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Introduction

We first review the basic notions of group theory.

Definition. A group is a set G equipped with a binary operation ∗ : G×G→ G such that:

(associativity) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ G,
(identity) there exists e ∈ G, an identity element, such that x ∗ e = e ∗ x = x for all x ∈ G,
(inverses) for all x ∈ G, there exists y ∈ G, an inverse of x, such that x ∗ y = y ∗ x = e.

The identity element e is unique and the inverse of each element is unique. We usually use
multiplicative notation for groups, i.e. xy for x ∗ y, x−1 for the inverse of x, and 1 for e.
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We have right cancellation: xz = yz implies that x = y, and left cancellation: xy = xz
implies that y = z.

The group G is abelian if x ∗ y = y ∗ x for all x, y ∈ G. We often write abelian groups
additively: x+ y for x ∗ y, −x for the inverse of x, and 0 for e.

A subgroup H of G is a non-empty subset which is closed under ∗ and taking inverses. We
then write H ≤ G. Every group G has subgroups G itself and {e}, the trivial subgroup.
Other subgroups of G are called non-trivial proper subgroups.

We write xk for xx . . . x︸ ︷︷ ︸
k times

(or kx for x+ x+ · · ·+ x︸ ︷︷ ︸
k times

if we are using additive notation). We write

〈x〉 for {xk : k ∈ Z}, the cyclic subgroup generated by x. More generally, if x1, . . . , xk ∈ G,
we define 〈x1, . . . , xk〉 to be the subgroup generated by x1, . . . , xk, the smallest subgroup of
G which contains x1, . . . xk. More formally,

〈x1, . . . , xk〉 =
⋂

H

where the intersection is over all subgroups H of G containing x1, . . . , xk. Alternatively,
take any word in x1, . . . , xk, x

−1
1 , . . . , x−1k , e.g. x21x

−3
2 x−11 x2x

−1
2 . This represents some group

element. It is not hard to show that the subset of elements of G which we can represent in
this way is the subgroup 〈x1, . . . , xk〉.

If X = {x1, . . . , xk}, we can write 〈X〉 for 〈x1, . . . , xk〉. This also works if X is infinite.

Remarks.

(1) If H ≤ G, then 〈H〉 = H.
(2) By convention, 〈∅〉 = {e}. (This is clear from the definition as an intersection.)
(3) If G = 〈x1, . . . , xk〉, we say that {x1, . . . , xk} is a generating set. We will say that G

is k-generated if it has a generating set of order k. So 0-generated is equivalent to
being trivial, 1-generated is equivalent to being cyclic. The 2-generated groups are a
massive family.

Theorem (Lagrange’s Theorem). If G is finite and H ≤ G, then |H| divides |G|.

The proof uses the idea of cosets. A left coset is gH = {gh : h ∈ H}. We write |G : H| for
the index of H in G (the number of cosets), and we have that |G| = |H| |G : H|.

A subgroup H ≤ G is normal (and we write H E G) if one of the following equivalent
conditions holds:

(1) Every left coset is a right coset.
(2) Every right coset is a left coset.
(3) Hg = gH for all g ∈ G.
(4) H = gHg−1 for all g ∈ G.

If H EG, then the set of cosets of H in G inherits a group structure from G:

(xH)(yH) = (xyH).

This is the quotient group G/H.
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A homomorphism from a group G to a group H is a function θ : G→ H such that θ(g1g2) =
θ(g1)θ(g2) for all g1, g2 ∈ G. Then the image of θ is Im(θ) = {θ(g) : g ∈ G} ⊆ H and the
kernel of θ is Ker(θ) = {g ∈ G : θ(g) = e} E G. If Im θ = H and Ker θ = {e}, then θ is an
isomorphism.

Theorem (First Isomorphism Theorem). If θ : G → H is a surjective homomorphism with

kernel K, then G/K ∼= H with the isomorphism given by θ̃ : G/K → H given by θ̃(gK) =
θ(g).

The map G → G/N given by g 7→ gN is called the canonical map. It is a surjective
homomorphism with image G/N and kernel N .

If A and B are groups, then the direct product A×B is the set of pairs {(a, b) : a ∈ A, b ∈ B}
with the operation (a1, b1)(a2, b2) = (a1a2, b1b2).

Facts.

• |A×B| = |A||B|
• A× {eB} is a normal subgroup of A×B, isomorphic to A
• {eA} ×B is a normal subgroup of A×B, isomorphic to B

More generally, if we have groups {Ai : i ∈ I}, we can form the direct product∏
i∈I

Ai.

(If the indexing set is infinite, there are two possible products, but we will not go into
this—the course is focused on finite groups, so products will be finite.)

Theorem (Characterization of finite abelian groups). Any finite abelian group is a direct
product of cyclic groups. Moreover, for any finite abelian group A, there exists a unique
sequence q1, . . . , qk ∈ N such that qi+1 divides qi and

A ∼=
∏
i

Cqi .

Examples (Groups). Cyclic groups: Cn (or Zn), C∞ (or Z).

Dihedral groups: A group is dihedral if it is generated by elements a and b such that b2 = e
and a−1 = bab. For any even order 2n, there is a unique dihedral group D2n (the group of
symmetries of an n-gon). For infinite order, there is a unique infinite dihedral group D∞
(a : Z→ Z, a(n) = n+ 1 and b : Z→ Z, b(n) = −n).

Symmetric groups: Sn is the group of permutations of {1, . . . , n}; for any set X, Sym(X) is
the group of permutations of X. A permutation of a finite set has a signature + or −, i.e.
there is a homomorphism sgn: Sn → {1,−1}. If g is a transposition, then sgn(g) = −1.

Alternating groups: An = Ker(sgn). An element of An is called even. Note that a permuta-
tion is even if it has an even number of cycles of even length.

Vector spaces are groups under +.
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General linear groups: If F is a field, then GLn(F ) is the set of invertible n × n matrices
with entries from F . If F is a finite field with pr elements, we write GLn(pr) = GLn(F ). We
have a homomorphism det : GLn(F )→ F×.

Special linear groups: SLn(F ) = Ker(det).

1. Quotient Groups

We will look at subgroups of G/K and relate them to subgroups of G.

Suppose θ : G→ H is a homomorphism. For a subset S ⊆ G, we will write

θ(S) = {θ(s) : s ∈ S} ⊆ H,

and for a subset T ⊆ H, we will write

θ−1(T ) = {g ∈ G : θ(g) ∈ T}.
For S, T ⊆ G, write ST = {st : s ∈ S, t ∈ T}.

Proposition 1. Let θ : G→ H is a surjective1 homomorphism with kernel K. Then:

(1) θ(L) ≤ H for all L ≤ G,
(2) K ≤ θ−1(X) ≤ G for all X ≤ H,
(3) if K ≤ L ≤ G, then K E L and L/K ∼= θ(L),
(4) θ(θ−1(X)) = X for all X ≤ H,
(5) θ−1(θ(L)) = KL ≤ G for all L ≤ G; in particular, if K ≤ L, then θ−1(θ(L)) = L.

Proof. (1) Let θ|L be the restriction of θ to L. Then θ|L : L → H is a homomorphism with
image θ(L), and hence θ(L) ≤ H.

(2) If k ∈ K, then θ(k) = eH ∈ X, so k ∈ θ−1(X). Hence K ⊆ θ−1(X). We check that it is
a subgroup. If g1, g2 ∈ θ−1(X), then θ(g1) ∈ X and θ(g2) ∈ X, so θ(g1g2) = θ(g1)θ(g2) ∈ X,
so g1g2 ∈ θ−1(X). If g ∈ θ−1(X), then θ(g−1) = θ(g)−1 ∈ X. Hence K ≤ θ−1(X) ≤ H.

(3) If K E G, then gK = Kg for all g ∈ G. In particular, gK = Kg for all g ∈ L, so if
K ≤ L, then K E L. To get L/K ∼= θ(L) we apply the First Isomorphism Theorem to θ|L.

(4) Let x ∈ X. By definition, θ−1(x) = {g ∈ G : θ(g) = x} and hence θ(θ−1(x)) ⊆ {x}.
Hence θ(θ−1(X)) ⊆ X. Since θ is surjective, θ−1(x) is non-empty for all x ∈ X, so x ∈
θ(θ−1(X)). Hence θ(θ−1(X)) = X.2

(5) Suppose g ∈ θ−1(θ(L)). Then θ(g) ∈ θ(L), so for some l ∈ L we have that θ(g) = θ(l).
Now θ(gl−1) = θ(g)θ(l)−1 = eH and hence gl−1 ∈ K. Thus g = (gl−1)l ∈ KL. Hence
θ−1(θ(L)) ⊆ KL.
Conversely, if k ∈ K, l ∈ L, then θ(kl) = θ(k)θ(l) = eHθ(l) ∈ θ(L). Hence KL ⊆ θ−1(θ(L)),
and we have equality. It follows from (1) and (2) that KL is a subgroup.

For the in particular clause, note that if K ≤ L, then L = {eG}L ⊆ KL ⊆ L, so KL = L. �

1If θ was not surjective, we could simply replace H by Im(θ) to get a surjective homomorphism. Therefore,
we are not losing any generality by assuming surjectivity.

2We really have to assume surjectivity for this argument to work.
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Example. Let G = C12. We can represent the subgroups of G in an order diagram3 as
follows

C12

C6 C4

C3 C2

1

The quotient Q of C12 by C3 is isomorphic to C4. The subgroup diagram for Q is

Q ∼= C4

C2

1

Now, take the quotient R of C12 by C2, isomorphic to C6. It has subgroups

R ∼= C6

C3 C2

1

In the following diagram, blue represents the subgroups of C12 containing C3 and green
represents the subgroups of C12 containing C2 (with turquise representing the parts of the
diagram contained in both).

3The vertices are groups and the edges represent the subgroup relation, i.e. we write G above H and draw
an edge between G and H to mean that G ≥ H.
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C12

C6 C4

C3 C2

1

In both cases, the diagram for the quotient is the same as the part of the diagram for C12

with the subgroups containing the kernel. This idea is formalized in the following theorem.

Theorem 2 (Correspondence Theorem). Let θ : G→ H be a surjective homomorphism with
kernel K. Write subK(G) for the set of subgroups of G containing K and sub(H) for the
set of subgroups of H. The map

θ̂ : subK(G)→ sub(H)

defined by θ̂(L) = θ(L) is a bijection, with the following properites:

(1) if L,M ∈ subK(G) then L ≤M if and only if θ̂(L) ≤ θ̂(M),

(2) if L ∈ subK(G) then LEG if and only if θ̂(L)EH.

Proof. Certainly, θ̂ is indeed a map subK(G)→ sub(H) by Proposition 1 (1).

For injectivity, suppose θ̂(L) = ˆθ(M). Then θ(L) = θ(M), so θ−1(θ(L)) = θ−1(θ(M)). But
K ≤ L and K ≤M , so L = θ−1(θ(L)) = θ−1(θ(M)) = M by Proposition 1 (5).

For surjectivity, let X ≤ H. Then θ−1(X) ∈ subK(G) by Proposition 1 (2), and hence

θ̂(θ−1(X)) = θ(θ−1(X)) = X

by Proposition 1 (4).

For (1), suppose L,M ∈ subK(G) with L ≤ M . It is clear that θ(L) ⊆ θ(M) and both

are subgroups of H, so θ̂(L) ≤ θ̂(M). Suppose conversely that θ̂(L) ≤ θ̂(M). Then clearly
θ−1(θ(L)) ⊆ θ−1(θ(M)). But θ−1(θ(L)) = L and θ−1(θ(M)) = M , so L ≤M .

For (2), let L ∈ subK(G). First, suppose that LEG. Then gL = Lg for all g ∈ G. Now take

any h ∈ H and consider hθ̂(L). By surjectivity of θ, there exists g ∈ G such that θ(g) = h.
Now,

hθ̂(L) = θ(g)θ(L) = θ(gL) = θ(Lg) = θ(L)θ(g) = θ̂(L)h.

Hence θ̂(L)EH.
Conversely, let X = θ(L) and suppose that X E H. Let % be the cannonical map % : H →
H/X. Now, the kernel of the composition homomorphism % ◦ θ : G→ H/X is θ−1(X), and
so θ−1(X)EG. Hence θ−1(X) = L, so LEG. �

Example. Take S4 has a normal subgroup V4 = {e, (12)(34), (13)(24), (14)(23)}. What is
S4/V4? It has order 6, and it cannot be cyclic, since S4 has no elements of order 6. Therefore,
we must have S4/V4 ∼= S3. The subgroups of S3 are
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S3

A3 〈(12)〉〈(13)〉 〈(23)〉

1

So the correspondence theorem tells us that the part of the subgroup diagram for S4 above
V4 looks the same.

S4

A4 G2G1 G3

V4

with G1, G2, G3 subgroups of order 8. What are they? The are actually dihedral groups.

The dihedral group permutes the vertices 1, 2, 3, 4 of the square.

4

1 2

3

We can hence write the elements as permutations. This gives rotations e, (1234), (13)(24), (1432)
and reflections (14)(23), (12)(34), (13)(24).

Relabelling the vertices gives different copies of D8 in S4:

4

1 3

2 3

1 2

4

Theorem 3 (Second Isomorphism Theorem). Let K,LEG with K ≤ L. Then

G

L
∼=
G/K

L/K
.
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Proof. The idea of the proof is to apply the First Isomorphism Theorem to the map θ : G
K
→

G
L

, defined by
θ(gK) = gL.

We first check it is well-defined. Suppose that g1K = g2K. Then g1g
−1
2 ∈ K, so g1g

−1
2 ∈ L

since K ≤ L. Thus g1L = g2L, as requested.

Moreover, θ is a homomorphism:

θ((g1K)(g2K)) = θ(g1g2K) = g1g2L = (g1L)(g2L) = θ(g1K)θ(g2K).

Finally, θ is surjective: for gL ∈ G/L, we have gL = θ(gK).

To find the kernel of θm note that θ(gK) = eG/L = L if and only if gL = L, i.e. g ∈ L, which
is equivalent to gK ∈ L/K. Hence Ker θ = L/K.

By the First Isomorphism Theorem, we obtain

G/K

L/K
∼=
G

L
,

as requested. �

Proposition 4. Let A, B be subgroups of G. Then:

(1) If A, B are finite, then |AB| = |A||B|
|A∩B| .

(2) The set AB is a subgroup of G if and only if AB = BA. In particular, if A E G,
then AB is a subgroup of G.

Proof. Homework 1, Question 1. �

Proposition 5. Let K EG and L ≤ G. Then

(1) KL ≤ G,
(2) if θ : G→ H is a homomorphism with kernel K, then θ(L) = θ(KL).

Proof. Note that (1) follows from Proposition 4 (2).

For (2), we have

θ(KL) = {θ(kl) : k ∈ K, l ∈ L} = {θ(k)θ(l) : k ∈ K, l ∈ L} = {θ(L) : l ∈ L} = θ(L),

since K = Ker(θ) so θ(k) = e. �

Theorem 6 (Third Isomorphism Theorem). Let K EG and L ≤ G. Then K ∩ LE L and

KL

K
∼=

L

K ∩ L
.

