M2PM2: ALGEBRA 2

LECTURES BY PROF. KEVIN BUZZARD; NOTES BY ALEKSANDER HORAWA

These are notes from the course M2PM2: Algebra 2 at Imperial College London taught by Professor Kevin Buzzard in Autumn 2014. They were $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ 'd by Aleksander Horawa.

If you find a mistake, please let me know at aleksander.horawa13@ic.ac.uk. Please check if a new version is available at https://sites.google.com/site/aleksanderhorawa/.

Contents

1. More examples of groups 1
2. Isomorphisms 8
3. Parity of permutations 12
4. Direct products 16
5. Groups of small order 19
6. Homomorphisms, normal subgroups, and factor groups 21
7. Determinants 32
8. Matrices and linear transformations 41
9. Characteristic polynomial 43
10. Upper-triangularisation 49
11. Jordan Canonical Form 53

1. More examples of groups

The examples will be symmetry groups of objects in 2 or 3 dimensions. Let us start with an example in 2-d.

Consider the distance structure on \mathbb{R}^{2}, i.e. the distance function $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}_{\geq 0}=$ $\{x \in \mathbb{R}: x \geq 0\}$ that assigns to two vectors the distance between them. For $\mathbf{x}=\left(x_{1}, x_{2}\right)$, $\mathbf{y}=\left(y_{1}, y_{2}\right)$, we have

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

An isometry of \mathbb{R}^{2} is a bijection $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
d(f(\mathbf{x}), f(\mathbf{y}))=d(\mathbf{x}, \mathbf{y})
$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. In other words, an isometry is a distance-preserving bijection.
Examples. (1) Rotations. If $P \in \mathbb{R}^{2}$ and θ is an angle, then define $\varrho_{P, \theta}$ to be the rotation through angle θ anticlockwise with center P.

(2) Reflections. If $l \subseteq \mathbb{R}^{2}$ is a line, then let σ_{l} be the reflection about the line l.

(3) Translations. If $\mathbf{v} \in \mathbb{R}^{2}$, then define $\tau_{\mathbf{v}}$ by $\tau_{\mathbf{v}}(\mathbf{x})=\mathbf{x}+\mathbf{v}$.

$$
\underset{0}{\mathbf{x}} \quad \mathbf{v} \quad \begin{gathered}
\tau_{\mathrm{v}}(\mathrm{x}) \\
0
\end{gathered}
$$

δ

Remark. There are isometries that are not of type (1), (2), or (3), for example a glidereflection $f=\sigma_{l} \circ \tau_{\mathbf{v}}$, \mathbf{v} a vector parallel to line l. On the other hand, every isometry can be built by composing reflections, rotations, and translations.
(Tricky exercise. Step 1: an isometry that fixes 2 points, fixes the line also.
Step 2: an isometry that fixes 2 points must be the identity or a reflection.
Step 3: an isometry that fixes 3 non-collinear points is the identity.
Step 4: any isometry is determined by its value on 3 non-collinear points.)
Definition. Let $I\left(\mathbb{R}^{2}\right)$ be the set of all isometries of \mathbb{R}^{2}.
Proposition 1.1. The set $I\left(\mathbb{R}^{2}\right)$ under the composition of functions is a group.
Proof. (Closure) Say $f, g \in I\left(\mathbb{R}^{2}\right)$. The composite of two bijections is a bijection, so $f \circ g$ is a bijection. Furthermore, if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$, then

$$
\begin{aligned}
d((f \circ g)(\mathbf{x}),(f \circ g)(\mathbf{y})) & =d(f(g(\mathbf{x})), f(g(\mathbf{y}))) & & \text { definition of } f \circ g \\
& =d(g(\mathbf{x}), g(\mathbf{y})) & & f \text { is an isometry } \\
& =d(\mathbf{x}, \mathbf{y}) & & g \text { is an isometry }
\end{aligned}
$$

(Associativity) Composition of functions is always associative.
(Identity) Define $e: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $e(\mathbf{x})=\mathbf{x}$. Then for all $f \in I\left(\mathbb{R}^{2}\right)$

$$
f \circ e=f=e \circ f
$$

and $e \in I\left(\mathbb{R}^{2}\right)$ (easy).
(Inverses) Say $f \in I\left(\mathbb{R}^{2}\right)$. Then f is a bijection, so there exists an inverse function $f^{-1}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} such that $f \circ f^{-1}=f^{-1} \circ f=e$. Need to check that $f^{-1} \in I\left(\mathbb{R}^{2}\right)$. It is a bijection-does it preserve lengths?

Take any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Then

$$
d\left(f^{-1}(\mathbf{x}), f^{-1}(\mathbf{y})\right)=d\left(f\left(f^{-1}(\mathbf{x})\right), f\left(f^{-1}\right)(\mathbf{y})\right)=d(\mathbf{x}, \mathbf{y})
$$

since f is an isometry, and thus $f^{-1} \in I\left(\mathbb{R}^{2}\right)$. Therefore, inverses exist.
Of course, $I\left(\mathbb{R}^{2}\right)$ is hugely infinite. Therefore, we will consider subgroups of isometries which preserve particular subsets of \mathbb{R}^{2}.
Say $\Pi \subseteq \mathbb{R}^{2}$ is a subset. For $g \in I\left(\mathbb{R}^{2}\right)$, define

$$
g(\Pi):=\{g(x) \mid x \in \Pi\} .
$$

(Abuse of notation. In computing, function overloading.)
Example. Let Π be an equilateral triangle centred at the origin pointing up:

Let $g=\varrho_{0, \pi}$ be the rotation by π centred at 0 . Then $g(\Pi)$ is the triangle upside down:

On the other hand, if l is the y-axis and σ_{l} the reflection about l, then $\sigma_{l}(\Pi)=\Pi$

Definition. Say $\Pi \subseteq \mathbb{R}^{2}$. Then the symmetry group of Π is

$$
G(\Pi):=\left\{g \in I\left(\mathbb{R}^{2}\right) \mid g(\Pi)=\Pi\right\}=\{\text { the isometries sending } \Pi \text { to itself }\} .
$$

Example. If Π is the triangle above, then

$$
G(\Pi)=\left\{e, \sigma_{l}, \sigma_{0,2 \pi / 3}, \ldots\right\} .
$$

Proposition 1.2. The set $G(\Pi)$ is a subgroup of $I\left(\mathbb{R}^{2}\right)$.

