. Let L = sl(3,C). Let α = ε2 − ε3, β = ε1 − ε2. The α-string though β is

β, β + α.

The corresponding submodule is

M = Span(E12, E13) =


 0 ∗ ∗

0 0 0
0 0 0


and

sl(α) =


 0 0 0

0 ∗ ∗
0 ∗ ∗

 .

Proposition 11.3. For any α ∈ Φ:

(1) dimLα = 1,
(2) if n ∈ Z \ {0} and nα ∈ Φ then n = ±1.

Proof. Define

W = Span(e−α, H, Lnα : n ∈ N).

Then W is invariant under ad eα, ad e−α, and adH. So it is an sl(α)-submodule. Write
(ad eα)W for the restriction of ad eα to W . Now

Tr([(ad eα)W , (ad e−α)W ]) = 0

and is also equal to

Tr(ad[eαe−α])W = Tr(adhα)W .
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Now

(adhα))W =



−α(h)
0

. . .
0

nα(h)
. . .

nα(h)
. . .


writing h = hα so that α(h) = 2 (the first square, −α(h), coming from e−α, the second
square, 0, coming from H, and the third square, nα(h)I, coming from Lnα). Taking the
trace, we obtain

0 = −α(h) +
∑
n≥1

nα(h) dimLnα.

Therefore, ∑
n≥1

n dimLnα = 1.

Hence dimLα = 1 and Lnα = 0 for n > 1.

Similarly, dimL−α = 1 and L−nα = 0 for n > 1. �

The next aim towards studying the root system Φ ⊆ H∗ \ {0} is the following proposition.

Proposition 11.4. Let S = Span(e, f, h) ∼= sl(2,C), and let V be a finite dimensional
S-module. Then every eigenvalue of the linear map

v 7→ hv (v ∈ V )

is an integer.

Proof. Recall that the irreducible S-modules are Vd, and on Vd, h has eigenvalues

d, d− 2, . . . ,−d ∈ Z.
Now take a composition series

V = W0 ⊃ W1 ⊃ · · · ⊃ Wr = 0

where Wi are submodules and each quotient Wi/Wi+1 is irreducible. So Wi

Wi+1

∼= Vdi for some

di, and with respect to a suitable basis of V , h acts as

d0

. . . 0
−d0

d1

F
. . .
−d1

. . .


Hence the eigenvalues are integers. �
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We prove some more facts about Φ.

Proposition 11.5. Let α, β ∈ Φ with β 6= ±α.

(1) β(hα) ∈ Z.
(2) The α-root string through β is

β − rα, β − (r − 1)β, . . . , β, β + α, . . . , β + qα

where q, r ≥ 0 and β(hα) = r − q.
(3) If α + β ∈ Φ, then

[eαeβ] = λeα+β (λ 6= 0).

(4) β − β(hα)α ∈ Φ.

Proof. Let

M =
∑
c∈Z

Lβ+cα.

This is a sl(α)-submodule by Proposition 11.2.

Part (1) is clear: since β(hα) is an eigenvalue of hα on Lβ, β(hα) ∈ Z by Proposition 11.4.

Then by Proposition 11.3, dimLβ+cα is either 0 or 1 for all c ∈ Z. So the eigenspaces of
ad(hα) on M are all 1-dimensional. The eigenvalues are (β + cα)(hα) = β(hα) + 2c, so they
are either all even or all odd. Therefore, M is an irreducible sl(α)-module (if not, then the
eigenvalue 0 or 1 has multiplicity greater than 1).

So M ∼= Vd for some d. Hence the eigenvalues are

{β(hα) + 2c : β + cα ∈ Φ} = {d, d− 2, . . . ,−d}.

Hence (2) holds, taking

d = β(hα) + 2q, −d = β(hα)− 2r

(so, in particular, we obtain β(hα) = r − q by taking the sum of these equations).

For (3), we recall that the action of eα on M ∼= Vd is given by the matrix
0 1

0 2
. . . . . .

0 d
0


So if [eαeβ] = 0 then [hαeβ] = deβ, so β(hα) = d, hence q = 0. But α+β ∈ Φ by assumption,
and hence q ≥ 1, a contradiction. Therefore, [eαeβ] 6= 0, showing (3).