Proof. Let θ : G → G/K be the canonical map and θ|L be its restriction to L. Clearly,
Ker(θ|L) = K ∩ L. We see that Im(θ|L) = {lK : l ∈ L} = LK/K = KL/K and hence the
First Isomorphism Theorem yields

L

K ∩ L
∼=
KL

K
,

as requested. �

http://wwwf.imperial.ac.uk/~jbritnel/Teaching/PS1.pdf
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We can represent the Third Isomorphism Theorem 6 on a subgroup diagram as follows, with
the blue lines corresponding to the quotients that are equal.

K ∩ L

L K

KL

G

Note that KL is the smallest subgroup of G which contains K and L, and K ∩ L is the
largest subgroups contained in K and L.

Remark. Compare: for integers m,n we have that

gcd(m,n)

m n

lcm(m,n)

with the lines corresponding to divisibility, and indeed

lcm(m,n)

n
=

m

gcd(m,n)
.

2. Group Actions

Definition. Let G be a group and Ω a set. A left action of G on Ω is a map ψ : G×Ω→ Ω
such that

(1) ψ(e, x) = x for all x ∈ Ω,
(2) ψ(gh, x) = ψ(g, ψ(h, x)) for all g, h ∈ G, x ∈ Ω.

We usually write gx for ψ(g, x), except when there is a good reason not to. By (2), we have
that (gh)x = g(hx), so we can just write ghx for this element of Ω.

Definition. Let G be a group and Ω a set. A right action of G on Ω is a map ψ : Ω×G→ Ω
such that

(1) ψ(x, e) = x for all x ∈ Ω,
(2) ψ(x, gh) = ψ(ψ(x, g), h) for all g, h ∈ G, x ∈ Ω.
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Note that this is not quite the same, since in the product gh, the elements g and h are
applied to x in a different order. However, if ψ : G × Ω → Ω is a left-action, then we can
define the associated right action ψop : Ω×G→ Ω by

ψop(x, g) = ψ(g−1, x).

It is clear that this actually defines a right action.

The elements of Ω are often called points.

Examples. The dihedral group D2n acts naturally on the vertices of a regular n-gon (or on
edges or interior points, etc).

The symmetric group Sn acts naturally on the set [n] := {1, . . . , n}. Is also acts on the pairs
(i, j) ∈ [n]2 by

ψ(g, (i, j)) = (gi, gj).

The general linear group GLn(F ) acts naturally on the vector space F n. For the left action,
we notationally take F n to consist of column vectors. There is also a right action, for which
we take F n to consist of row vectors.

Definition. Let G act on Ω and x ∈ Ω. The orbit of x is the set

OrbG(x) = {gx : g ∈ G} ⊆ Ω.

The stabilizer of x is the subgroup

StabG(x) = {g ∈ G : gx = x} ≤ G.

Proposition 7. The stabilizer, as defined above, is indeed a subgroup of G.

Proof. First, ϕ(e, x) = x by (1), so e ∈ StabG(x). Next, for g, h ∈ StabG(x), we have

ψ(gh, x) = ψ(g, ψ(h, x)) by axiom (2)
= ψ(g, x) since h ∈ StabG(x)
= x since g ∈ StabG(x)

so gh ∈ StabG(x). Finally, for g ∈ StabG(x), we have

x = ψ(e, x) by axiom (1)
= ψ(g−1g, x)
= ψ(g−1, ψ(g, x)) by axiom (2)
= ψ(g−1, x) since g ∈ StabG(x)

so g−1 ∈ StabG(x). Hence StabG(x) ≤ G. �

Examples.

(1) Take D2n acting on vertices of an n-gon and let x be any vertex. Then

OrbD2n(x) = {all vertices of the n-gon}

since we can rotate x to any other vertex. Moreover,

StabD2n(x) = {I, Tx}, where Tx is the reflection through the axis passing through x.
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(2) Take Sn acting on [n] and x ∈ [n]. Then

OrbSn(x) = [n],

since if y 6= x, then (xy) ∈ Sn. Moreover,

StabSn(x) ∼= Sym([n] \ {x}) ∼= Sn−1.

Theorem 8 (Orbit-Stabilizer Theorem). Let G be a finite group acting on a set Ω and
x ∈ Ω. Then

|G| = |OrbG(x)| · | StabG(x)|.

Proof. Write H = StabG(x). For g1, g2 ∈ G, we have g1x = g2x if and only if g2g
−1
1 x = x

if and only if g−12 g1 ∈ H, i.e. g1H = g2H. Hence the elements of OrbG(x) are in ‘1-1’
correspondence with the left cosets of H. So

|OrbG(x)| = |G|/|H| = |G|/| StabG(x)|,
as requested. �

Remark. It follows immediately from the Orbit-Stabilizer Theorem 8 that |OrbG(x)| di-
vides |G|.
Definition. The action of G on Ω is transitive if OrbG(x) = Ω for any x ∈ Ω.

Proposition 9. Let G be a group acting on Ω. Define a relation ∼ by x ∼ y if y ∈ OrbG(x).
Then ∼ is an equivalence relation.

Proof. Reflexivity: ex = x by axiom (1), so x ∼ x.

Symmetry: if x ∼ y then y = gx for some g ∈ G, and hence x = g−1y ∈ OrbG(y), so y ∼ x.

Transitivity: if x ∼ y, y ∼ z then y = gx, z = hy for some g, h ∈ G, and hence z = hgx ∈
OrbG(x), so z ∼ x. �

Consequence of Proposition 9: the orbits of the action give a partition of Ω (into equivalence
classes of ∼).

Proposition 10. Let G be a group acting on a set Ω. For g ∈ G, let ϕg : Ω → Ω given by
ϕg(x) = gx. Then ϕg is a permutation of Ω, and moreover the map ϕ : G → Sym(Ω) given
by g 7→ ϕg is a homomorphism.4

Proof. Certainly ϕg is a function Ω→ Ω. Since ϕg−1 is an inverse of ϕg, it follows that ϕg is
a permutation. Thus ϕ defines a map G→ Sym(Ω), as claimed.

Note that ϕgh(x) = gh(x) = ϕg(hx) = ϕg(ϕh(x)) for any x ∈ Ω, and hence ϕ(gh) =
ϕ(g) ◦ ϕ(h), so ϕ is a homomorphism. �

Definition. Let G act on Ω.

(1) The kernel of the action is the kernel of the homomorphism ϕ from Propostion 10,
i.e. the set {g ∈ G : gx = x for all x ∈ Ω}. The kernel is a normal subgroup of G.

4We could actually define an action of G on Ω as a homomorphism G → Sym(Ω). The proposition
guarantees that an action yields such a homomorphism, and obviously any such a homomorphism yields an
action, so the definitions are indeed equivalent.



12 JOHN BRITNELL

(2) The action is faithful if the kernel is trivial, i.e. the homomorphism ϕ is injective.

Some important actions.

Action 1. The action of G on itself by left translation. Let Ω = G and define the action
ψ : G× Ω→ Ω by

ψ(g, x) = g ∗ x = gx,

where ∗ is the group operation. We check this is an action:

(1) ψ(e, x) = ex = x,
(2) ψ(gh, x) = (gh)(x) = g(hx) = ψ(g, ψ(h, x)) by associativity.

This action is often called the left regular action5.

Suppose x, y ∈ G and put g = yx−1. Then gx = y and so y ∈ OrbG(x). Hence the action is
transitive. The kernel of the action is {e}, so the action is faithful.

Theorem 11 (Cayley’s Theorem). Let G be a finite group. Then G is isomorphic to a
subgroup of Sn for some n.

Proof. Let n = |G|. Then Sn ∼= Sym(G) and by Proposition 10, there is a homomorphism

ϕ : G→ Sym(G)

corresponding to the left regular action of G with a trivial kernel. Therefore, by the First
Isomorphism Theorem,

G ∼= Im ϕ ≤ Sym(G) ∼= Sn,

as requested. �

Action 2. The action of G on left cosets of a subgroup by left translation6. Let H be a
subgroup of G and Ω = G/H, the set of left cosets of H in G. Define the action ψ : G×Ω→ Ω
by

ψ(g, xH) = gxH.

It is easy to check that is indeed an action. (Similar to Action 1.)

Let xH, yH ∈ Ω. Letting g = yx−1, we obtain g(xH) = yH, so the action is transitive. In
fact, we will soon prove (Theorem 12) that, conversely, any transitive action is equivalent
(which we will soon define) to an action of this type. This is why studying these actions is
important.

For xH ∈ Ω, we have that gxH = xH is equivalent to gx ∈ xH, i.e. g ∈ xHx−1. Therefore,
StabG(xH) = xHx−1. (Notice that this implies that xHx−1 is a subgroup.)

Action 3. The action of G on itself by conjugation. Let Ω = G and define an action
ψ : G× Ω→ Ω by

ψ(g, x) = gxg−1.

This is a case where the notation gx for ψ(g, x) is impossible. We instead write gx for gxg−1.
We call gx the conjugate of x by g.7

5There is also an analogous right regular action.
6There is also an analogous right action on the right cosets by right translation.
7There is also an analogous right action given by (x, g) 7→ xg = g−1xg. Note that xg = g−1

x.
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We check this is an action:

(1) exe−1 = x,
(2) ψ(gh, x) = (gh)x(gh)−1 = ghxh−1g−1 = ψ(g, hxh−1) = ψ(g, ψ(h, x)).

The orbits of the conjugation action are called conjugacy classes. We write Gx for the
conjugacy class containing x. (Other notations: ConG(x), ClassG(x).)

The stabilizer of x is the subgroup

StabG(x) = {g ∈ G : gxg−1 = x} = {g ∈ G : gx = xg},

so the set of all elements of G which commute with x. This is the centralizer of x in G,
written CentG(x). For this action, the Orbit-Stabilizer Theorem 8 becomes

|Gx||CentG(x)| = |G|.

In particular, the conjugacy class sizes divide |G|.

The action is never transitive if |G| > 1, since the identity e lies in an orbit of size 1.

The kernel of the action consists of those g ∈ G which commute with everything in G. This
is the centre of G, written Z(G). Notice that Z(G) = G whenever G is abelian.

Action 4. The action of G on its subgroups by conjugation. Let Ω be the set of subgroups
of G and define an action ψ : G× Ω→ Ω by

ψ(g,H) = gHg−1 = gH.

(We saw for Action 2 that gHg−1 ≤ G.) It is easy to check that this is indeed a left action.8

(Similar to Action 3.) The orbits are called conjugacy classes (of subgroups).

The stabilizer of H is the subgroup

{g ∈ G : gHg−1 = H} = {g ∈ G : gH = Hg}.

This is the normalizer of H, written NG(H).

Remark. Clearly, NG(H) ≥ H and, in fact, NG(H) is the largest subgroup of G in which H
is normal. Therefore, H EG if and only if NG(H) = G if and only if OrbG(H) = {H}.

Definition. Let G act on sets Ω1 and Ω2. We say that the two actions are equivalent if there
exists a bijection f : Ω1 → Ω2 such that f(gx) = gf(x) for all x ∈ Ω1, g ∈ G.

Theorem 12 (Orbit-Stabilizer Theorem Revisited). Let G act transitively on a set Ω. Let
x ∈ Ω and let H = StabG(x). Then the action of G on Ω is equivalent to the action of G on
the cosets of H (Action 2).

Proof. In the proof of the original Orbit Stabilizer Theorem 8, we found a ‘1-1’ correspon-
dence between the cosets of H and the orbit of x given by gH 7→ gx. We show that the map
f : G/H → Ω given by f(gH) = gx is an equivalence of actions.

8There is also an analogous right action given by (H, g) 7→ Hg = g−1Hg. Note that Hg = g−1

H.
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Certainly, f is a bijection, since OrbG(x) = Ω. So we just need to show that gf(hH) =
f(ghH) for all g, h ∈ G. We see that

gf(hH) = g(hx)
= (gh)x by action axiom (2)
= f(ghH)

as requested. �

Thus every transitive action is equivalent to a coset action.

Automorphisms.

Definition. An automorphism of a group G is an isomorphism from G to itself. We write
Aut(G) for the set of automotphisms.

Proposition 13. For a group G, Aut(G) is a group under composition.

Proof. Every automorphism is a permutation, so we want to show that Aut(G) ≤ Sym(G).

The identity permutation 1 is certainly an automorphism. The inverse of an isomorphism is
an isomorphism, so Aut(G) is closed under inverses. The composition of two isomorphisms
is an isomorphism, so Aut(G) is closed under composition. �

Example. Let G = Z3 = {0, 1, 2}. Any automorphism must fix 0. So the possibilities are
id and θ such that 1←→ 2. It is easy to check that θ is an automorphism, indeed:

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

7−→

0 2 1
0 0 2 1
2 2 1 0
1 1 0 2

Thus Aut(G) = {id, θ} ∼= C2
∼= Z×3 .

Proposition 14. Let G be a group and g ∈ G. Let ψg : G → G be the conjugation map
x 7→ gx = gxg−1. Then ψg is an automorphism. For the conjugation action (Action 3), the
corresponding homomorphism G→ Sym(G) is in fact a map G→ Aut(G).

Proof. The second claim follows immediately from the first, so it will suffice to show that
ψg ∈ Aut(G). Since ψg is a permutation, we just need to show it is a homomorphism. We
see that ψg(xy) = gxyg−1 = gxg−1gyg−1 = ψg(x)ψg(y), as required. �

The set of conjugation maps on G is a subgroup of Aut(G), since it is the image of the
homomorphism g 7→ ψg. In general, this image is not the whole of Aut(G) (see, example
above). We call it the group of inner automorphisms, Inn(G).

We know that Kerψ is the centre, Z(G) (from discussion of Action 3). Therefore

Inn(G) ∼= G/Z(G)

by the First Isomorphism Theorem.

Proposition 15.
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(1) Let H be a subgroup of G and g ∈ G. Then gH ∼= H. (So each orbit of Action 4
consists of isomorphic subgroups.)

(2) Let G act on Ω and x ∈ Ω have stabilizer H. If y = gx, then StabG(y) = gH.

Proof. (1) Observe that gH = Im(ψg|H). The result follows easily from the First Isomorphism
Theorem.

(2) We have hy = y if and only if hgx = gx if and only if g−1hgx = x. Thus h ∈ StabG(y) if
and only if h ∈ gH. �

3. Sylow’s Theorems

This chapter is about converses to Lagrange’s Theorem. Suppose m divides |G|. Is there a
subgroup of G of order m? In general, no. The group A4, of order 12, has no subgroup of
order 6. However, in some special cases, we can get a converse.

Definition. Let p be a prime number.

(1) A p-group is a group whose order is pa for some a ∈ N ∪ {0}.
(2) If G is a group, then a p-subgroup of G is a subgroup which is a p-group.
(3) A p-element of a group G is an element whose order is pa for some a ∈ N ∪ {0}.