Proof. (1) If e is the identity map, then $e(\Pi)=\Pi$ by definition, so $e \in G(\Pi)$.
(2) If $x, y \in G(\Pi)$, then

$$
\begin{aligned}
(x \circ y)(\Pi) & =x(y(\Pi)) & & \\
& =x(\Pi) & & \text { since } y \in G(\Pi) \\
& =\Pi & & \text { since } x \in G(\Pi)
\end{aligned}
$$

so $x \circ y \in G(\Pi)$.
(3) If $x \in G(\Pi)$, then

$$
x \in G(\Pi) \Rightarrow x(\Pi)=\Pi \Rightarrow x^{-1}(x(\Pi))=x^{-1}(\Pi) \Rightarrow \Pi=x^{-1}(\Pi),
$$

so $x^{-1} \in G(\Pi)$.
Strategy to work out $G(\Pi)$:

- Write down all the elements we can think of.
- Prove there are no more.

Examples.

(1) Equilateral triangle, centred at the origin.

Note that $G(\Pi)$ contains (at least): 3 rotations: $e, \varrho=\varrho_{0, \pi / 3}, \varrho^{2}, 3$ reflections: σ_{1}, σ_{2}, σ_{3} about (respectively) l_{1}, l_{2}, l_{3}.
Next, note that each symmetry of Π sends corners to corners, so it induces a permutation of the corners. If we label the corners by $1,2,3$ (anticlockwise), then

$$
\begin{array}{ll}
e & \rightarrow e \\
\varrho & \rightarrow(123) \\
\varrho & \rightarrow(132) \\
\sigma_{1} & \rightarrow(23) \\
\sigma_{2} & \rightarrow(13) \\
\sigma_{3} & \rightarrow(12)
\end{array}
$$

Now say $g \in G(\Pi)$ is any element. Then g permutes the corners, but all 6 permutations of corners are listed above, so g has to agree with one of our elements on corners. Thus g must be one of the elements we already thought of (an isometry is determined by what it does to 3 non-collinear points). Therefore

$$
G(\Pi)=\left\{e, \varrho, \varrho^{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} .
$$

To compute the group law, work in S_{3} instead, for example

$$
\varrho \sigma_{1} \rightarrow(123)(23)=(12) \leftarrow \sigma_{3} .
$$

We will see later that $G(\Pi)$ is 'isomorphic' to S_{3}.
(2) Square, centred at the origin.

We note that $G=G(\Pi)$ contains 4 reflections (σ_{i} about l_{i} for $i=1,2,3,4$) and 4 rotations $e, \varrho=\varrho_{0, \pi / 2}, \varrho^{2}, \varrho^{3}$. Therefore, $|G| \geq 8$.
We claim that $|G|=8$. To show that, take $g \in G$. Since g preserves distance, it also preserves the corners. Furthermore, g sends opposite corners to opposite corners and adjacent corners to adjacent corners. Say the corners are labeled 1, 2, 3, 4 (as above) and suppose $g(1)=i, 1 \leq i \leq 4$. Then $g(2)$ is a neighbour of i, i.e. " $i+1$ or $i-1$ " (where $4+1=1,1-1=4$), call it j. Then:

$$
\begin{gathered}
g(1)=i, \\
g(2)=j, \\
g(3)=\text { corner opposite } g(1)=i, \\
g(4)=\text { corner opposite } g(2)=j,
\end{gathered}
$$

and g is determined by what it does to corners. Total number of possibilities for g is hence at most

$$
(\text { no. of } i) \times(\text { no. of } j)=4 \times 2=8 \text {, }
$$

and $|G| \leq 8$.
But we already found 8 elements of G, so $|G| \geq 8$, and thus $|G|=8$. So we have shown

$$
G=\left\{e, \varrho, \varrho^{2}, \varrho^{3}, \sigma_{1}, \ldots, \sigma_{4}\right\} .
$$

This group is called D_{8}, the dihedral group of order 8 .
To work out multiplication in D_{8}, let us look at what our elements do to corners

$$
\begin{array}{ll}
e & \rightarrow e \\
\varrho & \rightarrow(1234) \\
\varrho^{2} & \rightarrow(13)(24) \\
\varrho^{3} & \rightarrow(1432) \\
\sigma_{1} & \rightarrow(24) \\
\sigma_{2} & \rightarrow(12)(34) \\
\sigma_{3} & \rightarrow(13) \\
\sigma_{4} & \rightarrow(14)(23)
\end{array}
$$

We can use this to multiply elements, for example

$$
\sigma_{2} \circ \sigma_{3}=(12)(34)(13)
$$

which sends 1 to 4,4 to 3,3 to 2,2 to 1 , and thus

$$
\sigma_{2} \circ \sigma_{3}=(1432)=\varrho_{3} .
$$

Let $H \subseteq D_{8}$ be the cyclic subgroup generated by ϱ. Then

$$
H=\left\{e, \varrho, \varrho^{2}, \varrho^{3}\right\}
$$

Let $\sigma=\sigma_{1}$. Then $\sigma \notin H$, so the right coset $H \sigma$ of H is not H. Therefore, $H \cap H \sigma=\emptyset$ and $|H|=|H \sigma|=4$ which shows

$$
H \sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}
$$

Finally, we can write

$$
D_{8}=H \cup H \sigma=\left\{e, \varrho, \varrho^{2}, \varrho^{3}, \sigma, \varrho \sigma, \varrho^{2} \sigma, \varrho^{3} \sigma\right\}
$$

a better notation for the elements of D_{8}.
What equations do σ and ϱ satisfy?
Easy ones: $\varrho^{4}=e$ and $\sigma^{2}=e$. What is $\sigma \varrho$?

$$
\sigma \varrho=(24)(1234)=(14)(23)=\varrho^{?} \sigma
$$

for some ?. Let us try $\varrho^{3} \sigma$:

$$
\varrho^{3} \sigma=(1432)(24)=(14)(23) .
$$

Finally, we get the equation

$$
\sigma \varrho=\varrho^{3} \sigma=\varrho^{-1} \sigma
$$

We now claim that these are the only 3 equations we need to figure out any product of 2 elements of D_{8}.