Finally, (4) follows from (2). �
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12. Cartan subalgebras as inner product spaces

As in the previous chapters, we assume that L is semisimple and H is a Cartan subalgebra.

Proposition 12.1. For h1, h2 ∈ H,

K(h1, h2) =
∑
α∈Φ

α(h1)α(h2).

Proof. Let B be a basis of L:

B = (basis of H) ∪ {eα : α ∈ Φ}.
For h ∈ H,

(adh)B =


0

. . .
0

α(h)
. . .

 ,

the first part, 0, corresponding to H, and the second part, α(h)I, corresponding to

{eα : α ∈ Φ}.

Hence
K(h1, h2) = Tr((adh1)(adh2)) =

∑
α∈Φ

α(h1)α(h2),

completing the proof. �

Proposition 12.2. We have that Span(Φ) = H∗, the dual space of H.

Proof. Suppose for a contradiction that

Span(Φ) = W $ H∗.

Then
AnnH(W ) = {h ∈ H : f(h) = 0 for all f ∈ W}

is nonzero (as it has dimension dimH∗ − dimW ).

Hence there exists 0 6= h ∈ H such that

α(h) = 0 for all α ∈ Φ.

Then
K(h,H) = 0 by Proposition 12.1

K(h, Lα) = 0 for all α, by Proposition 10.2 (2)

Hence h ∈ L⊥ = 0, a contradiction. �

By Proposition 10.2 (3), the restriction KH of K to H is non-degenerate. For h ∈ H, define
θh ∈ H∗ by

θh(x) = K(h, x).

Now, KH non-degenerate implies that the map h 7→ θh is an injective map H → H∗. Since
dimH = dimH∗, the map h 7→ θh is an isomorphism H → H∗.
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We hence obtain the following result.

Proposition 12.3. For each α ∈ Φ, there exists a unique tα ∈ H such that

α(x) = K(tα, x) for all x ∈ H.

Recall that Lα = Span(eα) and [eα, e−α] = hα ∈ H.

Proposition 12.4. Let α ∈ Φ and x ∈ Lα, y ∈ L−α. Then

[xy] = K(x, y)tα.

Proof. For h ∈ H,

K(h, [xy]) = K([hx], y) by Lemma 8.5
= α(h)K(x, y)
= K(tα, h)K(x, y)
= K(h,K(x, y)yα)

Finally, KH is non-degenerate, so [xy] = K(x, y)tα. �

Proposition 12.5.

(1) tα = hα
K(eα,e−α)

and hα = 2tα
K(tα,tα)

(2) K(tα, tα)K(hα, hα) = 4

Proof. For (1), note that [eα, e−α] = hα implies the formula for tα, using Proposition 12.4.
Also, α(hα) = 2, so using the formula for tα

2 = K(tα, hα) = K(eα, e−α)K(tα, tα).

Hence we get the formula for hα, using Proposition 12.4.

Finally, (2) follows from (1). �

Proposition 12.6. If α, β ∈ Φ then

(1) K(hα, hβ) ∈ Z,
(2) K(tα, tβ) ∈ Q.

Proof. For (1), recall that by Proposition 12.1,

K(hα, hβ) =
∑
γ∈Φ

γ(hα)γ(hβ)

which is an integer by Proposition 11.5.

To show (2), note that by Proposition 12.5,

K(tα, tβ) = K(hα, hβ) · K(tα, tα)

2

K(tβ, tβ)

2
∈ Q,

using part (1). �
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We define a bilinear form on H∗: for θ1, θ2 ∈ H∗ we have θi = θhi for some hi ∈ H, and we
define

(θ1, θ2) = K(h1, h2).

As KH is non-degenerate, so is ( , ) on H∗.

For α, β ∈ Φ,

(α, β) = K(tα, tβ).

By Proposition 12.2, Span(Φ) = H∗, so there exists a basis α1, . . . , αk of H∗ with all αi ∈ Φ.

Proposition 12.7. If β ∈ Φ then

β =
k∑
i=1

riαi for ri ∈ Q.

Proof. Let β =
k∑
i=1

riαi for ri ∈ C. Then

(β, αj) =
k∑
i=1

ri(αi, αj).

In matrix form,  (β, α1)
...

(β, αk)

 =

 (α1, α1) . . . (α1, αk)
...