Note that {e} is a p-group for any prime p, and e is a p-element.

Theorem 16 (Cauchy’s Theorem). Let G be a finite group whose order is divisible by a
prime p. Then G has an element of order p.

Proof. Let Ω ⊆ G× · · · ×G︸ ︷︷ ︸
p times

be the set of p-tuples (g1, . . . , gp) such that g1 . . . gp = e. How

big is Ω? We can choose g1, . . . , gp−1 in any way we like; this forces gp = (g1 . . . gp−1)
−1, so

we have no choice for gp. So |Ω| = |G|p−1.

Let Cp act on Ω by rotations. Explicitly, Cp = 〈t〉 and let

t(g1, . . . , gp) = (g2, g3, . . . , gp, g1).

(This gives a well-defined action on Cp.) Every orbit of Cp on Ω has size 1 or p. Say there
are A orbits of size 1, B of size p. Then

|Ω| = A+ pB.

Since p||G|, we have p||Ω|, and hence p|A.

Now, an orbit of size 1 in Ω consists of a tuple (g, g, . . . , g) with all entries the same. Such
a tuple is in Ω only if gp = e. So A is the number of solutions to gp = e in G. Now, clearly
e is a solution, so A ≥ 1, and since p|A, we must have A ≥ p. Hence there exists g 6= e such
that gp = e, an element of order p. �

Remark. If G has an element g of order p, then G has a subgroup 〈g〉 of order p.

Theorem 17 (First Sylow Theorem). Let G be a finite group and let pa be the largest power
of p dividing |G|. Then G has a subgroup of order pa.
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Such a subgroup is called a Sylow p-subgroup of G.

Proof. The proof goes by induction on |G|. (The base case is the trivial group {e}.)

Inductive hypothesis. For any group G of order less than n, G has a Sylow p-subgroup.

Inductive step. Let |G| = n.

We will use the class equation:

|G| = |Z(G)|+
k∑
i=1

|Ci|

where C1, . . . , Ck are the conjugacy classes of non-central elements of G. (Note that if
z ∈ Z(G), then gz = z for all g, so Gz = {z}. Also, if Gh = {h}, then gh = h for all g, so
h ∈ Z(G). So |Z(G)| is the number of conjugacy classes of size 1 in G.)

We may assume that p
∣∣ |G|; otherwise, {e} is a Sylow p-subgroup.

Case (i). p
∣∣ |Z(G)|. Then Z(G) contains an element z of order p. Since gz = z for all

g ∈ G, we see that 〈z〉EG. Now, G/〈z〉 has order n/p < n, so G/〈z〉 has a Sylow subgroup
X of order pa−1 by the inductive hypothesis. The Correspondence Theorem 2 tells us that
if θ : G→ G/〈z〉 is the canonical map, then θ−1(X) is a subgroup of order pa in G.

Case (ii). p 6
∣∣ |Z(G)|. Then p 6

∣∣∣ k∑
i=1

|Ci| (by the class equation). So for some i, we have

p 6
∣∣ |Ci|. Take x ∈ Ci. Then |G| = |CentG(x)| · |Ci| and so pa divides |CentG(x)|. Since

x 6∈ Z(G), we see that CentG(x) < G. So |CentG(x)| < n. Thus by the inductive hypothesis,
CentG(x) has a Sylow p-subgroup P of order pa. Finally, P ≤ G shows that G has a Sylow
p-subgroup. �

Write Sylp(G) for the set of Sylow p-subgroups of G and np = np(G) for the number of Sylow
p-subgroups.

Lemma 18. Let G be a finite group and let P be a Sylow p-subgroup of G. Let Q be any
p-subgroup of G. Then either Q ≤ P or Q 6≤ NG(P ). In other words, if Q 6≤ P , then there
exists q ∈ Q such that qP 6= P .

Proof. We show that if Q ≤ NG(P ), then Q ≤ P . If Q ≤ NG(P ), then qP = P for any
q ∈ Q, so qP = Pq for all q ∈ Q. In particular, this implies that QP = PQ. So PQ is a
subgroup of G, with order |P ||Q|/|P ∩Q|. But |P ||Q|/|P ∩Q| is a power of p, and it divides
|G|, since PQ is a subgroup. But |P | is the largest power of p dividing |G|, and so we must
have |Q|/|P ∩Q| = 1. Thus Q ≤ P . �

Theorem 19 (Second Sylow Theorem). Let G be a finite group and p be prime. Then
nP (G) ≡ 1 mod p.

Theorem 20 (Third Sylow Theorem). Let G be a finite group, p be a prime, and Q be a
p-subgroup of G. Then Q is contained in a Sylow p-subgroup.

Theorem 21 (Fourth Sylow Theorem). Let G be a finite group and p be a prime. The Sylow
p-subgroups of G form a single conjugacy class of subgroups of G.



M3P10: GROUP THEORY 17

Remark. The Fourth Sylow Theorem 21 implies that np(G) divides |G| via the Orbit-
Stabilizer Theorem 8.

Proof of Theorem 19. Notice that if H ≤ G and g ∈ G, then |gH| = |H|. In particular, if H
is a Sylow p-subgroup, then so is the conjugate. Thus G acts by conjugation on Sylp(G).

Let P be a Sylow p-subgroup. (We know one exists by Theorem 17.) Look at the action
of P on Sylp(G). Clearly, PP = P , so {P} is an orbit of size 1. Suppose that {Q} is an orbit

of size 1. Then PQ = Q, so P ≤ NG(Q). But Q is a p-subgroup, so by Lemma 18, we have
P ≤ Q. But |P | = |Q|, so P = Q. So P has exactly one orbit of size 1 on SylP (G).

Every other orbit has size dividing |P | (by Orbit-Stabilizer Theorem 8), so a power of p
greater than 1. So p divides the size of every orbit except {P}, and so | Sylp(G)| ≡ 1 mod p,
as required. �

Proof of Theorem 20. Let Q be a p-subgroup of G. Let Q act on Sylp(G). Then every orbit
has size pa for some a ∈ N∪{0}. Since | Sylp(G)| ≡ 1 mod p by the Second Sylow Theorem 19,
not every orbit has size divisible by p, and so there is an orbit {P}. Then Q ≤ NG(P ), and
so Q ≤ P by Lemma 18. �

Proof of Theorem 21. Let P ∈ Sylp(G) and Ω be the conjugacy class of P in G. Then G
acts on Ω by conjugation.

Let P act on Ω. Then P has one orbit {P} of size 1, and the others have size divisible by p.
So |Ω| ≡ 1 mod p. (By the same argument as in the proof of the Second Sylow Theorem 19.)

Now, let Q ∈ Sylp(G), and let Q act on Ω. The orbits all have p-power length. Since
|Ω| ≡ 1 mod p, there must be an orbit {R} of length 1. Now Q ≤ NG(R), and so Q ≤ R
by Lemma 18. But |Q| = |R|, since they are both Sylow p-subgroups, so Q = R. Therefore,
Q ∈ Ω, showing that Sylp(G) = Ω = GP , as required. �

Example (Groups of order 15). Let G has order 15. We use Sylow arithmetic to show that
G ∼= C15. We have:

n5 ≡ 1 mod 5 and it divides 15.

Thus n5 = 1, G has a unique Sylow 5-subgroup N EG. Also:

n3 ≡ 1 mod 3 and it divides 15.

Thus n3 = 1 as well. So there is a unique Sylow 3-subgroup M EG.

Note that G has exactly 4 elements of order 5, 2 elements of order 3, 1 element of order 1.
There are 8 remaining elements, which must have order 15. Thus G ∼= C15.

Proposition 22. Let p be a prime and G be a non-trivial p-group. Then Z(G) is non-
trivial. (In particular, since p

∣∣ |Z(G)|, by Cauchy’s Theorem 16, G has a central element g
of order p, and so a normal subgroup 〈g〉 ∼= Cp.)

This proposition allows us to use induction arguments for p-groups by considering quotients
by the normal subgroup 〈g〉 ∼= Cp.
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Proof. We recall the Class Equation:

|G| = |Z(G)|+
k∑
i=1

|Ci|

where C1, . . . , CK are the non-central conjugacy classes. Since each |Ci| is a p-power greater
than 1, we have that p divides |Ci| for all i. Moreover, p

∣∣ |G|, so p
∣∣ |Z(G)|, and hence

|Z(G)| 6= 1. �

Remark. A stronger form of Proposition 22 is the following: if G is a p-group and if N is
a non-trivial normal subgroup of G, then N ∩ Z(G) is non-trivial.

Proposition 23. Let G be a finite group, and suppose that pb divides |G|. Then G has a
subgroup of order pb.

Proof. Let pa be the largest power of p dividing |G|, so (b ≤ a). Then G has a subgroup P
of order pa by First Sylow Theorem 17. So if P has a subgroup of order pb, then so does G.
So it is enough to prove the proposition for p-groups. So assume that |G| = pa. We can also
assume that b > 0, since otherwise {e} is a subgroup of order pb.

We work by induction on a. If a = 1, the statement is trivial.

Inductive hypothesis. A group of order pa has a subgroup of order pb for all b ≤ a.

Inductive step. Suppose |G| = pa+1. Let K be a normal subgroup of G of order p
(which exists by Proposition 22). Then G/K is a group of order pa. If b ≤ a + 1, then
b− 1 ≤ a, and so G/K has a subgroup X of order pb−1 by the inductive hypothesis. Under
the Subgroup Correspondence (Theorem 2), X corresponds to a subgroup L of G of order
|K||X| = ppb−1 = pb. Therefore, G has a subgroup of order pb for all b ≤ a+ 1. �

4. Automorphism Groups and Semidirect Products

Recall that an automorphism of G is an isomorphism G→ G, and that the automorphisms
of G form a group Aut(G) under composition.

Examples.

(1) Let G = Cn ∼= Zn. Note that Zn = 〈1〉, and that any homomorphism from Zn to
a group H is determined by where it sends 1. So an automorphism of Zn is of the
form ϕt : 1 7→ t for t ∈ Zn. In fact, this gives all the homomorphisms Zn → Zn
(endomorphisms of Zn).

We need to identify which ϕt are invertible. Note that ϕt(x) = tx, so ϕt is multi-
plication by t. So ϕt is invertible whenever t has a multiplicative inverse, i.e. t ∈ Z∗n.
Note that ϕt◦ϕs = ϕts, so the map Aut(Zn)→ Z∗n given by ϕt 7→ t is an isomorphism.

Fact. Z∗p ∼= Cp−1 whenever p is a prime. (This is proved using elementary number
theory.) Thus Aut(Cp) ∼= Cp−1.

(2) Let G = C2 × C2. Think of G as {e, a, b, c} with multiplication given by

a2 = b2 = c2 = e, ab = ba = c, ac = ca = b, bc = cb = a.

Thinking of an automorphism ϕ as a permutation on G, we see that ϕ(e) = e (for any
automorphism). So we may as well consider ϕ as an element of Sym({a, b, c}). Thus



M3P10: GROUP THEORY 19

Aut(G) is isomorphic to a subgroup of S3. Now, any permutation of a, b, c preserves
the multiplication equations above, so is a homomorphism. Hence Aut(G) ∼= S3.

(3) Let G = S3. We have

Conjugacy classes Order of elements
{id} 1

{(123), (132)} 3
{(12), (13), (23)} 2

Since the disjoint conjugacy classes have elements of different orders, any automor-
phism of S3 must preserve them. So, in particular, Aut(S3) acts on Ω = {(12), (13), (23)}.
Now, Inn(S3) ∼= S3/Z(S3) = S3/{id} ∼= S3, and it is easy to see that Inn(S3) acts as
Sym(Ω) on Ω. Now, suppose that the homomorphism

Aut(S3)→ Sym(Ω)

has kernel K and α ∈ K. So α(12) = (12), α(13) = (13), α(23) = (23). Then

α(123) = α(13)(12) = α(13)α(12) = (13)(12) = (123),

α(132) = α(12)(13) = α(12)α(13) = (12)(13) = (132),

so α is the identity map on S3. Hence Aut(S3) is isomorphic to a subgroup of
Sym(Ω) ∼= S3, but |Aut(S3)| ≥ | Inn(S3)| = 6, so Aut(S3) ∼= S3.

Definition. Let G be a group and let H and K be subgroups. We say that H and K are
complementary subgroups of G if

(1) G = HK,
(2) H ∩K = {e}.

Recall that |HK| = |H||K|/|H ∩K| by Proposition 4. So if H and K are complementary
in G, then |G| = |H||K|, and furthermore, every element of G has a unique representation
as hk for h ∈ H, k ∈ K. This gives us a sort of decomposition of G into subgroups—but the
multiplication is hard to understand.

We look at the case where H is normal in G. Let us try multiplying two elements of HK,
h1k1 and h2k2. The product is h1k1h2k2, and we know that this is h3k3 for some h3 ∈ H,
k3 ∈ K. So k1h2 = h−11 h3k3k

−1
2 . We want to know what h−11 h3 and k3k

−1
2 are. If H is

normal in G, then k1H = Hk1, so we must have k3k
−1
2 = k1 (since the representation of

every element is unique). Hence we have halved the problem.

All we need to know is h−11 h3 = k1h2k
−1
1 = k1h2. So to understand multiplication in HK, we

need to understand how the conjugation maps by elements of K act on H.

In general, we can define the following product of groups.

Definition. Let N , K be groups, and let ϕ : K → Aut(N) be a homomorphism. The
semidirect product of N by K via ϕ is the set of pairs N ×K with multiplication given by

(n1, k1)(n2, k2) = (n1ϕk1(n2), k1k2),

where ϕk1 is the image of k1 under ϕ.
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In the discussion above, we looked at the situation where NEG, K ≤ G were complementary
subgroups. We saw that

n1k1n2k2 = n1k1n2k
−1
1 k1k2 = n1(

k1n1)k1k2.

Now, n 7→ k1n is an automorphism of N . Writing ϕk1 for this automorphism, we have

(n1k1)(n2k2) = n1ϕk1(n2)k1k2

which explains the definition above.

Proposition 24. Let N , K be groups and ϕ : K → Aut(N). Then

(1) The semidirect product of N by K via ϕ is a group, written N oϕ K.
(2) The set {(n, eK) : n ∈ N} is a normal subgroup isomorphic to N . The set {(eN , k) :

k ∈ K} is a subgroup isomorphic to K. These two subgroups are complementary.
(3) If G is a group with complementary subgroups N and K with N normal, and if

ϕk(n) = kn for all k ∈ K, n ∈ N , then

G ∼= N oϕ K.

Proof. (1) Associativity:

((n1, k1)(n2, k2))(n3, k3) = (n1ϕk1(n2), k1k2)(n3, k3)
= (n1ϕk1(n2)ϕk1k2(n3), k1k2k3)
= (n1ϕk1(n2ϕk2(n3)), k1k2k3) since ϕ, ϕk1 are homomorphisms
= (n1, k1)(n2ϕk2(n3), k2k3)
= (n1, k2)((n2, k2)(n3, k3))

Identity: (eN , eK), since ϕeK is the identity automorphism.