For example, consider $(\varrho \sigma)\left(\varrho^{2} \sigma\right)$. We have

$$
\begin{aligned}
\varrho \sigma \varrho^{2} \sigma & =\varrho(\sigma \varrho) \varrho \sigma \\
& =\varrho\left(\varrho^{-1} \sigma\right) \varrho \sigma \\
& =\varrho \varrho^{-1}(\sigma \varrho) \sigma \\
& =\left(\varrho^{-1} \sigma\right) \sigma \\
& =\varrho^{-1} \\
& =\varrho^{3}
\end{aligned}
$$

This will work in general, because we have a method of getting the ϱs to the left of the σ s. Hence D_{8} is generated by ϱ and σ subject to the relations $\varrho^{4}=\sigma^{2}=e$, $\sigma \varrho=\varrho^{-1} \sigma$.
(3) Regular polygons. Let Π be a regular n-gon with $n \geq 3$ and $G=G(\Pi)$. Then G contains n rotations

$$
e, \varrho=\varrho_{2 \pi / n}, \varrho^{2}, \ldots, \varrho^{n-1}
$$

and n reflections

$$
\sigma=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}
$$

Hence $|G| \geq 2 n$. We claim that $|G| \leq 2 n$. If $g \in G$, then g sends corners to corners. Say $g(1)=i$, n choices. Then $g(2)=j$ has to be a corner neighbouring i (" $j=i \pm 1$ "), 2 choices for j. Now $g(3)$ is a neighbour of j that is not $i, 1$ choice, etc. This means
(no. of possibilities for $g) \leq($ no. of choices for $(i, j))=2 n$, so $|G| \leq 2 n$. Hence $G=|2 n|$.

Definition. The dihedral group $D_{2 n}$ is the group of symmetries of a regular n-gon.
Part (3) of the example showed that $\left|D_{2 n}\right|=2 n$ and

$$
D_{2 n}=\left\{e, \varrho, \varrho^{2}, \ldots, \varrho^{n-1}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\} .
$$

Same trick as for $D_{8}: \sigma=\sigma_{1}, H=\langle\varrho\rangle$. Then $H \sigma \neq H$ and we check that

$$
D_{2 n}=\left\{e, \varrho, \varrho^{2}, \ldots, \varrho^{n-1}, \sigma, \varrho \sigma, \varrho^{2} \sigma, \ldots, \varrho^{n-1} \sigma\right\} .
$$

Clearly, $\varrho^{n}=e, \sigma^{2}=e$, and one checks that $\sigma \varrho=\varrho^{-1} \sigma$. This is on Problem Sheet 1, but three ways of doing it are:
(1) Think about permuting corners.
(2) Since ϱ, σ are linear maps, we can check using matrices.

$$
\begin{gathered}
\varrho_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
\sigma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{gathered}
$$

(3) Pretend $\mathbb{R}^{2}=\mathbb{C}$ and use complex numbers:

$$
\begin{gathered}
\varrho(z)=e^{2 \pi i / n} z, \\
\sigma(z)=\bar{z} .
\end{gathered}
$$

Because $\sigma \varrho=\varrho^{-1} \sigma$, we can "move σ 's to the right of ϱ 's" and compute the multiplication table of $D_{2 n}$.

Example. Let Π be the string

$$
\ldots R R R R R R R R R \ldots \subseteq \mathbb{R}^{2}
$$

What is $G(\Pi)$? There is a translation τ sending each " R " to the next one. So

$$
G(\Pi) \supseteq\langle\tau\rangle=\left\{\tau^{n} \mid n \in \mathbb{Z}\right\},
$$

an infinite cyclic group. Note that τ^{n} sends the $j^{\text {th }} R$ to the $(j+n)^{\text {th }} R$.
We claim that $G(\Pi)=\langle\tau\rangle$. To see that, take $g \in G=G(\Pi)$ and suppose g sends $R_{0}=0^{\text {th }} R$ to $R_{n}=n^{\text {th }} R$. Then $\tau^{-n} g \in G$ and it sends R_{0} to itself. But " R " has no symmetries, so $\tau^{-n} g=e$, proving $G=\langle\tau\rangle$.
Example. The above all works in \mathbb{R}^{n}. Example in \mathbb{R}^{3} : set $I\left(\mathbb{R}^{3}\right)=$ isometries of \mathbb{R}^{3} and $\Pi=$ regular tetrahedron (or any platonic solid). A symmetry of Π preserves the corners and 4 corners of Π will determine the isometry. Can check $G(\Pi) \cong S^{4}$, any permutation of corners works. This is a tricky exercise.

2. ISOMORPHISMS

Recall that a map preserving the structure of vector spaces was simply a linear map. In this section, we will see maps between groups, but they will be a special kind of map-an isomorphism.
Basic idea: the symmetry group of the equilateral triangle was somehow 'equal' to S_{3} without actually being S_{3}. The notion of isomorphism will formalise this.

Consider the following two groups:

- $G=C_{3}=\left\{x \in \mathbb{C} \mid x^{3}=1\right\}=\left\{1, \omega, \omega^{2}\right\}$ with $\omega=e^{2 \pi i / 3}$,
- $H=$ subgroup of S_{3} generated by a 3 -cycle $a=(123)$, i.e. $H=\langle a\rangle=\left\{e, a, a^{2}\right\}$.

Multiplication tables.

G	1	ω	ω^{2}
1	1	ω	ω^{2}
ω	ω	ω^{2}	1
ω^{2}	ω^{2}	1	ω

H	e	a	a^{2}
e	1	a	a^{2}
a	a	a^{2}	1
a^{2}	a^{2}	1	a

The multiplication tables are the same, except that the elements have different labels. Formally, there is a bijection $G \rightarrow H$ such that if $g_{1} \mapsto h_{1}$ and $g_{2} \mapsto h_{2}$, then $g_{1} g_{2} \mapsto h_{1} h_{2}$.

Definition. Let G and H be groups. A function $f: G \rightarrow H$ is an isomorphism if
(1) f is a bijection,
(2) for all $x, y \in G, f(x y)=f(x) f(y)$.

Notation. If there exists an isomorphism $G \rightarrow H$, then we write $G \cong H$, and say G is isomorphic to H.

Remark. Group isomorphism is an equivalence relation; indeed, we have the following:

- $G \cong G$;
- if $G \cong H$, then $H \cong G$;
- if $G \cong H$ and $H \cong K$, then $G \cong K$.