(αk, α1) . . . (αk, αk)


︸ ︷︷ ︸

A

 r1
...
rk



As KH is non-degenerate, A is invertible, and all entries of A are in Q by Proposition 12.6.
Hence all the entries of A−1 are in Q. Also all (β, αj) ∈ Q. Hence all ri ∈ Q. �

Definition. Let E be the real span of α1, . . . , αk ∈ H∗, i.e.

E =

{
k∑
i=1

riαi : ri ∈ R

}
.

By Proposition 12.7,

(1) E does not depend on the choice of basis α1, . . . , αk,
(2) Φ ⊆ E,
(3) E = SpanR(Φ).

Proposition 12.8. The bilinear form ( , ) is a real-valued inner product on the vector
space E.

Proof. For α, β ∈ Φ, (α, β) = K(tα, tβ) ∈ R. Hence ( , ) is real-valued on E.
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Let θ ∈ E, so θ = θh for some h ∈ H. Then

(θh, θh) = K(h, h)
=
∑
γ∈Φ

γ(h)2 by Proposition 12.1

=
∑
γ∈Φ

K(tγ, h)2 by definition of tγ

=
∑
γ∈Φ

(γ, θh)
2 by definition of ( , )

As (γ, θh) ∈ R, this shows that (θh, θh) ≥ 0.

If (θh, θh) = 0 then γ(h) = 0 for all γ ∈ Φ. Hence h = 0, so θ = 0. �

13. Root systems

Let E be a finite dimensional real vector space with an inner product ( , ). For 0 6= v ∈ E,
the reflection sv : E → E is defined by

sv(x) = x− 2(v, x)

(v, v)
v for all x ∈ E.

Note that sv sends v 7→ −v and fixes every vector in v⊥.

Note. The reflection sv preserves the inner product, i.e.

(sv(x), sv(y)) = (x, y) for all x, y ∈ E.

(Showing this is left as an exercise.)

Notation. Write 〈x, v〉 = 2(x,v)
(v,v)

(linear in x, not in v).

Definition. A subset R of E is a root system if

(1) R is finite, 0 6∈ R, and Span(R) = E,
(2) for α ∈ R, the only scalar multiples of α in R are ±α,
(3) for α ∈ R, the reflection sα sends R to R, i.e. permutes the set R,
(4) for α, β ∈ R,

〈β, α〉 =
2(β, α)

(α, α)
∈ Z.

We call the elements of R roots, and dimE the rank of R.

Example. The only root system of rank 1 is

Proposition 13.1. Let L be a semisimple Lie algebra over C, H a Cartan subalgebra, and
root decomposition

L = H ⊕
⊕
α∈Φ

Lα.

Let E = SpanR(Φ) ⊆ H∗, with inner product ( , ) as in Chapter 12. Then Φ is a root system
in E.
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Proof. Axiom (1) is clear. Axiom (2) is Proposition 11.3 (2), and Sheet 5, Question 2.

To check axiom (3), let α, β ∈ Φ. Then

sα(β) = β − 〈β, α〉α.
We claim that 〈β, α〉 = β(hα). Indeed:

β(hα) = K(tβ, hα) by definition

= K
(
tβ,

2tα
K(tα,tα)

)
by Proposition 12.5

= 2(β,α)
(α,α)

by definition

= 〈β, α〉 by definition

Hence sα(β) = β − β(hα)α ∈ Φ by Proposition 11.5 (4). Finally, (4) follows from 〈β, α〉 =
β(hα) ∈ Z by Proposition 11.5 (1). �

Examples.

(1) Let L = sl(n,C). The Cartan subalgebra H consists of diagonal matrices in L, the
root spaces are

Span(Eij) with roots εi − εj (i 6= j),

where

εi :

 a1

. . .
an

 7→ ai.

Here

E = SpanR(Φ) =

{
n∑
i=1

λiεi :
n∑
i=1

λi = 0

}
of dimension n− 1. Inner product (rescaling) is the usual(∑

λiεi,
∑

µiεi

)
=
∑

λiµi.

(2) Some rank 2 root systems.
(a) Let L = sl(3,C). Let α = ε1 − ε2, β = ε2 − ε3. Then the root system

Φ = {α, β, α + β,−α,−β,−α− β}.