Inverses: (n, k) has the inverse (ϕk−1(n−1), k−1).

Therefore, N oϕ K is a group.

(2) It is easy to check that the map n 7→ (n, eK) is an injective homomorphism N → G.
Similarly, the map k 7→ (eN , k) is also an injective homomorphism K → G. The images
of these maps are the sets identified in the proposition. Clearly, {(n, eK)} ∩ {(eN , k)} =
{(eN , eK)} and any element (n, k) can be written as (n, eK)(eN , k), so the two subgroups are
complementary.

(3) This follows from the discussion above. �

Example (Groups of order 21). Let |G| = 21. First, use Sylow’s Theorems. For 7,

n7 ≡ 1 mod 7 and divides 21,

so n7 = 1, and G has a normal Sylow 7-subgroup N . (For 3, n3 ≡ 1 mod 3 divides 21, so n3

can be 1 or 7. This is not very helpful.) Let K be a Sylow 3-subgroup.

Now K ∩N = {e} (considering orders) and

|NK| = |N ||K|
|N ∩K|

=
7× 3

1
= 21,

so NK = G. So N and K are complementary subgroups, with N normal.
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So G ∼= N oϕK for some ϕ : K → Aut(N) (with ϕ determined by the conjugacy maps of K
on N). Now

Aut(N) ∼= Aut(C7) ∼= C6.

We see that Imϕ can have order 1 or 3.

Case 1. Imϕ = {id}. In this case, our multiplication is (n1, k2)(n2, k2) = (n1n2, k1k2). Thus

G ∼= C7 × C3
∼= C21.

Case 2. Imϕ = C3. Let α be an automorphism of N of order 3. Let k be the element of K
such that ϕk = α. Let 〈n〉 = N . Then our multiplication is

(ni, kj)(nu, kv) = (niαj(nu), kjkv).

Take α(n) = n2. Then we have

(ni, kj)(nu, kv) = (ni+2ju, kj+v).

This gives the non-cyclic group of order 21.

(So there are exactly two groups of order 21.)

Proposition 25. Let p and q be distinct primes, with p < q. If q ≡ 1 mod p, then there are
exactly two groups of order pq, up to isomorphism. Otherwise, there is only one (the cyclic
group).

Proof. Let |G| = pq. We have nq ≡ 1 mod q divides pq. Since p, q, pq 6≡ 1 mod q, we have
nq = 1, so G has a normal Sylow q-subgroup, N . Also, np ≡ 1 mod p divides pq.

If q 6≡ 1 mod p, then we must have np = 1. In this case, G has a normal Sylow p-subgroup M .
Thus G has

1 element of order 1

p− 1 elements of order p

q − 1 elements of order q

and p+ q − 1 < pq, so G has an element of order pq. Hence G ∼= Cpq.

Now, suppose q ≡ 1 mod p. LetK be a Sylow p-subgroup. ThenN andK are complementary
subgroups, so

G ∼= N oϕ K

for some ϕ : K → Aut(N). Now, Aut(N) ∼= Cq−1, so Imϕ is either trivial or else isomorphic
to Cp. If Imϕ is trivial, then G ∼= Cq ×Cp ∼= Cpq. Otherwise, let a be an element of order p
in Z∗q. Then n 7→ na defines an automorphism θa of N of order p, where N = 〈n〉. Let
K = 〈k〉, where ϕ(k) = θa. Then we have a representation of G as

〈n, k | nq = 1, kp = 1, kn = na〉.
(This is a generator-relation presentation9.) So there is only one group of order pq other
than the cyclic group. �

9The group is generated by the elements on the left and the only relations in the group can be derived
from the relations on the right.
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Remark. When G is a group with complementary subgroups N , K, with N normal, then
G ∼= N oϕ K with ϕ given by conjugation maps. In this case, we often omit the ϕ and
just write G ∼= N o K. Then this notation only really means that G is a group with
complementary subgroups N and K, where N is normal.

Examples.

• Sn ∼= AnoC2. (Take C2
∼= 〈(12)〉. Clearly, 〈(12)〉∩An = {e} and Sn = An∪〈(12)〉An,

so they are complementary subgroups with An normal.)
• S4

∼= V4 o S3. (Consider S3 = StabS4(4) ≤ S4, and recall that

V4 = {e, (12)(34), (13)(24), (14)(23)}.
These are complementary and V4 is normal.)
• GLn(F ) = SLn(F ) oH, where H ∼= F×. (Take

H =




1

1
. . .

1
λ

 : λ ∈ F×

 .

Then SLn(F ) and H are complementary subgroups of GLn(F ) with SLn(F ) normal.)

5. Composition Series

Definition. A group G is simple if it has no normal subgroups except {e} and G.

If G is not simple, then there exists N CG, N 6= {e} and we can study G by looking at the
smaller groups N and G/N .

Definition. A composition series for G is a chain of subgroups {Gi : 0 ≤ i ≤ k}, with

G = G0 > G1 > G2 > · · · > Gk = {e},
such that Gi+1 C Gi and Gi

Gi+1
is simple for all i. These quotients Gi

Gi+1
are the composition

factors of the series. The number k is the length of the series10.

Example. The group S4 has a composition series (with composition factors written below):

S4 > A4 > V4 > 〈(12)(34)〉 > {e}
C2 C3 C2 C2

(Note that this series is not unique—we could have chosen 〈(13)(24)〉 or 〈(14)(23)〉 instead
of 〈(12)(34)〉.)
Proposition 26. Let G be a finite group and N E G. Then G has a composition series
including N . In particular, taking N = G, every finite group has a composition series.

Remark. The proposition does not hold for infinite groups. For example, take G = Z. The
subgroups of Z are nZ for n ∈ N ∪ {0}, but, if n 6= 0, then nZ ∼= Z, so it is not a simple
group. After k terms of a ‘composition series’, the group Gk must still be isomorphic to Z.
So no finite series exists.

10Note that there are k + 1 groups in the series, and the length is in fact the number of inclusions.
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Proof. We work by induction. Suppose the statement is true for groups of order< n. Suppose
|G| = n. If G is simple, then G = G0 > G1 = {e} is a composition series. So assume that
G has a non-trivial, proper, normal subgroup N . Then |N | and |G/N | are both less than n,
and so these groups have composition series:

N = N0 > N1 > · · · > Nk = {e},

G/N = Q = Q0 > Q1 > · · · > Ql = {e}.
By the Correspondence Theorem 2, there exist subgroups Li = θ−1(Qi) < G (where θ is the
canonical map G→ G/N). We have

G = L0 > L1 > · · · > Ll = ker(θ) = N.

We also have Li+1 E Li and Li

Li+1

∼= Qi

Qi+1
by the Second Isomorphism Theorem 3, which is

simple. So we have

G = L0 > L1 > · · · > Ll = N = N0 > N1 > · · · > Nk = {e},
a composition series for G, including N . �

A group can have multiple composition series. We saw that S4 has three.

Example. The group C12 has a few composition series (with composition factors written
below):

C12 > C6 > C3 > C1

C2 C2 C3

C12 > C6 > C2 > C1

C2 C3 C2

C12 > C4 > C2 > C1

C3 C2 C2

We see that the composition factors are the same for the three series, but their order varies.

Theorem 27 (Jordan-Hölder Theorem). Any two composition series for a finite group G
have the same length, and the same composition factors (with the same multiplicities, but
not necessarily the same order).

Proof. We work by induction on |G|. Suppose the theorem is valid for groups of size less
than n. Suppose that |G| = n, and that G has composition series

A : G = G0 > G1 > · · · > Gk = {e},

B : G = H0 > H1 > · · · > Hl = {e}.

Case 1. G1 = H1. Since |G1| < n, any two series for G1 have the same length and factors.
Now,

A1 : G1 > G2 > · · · > Gk,

B1 : H1 > H2 > · · · > Hl

are both composition series for G1, so k = l and A1, B1 have the same factors. Since
G0/G1 = H0/H1, the series A, B have the same factors.
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Case 2. G1 6= H1. Note that G/G1 is simple, and so G has no normal subgroups strictly
between G1 and G. Similarly with H1. But G1H1 E G, and G1 ≤ G1H1 ≤ G. Since
H1 6≤ G1, we must have G1H1 = G. Also, note that G1 ∩ H1 E G1. Therefore, G1 has a
composition series containing C which includes G1 ∩H1 by Proposition 26. Since |G1| < n,
any composition series for G1 has the same length and factors as C. So A1 (as defined in
Case 1) has the same factors as C. Similarly, H1 has a composition series D including G1∩H1,
and B1 (as defined in Case 1) has the same factors as D. We may assume that C and D
agree below G1 ∩H1.

G1 ∩H1

G1 H1

G

G2

G3

H2

H3C D

Note that by the Second Isomorphism Theorem 3:

G1

G1 ∩H1

∼=
G1H1

H1

∼=
G

H1

,

H1

G1 ∩H1

∼=
G1H1

G1

∼=
G

G1

,

which are both simple.

Therefore, the composition factors ofA are those ofG1∩H1 together with G
G1

and G1

G1∩H1

∼= G
H1

.

Similarly, the composition factors for B are those ofG1∩H1 together with G
H1

and H1

G1∩H1

∼= G
G1

.
Hence A and B have the same length and composition factors. �

Henceforth, we can refer to composition factors of a group, not just a series.

Note that different groups can have the same composition factors. Therefore, the composition
factors do not determine a group, but we can use them to distinguish between them (if the
composition factors are different).

Example. The groups C4 and C2 × C2 both have composition factors C2, C2. Similarly, C6

and S3 both have composition factors C2, C3.

Composition factors are simple groups. The finite simple groups are classified into 14 infinite
families and 26 sporadic examples. The easiest family to understand is {Cp : p prime}. These
are the only abelian simple groups.

A group whose composition factors are all abelian is said to be soluble (solvable). We give a
more general definition which works for infinite groups too.
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Definition. A group G is soluble (solvable) if there exist subgroups

G = G0 > G1 > · · · > Gk = {e}

such that Gi+1 CGi for all i, and Gi

Gi+1
is abelian.

Remark. If H C G and G is finite, then the composition factors of G are those of N
together with those of G/N .11 Now, if G has a series as in the definition above, and if G
has a composition series, then then every composition factor of G is a composition factor of
some abelian group Gi

Gi+1
. So the composition factors of G are abelian.

Examples.

(1) Any abelian group is soluble.
(2) A dihedral group D2n has a normal subgroup isomorphic to Cn with index 2, so

D2n > Cn > {e} is a series as required by the definition. So D2n is soluble.
(3) For S4, we have a series S4 > A4 > V4 > {e}, as required by the definition. So S4 is

soluble.
(4) For n ≥ 5, Sn is not soluble, since it has An as a composition factor, which is

non-abelian and simple (for the proof that An is simple for n ≥ 5, see Appendix A).

Remark. If N EG, then G is soluble if and only if both N and G/N are soluble.

Theorem 28. If a finite group G is soluble and H ≤ G, then H is soluble.

Proof. Take a composition series for G:

G = G0 > G1 > · · · > Gk = {e}.

Define Hi = H ∩Gi for i = 0, 1, . . . , k. Then

H = H0 ≥ H1 ≥ · · · ≥ Hk = {e}.

Now, Hi+1 = H ∩Gi+1 EH ∩Gi = Hi, and by the Third Isomorphism Theorem 6:

Hi

Hi+1

=
H ∩Gi

H ∩Gi+1

∼=
Gi+1(H ∩Gi)

Gi+1

=
Gi+1Hi

Gi+1

≤ Gi

Gi+1

,

since H ∩Gi ∩Gi+1 = H ∩Gi+1. But Gi

Gi+1
is a composition factor of G so it is abelian, and

the subgroup Hi

Hi+1
is also abelian. Now, simply deleting all Hi such that Hi = Hi+1 from

the series, we obtain a composition series for H with abelian composition factors. Thus H
is soluble. �

Definition. Let G be a group and let x, y ∈ G. The commutator [x, y] of x and y is the
element xyx−1y−1.

Notice that [x, y] = e if and only if x and y commute (since xyx−1y−1 = e if and only if
yx = xy).

Proposition 29. Let G be a group and let N E G. Then G
N

is abelian if and only if N
contains every commutator in G.

11We have seen this in inductive step of the proof of Proposition 26.
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Proof. We have xN and yN commute if and only if [xN, yN ] = eN . Now

[xN, yN ] = xNyNx−1Ny−1N = xyx−1y−1N = [x, y]N

and this is equal to eN if and only if [x, y] ∈ N . So G
N

is abelian if and only if [x, y] ∈ N for
all x, y ∈ G. �

Definition. Let G be a group, X, Y ≤ G. We define the commutator [X, Y ] of X and Y to
be the subgroup of G generated by all commutators [x, y] for x ∈ X, y ∈ Y ; symbolically:

[X, Y ] = 〈[x, y] : x ∈ X, y ∈ Y 〉
In particular, [G,G] is the derived group of G, often written G′.

Warning. Not every element of [X, Y ] needs to be a commutator. Every element is a
product of commutators and their inverses.

Remark.

(1) We have that [x, y]−1 = [y, x] for all x, y ∈ G.
(2) From (1), [X, Y ] = [Y,X] for all X, Y ⊆ G.
(3) If N EG, then [X,N ] ≤ N for all X ≤ G. Indeed, xnx−1n = xnn−1 ∈ N , so all the

commutators [x, n] are contained in N , and these generate [X,N ].

Proposition 30. Suppose that X, Y EG. Then [X, Y ]EG.

Proof. Every element of [X, Y ] is a product of commutators and their inverses. So a general
element looks like

z = [x1, y1]
ε1 [x2, y2]

ε2 . . . [xk, yk]
εk

where xi ∈ X, yi ∈ Y and εi ∈ {±1}. For g ∈ G, we have
gz = g[x1, y1]

ε1g−1g[x2, y2]
ε2g−1 . . . g[xk, yk]

εkg−1

= [gx1,
g y1]

ε1 [gx2,
g y2]

ε2 . . . [gxk,
g yk]

εk since g[x, y]g−1 = gxyx−1y−1g−1 = [gx,g y]
∈ [X, Y ] since gxi ∈ X and gyi ∈ Y for all i

which shows that [X, Y ]EG. �

Recall that G′ = [G,G], the derived group. By Proposition 30, we see that G′ E G. Now,
Proposition 29 tells us that G′ is contained in every normal subgroup N EG such that G/N
is abelian. So G′ is the smallest normal subgroup with this property (that G/G′ is abelian).

Examples.

(1) If A is abelian, then A/{e} is abelian. So A′ = {e}.
(2) We know that S ′4 is a normal subgroup of S4, so one of {e}, V4, A4, S4. We have

S4

V4
∼= S3, which is not abelian. But S4

A4

∼= C2, which is abelian. Hence S ′4 = A4.

(3) The normal subgroups of A4 are {e}, V4, A4. Now, A4

{e} is not abelian, but A4

V4
∼= C3,

so A′4
∼= V4.