We saw an example of this in Section 1: $D_{6} \cong S_{3}$.
Question. Given 2 groups G and H, how can we tell if they are isomorphic?
Example. Let $G_{1}=C_{4}=\{ \pm 1, \pm i\}$;
$G_{2}=$ symmetry group of a non-square rectangle $=\left\{e, \varrho_{\pi}, \sigma_{1}, \sigma_{2}\right\} ;$
$G_{3}=\langle\varrho\rangle=$ cyclic subgroup of D_{8} generated by $\varrho=\varrho_{\pi / 2}, G_{3}=\left\{e, \varrho, \varrho^{2}, \varrho^{3}\right\}$.
Which groups in that list are isomorphic?

First of all, we show that $G_{1} \cong G_{3}$. Define $f: G_{1} \rightarrow G_{3}$ by

$$
\begin{array}{rll}
1 & \mapsto & e \\
i & \mapsto & \varrho \\
-1 & \mapsto & \varrho^{2} \\
-i & \mapsto & \varrho^{3}
\end{array}
$$

i.e. $i^{n} \mapsto \varrho^{n}$ for all $n \in\{0,1,2,3\}$ or all $n \in \mathbb{Z}$. It is a bijection and

$$
\begin{aligned}
f\left(i^{m} i^{n}\right) & =f\left(i^{m+n}\right) & & \\
& =\varrho^{m+n} & & \text { definition of } f \\
& =\varrho^{m} \varrho^{n} & & \\
& =f\left(i^{m}\right) f\left(i^{n}\right) & & \text { definition of } f
\end{aligned}
$$

We now claim that $G_{1} \not \not G_{2}$ (even though both have size 4). We prove this by contradiction. Suppose there exists an isomorphism $f: G_{1} \rightarrow G_{2}$. Every element $x \in G_{2}$ satisfies $x^{2}=e$ (apart from e, all elements have order 2). Say

$$
\begin{aligned}
& f(i)=x \in G_{2} \\
& f(1)=y \in G_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
f(-1) & =f\left(i^{2}\right) \\
& =f(i)^{2} \quad f \text { is an isomorphism } \\
& =x^{2} \\
& =e
\end{aligned}
$$

and

$$
\begin{aligned}
f(1) & =f\left(1^{2}\right) \\
& =f(1)^{2} \quad f \text { is an isomorphism } \\
& =y^{2} \\
& =e
\end{aligned}
$$

Therefore, $f(-1)=f(1)$, so f is not a bijection, a contradiction. Hence $G_{1} \neq G_{2}$.
Then also $G_{3} \nsubseteq G_{2}$, as $G_{3} \cong G_{1}$ and \cong is an equivalence relation.
General strategy for isomorphism questions:

- If you think 2 groups are isomorphic, try and find an isomorphism.
- If you think they are not, try and find a "group-theoretic thing" that one group has and the other does not.

Here are some examples.
Proposition 2.1. Let G, H be groups.
(1) If $|G| \neq|H|$, then $G \not \approx H$.
(2) If G is abelian and H is not, then $G \not \approx H$.
(3) Suppose there exists $k \in \mathbb{Z}_{\geq 1}$ such that G and H have different numbers of elements of order k. Then $G \not \neq H$.

However, the converse of the proposition does not hold. Note that (1)-(3) are just examples: we cannot use them to prove that 2 groups are isomorphic.

We precede the proof of Proposition 2.1 with a demonstration of its use.

Examples.

(1) $G=D_{10}, H=S_{5}$. Then $|G|=10$ and $|H|=5!=120$, so $G \neq H$.
(2) $G=S_{4}, H=C_{24}=$ cyclic group of order 24. Then $|G|=|H|=24$, but G is not abelian and H is, so $G \not \approx H$.
(3) $G=C_{4}, H=$ symmetric group of a non-square rectangle. Then G has 1 element of order 2 , but H has 3 elements of order 2 , so $G \not \approx H$.
(4) $G=(\mathbb{R},+), H=\left(\mathbb{R}^{\times}, \times\right)$. Then $(\mathbb{R},+)$ has no element of order 2 , but $\left(\mathbb{R}^{\times}, \times\right)$has one, namely -1 , so $G \not \neq H$.

To prove Proposition 2.1, we will need the following lemma.

Lemma 2.2.

(1) If $f: G \rightarrow H$ is an isomorphism, then $f\left(e_{G}\right)=e_{H}$.
(2) If $f: G \rightarrow H$ is an isomorphism and $g \in G$ has order n, then $f(g)$ has order n.

Proof. For (1), let $f\left(e_{G}\right)=h \in H$. Then

$$
\begin{array}{rlrl}
h & =f\left(e_{G}\right) & \text { definition } \\
& =f\left(e_{G} \times e_{G}\right) & \\
& =f\left(e_{G}\right)^{2} & f \text { isomorphism } \\
& =h^{2} & &
\end{array}
$$

so $h=h^{2}$ and multiplying both sides by h^{-1} we get $h=e_{H}$.
For (2), assume $f: G \rightarrow H$ be an isomorphism. By (1), if $g=e_{G}$, then $f(g)=e_{H}$. Because f is a bijection, we can deduce that if $g \neq e_{G}$, then $f(g) \neq e_{H}$. So say g has order $n>1$. Then

$$
g \neq e_{G}, g^{2} \neq e_{G}, \ldots, g^{n-1} \neq e_{G}
$$

but $g^{n}=e_{G}$, so taking images of these under f,

$$
f(g) \neq e_{H}, f(g)^{2}=f\left(g^{2}\right) \neq e_{H}, \ldots, f(g)^{n-1}=f\left(g^{n-1}\right) \neq e_{H}
$$

but $f(g)^{n}=f\left(g^{n}\right)=f\left(e_{G}\right)=e_{H}$ by (1). So $f(g)$ has order exactly n.
We are now ready to prove Proposition 2.1.
Proof of Proposition 2.1. All the proofs go by contradiction, i.e. suppose that $G \cong H$ and $f: G \rightarrow H$ is an isomorphism.
Since $f: G \rightarrow H$ is a bijection, $|G|=|H|$, so (1) is clear.
In (2) we want to show that if G is abelian, then H is abelian as well. So suppose that G is abelian. To show H is abelian, let $h_{1}, h_{2} \in H$. Since f is a bijection, for some $g_{1}, g_{2} \in G$:

$$
\begin{aligned}
& h_{1}=f\left(g_{1}\right), \\
& h_{2}=f\left(g_{2}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
h_{1} h_{2} & =f\left(g_{1}\right) f\left(g_{2}\right) & & \text { definition } \\
& =f\left(g_{1} g_{2}\right) & & f \text { is an isomorphism } \\
& =f\left(g_{2} g_{1}\right) & & G \text { abelian } \\
& =f\left(g_{2}\right) f\left(g_{1}\right) & & f \text { isomorphism } \\
& =h_{2} h_{1} & & \text { definition }
\end{aligned}
$$

so H is abelian.
For (3), we will show that for all $k \in \mathbb{Z}_{\geq 1}, G$ and H have the same number of elements of order k. So fix $k \in \mathbb{Z}_{\geq 1}$ and let

$$
\begin{aligned}
G_{k} & =\{x \in G \mid o(x)=k\} \\
H_{k} & =\{y \in H \mid o(y)=k\} .
\end{aligned}
$$

We claim that f sends G_{k} bijectively onto H_{k}.
If $x \in G$ and $o(x)=k$, then $o(f(x))=k$ by Lemma 2.2(b). Hence $\bar{f}: G_{k} \rightarrow H_{k}$ given by $\bar{f}(x)=f(x)$ for $x \in G_{k}$ is well-defined. Consider the inverse function $f^{-1}: H \rightarrow G$, which is also an isomorphism. Then $\overline{f^{-1}}: H_{k} \rightarrow G_{k}$ is also well-defined and because $f \circ f^{-1}=f^{-1} \circ f=$ identity, we see that G_{k} bijects with H_{k}, so $\left|G_{k}\right|=\left|H_{k}\right|$.

Cyclic groups. Recall that a group is cyclic if it is generated by a single element.

Proposition 2.3.

(1) If G is cyclic and $|G|=n$, then $G \cong C_{n}$.
(2) If G is cyclic and infinite, then $G \cong(\mathbb{Z},+)$.

Proof. For (1), suppose G is cyclic, say $G=\langle x\rangle$ and $o(x)=n$. This means

$$
G=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\} .
$$

Recall that $C_{n}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{n-1}\right\}$ with $\omega=e^{2 \pi i / n}$. So let us define $f: G \rightarrow C_{n}$ by

$$
f\left(x^{r}\right)=\omega^{r} \text { for } 0 \leq r \leq n-1
$$

Because x and ω both have order n, we could even write

$$
f\left(x^{r}\right)=\omega^{r}
$$

for all $r \in \mathbb{Z}$. Then f is a bijection and, furthermore, by the definition of f and exponentiation:

$$
f\left(x^{r} x^{s}\right)=f\left(x^{r+s}\right)=\omega^{r+s}=\omega^{r} \omega^{s}=f\left(x^{r}\right) f\left(x^{s}\right)
$$

Thus f is an isomorphism and $G \cong C_{n}$.
For (2), say $G=\langle x\rangle$ but suppose G is infinite. Then $o(x)=\infty$, so

$$
G=\left\{\ldots, x^{-2}, x^{-1}, e, x, x^{2}, x^{3}, \ldots\right\}
$$

Define $f: G \rightarrow \mathbb{Z}$ by

$$
f\left(x^{r}\right)=r
$$

for all $r \in \mathbb{Z}$. This is clearly a bijection and, futhermore, by the definition of f and exponentiation:

$$
f\left(x^{r} x^{s}\right)=f\left(x^{r+s}\right)=r+s=f\left(x^{r}\right)+f\left(x^{s}\right)
$$

Thus f is an isomorphism and $G \cong \mathbb{Z}$.
Remark. Proposition 2.3 (1) says that all cyclic groups of size n are isomorphic to C_{n}. We say that up to isomorphism (which means: count isomorphic things as the same) there is only one cyclic group of order n. Similarly, (2) says that up to isomorphism, there is only one infinite cyclic group.

As a consequence: if G is a group, p is a prime number, and $|G|=p$, then $G \cong C_{p}$ by Lagrange's theorem. Hence, up to isomorphism, there is only one group of order p.

This is very useful, because without the "up to isomorphism" trick, there are infinitely many groups of every order.

Example. There are infinitely many groups of order 1. For if $x \in \mathbb{R}$, let $G=\{x\}$ and let us define a group law \star by $x \star x=x$. Then (G, \star) is a group and $|G|=1$. While G is probably not equal to $C_{1}, G \cong C_{1}$ trivially.

Example. Let $G=(\mathbb{Z},+)$, take $g=2 \in G$ and $H=\langle g\rangle$. Then

$$
H=\{\ldots,-6,-4,-2,0,2,4, \ldots\}
$$

so $H \subseteq G$ but $H \neq G$. But we can prove that $H \cong G$ either by noticing that H is infinite and cyclic, so $H \cong \mathbb{Z}$ by Proposition 2.3(2), or simply defining $f: G \rightarrow H$ by $f(n)=2 n$, an isomorphism.

3. Parity of permutations

Recall that if $n \in \mathbb{Z}_{\geq 1}$, then S_{n} is the group of all permutations of $\{1,2, \ldots, n\}$. From 1st year: every element of S_{n} is a product of disjoint cycles. What we are going to do in this section is assign a sign $(+1$ or -1$)$ to each permutation: the permutations with sign +1 will be even and the permutations with sign -1 will be odd.

Exercise (hard, for now). A transposition in S_{n} is a permutation of the form (ij) with $i \neq j$, i.e. "swap two around".
Q1. Is the identity element of S_{3} equal to a product of an odd number of transpositions?
Q2. What about S_{n} ?
We will attach a sign to a permutation (an element of S_{n}). We start with the case S_{3}. Set

$$
\Delta=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) .
$$

A permutation $\sigma \in S_{3}$ is going to permute the x_{i} in the obvious way (permutation representation of S_{3}), for example, if $\sigma=(13)$, then $\sigma\left(x_{1}\right)=x_{3}, \sigma\left(x_{2}\right)=x_{2}, \sigma\left(x_{3}\right)=x_{1}$. What is $\sigma(\Delta)$?

$$
\begin{aligned}
\sigma(\Delta) & =(13)\left(\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\right) \\
& =\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right) \\
& =\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) \\
& =-\Delta
\end{aligned}
$$

Another example, $\sigma=(123)$:

$$
\begin{aligned}
\sigma(\Delta) & =(123)\left(\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\right) \\
& =\left(x_{2}-x_{3}\right)\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right) \\
& =\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{3}\right) \\
& =\Delta
\end{aligned}
$$

Each permutation will send Δ to $\pm \Delta$. That is the sign! By the above, the sign of (13) is and the sign of (123) is + .