Also (α, β) = −1, (α, α) = 2. So the angle between α and β is cos−1
(

1
2

)
= 2π

3
.

α+ββ

−α

−α−β −β

α
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(b) Another rank 2 root system. Again, let ε1, ε2 be standard unit vectors in R2,

and let α = ε2, β = ε1 − ε2. The angle between α and β is cos−1
(
−1√

2

)
= 3π

4
.

−2α−β

−α

β

β

α+β=ε1

−β

α

2α+β=ε1+ε2

(c) Another one

−α α

−β

β

Definition. We say that root systems R ⊆ E, R′ ⊆ E ′ are isomorphic if there exists a
vector space isomorphism φ : E → E ′ such that

(1) φ(R) = R′,
(2) (φ(α), φ(β)) = (α, β) for any α, β ∈ R.

Definition. A root system R ⊆ E is reducible if R = R1 ∪R2 where Ri 6= ∅ and

(α, β) = 0 for any α ∈ R1, β ∈ R2.

Otherwise, R is irreducible.

Example. In the examples above, (2)(c) is reducible, but (2)(a) and (2)(b) are irreducible.

Proposition 13.2. Let L be a semisimple Lie algebra over C with root system of Φ. If Φ is
irreducible, then L is simple.

Proof. We have

L = H ⊕
⊕
α∈Φ

Lα.

Suppose L is not simple, so it has an ideal I 6= 0, L. Now, [HI] ⊆ I, and adH is simultane-
ously diagonalizable on L, hence also on I.

Therefore, I has a basis of common eigenvectors for adH, so

I = H1 ⊕
⊕
α∈Φ1

Lα
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where H1 ⊆ H, Φ1 ⊆ Φ. Similarly,

I⊥ = H2 ⊕
⊕
α∈Φ2

Lα.

As L = I ⊕ I⊥,
H = H1 ⊕H2, Φ = Φ1 ∪ Φ2, Φ1 ∩ Φ2 = ∅.

If Φ2 = ∅, then Φ1 = Φ, so I contains all Lα (α ∈ Φ), so also all [LαL−α], which span H.
Hence I = L, a contradiction. Hence Φi 6= ∅ for i = 1, 2.

Finally, for α ∈ Φ1, β ∈ Φ2,
[hβeα] ∈ I ∩ I⊥ = 0,

so
0 = α(hβ) = 〈α, β〉

by the proof of Proposition 13.1. Hence (α, β) = 0, showing that Φ is reducible. �

Classification theorems (Killing, Cartan). The root system Φ depends on the choice
of Cartan subalgebra H. However, we have the following theorem.

Theorem 13.3. Let L be a semisimple Lie algebra over C with Cartan subalgebras H1, H2

and corresponding root systems Φ1, Φ2. Then Φ1
∼= Φ2.

The proof is based on the fact that all Cartan subalgebras are conjugate, i.e. there exists

g ∈ Aut(L) = {x ∈ GL(L) : x([ab]) = [x(a), x(b)] for all a, b ∈ L}
such that g(H1) = H2.

So every semisimple Lie algebra over C has a unique unique root system. The converse also
holds.

Theorem 13.4. For any root system Φ, there exists a unique (up to isomorphism) semisim-
ple Lie algebra L over C with root system Φ.

Uniqueness. We can specify the structure constants of L in terms of root systems Φ: there
exists a Chevalley basis of L with the following structure constants. Recall, for α, β ∈ Φ, the
α-string through β is

β − rα, . . . , β + qα.

Then the Chevalley basis is hα’s, eα’s, and the structure constants are

[hαhβ] = 0

[hαeβ] = β(hα)eβ and β(hα) = r − q
[eαe−α] = hα

[eαeβ] =

{
0 if α + β 6∈ Φ ∪ {0}
±(q + 1)eα+β if α + β ∈ Φ

Existence. Given an irreducible root system (these are classified), one can construct a
simple Lie algebra with that root system. The simple Lie algebras as

(classical) sl, sp, so,
(exceptional) g2, f2, e6, e7, e8.
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Alternative approach to existence: use Serre relations.

Conclusion. Classification of simple Lie algebras is equivalent to classification of irreducible
root systems.