(4) In general, Sn (n ≥ 5) has normal subgroups {e}, An, Sn and no others (for the proof
that An is simple for n ≥ 5, see Appendix A). Clearly, Sn

{e} is not abelian, but Sn

An

∼= C2

is abelian. Thus S ′n = An.
Furthermore, An has no normal subgroups except {e}, An. Since An

{e} is not abelian,

we have A′n = An.
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(5) Let G = D2n and H = 〈h〉 be the rotation subgroup. Since G/H ∼= C2, we have
G′ ≤ H. Now, let x be a reflection. We have [h, x] = hxh−1x−1 = h x(h−1) = h2, so
〈h2〉 ≤ G′.

If n is odd, then 〈h〉 = 〈h2〉, so G′ = H ∼= Cn.

If n is even, then
∣∣∣ G
〈h2〉

∣∣∣ = 4, so G
〈h2〉 is abelian. Hence G′ = 〈h2〉 ∼= Cn/2 in this case.

Definition. Let H ≤ G. We say that H is a characteristic subgroup if α(H) = H for every
α ∈ Aut(G). We write H charG.

(This is a strengthening of the normality condition.)

Examples. We have:

• An charSn for all n. (The only subgroup of index 2.)
• V4 charS4. (The only normal subgroup of order 4).
• 〈(12)(34)〉E V4, but 〈(12)(34)〉 is not characteristic, since V4 has an automorphism α

such that α(12)(34) = (13)(24).

Proposition 31. If X, Y charG, then [X, Y ] charG.

Proof. Essentially the same as the proof of Proposition 30. �

If follows from Proposition 31 that G′ charG.

Proposition 32. Let G be a group.

(1) If N EG and X charN , then X EG.
(2) If N charG and X charN , then X charG.

Proof. Let α ∈ Aut(G) such that α(N) = N . Then α|N is an automorphism of N . Now, if
X charN , then α|N(X) = X, so α(X) = X.

(For (1), take α ∈ Inn(G). For (2), take α ∈ Aut(G).) �

Warning. We can have N charG and X E N without having X E G. For example, take
G = S4, N = V4, X = 〈(12)(34)〉.

Definition. The derived series of a group G is the sequence of subgroups
(
G(i)

)
i≥0 defined

by G(0) = G, G(i+1) = [G(i), G(i)].

Proposition 33. We have that G(i) charG for all i.

Proof. The proof goes by induction on i. Certainly, G(0) charG. Suppose that G(i) charG.
Then [G(i), G(i)] charG by Proposition 31. Thus G(i+1) charG. �

Examples.

(1) Let G be abelian. Then the derived series of G is

G ≥ {e} ≥ {e} ≥ · · ·
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(2) The group S4 has the derived series

S4 ≥ A4 ≥ V4 ≥ {e} ≥ · · ·

The derived series for A4 is obtained by cutting this series at A4 instead.

A4 ≥ V4 ≥ {e} ≥ · · ·

(3) The group D2n has the derived series

D2n ≥ H ≥ {e} ≥ · · ·

where, as we have seen before:

H = D′2n =

{
Cn if n odd
Cn/2 if n even

(4) For n ≥ 5, Sn has the derived series

S5 ≥ An ≥ An ≥ · · ·

Proposition 34. A group G is soluble if and only if {e} appears in its derived series.

Proof. Recall that G is soluble if there exists

G ≥ G0 ≥ · · · ≥ Gk = {e}

such that Gi+1 EGi and Gi

Gi+1
is abelian for all i. Suppose {e} = G(k) for some k. Then

G = G(0) ≥ G(1) ≥ · · · ≥ G(k) = {e}

with G(i+1)EG(i), and G(i)/G(i+1) is abelian, since G(i+1) is the derived group of G(i). Hence
G is soluble.

For the converse, suppose that G is soluble, and G = G0 ≥ G1 ≥ · · · ≥ Gk = {e} with
Gi+1 EGi and Gi

Gi+1
abelian. We claim that

G(i) ≤ Gi

for all i. The proof goes by induction on i. Certainly, G(0) = G ≤ G = G0. Now, suppose
that G(i) ≤ Gi. We know that Gi

Gi+1
is abelian, so G′i ≤ Gi+1. But

G(i+1) = [G(i), G(i)] ≤ [Gi, Gi] = G′i ≤ Gi+1

and the induction is complete.

We have shown that G(i) ≤ Gi for all i, and, in particular, G(k) ≤ Gk = {e}. �

This means that for soluble groups, the derived series have finite length. Thus, to prove facts
about soluble groups, we could use induction on the length of the series.
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6. The Lower Central Series and nilpotent groups

Definition. Let G be a group. The lower central series (LCS) for G is the sequence of
subgroups (γi(G))i≥1 defined by γ1(G) = G and γi+1(G) = [γi(G), G].

There are also upper central series and all the corresponding results hold for them by analogy,
but they will not be discussed in this course. They were covered in the 2012 course, so the
interested reader is encouraged to refer to lecture notes from that year.

Remark.

(1) Note that the LCS starts at 1, not at 0.
(2) It is clear that γ1(G) = G = G(0) and γ2(G) = G′ = G(1). Beyond these terms, the

LCS and the derived series are generally different.

Examples.

(1) If G is abelian, then the LCS is

G ≥ {e} ≥ {e} ≥ · · ·
(2) Let G = D2n. Then γ1(G) = G, and γ2(G) = G′, which is a group of rotations. Let

x be any rotation, y any reflection. Then [x, y] = xyx−1y−1 = x2, so [〈x〉, G] = 〈x2〉.
Clearly,

〈x2〉 =

{
〈x〉 if ord(x) odd
index 2 subgroup of 〈x〉 if ord(x) even

For example, we get the LCS:

D24 ≥ C6 ≥ C3 ≥ C3 ≥ · · ·
D16 ≥ C4 ≥ C2 ≥ C1 = {e} ≥ {e} ≥ · · ·

Definition. A group G is nilpotent if {e} appears in its LCS. If γc+1(G) is the first term of
the LCS equal to {e}, then we say that G has nilpotency class c.

Examples.

(1) As we have seen above, D24 is not nilpotent, but D16 is nilpotent of class 3.
(2) The trivial group {e} is the unique group of nilpotency class 0.
(3) A group is nilpotent of class 1 if and only if it is a non-trivial abelian group.

Proposition 35. Every nilpotent group is soluble.

Proof. We show inductively that G(i) ≤ γi+1(G) for all i. The base case i = 0 is trivial.
Suppose that G(i) ≤ γi+1(G). We have

G(i+1) = [G(i), G(i)] ≤ [γi+1(G), G],

since G(i) ≤ γi+1(G) by the inductive hypothesis, and G(i) ≤ G. But [γi+1(G), G] = γi+2(G),
so G(i+1) ≤ γi+2(G), completing the induction. Now, if G is nilpotent, then γc+1(G) = {e}
for some c, but now G(c) = {e}, so G is soluble. �

Remark. There exist groups which are soluble but not nilpotent—we have seen one, D24.
There are smaller examples, such as S3 which has LCS S3 ≥ A3 ≥ A3 ≥ · · · .
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Proposition 36. Let NEG. Then [N,G] is the smallest normal subgroup H of G, contained
in N , such that N

H
≤ Z

(
G
H

)
.

Proof. We know that [N,G] E G by Proposition 30, and certainly [N,G] ≤ N , since N is
normal. For any x ∈ N , we have xH ∈ Z

(
G
H

)
if and only if [xH, gH] = eG/H for all g ∈ G,

which is equivalent to [x, g] ∈ H. Therefore, N
H
≤ Z

(
G
H

)
if and only if [x, g] ∈ H for all

x ∈ N , g ∈ G, which is equivalent to [N,G] ≤ H. So clearly [N,G] is the smallest subgroup
H with this property. �

While Proposition 36 is technical, it is very useful incomputing the LCS of some groups.

Examples.

(1) The LCS for S4 begins γ1(S4) = S4, γ2(S4) = S ′4 = A4. Now, γ3(S4) is normal in S4,

and contained in A4, so one of {id}, V4, A4. But A4

{id} 6≤ Z
(

S4

{id}

)
and A4

V4
6≤ Z

(
S4

V4

)
,

because S4

V4
∼= S3 (since Z(S4) and Z(S3) are trivial). So γ3(S4) = A4. (Hence

γi+1(S4) = A4 for i > 0.)
(2) We have γ1(A4) = A4, γ2(A4) = A′4 = V4. Now, γ3(A4) is normal in A4, and a

subgroup of V4, so one of {id} or V4. But V4
{id} 6≤ Z

(
A4

{id}

)
, so γ3(A4) = V4.

Remark. Note that, unlike the derived series, we cannot get the LCS for γi(G) get the LCS
for γi(G) just by truncating the LCS for G.

Proposition 37. We have that γi(G) charG for all i.

Proof. Similar to the proof of Proposition 33. �

Proposition 38. For any i, j ∈ N, we have

[γi(G), γj(G)] ≤ γi+j(G).

Note that a generator of γi(G) looks like [. . . [[[g1, g2], g3], g4] . . . , gi].

The proof of this proposition is omitted. It was proved in the course in 2012, so the interested
reader is encouraged to refer to lecture notes from that year for the proof.

Proposition 38 is one reason why we begin the LCS at 1 instead of 0.

Proposition 39. Let ϕ : G→ H be a surjective homomorphism. Then γi(H) = ϕ(γi(G)).

An analogous result also holds for the derived series; however, it will not be used anywhere
in this course, which is why it was not stated and proved before.

Proof. The proof goes by induction on i. The base case i = 1 is clear. Suppose that
ϕ(γi(G)) = γi(H) for some i. We have γi+1(H) = [γi(H), H]. So a general element of
γi+1(H) is y = [x1, h1]

ε1 . . . [xt, ht]
εt with xj ∈ γi(H), hj ∈ H, εj = ±1. For each j, let

zj ∈ γi(G) be such that ϕ(zj) = xj, and gj such that ϕ(gj) = hj. Now

y = ϕ ([z1, g1]
ε1 . . . [zt, gt]

εt) = ϕ(w)

for some w ∈ [γi(G), G] = γi+1(G). So γi+1(H) ≤ ϕ(γi+1(G)). The reverse containment is
similar. �
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Theorem 40. Every p-group is nilpotent.

Proof. The proof goes by induction on the order of the group. The base case |P | = 1 is
trivial. For the inductive step, suppose that all groups of order pa are nilpotent. Suppose
|P | = pa+1. Then P is a non-trivial p-group, so it has a normal central subgroup N of order p
by Proposition 22. Now,

∣∣ P
N

∣∣ = pa, so P
N

is nilpotent by the inductive hypothesis. Thus

γc
(
P
N

)
= {e} for some c. Now, if θ : P → P

N
is the canonical map, then by Proposition 39,

we have

γc+1

(
P

N

)
= θ(γc+1(P )).

So γc+1(P ) ≤ Ker θ = N . So either γc+1(P ) = {e}, or else γc+1(P ) = N . But in the latter
case, γc+2(P ) = [N,P ], which is {e}, since N ≤ Z(P ). �

Example. We have seen that in general dihedral groups are not nilpotent. But if n = 2a,
then D2n is a 2-group, so in this case D2n is nilpotent. (We saw that D16 is nilpotent earlier.)

Proposition 41. Let G be nilpotent of class c. Then

(1) Every subgroup of G is nilpotent of class at most c.
(2) If N EG, then G

N
is nilpotent of class at most c.

(3) If H is nilpotent of class d, then G×H is nilpotent of class max(c, d).

Proof. To show (1), we show by an easy induction that if L ≤ G, then γi(L) ≤ γi(G) for
all i. In particular, γc+1(L) = {e}.

For (2), we consider the canonical map θ : G→ G
N

and use Proposition 39 to obtain

γc+1

(
G

N

)
= θ(γc+1(G)) = θ({e}) = {eG/N}.

For (3), notice that [(g1, h1), (g2, h2)] = ([g1, g2], [h1, h2]) for all g1, g2 ∈ G, h1, h2 ∈ H. Now,
an easy induction shows that

γi(G×H) = γi(G)× γi(H).

If m = max(c, d), then

γm+1(G×H) = γm+1(G)× γm+1(H) = {eG} × {eH} = {eG×H},
which completes the proof. �

Example. Let A = 〈a〉 ∼= C12 and B = 〈b〉 ∼= C2. Let G = Aoϕ B, where

ϕb(a) = a7.

Is G nilpotent? Write A = A3A4 where A3 = 〈a4〉 ∼= C3 and A4 = 〈a3〉 ∼= C4. Identify A
with {(a, e) : a ∈ A} and B with {(e, b) : b ∈ B}. So G = AB = A3A4B. Notice that
A4 charA E G, so A4 E G. Hence A4B is a subgroup of order 8. Hence A4B is nilpotent.
Moreover, A3 is also nilpotent, and A3 and A4B are complements in G.

So certainly G ∼= A3 o A4B. We show that actually G ∼= A3 × A4B. We have A3 = 〈a3〉, so
it is enough to show that A4B ≤ CentG(a4). Certainly, A4 ≤ A ≤ CentG(a4), and we have
that ϕb(a

4) = (a4)7 = a28 = a4, so the B ≤ CentG(a4). Hence A4B ≤ CentG(a4).
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Therefore, G ∼= A3 × A4B, so it is nilpotent by Proposition 41 (3).

Proposition 42 (Frattini argument). Let G be a finite group. For KEG and P ∈ Sylp(K),
we have that G = KNG(P ).

Proof. Let g ∈ G. Then gP ≤ gK = K. Hence gP ∈ Sylp(K). But the Sylow p-subgroup

of K are all conjugate in K, so gP = kP for some k ∈ K. Now, k
−1gP = P , so k−1g ∈ NG(P ).

Thus we have g = k(k−1g) ∈ KNG(P ). �

Definition. A subgroup M of G is maximal if M 6= G, and there exists no subgroup of H
with M < H < G.

Fact. If G is finite then every proper subgroup of G is contained in at least one maximal
subgroup.

(If H is contained in no maximal subgroup, then there exist an infinite ascending chain
H = H0 < H1 < · · · , and so G must be infinite.)

Theorem 43. Let G be a finite group. Then the following are equivalent:

(1) G is nilpotent,
(2) H < NG(H) (strict inequality) for every proper subgroup H,
(3) M CG for every maximal subgroup M ,
(4) P EG for every Sylow subgroup P ,
(5) G is isomorphic to a direct product of p-groups,
(6) any two elements of G with coprime orders commute.

Normally, we would prove the consecutive implications in a cycle; however, it is hard to
structure the proof that way. Instead, the proof will be structured as follows:

(1) (2) (3) (4) (5)

(6)

Proof. (1) implies (2). Let G be nilpotent of class c and let H < G. Then H 6≥ γ1(G), but
H ≥ γc+1(G). So there must exist j such that γj(G) 6≤ H, but γj+1(G) ≤ H.