Boring exercise. Check that sign is + for e, (123), (132) and sign is - for (13), (12), (23).
General case. Let $n \in \mathbb{Z}_{\geq 1}, x_{1}, \ldots, x_{n}$ variables and define

$$
\Delta=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) .
$$

For $\sigma \in S_{n}$, let σ permute the x_{i} in the obvious way (by permuting the indices) to get

$$
\sigma(\Delta)= \pm \Delta .
$$

Definition. The signature or sign of σ is

$$
\begin{array}{ll}
+1 & \text { if } \sigma(\Delta)=\Delta \\
-1 & \text { if } \sigma(\Delta)=-\Delta
\end{array}
$$

Another way of thinking about it. If $\sigma \in S_{n}$, then the signature of σ is $(-1)^{d}$, where d is the number of sign changes in Δ, i.e.

$$
d=\#\{(i, j) \mid 1 \leq i<j \leq n \text { and } \sigma(i)>\sigma(j)\}
$$

Notation. We write $\operatorname{sgn}(\sigma)$ for the signature of σ, i.e. sgn is a function

$$
\operatorname{sgn}: S_{n} \rightarrow\{ \pm 1\} .
$$

We call σ an even permutation if $\operatorname{sgn}(\sigma)=+1$ and odd if $\operatorname{sgn}(\sigma)=-1$.
Note. This definition is unusable for big n. How can we work out $\operatorname{sgn}(g)$ for $g \in S_{10}$?
Here is a great first step.
Proposition 3.1.
(1) For any $x, y \in S_{n}, \operatorname{sgn}(x y)=\operatorname{sgn}(x) \operatorname{sgn}(y)$,
(2) $\operatorname{sgn}(e)=+1$ and $\operatorname{sgn}\left(x^{-1}\right)=\operatorname{sgn}(x)$,
(3) If $t=(r s)$ is a 2-cycle, then $\operatorname{sgn}(t)=-1$.

Proof. For (1), we note that $x(\Delta)=\operatorname{sgn}(x) \Delta$ and $y(\Delta)=\operatorname{sgn}(y) \Delta$. Now

$$
\begin{aligned}
x y(\Delta) & =x(y(\Delta)) & & \text { definition } \\
& =x(\operatorname{sgn}(y) \Delta) & & \text { definition } \\
& =\operatorname{sgn}(y)(x(\Delta)) & & x \text { does not move signs } \\
& =\operatorname{sgn}(y) \operatorname{sgn}(x) \Delta & & \text { definition }
\end{aligned}
$$

so $\operatorname{sgn}(x y) \Delta=\operatorname{sgn}(y) \operatorname{sgn}(x) \Delta$ which yields $\operatorname{sgn}(x y)=\operatorname{sgn}(x) \operatorname{sgn}(y)$.

We now use (1) to prove (2):

$$
\operatorname{sgn}(x) \operatorname{sgn}\left(x^{-1}\right)=\operatorname{sgn}\left(x x^{-1}\right)=\operatorname{sgn}(e)=1
$$

where $\operatorname{sgn}(e)=1$ because $e(\Delta)=\Delta$. Then $\operatorname{sgn}\left(x^{-1}\right)=\operatorname{sgn}(x)^{-1}=\operatorname{sgn}(x)$, as requested.
Finally, to show (3) let $t=(r s)$ with $1 \leq r, s \leq n$ and assume without loss of generality that $r<s$. We need to count the number of brackets $\left(x_{i}-x_{j}\right)$ which contribute a sign change. The question becomes: how many (i, j) have $i<j$ but $t(i)>t(j)$?
A careful count shows that the brackets that change sign are:

$$
\left(x_{r}-x_{r+1}\right),\left(x_{r}-x_{r+2}\right), \ldots,\left(x_{r}-x_{s-1}\right)
$$

similarly

$$
\left(x_{r+1}-x_{s}\right),\left(x_{r+2}-x_{s}\right), \ldots,\left(x_{s-1}-x_{s}\right)
$$

and finally

$$
\left(x_{r}-x_{s}\right) .
$$

Total number of brackets here is:

$$
d=(s-1-r)+(s-1-r)+1=2(s-1-r)+1
$$

which is an odd number, so $(-1)^{d}=-1$ and we get $\operatorname{sgn}(t)=-1$.
As we will see later, (1) actually shows that sgn: $S_{n} \rightarrow C_{2}$ is a homomorphism.
This proposition now gives a strategy for computing the sgn of a permutation without ever thinking about Δ. We can express the permutation σ as a product

$$
\sigma=t_{1} t_{2} \ldots t_{n}
$$

of $n 2$-cycles, and then (1) and (3) give

$$
\operatorname{sgn}(\sigma)=(-1)^{n}
$$

Proposition 3.2. Let $c=\left(a_{1} a_{2} \ldots a_{r}\right)$ be an r-cycle. Then

$$
c=\left(a_{1} a_{r}\right)\left(a_{1} a_{r-1}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

Hence c is a product of $r-12$-cycles.
Proof. Compute! Check the product on RHS sends:

$$
\begin{array}{llr}
a_{1} & \rightarrow & a_{2} \\
a_{2} & \rightarrow & a_{3} \\
\vdots & \vdots & \vdots \\
a_{r-1} & \rightarrow & a_{r} \\
a_{r} & \rightarrow & a_{1}
\end{array}
$$

so it is exactly c.
Proposition 3.3. If c is an r-cycle, then $\operatorname{sgn}(\sigma)=(-1)^{r-1}$.
Proof. By Proposition 3.2, c is a product of $r-1$ 2-cycles, so by Proposition 3.1 (1) and (3) we get $\operatorname{sgn}(\sigma)=(-1)^{r-1}$.

Proposition 3.4.