14. Irreducible root systems

Let R ⊆ E be a root system for a real inner product space E. Recall that for α, β ∈ R,

〈α, β〉 =
2(β, α)

(α, α)
.

Also,
(α, α) = ||α||2

(where ||α|| is the length of α), and

(α, β) = ||α||||β|| cos θ

where θ is the angle between α and β.

Proposition 14.1. If α, β ∈ R and β 6= ±α, then

〈β, α〉〈α, β〉 =
4(α, β)2

(α, α)(β, β)
∈ {0, 1, 2, 3}.

Proof. If θ is the angle between α and β,

〈β, α〉〈α, β〉 = 4 cos2 θ ≤ 4.

We only have to note that it is not equal to 4; otherwise, cos2 θ = 1, and θ = nπ, so
β = ±α. �

Proposition 14.2. Let α, β ∈ R, β 6= ±α, and assume that (β, β) ≥ (α, α). The possibilities
for 〈α, β〉, 〈β, α〉, θ are as follows

〈α, β〉 〈β, α〉 cos θ θ (β,β)
(α,α)

= 〈β,α〉
〈α,β〉

0 0 0 π
2

1 1 1
2

π
2

1

−1 −1 −1
2

2π
3

1

1 2 1√
2

π
4

2

−1 −2 − 1√
2

3π
4

2

1 3
√

3
2

π
6

3

−1 −3 −
√

3
2

5π
6

3

The proof is an easy calculation.

Proposition 14.3. Let θ be the angle between α, β ∈ R.

(1) If θ > π
2
, then α + β ∈ R.

(2) If θ < π
2
, then α− β ∈ R.
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Proof. By axiom (3),

sβ = α− 〈α, β〉β ∈ R.

From Proposition 14.2, θ > π
2

implies that 〈α, β〉 = −1, and θ < π
2

implies that 〈α, β〉 = 1.
�

Example (Classification of root systems of rank 2). Let R ⊆ R2 be a rank 2 root system.
Pick α, β ∈ R with β 6= ±α, and the angle θ between α and β as large as possible (θ ≥ π

2
).

By Proposition 14.2, the possibilities of θ are 2π
3

, 3π
4

, 5π
6

or π
2
.

Take θ = 2π
3

. Then α, β have the same length, and we have

β

α

Apply reflections to get the root system

α+ββ

−α

−α−β −β

α A2

Take θ = 3π
4

. Here, (β, β) = 2(α, α), and we get

β

α B2

Take θ = 5π
6

. Here, (β, β) = 3(α, α), and we get
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α

β

G2

Take θ = π
2
. Here, we get

−α α

−β

β

A1 + A1

This root system is reducible.

Weyl groups. Recall that for a root system R ⊆ E and a root α ∈ R, we defined the
reflection sα by

sα(x) = x− 2(α, x)

(α, α)
α for all x ∈ E.

Definition. The Weyl group W (R) of a root system R ⊆ E is

W (R) = 〈sα : α ∈ R〉

a subgroup of GL(E).

Proposition 14.4. The Weyl group W (R) is finite.

Proof. By axioms (3), each reflection sα gives a permutation of the finite set R. So we have
a homomorphism

φ : W (R)→ Sym(R).

If g ∈ Kerφ, then g(α) = α for all α ∈ R, hence as E = Span(R), g = 1. Therefore,
Kerφ = 1, so W (R) ∼= Imφ ≤ Sym(R). �

Examples. R = A2
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α+β=ε1−ε3β=ε2−ε3

α=ε1−ε2

Here W (A2) = 〈sα, sβ, sα+β〉. Action on basis ε1, ε2, ε3 of R3:

sα = sε1−ε2 : ε1 ↔ ε2, ε3 7→ ε3

sβ : ε2 ↔ ε3, ε1 7→ ε1

sα+β : ε1 ↔ ε3, ε2 7→ ε2

Hence W (A2) ∼= S3.

R = An−1 Roots εi− εj (i 6= j) for i, j ∈ {1, . . . , n}. Reflection sεi−εj sends εi ↔ εj, and fixes

the other basis vectors. Hence W (An−1) ∼= Sn.

Bases.

Definition. Let R ⊆ E be a root system. We say a subset B of R is a base of R if

(1) B is a basis of E (as a vector space)
(2) for any β ∈ R,

β =
∑
α∈B

nαα

where nα ∈ Z, and either nα ≥ 0 for all α or nα ≤ 0 for all α.