Now, γj(G)EG, and so Hγj(G) ≤ G. Since
γj(G)

γj+1(G)
≤ Z

(
G

γj+1(G)

)
,

Hγj(G)

γj+1(G)
≤ H

γj+1(G)

γj(G)

γj+1(G)
≤ H

γj+1(G)
Z

(
G

γj+1(G)

)
.

and so
H

γj+1(G)
E
Hγj(G)

γj+1(G)
.

Hence H is normal in Hγj(G) by the Subgroup Correspondence Theorem 2 (2). So NG(H) ≥
Hγj(G) 6≤ H (since γj(G) 6≤ H). Hence NG(H) > H.
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(2) implies (3). Suppose H < NG(H) for all H < G. Let M be maximal. Then M <
NG(M) ≤ G. So by maximality of M , we have NG(M) = G.

(3) implies (4). Let P ∈ Sylp(G). Suppose (for a contradiction) that P is not normal. Then
NG(P ) < G, and so NG(P ) ≤ M for some maximal M . Now, M C G by (3), so, by the
Frattini argument 42, we have G = MNG(P ) ≤MM = M , a contradiction. So P EG.

(4) implies (5). Suppose that the Sylow subgroups of G are normal. Let p1, . . . , pk be the
prime divisors of |G|, and let P1, . . . , Pk be the corresponding Sylow subgroups.

We show by induction that for 1 ≤ j ≤ k we have P1P2 . . . Pj is a normal subgroup of G
isomorphic to P1×P2× · · ·×Pj. The base case, j = 1, is obvious. Suppose true for j. Then

P1 . . . PjPj+1 = (P1P2 . . . Pj)Pj+1.

This is a subgroup since Pj+1 E G. Now, P1 . . . Pj is normal, and Pj+1 is normal, so
(P1 . . . Pj)Pj+1 is normal, and isomorphic to (P1 . . . Pj)× Pj+1, which is isomorphic to P1 ×
· · · × Pj+1 by the inductive hypothesis.

Therefore, we have |P1 . . . Pk| = |G|, so P1 × · · · × Pk ∼= P1 . . . Pk = G, as required.

(5) implies (1). We have that every p-group is nilpotent and any direct product of nilpotent
groups is nilpotent (Theorem 40 and Proposition 41 (3)). So if G is isomorphic to a direct
product of p-groups then G is nilpotent.

(5) implies (6). Since G ∼= P1 × · · · × Pk (where Pi is a pi-group, for distinct primes pi), we
can write an element g of G as g = (g1, . . . , gk) where gi ∈ Pi for all i. Let h = (h1, . . . , hk) be
another element. Now, ord(g) = ord(g1) . . . ord(gk) and ord(h) = ord(h1) . . . ord(hk). So g
and h have coprime orders if and only if, for all i, we have at least one of gi or hi equal to e.
But in this case, it is clear that g and h commute.

(6) implies (4). Let |G| = n = pa11 . . . pakk . Let Pi be a Sylow pi-subgroup. Certainly,
Pi ≤ NG(Pi). But if j 6= i, then every element of Pj (a Sylow pj-subgroup) commutes with
every element of Pi (by (6)). So Pj ≤ NG(Pi) for all j. Now, p

aj
j divides |NG(Pi)| for all j,

and so |NG(Pi)| = |G|. Thus NG(Pi) = G, and Pi EG. �

7. More on actions

Let G act on a set Ω and k ≤ |G|. Define

Ω(k) = {(x1, . . . , xk) | xi ∈ Ω, xi 6= xj if i 6= j},

the set of k-tuples of distinct elements of Ω.12

There is an action of G on Ω(k) given by

g(x1, . . . , xk) = (gx1, . . . , gxk).

(Notice that if xi 6= xj then gxi 6= gxj.)

12The notation Ω(k) is not standard and will not be found in literature. There is no standard notation for
this set.
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Definition. We say that G acts k-transitively on Ω if the action of G on Ω(k) is transitive.
In other words, G is k-transitive if any k-tuple of distinct points can be mapped to any other
by an element of G.

Note that the assumption that the k-tuples are distinct is really necessary; otherwise, no
actions would be k-transitive, because we could not send (x, x, . . . , x) to (x, y, . . . , y) if x 6= y.
Note also that if k > |G|, then the action of G on Ω(k) can never be transitive, hence the
assumption k ≤ |G|.

Remark. It is clear that if G is k-transitive, then it is l-transitive for all l ≤ k.

Examples.

(1) The group Sn is n-transitive on {1, 2, . . . , n}. If x = (x1, . . . , xn) is a tuple of distinct
points, then {x1, . . . , xn} = {1, . . . , n}, so σx : i 7→ xi is a permutation. Hence σx ∈ Sn
and x = σx(1, 2, . . . , n), and so OrbSn(1, . . . , n) = Ω(n).

(2) The group An is only (n − 2)-transitive on {1, . . . , n}. There is no element of An
which maps

(1, 2, . . . , n− 2, n− 1) 7→ (1, 2, . . . , n− 2, n),

since the only element of Sn which does this is (n − 1, n). So An is not (n − 1)-
transitive.

To show that An is (n− 2)-transitive, let x = (x1, . . . , xn−2) and y = (y1, . . . , yn−2)
be tuples of distinct points. Let xn−1 and xn be the two points not in x, and yn−1
and yn be two points not in y. Since Sn is n-transitive, there exists σ, τ ∈ Sn such
that

σ(x1, . . . , xn) = (y1, . . . , yn−2, yn−1, yn),

τ(x1, . . . , xn) = (y1, . . . , yn−2, yn, yn−1).

Now, τ = (yn−1yn)σ, so σ and τ have different signatures, so one of them (say σ) is
in An. Then σx = y, so x and y are in the same orbit of An.

(3) If n > 3, then D2n is only 1-transitive on the vertices of an n-gon. Given a vertex
u, we can find vertices v, w such that u and v are adjacent but u and w are not.
Now, no element of D2n maps (u, v) to (u,w), because the action of D2n preserves
the adjacency relation.

Not many finite groups are highly transitive. In fact, the only finite groups with 4-transitive
actions are Sn for n ≥ 4, An for n ≥ 6, and four other groups. These are known as the
Mathieu Groups, M11, M12, M23, M24, which are subgroups of S11, S12, S23, S24 respectively.
They are simple groups (in the classification of finite simple groups, they probably the easiest
examples of sporadic groups). Moreover, M12 and M24 are 5-transitive.

Remark. If G acts on Ω and H = StabG(x) for x ∈ Ω, then H acts on Ω\{x} by restriction.

Proposition 44. Let G act transitively on Ω, and H = StabG(x) for x ∈ Ω. Let k ∈ N.
Then G is k-transitive on Ω if and only if H is (k − 1)-transitive on Ω \ {x}.

Note that using this proposition, we can get an inductive prove that Sn is n-transitive on
{1, . . . , n}; indeed, the stabilizer of a point is Sn−1.
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Proof. We first prove the ‘only if’ implication. Suppose that G is k-transitive on Ω. Let
y = (y1, . . . , yn−1), z = (z1, . . . , zn−1) be tuples of (k− 1) distinct elements of Ω \ {x}. Then
y′ = (y1, . . . , yn−1, x) and z′ = (z1, . . . , zn−1, x) are elements of Ω(k). Since G is transitive on
Ω(k), there is some g ∈ G such that gy′ = z′. So we have gy = z and gx = x, and hence
g ∈ H. Therefore, y and z are in the same orbit of H. So H is (k− 1)-transitive on Ω \ {x}.

For the ‘if’ implication, suppose that H is (k − 1)-transitive on Ω \ {x}. Let y, z ∈ Ω(k),
y = (y1, . . . , yk), z = (z1, . . . , zk). Since G is transitive, there exist f, g ∈ G such that
fyk = x, gzk = x. So

fy = (fy1, . . . , fyk−1, x), gz = (gz1, . . . , gzk−1, x).

Now, fy, gz ∈ Ω(k), so y′ = (fy1, . . . , fyk−1) and z′ = (gz1, . . . , gzk−1) are (k − 1)-tuples are
distinct points from Ω \ {x}. Hence there exists h ∈ H such that hy′ = z′. Also, hx = x,
so hfy = gz. Now, g−1hfy = z, and so y and z are in the same orbit of G. Hence G is
k-transitive on Ω. �

Recall that a partition on a set Ω is a division of Ω into non-overlapping subsets {Xi ⊆ Ω :
i ∈ I}, where I is some indexing set, such that Xi ∩Xj = ∅ when i 6= j and

⋃
i∈I
Xi = Ω.

Partitions correspond to equivalence relations. We write x ∼ y if and only if x and y lie in
the same part Xi.

Definition.

(1) We say that a partition of Ω is trivial if it has only one part, or if every part has
size 1.

(2) Let G act on Ω. We say that G preserves the equivalence relation ∼ on Ω (or the
corresponding partition) if gx1 ∼ gx2 if and only if x1 ∼ x2.

Clearly, any group acting on Ω preserves the trivial partitions.

Definition. Let G act transitively on Ω, where |Ω| > 1. The action of G is primitive if it
preserves no non-trivial equivalence relations (or partitions) on Ω.

If ∼ is a non-trivial relation preserved by G then the action is imprimitive and ∼ is a system
of imprimitivity for G. In this case, the equivalence classes are blocks for the action.

Warning. Both primitive and imprimitive actions are transitive by definition.

Examples.

(1) Let g = (12 . . . n) ∈ Sn and consider G = 〈g〉 acting on {1, 2, . . . , n}. The action of
G is primitive if and only if n is prime.

We can assume that n > 1. Suppose that d is a divisor of n. Then define ∼ by
i ∼ j if and only if i ≡ j mod d. It is clear that ∼ is preserved by G and ∼ is
non-trivial provided 1 < d < n. Hence if n has such a divisor, i.e. n is not prime,
then G is imprimitive.

(The proof of the converse implication comes later—see Corollary 47.)
(2) The group Sn is primitive on {1, . . . , n} for n > 1 and An is primitive on {1, . . . , n}

for n > 2.
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Suppose we have a non-trivial relation ∼ on {1, . . . , n}. Then we can find distinct
i, j, k such that i ∼ j but i 6∼ k. Since Sn is 2-transitive, and An is 2-transitive if
n ≥ 4, they have an element g such that g(i, j) = (i, k). Hence ∼ is not preserved
under the action. (The case A3 is as in (1) above.)

(3) The group D2n acts primitively on the vertices of an n-gon if and only if n is prime.
If n is not prime, let d be a proper divisor of n. Assuming, d > 2, we can embed n

d
copies of d-gons in our n-gon, partitioning the vertices. In the case, n = 6, d = 2, we
get 2 copies of triangles:

These form a system of imprimitivity for D2n. (If d = 2, embed long diagonals
instead.)

(The proof of the converse implication comes later—see Corollary 47.)

Proposition 45. Let B = {Bi : i ∈ I} be a system of imprimitivity for the action of G
on Ω. (So B is a partition of Ω.) For B ∈ B, define gB = {gx : x ∈ B}, for any g ∈ G.
Then gB ∈ B and the map (g,B) 7→ gB defines a transitive action of G on B.

Proof. Let ∼ be the equivalence relation corresponding to B. Let x ∈ gB. Then g−1x ∈ B.
We have x ∼ y if and only if g−1x ∼ g−1y, or, equivalently, g−1y ∈ B, i.e. y ∈ gB. Hence gB
is the equivalence class of x under ∼, so gB ∈ B.

It is clear that eB = B and (g1g2)B = g1(g2B), so (g,B) 7→ gB defines an action. To show
that the action on B is transitive, take any B′ ∈ B and let y ∈ B′. Let z ∈ B. Since G is
transitive on Ω, there exists g ∈ G such that gz = y. So y ∈ gB, and so gB = B′. �

Proposition 46. Let B be a system of imprimitivity for the action of G on Ω. Then all of
the blocks of B have the same size.

Proof. Let B1 and B2 be blocks of B. Then there exists g ∈ G such that B2 = gB1 by
Proposition 45. But |gB1| = |B1|, and hence |B2| = |B1|. �

Corollary 47. Let Ω be a set such that |Ω| is prime. Then any transitive group action on Ω
is primitive.

Proof. Suppose we have k blocks in a system of imprimitivity. They all have the same size, m.
So |Ω| = km, but k,m > 1, so |Ω| is composite. �

This establishes the claim from before that the actions of Cp and D2p on the vertices of a
regular p-gon are primitive for p prime.
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Remark. Primitivity implies transitivity (as part of the definition). It is a strictly stronger
property, since, for example, C4 acting on {1, 2, 3, 4} is transitive but not primitive.

We show next that primitivity is strictly weaker than 2-transitivity.

Proposition 48. Let G act 2-transitively on Ω. Then the action is primitive.

The proof will be analogous to the proof that the action of Sn on {1, . . . , n} for n > 1 is
primitive.

Proof. Let ∼ be a non-trivial equivalence relation on Ω. There exists distinct x, y, z ∈ Ω such
that x ∼ y, x 6∼ z. But since G is 2-transitive, there exists g ∈ G such that g(x, y) = (x, z).
Therefore, ∼ is not preserved by G, and hence G acts primitively on Ω. �

So 2-transitivity is at least weakly stronger than primitivity. But C3 acting on {1, 2, 3} is
primitive but not 2-transitive, so in fact 2-transitivity is strictly stronger.

Even primitivity is a strong condition on a group action. It can be shown that for“almost all”
n ∈ N, the only primitive subgroups of Sn are Sn and An. (In particular, the other families
of primitive groups that we have seen, such as Cp and D2p, do not give a contribution,
asymptotically. This is because the density of the primes in N tends to 0.)

Proposition 49. Let G act transitively on Ω, and let x ∈ Ω. Let H = StabG(x). Then the
action is primitive if and only if H is maximal in G.

Therefore, by Theorem 12, studying primitive actions is equivalent to studying groups and
their maximal subgroups.

Proof. For the ‘if’ implication, we show that if G is imprimitive then H is not maximal.
Suppose that B is a system of imprimitivity for the action of G. Let Bx be the block of B
containing x. Recall that G acts transitively on B by Proposition 45.

Let L be the stabilizer of Bx. For h ∈ H, we have hx = x, so x ∈ Bx ∩ hBx. But hBx ∈ B,
and so hBx = Bx. So h ∈ L, and hence H ≤ L. Since B is associated with a non-trivial
equivalence relation, we have:

(1) There exists y 6= x such that y ∈ Bx. Now, suppose gx = y (since G is transitive
on Ω). Then y ∈ Bx ∩ gBx, and so gBx = Bx, and so g ∈ L. But g 6∈ H, so H 6= L.

(2) There exists z 6∈ Bx. If gx = z (and such g exists by transitivity of G on Ω) then
gBx 6= Bx, so L 6= G.

Hence H < L < G, so H is not maximal.

For the ‘only if’ implication, recall that by Theorem 12, the action of G on Ω is equivalent
to its coset action on cosets of H. We show that if H is not maximal, then G preserves a
non-trivial equivalence relation on the cosets of H.