(1) Every $g \in S_{n}$ is a product of 2-cycles.
(2) If $g=c_{1} c_{2} \ldots c_{m}$ with c_{i} a cycle of length r_{i}, then

$$
\operatorname{sgn}(g)=(-1)^{\left(r_{1}-1\right)+\left(r_{2}-1\right)+\cdots+\left(r_{m}-1\right)}
$$

Proof. By 1st year, any $g \in S_{n}$ is a product of (disjoint) cycles, so (1) follows from Proposition 3.2. Then (2) follows from Propositions 3.3 and 3.1 (1)

Example. Let $\sigma=(123)(4567)$. To compute $\operatorname{sgn}(\sigma)$, we note that (by Proposition 3.2):

$$
(123)(4567)=(13)(12)(47)(46)(45)
$$

so $\operatorname{sgn}(\sigma)=(-1)^{5}=-1$. Alternatively, Proposition 3.3 (2) yields

$$
\operatorname{sgn}((123)(4567))=(-1)^{(3-1)+(4-1)}=(-1)^{5}=-1
$$

Alternatively, use pro method: $\operatorname{sgn}(123)=+1, \operatorname{sgn}(4567)=-1$ by Proposition 3.3, so

$$
\operatorname{sgn}((123)(4567))=-1
$$

Example. Let $\sigma=(12)(345)(6789)$. Then

$$
\operatorname{sgn}(\sigma)=(-1) \times(+1) \times(-1)=+1 .
$$

The sgn function breaks S_{n} up into 2 disjoint pieces:

$$
S_{n}=\{\sigma: \operatorname{sgn}(\sigma)=+1\} \cup\{\sigma: \operatorname{sgn}(\sigma)=-1\}
$$

What can we say about these pieces?
Definition. For $n \in \mathbb{Z}_{n \geq 1}$, let the alternating group be

$$
A_{n}=\left\{\sigma \in S_{n}: \operatorname{sgn}(\sigma)=+1\right\}
$$

Proposition 3.5. The subset $A_{n} \subseteq S_{n}$ is a subgroup and if $n \geq 2$ then $\left|A_{n}\right|=(n!) / 2=$ $\left|S_{n}\right| / 2$.

We will see later that A_{n} is actually the kernel of sgn, so it is immediately a subgroup of S_{n}. However, we also give a direct proof below.

Proof. We will show that A_{n} is a subgroup:
(1) $\operatorname{sgn}(e)=+1$ by Proposition 3.1 (1), so $e \in A_{n}$.
(2) If $x, y \in A_{n}$, then $\operatorname{sgn}(x)=\operatorname{sgn}(y)=+1$ by definition, so $\operatorname{sgn}(x y)=+1$ and $x y \in A_{n}$.
(3) If $x \in A_{n}$, then $\operatorname{sgn}(x)=+1$, so $\operatorname{sgn}\left(x^{-1}\right)=+1$ by Proposition 3.1 and $x^{-1} \in A_{n}$.

Now say $n \geq 2$ and set $\tau=(12)$. Consider the coset $A_{n} \tau$. We claim that:

$$
A_{n} \tau=\left\{\sigma \in S_{n}: \operatorname{sgn}(\sigma)=-1\right\}
$$

In general, a good strategy to prove sets X and Y are equal is to show $X \subseteq Y$ and $Y \subseteq X$. So first, suppose that $x \in A_{n} \tau$. Then $x=\sigma \tau$ for some σ with $\operatorname{sgn}(\sigma)=+1$. But $\operatorname{sgn}(\tau)=-1$
by Proposition 3.1 (3), so

$$
\begin{aligned}
\operatorname{sgn}(x) & =\operatorname{sgn}(\sigma \tau) \\
& =\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \quad \text { by Proposition } 3.1(1) \\
& =(+1) \times(-1) \\
& =-1
\end{aligned}
$$

For the other inclusion, consider $y \in S_{n}$ and $\operatorname{sgn}(y)=-1$ and set $\sigma=y \tau$. Then

$$
\operatorname{sgn}(\sigma)=\operatorname{sgn}(y) \operatorname{sgn}(\tau)=(-1) \times(-1)=+1
$$

by Proposition 3.1, so $\sigma \in A_{n}$ and $y=y \tau^{2}=(y \tau) \tau=\sigma \tau \in A_{n} \tau$.
We just proved that

$$
S_{n}=A_{n} \cup A_{n} \tau
$$

and since both cosets have the same cardinality, $\left|A_{n}\right|=\left|S_{n}\right| / 2=n!/ 2$.

Examples.

$(n=0) A_{0}=S_{0}=\{$ empty function $\}$, so $\left|S_{0}\right|=\left|A_{0}\right|=1$.
($n=1$) $A_{1}=S_{1}=\{e\}$.
$(n=2) S_{2}=\{e,(12)\}$ and $A_{2}=\{e\}$.
$(n=3)$ In $S_{3}: e,(123),(132)$ all have sign $+1,(12),(13),(23)$ all have sign -1 . Thus

$$
A_{3}=\{e,(123),(132)\} \cong C_{3}
$$

$(n=4) S_{4}$ cycle types: $e(+1)$, 2 -cycle $(-1), 3$-cycle $(+1), 4$-cycle (-1), and " $2+2$ "-cycle $(+1)$.
Therefore:

$$
A_{4}=\{e,(12)(34),(13)(24),(14)(23), \text { all } 8 \text { of the } 3 \text {-cycles }\}
$$

Remark. For $n \geq 5$, the group A_{n} is a so-called simple group.