We say β ∈ R is a positive root (with respect to base B) if all nα ≥ 0. Similarly, define
negative roots.

Example. R = A2

α+ββ

−α

−α−β −β

α

A base is α, β (the positive roots are α, β, α + β).

Another base is α,−α− β (the positive roots are α,−α− β,−β).

Note, there exists w ∈ W (A2) sending {α, β} to {α,−α− β}. (Exercise)

Theorem 14.5.
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(1) Every root system has a base.
(2) If B, B′ are bases of R, then there exists a unique w ∈ W (R) such that w(B) = B′.

Hence R has precisely |W (R)| different basis.

Example. The root system A2 has 6 different bases, all of the form w({α, β}) for w ∈ W (A2).

Proof of Theorem 14.5. Omitted. �

Dynkin diagrams. Let R be a root system with a base B. Define the Dynkin diagram
∆ = ∆(R) of R (with respect to B) to be the following graph5

vertices: elements of B
edges: join α, β in B by dαβ edges, where dαβ = 〈β, α〉 ∈ {0, 1, 2, 3}

If dαβ > 1, then α, β have different lengths, and we draw an arrow from the longer to the
shorter root.

Note. By Theorem 14.5, the diagram ∆ does not depend on the choice of the base B.

Examples.

(1) An−1. Roots εi − εj for i 6= j in {1, . . . , n}. Here is a base:

ε1 − ε2︸ ︷︷ ︸
α1

, ε2 − ε3︸ ︷︷ ︸
α2

, . . . , εn−1 − εn︸ ︷︷ ︸
αn−1

This is a base, as for i < j,

εi − εj = αi + αi+1 + · · ·+ αj−1.

So the positive roots are εi − εj for i < j and the negative roots are εi − εj for i > j.
Here,

dαiαi+1
= 1

dαiαj = 0 if j 6= i± 1.

So the Dynkin diagram is

(2) B2.

−2α−β

−α

β

β

α+β=ε1

−β

α

2α+β=ε1+ε2

It has base α, β, and its Dynkin diagram is

>

5A graph where we allow multiple edges between vertices.
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(3) G2.

α

β

It has base α, β, and its Dynkin diagram is

<

(4) A1 + A1.

−α α

−β

β

It has base α, β, and its Dynkin diagram is

Proposition 14.6. A root system R is irreducible if and only if its Dynkin diagram is
connected.

Proof. Sheet 5, Question 3. �

Simplicity of classical Lie algebras.

Theorem 14.7. Let n ≥ 2. Then the classical Lie algebras, sl(n,C), so(n,C), sp(n,C) (n
even) are simple, apart from so(2,C) and so(4,C).

Idea.

(1) Use the next proposition to show L is semisimple.
(2) Use the root system and Proposition 14.6 to show L is simple.

Proposition 14.8. Let L be a finite-dimensional Lie algebra over C, with Z(L) = 0. As-
sume H is a Cartan subalgebra and

L = H ⊕
⊕
α∈Φ

Lα

where Φ ⊆ H∗ \ {0}. Suppose

(1) dimLα = 1 for all α ∈ Φ
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(2) if α ∈ Φ then −α ∈ Φ
(3) [[Lα, L−α], Lα] 6= 0 for all α ∈ Φ.

Then L is semisimple.

Proof. Suppose for a contradiction that L is not semisimple. Then L has a soluble ideal, so
it has an abelian ideal I 6= 0. Now [HI] ⊆ I, and adH acts diagonalizably on L, hence also
on I.

Hence I is a sum of eigenspaces of adH, so

I = (I ∩H)⊕
∑
α∈Φ

(I ∩ Lα).

If I ∩ Lα 6= 0 for some α, then Lα ⊆ I by (1), so

[[Lα, L−α], Lα] ⊆ [[I, L−α], I] ⊆ [I, I] = 0,

a contradiction with (3).

Therefore, I = I ∩H, i.e. I ⊆ H. As Z(L) = 0, there exists α ∈ Φ such that [ILα] 6= 0. But

[ILα] ⊆ I ∩ [HLα] ⊆ I ∩ Lα = 0,

a contradiction. �

Proof of Theorem 14.7. We just do the case L = sl(n,C). The other cases so, sp are Sheet 5,
Question 7.