Suppose that H < L < G. Define relation ∼ by g1H ∼ g2H if and only if g1L = g2L. (Note
that g1H = g2H if and only if g−12 g1 ∈ H, so g−12 g1 ∈ L, and hence g1L = g2L. Therefore,
this relation is well-defined, and clearly it is an equivalence relation.) Since H < L, there
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exists l ∈ L\H. Now, H 6= lH, but H ∼ lH since eL = lL. So ∼ has an equivalence class of
size greater than 1. Also, L < G, so there exists g ∈ G \ L. Now, H 6∼ gH, since eL 6= gL.
Hence ∼ is non-trivial.

Finally, for x, y, g ∈ G, we have gxH ∼ gyH if and only if gxL = gyL if and only if
y−1x = (gy)−1gx ∈ L, which is equivalent to xL = yL, i.e. xH ∼ yH. Hence the action of G
preserves ∼, and so it is imprimitive. �

Example. Let Cn act on {1, . . . , n}. This action is transitive and the point stabilizers are
trivial. Now {e} is maximal in G if and only if G has no subgroups except {e}, which holds
if and only if G ∼= Cp for some prime p.

Therefore, Cn acts primitively if and only if n is prime. We have seen a proof of this before,
but the new theory gives an alternative proof.

Example. What are the primitive actions of S5? Look at maximal subgroups of S5. These
are (up to conjugacy):

(1) A5

(2) S4 (E.g. StabS5(5))
(3) C5 o C4, where C4 is acting as the full automorphism group of C5. (E.g. take the

normalizer in S5 of 〈(12345)〉. Note that (13524) = (12345)2 and (2354) conjugates
(12345) to (13524), so (2354) is in this normalizer.)

(4) S3 × S2 (E.g. Sym({1, 2, 3})× Sym({4, 5}).)

So S5 has primitive actions of degrees (number of points of Ω) equal to 2, 5, 6, 10. Note that
the action of 2 points is not faithful, as it has kernel A5. The other three are faithful. So S5

embeds as a primitive subgroup of S6 and S10.

The action on 10 points can be seen as the action of S5 on 2-subsets of {1, 2, . . . , 5}, i.e.
{i, j} for i 6= j, with the action given by g{i, j} = {gi, gj}. Alternatively, it can be seen as
the automorphisms13 of the Petersen graph:

Proposition 50. If G is nilpotent and G acts primitively on Ω then |Ω| is prime, and the
image of G in Sym(Ω) is cyclic.

Proof. Every maximal subgroup of a nilpotent group is normal by Theorem 43. Since G is
transitive, its point stabilizers are all conjugate, so in fact G has only one point stabilizer, K,

13An automorphism is a permutation of the vertices which maps adjacent vertices to adjacent vertices.
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which is the kernel of the action. Now, subgroups of G/K correspond to subgroups of G
containing K by the Subgroup Correspondence Theorem 2. But K is maximal by Proposi-
tion 49, so G/K has no non-trivial proper subgroups. Hence G/K ∼= Cp for some prime p.
Therefore, |Ω| = p, and since G/K is isomorphic to the image of G in Sym(Ω), this image is
cyclic. �

Proposition 51. Let G act faithfully and primitively on a set Ω. Let N 6= {e} be a normal
subgroup of G. Then N acts transitively on Ω.

(If we omit the assumption of faithfulness, we could take N to be the kernel of the action,
whence N acts on Ω trivially. Therefore, we could only conclude that N acts trivially or
transitively on Ω.)

Proof. The orbits of the action of N on Ω form a partition of Ω. Let ∼ be the equivalence
relation associated to this partition. (So y ∼ x if and only if y = nx for some n ∈ N .) Since
G is faithful and N 6= {e}, the orbits of N are not all of size 1.

We show that ∼ is preserved by G. We have gy ∼ gx if and only if gy = ngx for some n ∈ N
which is equivalent to y = g−1ngx for some n ∈ N , but g−1ng ∈ N , since N is normal. We
have hence shown that gy ∼ gx if and only if y ∼ x.

But G is primitive, so ∼ must be trivial. Since the parts do not all have size 1, there must
be only one part. Hence N has only one orbit on Ω, so N is transitive. �

Example. We claim that any subgroup of S7 of order 168 is simple.

Let G ≤ S7 have order 168 = 7 × 3 × 23. Then G has an element of order 7 (by Cauchy’s
Theorem 16), which must be a 7-cycle. Hence G is transitive on {1, . . . , 7}, and hence G
is primitive. Suppose N E G, N 6= {e}, G. Then, by Proposition 51, N is transitive on
{1, . . . , 7}. So 7 divides |N |, and so N contains at least one Sylow 7-subgroup of G. But N
is normal, so it must contain all Sylow 7-subgroups of G.

We have that n7(G) ≡ 1 mod 7 divides 168, so n7(G) is 1 or 8. Suppose n7(G) = 1. Then G
has a normal subgroup P of order 7. So G ≤ NS7(P ). But we can easily calculate that
for a subgroup P ≤ S7 of order 7, |NS7(P )| = 42. (There are 6! 7-cycles in S7, and each
7-subgroup has 6 of them. So there are 5! such subgroups. They are Sylow 7-subgroups
of S7, so they are all conjugate. Since NS7(P ) is the stabilizer in the conjugacy action, we
get |NS7(P )| × 5! = |S7|. So |NS7(P )| = 7 × 6 = 42.) So it follows that n7(G) 6= 1, so
n7(G) = 8.

Since all 8 Sylow 7-subgroups are contained in N , they are all conjugate in N . So 8 di-
vides |N |. So |N | is divisible by 56. Since there is no n such that 56|n and n|168 except
n = 56, 168, we must have |N | = 56.

We have found 48 elements of order 7 in N . The remaining 8 must form a Sylow 2-subgroup Q
of N . Note that N is primitive on {1, . . . , 7} and QCN . So Q is transitive on {1, . . . , 7} by
Proposition 51. But this is impossible since 7 does not divide |Q|. So by contradiction, no
such N exists. Hence G is simple.

Finally, we still have to show that S7 has a subgroup of order 168. Let G = GL3(2), the
invertible 3×3 martices over Z2. The size of G is the number of (ordered) bases of (Z2)

3. We
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see that (v1, v2, v3) is an ordered basis, provided v1 6= 0, v2 6∈ Span{v1}, v3 6∈ Span{v1, v2}.
Since (Z2)

3 has size 8, we see that the number of bases is (8− 1)(8− 2)(8− 4) = 168.

Note that G acts on the non-zero vectors of (Z2)
3. This action gives a homomorphism

G → S7. Since the kernel of the action is trivial, this homomorphism is injective, and so G
is isomorphic to a subgroup of S7 of order 168. By the claim above, this subgroup is simple.

We have now seen the two smallest non-abelian simple groups: A5 of order 60 and this group
of order 168.

In general, let F be a finite field. Then GLn(F ) is not generally simple. Obvious normal
subgroups are SLn(F ) and Z = {λI : λ ∈ F×}. The group SLn(F ) is not generally simple
either, but

PSLn(F ) =
SLn(F )

Z ∩ SLn(F )
,

the projective special linear group, is simple (for n > 1, not PSL2(2), PSL2(3)).

Examples of Sylow subgroups

Sylow subgroups of Sn. First question: what power of p divides n! = |Sn|?

Write
⌊
a
b

⌋
for the greatest integer ≤ a

b
. There are

⌊
n
p

⌋
numbers in {1, . . . , n} divisible by p,⌊

n
p2

⌋
numbers divisible by p2, and so on. So the p-power dividing n! is pa, where

a =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · ·

Take the p-ary expansion of n:

n = a0 + a1p+ a2p
2 + · · ·+ akp

k,

where 0 ≤ ai ≤ p− 1. Then ⌊
n

pi

⌋
= ai + ai+1 + · · ·+ akp

k−i,

so we can write:

a = (a1 + a2 + · · ·+ akp
k−1) + (a2 + a3 + · · ·+ akp

k−2) + · · ·+ (ak)

= a1 + a2(p+ 1) + a3(p
2 + p+ 1) + · · ·+ ak(p

k−1 + · · ·+ p+ 1)

= n−s
p−1 where s = a0 + a1 + · · ·+ ak

Divide our set of size n into non-intersecting subsets N1, . . . , Ns so that there are ai subsets
of size pi for all i. Then Sn has a subgroup

H =
s∏
i=1

Sym(Ni).

Example (3-subgroups of S16). We have 16 = 32 + 2 · 3 + 1. So take N = {1, . . . , 9},
N2 = {10, 11, 12}, N3 = {13, 14, 15}, N4 = {16}. Our subgroup consists of elements fixing
the sets {1, . . . , 9}, {10, 11, 12}, {13, 14, 15}.
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The power of p dividing (pi)! is 1 + p + · · · + pi−1. So the power of p dividing |H| is∑
i

ai(1+p+· · ·+pi−1), which is the same as the power of p dividing n!. So H contains a Sylow

p-subgroup of Sn. A Sylow p-subgroup of H has the form
∏
i

Pi, where Pi ∈ Sylp(Sym(Ni)).

So if we can handle the case n = pi then we get a general solution.

Example (n = p2). We are looking for a subgroup of order pp+1. It is easy to find one of
order pp, since the p-cycles c1 = (1 . . . p), c2 = (p + 1 . . . 2p), . . ., cp = (p2 − p + 1 . . . p2) all
commute, and generate a subgroup A isomorphic to (Cp)

p. Let g be the permutation

(1 p+ 1 2p+ 1 . . . p2 − p+ 1)(2 p+ 2 2p+ 2 . . . p2 − p+ 2) . . . (p 2p 3p . . . p2)

(a product of p cycles of length p). Then it is easy to check that gci = ci+1 (and gcp = c1).
Hence g ∈ NSn(A), so 〈g〉A is a subgroup of order pp+1, isomorphic to A oϕ Cp, where
Cp = 〈g〉 and ϕg(ci) = ci+1.

This is an example of a wreath product. Suppose we have a group H and a permutation
group K ≤ Sm. Then the wreath product H oK is defined as Hm oϕ K, where the action of
K is given by

ϕk(h1, . . . , hm) = (hk−1(1), hk−1(2), . . . , hk−1(m))

This is a group of order |H|m|K|. If H ≤ Sl then H oK acts naturally on ml points.

Suppose H is a Sylow p-subgroup of Spi . Then H o Cp acts on pi+1 points, and size

|H|pp = (p1+p+···+p
i−1

)pp = p1+p+···+p
i

.

So H o Cp is a Sylow p-subgroup of Spi+1 .

So the Sylow p-subgroup of Spi is the iterated wreath product (with i iterations)

((. . . ((Cp o Cp) o Cp) o Cp . . .) o Cp),

sometimes written C2i
p .

Visualizing the iterated wreath product.

We visualize the product by drawing an infinite tree. (In this picture, p = 3.)
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. . .

. . .

Level 0

Level 1

Level 2

Level 3

...

Level i

p0 = 1 vertex

p1 vertices

p2 vertices

p3 vertices

...

pi vertices

At each vertex, there is a p-cycles that permutes the p branches below it. Let G be the group
generated by all the cycles at the vertices.

For any i, G acts on the level i vertices, a set of size pi.

For each i, we can define

Li = 〈level j cycles for j < i〉 ∼= (Sylow p-subgroup of Spi),

Mi = 〈level j cycles for j ≥ i〉 = (kernel of the action of G on level i vertices)EG.

It is not hard to see that if g ∈ Li, g 6= e, then g moves a level i vertex. So Li ∩Mi = {e}.
Therefore:

G = Mi o Li ∼= Gpi o Li = G o Li.
Keeping track of the levels, we obtain Lj ∼= Lj−i o Li for any i ≤ j.

Example (p = 2). To find the Sylow 2-subgroup of S4, we draw 2 levels of the tree.

(13)(24)

(12) (34)

1 2 3 4
← vertices we are acting on
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So a Sylow 2-subgroup of S4 is generated by the 3 elements labelling the vertices. In fact,
we only need the generators on a linear branch of the tree, so a Sylow 2-subgroup of S4 is

P = 〈(12), (13)(24)〉.

To find the Sylow 2-subgroup of S8, we draw 3 levels of the tree.

(15)(26)(37)(48)

(13)(24) (57)(68)

(12) (34) (56) (78)

1 2 3 4 5 6 7 8
← vertices we are acting on

So a Sylow 2-subgroup of S8 is generated by the 7 elements labelling the vertices. In fact,
we only need the generators on a linear branch of the tree, so

P = 〈(12), (13)(24), (15)(26)(37)(48)〉.
From this construction, it is clear what generator we have to add to get the Sylow 2-subgroup
of the next S2i .

Note that we get the other Sylow 2-subgroups by changing the numbering of the vertices at
the bottom.

Sylow subgroups of GLn(p). Note that:

|GLn(p)| = (pn − 1)(pn − p) . . . (pn − pn−1) = p(
n
2)(pn − 1)(pn−1 − 1) . . . (p− 1)

Sylow p-subgroups are easy

P =




1 F
1

. . .

0 1

 :F denotes anything


Easy to check this is a subgroup. Note that |P | = pa, where a is the number of F entries.
Clearly, a =

(
n
2

)
, so P ∈ Sylp(GLn(p)).

We say that an element of P has level i+ 1 if there are i consecutive 0-diagonals above the
main diagonal. So, for example, 

1 0 1 2
1 0 1

1 0

0 1
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has level 2. The leading diagonal is the first non-zero diagonal above all the consecutive
0-diagonals.

Facts.

(1) Suppose level(A) < level(B). Then the leading diagonal of AB is the same as that of
A.

(2) The leading diagonal of A−1 is (−1) times the leading diagonal of A.
(3) If A,B 6= I, then the level of [A,B] is strictly larger than the level of A and B. In

fact, the LCS of P is

P = L1 > L2 > · · · > Ln = {I}
where Li is the subgroup of elements of P with level ≥ i. It is easy to see that
Li

Li+1

∼= (Cp)
n−i.

(4) Note that P fixes each space Span{e1, . . . , ei} for i = 1, . . . , n. So P stabilizes a flag,
a series of subspaces

{0} < V1 < V2 < · · · < Vn with dimVi = i.

Choosing a different flag will give us a different Sylow p-subgroup.

Now, suppose r is a prime distinct from p. Then the Sylow r-subgroups of GLn(p) behave
very like the Sylow subgroups of symmetric groups. Suppose r divides

|GLn(p)| = p(
n
2)(pn − 1)(pn−1 − 1) . . . (p− 1),

so r divides pa − 1 for some a ≤ n. Let a be the order of p in the multiplicative group
modulo r. Then r divides pj − 1 if and only if a divides j.

So the r-part of |GLn(q)| divides

(pa − 1)(p2a − 1) . . . (pba − 1)

where b =
⌊
n
a

⌋
. Suppose that rc is the highest power of dividing pa − 1. When is pja − 1

divisible by a higher power of r? We note that

pja − 1

pa − 1
= p(j−1)a + p(j−2)a + · · ·+ pa + 1 ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸

j times

= j mod r.