We use Proposition 14.8. First, the case Z(L) = 0 was Sheet 3, Question 3. Otherwise, we
have a Cartan subalgebra H of diagonal matrices, and root space decomposition

L = H ⊕
⊕
α∈Φ

Lα.

We check assumptions (1)–(3) of Proposition 14.8:

(1) the root spaces Lα are of the form Span(Eij), 1-dimensional,
(2) εi − εj ∈ Φ implies that εj − εi ∈ Φ
(3) for Lα = Span(Eij), we have L−α = Span(Eji), and check

[[Eij, Eji], Eij] = 2Eij 6= 0.

Hence L is semisimple by Proposition 14.8.

Finally, the Dynkin diagram of L is

which is connected, so L is simple by Propositions 13.2 and 14.6. �
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Classification of irreducible root systems.

Theorem 14.9. Let R ⊆ E and R′ ⊆ E ′ be roots, and suppose R, R′ have the same Dynkin
diagram. Then R ∼= R′.

So we just need to classify the possible Dynkin diagrams.

Theorem 14.10. The Dynkin diagrams of the irreducible root systems are

Dynkin diagram Notation Corresponding simple Lie algebra

An (n ≥ 1) sl(n+ 1,C)

> Bn (n ≥ 2) so(2n+ 1,C)

< Cn (n ≥ 2) sp(2n,C)

Dn (n ≥ 3) so(2n,C)

< G2 g2

> F4 f2

E6 e6

E7 e7

E8 e8

In particular, each of these Dynkin diagram shows the existence of the Lie algebra on the
right. However, these Lie algebras are actually not easy to construct.

We will prove Theorem 14.9. For that sake, we need the following proposition.

Proposition 14.11. Let R ⊆ E be a root system, with base B. Define

W0 = 〈sα : α ∈ B〉 ≤ W (R).

If β ∈ R, then there exists α ∈ B, w ∈ W0 such that w(α) = β (i.e. W0(B) = R).

Proof. Suppose β ∈ R+ (positive root with respect to B), so

β =
∑
γ∈B

kγγ, kγ ≥ 0.

Define
ht(β) =

∑
γ∈B

kγ.
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We proceed by induction on ht(β). If ht(β) = 1, then β ∈ B and take α = β, w = 1.

Now, assume ht(β) ≥ 2, By axiom (2) of a root system, at least two kγ’s are nonzero.

We first claim that there exists γ0 ∈ B such that (β, γ0) > 0. Otherwise,

(β, β) =
∑
γ∈B

kγ(β, γ) ≤ 0,

so (β, β) = 0, hence β = 0, contradicting β ∈ R.

We now claim that sγ0(β) ∈ R+. Well,

sγ0(β) = β − 〈β, γ0〉γ0,

so sγ0(β) has at least one coefficient kγ > 0, and hence sγ0(β) ∈ R+.

By the previous two claims,

ht(sγ0(β)) = ht(β)− 〈β, γ0〉 < ht(β).

By the inductive hypothesis, there exists α ∈ B, w ∈ W0 such that

w(α) = sγ0(β).

Then sγ0w ∈ W0 and it sends α to β. �

Proof of Theorem 14.9. We have R ⊆ E, R′ ⊆ E ′ with bases

B = {α1, . . . , αn}, B′ = {α′1, . . . , α′n}
such that

〈αi, αj〉 = 〈α′i, α′j〉 for all i, j

(same Dynkin diagram).

Define a linear map φ : E → E ′ by

φ(αi) = α′i for all i.

We need to show that φ(R) = R′. (This will show that R ∼= R′.)

We use Proposition 14.11 to obtain

{w0(α) : α ∈ B,w0 ∈ W0} = R.

Now
φ(sαi(αj)) = φ(αj − 〈αj, αi〉αi) = α′j − 〈α′j, α′i〉α′i = sα′i(α

′
j) ∈ R′

by axiom (3). Hence for w0 ∈ W0,

φ(w0(α)) ∈ R′.
So φ(R) ⊆ R′.

The same argument for φ−1 gives φ−1(R′) ⊆ R. Hence φ(R) = R′. �
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