Fact. The power of r dividing pja − 1 is c + i, where i is the power of p dividing j. So the
total power of r dividing |GLn(q)| is bc+ [b!]r, where [b!]r is the power of r dividing b!.

Consider a vector space V of dimension n over Zp.

Fact. The group GLa(p) has an element X of order rc.

The set of block-diagonal matrices


Xs1 0

Xs2

. . .
Xsb

0 In−ab

 : s1, . . . , sb ∈ {0, . . . , r − 1}
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gives a subgroup (Crc)
b inside GLn(q). If b > r, there is a linear transformation which

permutes the a-subspaces. This gives a wreath product.

Proposition. A Sylow r-subgroup of GLn(p) has the form

(. . . (((Crc o Cr) o Cr) o Cr . . .) o Cr
where the number of iterations of oCr is the highest j such that rj < n

a
. (Or, in other words,

Crc o P where P is a Sylow r-subgroup of Sb.)

For the mastery question, there will be a more detailed handout on the website about wreath
products.

Appendix A. The alternating group An is simple for n ≥ 5

In this appendix, we prove that An is simple for n ≥ 5. While the proof was not included
in the course, it was given as exercises in the assessed Homework 2 (base case: A5 is simple)
and Homework 4 (proof by induction on n ≥ 5). The author’s solutions to these exercises
are included for completeness. The reader can also refer to the official solutions, which are
posted on the course website.

Theorem 1. The alternating group An is simple for n ≥ 5.

Before we can prove the theorem, we will prove a few lemmas. First, we note that any normal
subgroup is a union of conjugacy classes.

Lemma 2. A normal subgroup of a group is a union of conjugacy classes.

Proof. Suppose H ≤ G is not a union of conjugacy classes. Then there is a conjugacy class,
say Gx, such that (Gx)∩H 6= ∅ and (Gx)∩(G\H) 6= ∅. So suppose without loss of generality
(because we can change x to a conjugate of x) that x ∈ H, but gxg−1 6∈ H, i.e. x 6∈ g−1Hg.
Then H 6= g−1Hg, so H is not normal. �

Therefore, to study conjugacy classes of An. We first note that the conjugacy classes of Sn
are determined by the so-called cycle-structure.

Definition. We say that two elements of Sn have the same cycle structure if, when we write
them in disjoint cycle notation, they have the same number of cycles of each length.

Lemma 3. Two elements of Sn are conjugate if and only if they have the same cycle struc-
ture.

Proof. We will first show that conjugation preserves cycle structure. Indeed, for any product
of disjoint cycles c1c2 . . . cm and any σ ∈ Sn we have

σc1c2 . . . cmσ
−1 = (σc1σ

−1)(σc2σ
−1) . . . (σcmσ

−1)

Then we claim that σciσ
−1 are disjoint cycles of the same length as ci. Indeed, if σciσ

−1 and
σcjσ

−1 for i 6= j are not disjoint, then they are both non-identity on some k, but this means
ci and cj are both non-identity on σ−1k, contradicting the fact that ci and cj are disjoint.
Moroever, if c is a cycle of length l, then, without loss of generality, it acts by rotations on
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{1, . . . , l}, and hence σcσ−1 acts by rotations on σ{1, . . . , l}, so σcσ−1 is a cycle of length l.
Thus c1 . . . cm and σc1 . . . cmσ

−1 have the same cycle structure.

Now, we will show that if two elements of Sn have the same cycle structure, then they are
conjugate. It is enough to show that a product of disjoint cycles c = c1 . . . cm with ci cycle
of length of li is conjugate to the product of disjoint cycles

d =
(
1 . . . l1

)(
(l1 + 1) . . . (l1 + l2)

)
. . .
(
(l1 + · · ·+ lm−1 + 1) . . . (l1 + · · ·+ lm)

)
.

Suppose ci = (ai1 . . . aili) for 1 ≤ i ≤ m. Then define σ ∈ Sn by

σ(aij) =
i−1∑
k=1

lk + j

for 1 ≤ j ≤ li, 1 ≤ i ≤ m, and σ is the identity everywhere else. We then have that

σ−1dσ = c,

because for any 1 ≤ j ≤ li, 1 ≤ i ≤ m, we have that

σ−1dσ(aij) = σ−1d

(
i−1∑
k=1

lk + j

)
and we note that

d

(
i−1∑
k=1

lk + j

)
=


i−1∑
k=1

lk + j + 1 if 1 ≤ j < li

i−1∑
k=1

lk + 1 if j = li

so

σ−1d

(
i−1∑
k=1

lk + j

)
=

{
ai(j+1) if 1 ≤ j < li
ai1 if j = li

which shows that indeed σ−1dσ(aij) = c(aij). �

The conjugacy classes of An can be characterized using the conjugacy classes of Sn.

Lemma 4. Let g ∈ An. If g commutes with an odd permutation, then Ang = Sng; otherwise,
|Ang| = 1

2
|Sng|.

Proof. Fix g ∈ An. Note that for any odd permutation h ∈ Sn, we have that h 6∈ An, so we
can write Sn as the disjoint union:

Sn = An ∪ Anh,
because the index of An in Sn is 2. Therefore:

Sng = {xgx−1 : x ∈ An} ∪ {(xh)g(xh)−1 : x ∈ An} = Ang ∪ An(hgh−1).

Now, if g commutes with an odd permutation h, then
An(hgh−1) = {xhgh−1x−1 : x ∈ An} = {xgx−1 : x ∈ An} = Ang,

so Sng = Ang. Moreover, if Ang ∩ An(hgh−1) 6= ∅, then for some x, x′ we have that

xgx−1 = x′hgh−1(x′)−1,
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so h−1(x′)−1xg = gh−1(x′)−1x and hence g commutes with an odd permutation h−1(x′)−1x.
Therefore, if g does not commute with any odd permutation, then for an odd permutation h

Ang ∩ An(hgh−1) = ∅,
and hence

Sng = Ang ∪ An(hgh−1)

is a disjoint union. Note that |An(hgh−1)| = |Ang|, because orbits under a transitive action
have the same size. Therefore

|Sng| = 2|Ang|,
as requested. �

We can now prove that A5 is simple.

Lemma 5. The group A5 is simple.

Proof. First, we find the conjugacy classes in A5. By Lemma 3, the conjugacy classes in S5

are given by cycle shapes. In A5, the possible cycle shapes are 1, 3, (2, 2), 5, and Lemma 3
shows that whether or not a conjugacy class splits (into two equal pieces) is given by whether
or not its representative commutes with an odd permutation. We use it to prove it that the
following table describes the conjugacy classes:

representative element number of elements in the class
e 1

(123) 20
(12)(34) 15
(12345) 12
(13452) 12

• The conjugacy class of (123) in S5 has 20 elements. Since (123) commutes with the
odd permutation (45), the conjugacy class of (123) does not split in A5—it also has
20 elements, and contains all the 3-cycles.
• The conjugacy class of (12)(34) in S5 has 15 elements. Since (12)(34) commutes with

the odd permutation (12), the conjugacy class of (12)(34) does not split in A5—it
also has 15 elements, and contains all the (2, 2)-cycles.
• The conjugacy class of (12345) in S5 has 24 elements. One can easily check that

(12345) does not commute with any odd permutation. Therefore, the conjugacy
class splits into two equal conjugacy classes in A5, one represented by (12345), and
the other by (12)(12345)(12) = (13452).

To show that A5 has no non-trivial, proper, normal subgroups, we just show that if a normal
subgroup N contains one of the non-trivial conjugacy classes, then it contains all the other
conjugacy classes, i.e. N = A5. Trivially, {e} ⊆ N , so we only consider the non-trivial
conjugacy classes. We denote by [g] the conjugacy class of g.

(1) Suppose [(123)] ⊆ N , so all the 3-cycles are in N . Then:
(a) (12)(34) = (123)(234) ∈ N , so N contains [(12)(34)], i.e. all the (2, 2)-cycles,
(b) (12345) = (145)(123) ∈ N , so N contains [(12345)],
(c) (13452) = (152)(134) ∈ N , so N contains [(13452)].
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Thus N = A5.
(2) Suppose [(12)(34)] ⊆ N , so all the (2, 2)-cycles are in N . Then

(123) = (13)(12) = ((13)(45))((12)(45)) ∈ N,
so N contains [(123)], and hence N = A5 by (1).

(3) Suppose [(12345)] ⊆ N . Then (124)(12345)(142) = (15243) ∈ [(12345)] ⊆ N , and
hence

(12345)(15243) = (253) ∈ N.
But this means that [(253)] = [(123)] ⊆ N , so N = A5 by (1).

In all cases, N = A5, and hence A5 is simple. �

We note that An is generated by 3-cycles.

Lemma 6. The group An is generated by 3-cycles.

Proof. Let σ ∈ An be any element. We will express σ as a product of 3-cycles. Since σ ∈ Sn,
it can be expressed as a product of transpositions, and since sgn(σ) = 1, the number of these
transpositions has to be even. Explicitly, we can write

σ = (s1t1)(s2t2) . . . (s2mt2m).

We just have to show that pairs a product of two transpositions, (st)(uv), is a product of
3-cycles. Indeed:

• If |{s, t, u, v}| = 2, then (st) = (uv), so (st)(uv) = 1.
• If |{s, t, u, v}| = 3, then we may assume that s 6= v and t = u, in which case

(st)(uv) = (st)(tv) = (stv).

• If |{s, t, u, v}| = 3, then

(st)(uv) = [(st)(tu)][(tu)(uv)] = (stu)(tuv).

This shows that An is generated by 3-cycles. �

Finally, we give a bound for the number of elements in a conjugacy class of An.

Lemma 7. Let n ≥ 5 and g be a non-identity element of Sn. Then |Sng| ≥
(
n
2

)
. In particular,

if g ∈ An, then |Ang| ≥ n.

Proof. By Lemma 3, a conjugacy class of g is determined by the cycle structure of g. Let
N(g) = |Sng| be the number of elements in the conjugacy class of g.

Suppose first that g is a product of disjoint transpositions, i.e. g has cycle structure (2, . . . , 2)︸ ︷︷ ︸
k times

for k ≤ n
2
. The number of elements with this cycle structure is

N(g) =

(
n

2

)
︸︷︷︸

1st trans.

(
n− 2

2

)
︸ ︷︷ ︸
2nd trans.

. . .

(
n− 2k

2

)
︸ ︷︷ ︸
kth trans.

1

k!︸︷︷︸
possible

permutations
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because the transpositions are disjoint and commute with each other. We only have to show
that for n ≥ 5, k ≤ n

2
, we have

1

k!

(
n− 2

2

)
. . .

(
n− 2k

2

)
≥ 1.

Note that
(
n−2k

2

)
≥ 1, and hence:

1

k!

(
n− 2

2

)
. . .

(
n− 2k

2

)
≥ (n− 2)(n− 3) . . . (n− 2k + 2)(n− 2k + 1)

2k−2k!

=
n− 2

k︸ ︷︷ ︸
≥1

n− 3

k − 1︸ ︷︷ ︸
≥1

. . .
n− k

2︸ ︷︷ ︸
≥1

n− k − 1

2︸ ︷︷ ︸
≥1

. . .
n− 2k + 2

2︸ ︷︷ ︸
≥1

(n− 2k + 1)︸ ︷︷ ︸
≥1

≥ 1.

Therefore, we have shown that N(g) ≥
(
n
2

)
in this case.

Now, suppose that the longest cycle in g has length l ≥ 3, and g has k ≤ n/l such cycles.
Then N(g) is at least the number of distinct products of k disjoint cycles of length l; in other
words, the number of elements with the cycle structure (l, . . . , l)︸ ︷︷ ︸

k times

. Hence

N(g) ≥
(
n

l

)
(l − 1)!︸ ︷︷ ︸

1st cycle

(
n− l
l

)
(l − 1)!︸ ︷︷ ︸

2nd cycle

. . .

(
n− kl
l

)
(l − 1)!︸ ︷︷ ︸

kth cycle

1

k!︸︷︷︸
possible

permutations

(because any l element subset has (l− 1)! permutations, leaving the first element fixed, that
give rise to distinct l-cycles). We note that for m ∈ {0, 1, . . . , k− 2}, since k ≤ n/l, we have
that (

n−ml
l

)
(l − 1)!

k −m
≥ (n−ml)!
l!(n− (m+ 1)l)!

(l − 1)!l

(n−ml)
=

(n−ml − 1)!

(n− (m+ 1)l)!
.

Altogether, we obtain:

N(g) ≥ (n− 1)!

(n− l)!︸ ︷︷ ︸
≥(n−1)(n−2)

(
k−2∏
m=1

(n−ml − 1)!

(n− (m+ 1)l)!

)
︸ ︷︷ ︸

≥1

(
n− (k − 1)l

l

)
(l − 1)!

(
n− kl
l

)
(l − 1)!︸ ︷︷ ︸

≥1

≥ (n−1)(n−2).

Finally, we note that for n ≥ 5

(n− 1)(n− 2)− n(n− 1)

2
=

2n2 − 6n+ 4− n2 + n

2
=
n2 − 5n+ 4

2
=

(n− 4)(n− 1)

2
≥ 0,

and hence N(g) ≥
(
n
2

)
, as requested.

Finally, if g ∈ An, then by Lemma 4, we have that

|Ang| ≥ 1

2
|Sng| ≥ 1

2

(
n

2

)
=
n− 1

4
n ≥ n

for n ≥ 5. �



50 JOHN BRITNELL

Proof of Theorem 1. We will show that An is simple for n ≥ 5 by induction on n. The base
case, n = 5, is Lemma 5. Suppose An−1 is simple for n > 5. We will show that An is simple.

Let {e} 6= NEAn be a non-trivial normal subgroup of An. We will show that N = An. Note
that N is a union of conjugacy classes of An by Lemma 2. Since N 6= {e}, N contains {e}
and a non-trivial conjugacy class, so by Lemma 7, we obtain |N | ≥ n + 1. Fix any element
i ∈ {1, . . . , n} and consider Hi = StabAn{i}. Note that Hi

∼= An−1, because Hi contains
all the 3-cycles that fix i, and we can apply Lemma 6. Since |Hi| = (n − 1)!, there are n
cosets of Hi in An. Hence one of these cosets has to contain at least 2 elements of N (since
|N | ≥ n + 1), so say n1, n2 ∈ σHi, n1 6= n2, and write n1 = στ1, n2 = στ2 for τ1, τ2 ∈ Hi.
Then n = n−11 n2 6= e and

n = n−11 n2 = τ−11 σ−1στ2 = τ−11 τ2 ∈ Hi.

We have hence shown that |N ∩Hi| ≥ 2, and so N ∩Hi is a non-trivial normal subgroup of
Hi. But by the inductive hypothesis Hi

∼= An−1 is simple, which shows that N ∩Hi = Hi.
Therefore, N contains the stabilizers of all the points i ∈ {1, . . . , n}, and so N contains all
the 3-cycles. Then, by Lemma 6, N = An. Therefore, An is simple. �
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