4. Direct products

Idea: let G_{1} and G_{2} be groups. We can form the product set (cartesian product)

$$
G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right): g_{1} \in G_{1}, g_{2} \in G_{2}\right\}
$$

Define a multiplication on $G_{1} \times G_{2}$.
Definition. For $g_{1}, h_{1} \in G_{1}$ and $g_{2}, h_{2} \in G_{2}$, we define

$$
\left(g_{1}, g_{2}\right) \times\left(h_{1}, h_{2}\right)=\left(g_{1} h_{1}, g_{2} h_{2}\right)
$$

Clearly a well-defined product. Check the axioms.
Proposition 4.1. $G_{1} \times G_{2}$ becomes a group with this multiplication.
Proof. Associativity: If $g_{1}, h_{1}, k_{1} \in G_{1}$ and $g_{2}, h_{2}, k_{2} \in G_{2}$, then

$$
\begin{aligned}
\left(g_{1}, g_{2}\right)\left(\left(h_{1}, h_{2}\right)\left(k_{1}, k_{2}\right)\right) & =\left(g_{1}, g_{2}\right)\left(h_{1} k_{1}, h_{2} k_{2}\right) \\
& =\left(g_{1}\left(h_{1} k_{1}\right), g_{2}\left(h_{2} k_{2}\right)\right) \\
& =\left(\left(g_{1} h_{1}\right) k_{1},\left(g_{2} h_{2}\right)\left(k_{2}\right)\right) \quad \text { by associativity of } G_{1} \text { and } G_{2} \\
& =\left(g_{1} h_{1}, g_{2} h_{2}\right)\left(k_{1}, k_{2}\right) \\
& =\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right)\left(k_{1}, k_{2}\right)
\end{aligned}
$$

TL;DR version: G_{1}, G_{2} associative $\Rightarrow G_{1} \times G_{2}$ associative.
It is easy check to check that inverse of $\left(g_{1}, g_{2}\right)$ is $\left(g_{1}^{-1}, g_{2}^{-1}\right)$ and the identity is $\left(e_{1}, e_{2}\right)$ for e_{i} identity of G_{i}.

If $|G|=a,|H|=b$, then $|G \times H|=a b$. For example, $S_{4} \times S_{7}, C_{10} \times \mathbb{Z}$.
Basic observations about $G \times H$.
(1) If $G=\{e\}$, then $H \cong G \times H$ via the obvious map $h \mapsto(e, h)$. Similarly, $G \times\{e\} \cong G$. In general, for any groups G, H, there is a subgroup $G \times\left\{e_{H}\right\} \subseteq G \times H$, i.e.

$$
G \times\left\{e_{H}\right\}=\left\{\left(g, e_{H}\right) \mid g \in G\right\}
$$

and this subgroup is isomorphic to G. Similarly, $\left\{e_{G}\right\} \times H \subseteq G \times H$ is a subgroup isomorphic to H. (" x-axis and y-axis").
(2) $G \times H \cong H \times G$ (isomorphism sends (g, h) to (h, g))

Example. Let $G=H=C_{2}=\{+1,-1\}$. Then

$$
G \times H=C_{2} \times C_{2}=\{(1,1)=e,(1,-1)=a,(-1,1)=b,(-1,-1)\} .
$$

Note that

$$
a b=(1,-1) \times(-1,1)=(-1,-1)
$$

which is the 4th element.

	e	a	b	$a b$
e	e	a	b	$a b$
a	a	e	$a b$	b
b	b	$a b$	e	a
$a b$	$a b$	b	a	e

It is easy to check that $C_{2} \times C_{2}$ is isomorphic to the symmetries of a non-square rectangle.
We can do more than 2 groups. Start with groups $G_{1}, G_{2}, \ldots, G_{r}$. Define

$$
G_{1} \times G_{2} \times \cdots \times G_{r}=\left\{\left(g_{1}, g_{2}, \ldots, g_{r}\right): g_{i} \in G_{i}\right\}
$$

with the group law:

$$
\left(g_{1}, g_{2}, \ldots, g_{r}\right)\left(h_{1}, h_{2}, \ldots, h_{r}\right)=\left(g_{1} h_{1}, g_{2} h_{2}, \ldots, g_{r} h_{r}\right)
$$

It is easy to check that the group axioms are satisfied.
The group $G_{1} \times G_{2} \times \cdots \times G_{r}$ is called the direct product of the G_{i}.
Remark. For $r=0$, we get $\{\emptyset\} \cong C_{1}$. For $r=1$, we just get G_{1} again. We can even do $r=\infty$:

$$
\left(g_{1}, g_{2}, \ldots\right) \in \prod_{i=1}^{\infty} G_{i}
$$

with the obvious multiplication.
Example $(r=3)$. The direct product $C_{2} \times C_{2} \times C_{2}$ is a group of size 8 whose elements are triples $(\pm 1, \pm 1, \pm 1)$. Note that $x^{2}=e$ for all $x \in C_{2} \times C_{2} \times C_{2}$.

Proposition 4.2.

(1) The order of $G_{1} \times G_{2} \times \cdots \times G_{r}$ is $\left|G_{1}\right| \times\left|G_{2}\right| \times \cdots \times\left|G_{r}\right|$.
(2) If all the G_{i} are abelian, then so is $G_{1} \times \cdots \times G_{r}$.
(3) If $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in G_{1} \times \cdots \times G_{r}$, then

$$
o(x)=\operatorname{lcm}\left(o\left(x_{i}\right)\right) .
$$

Proof. (1) is clear. For (2), say $x=\left(x_{1}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ in the product. Assume all G_{i} are abelian and let us prove $x y=y x$. We have

$$
\begin{aligned}
x y & =\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{r} y_{r}\right) & & \text { definition } \\
& =\left(y_{1} x_{1}, y_{2} x_{2}, \ldots, y_{r} x_{r}\right) & & \text { all } G_{i} \text { abelian } \\
& =y x & & \text { definition }
\end{aligned}
$$

For (3), recall that the order of $x \in G$ is the smallest $k \in \mathbb{Z}, k \geq 1$, such that $x^{k}=e$ (or $+\infty$ if no such k exists). If $o(x)=n$ then

$$
x^{t}=e \Leftrightarrow t=\text { multiple of } n
$$

Assume $o\left(x_{i}\right)=n_{i}<+\infty$ for all i. Let $n=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$. First note

$$
x^{n}=\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{r}^{n}\right)=\left(e_{1}, e_{2}, \ldots, e_{r}\right)
$$

because n is a multiple of n_{i} for $1 \leq i \leq r$.
Conversely, if $0<m<n$, then we claim that $x^{m} \neq e$. Indeed, since $m<\operatorname{lcm}\left(n_{i}\right)$, there exists i such that n_{i} does not divide m, so $x_{i}^{m} \neq e_{i}$. Therefore

$$
x^{m}=\left(x_{1}^{m}, \ldots, x_{i}^{m}, \ldots, x_{r}^{m}\right) \neq\left(e_{1}, \ldots, e_{i}, \ldots, e_{r}\right)
$$

and we have shown that the order of x is n.
Example. Consider the group

$$
G=D_{10} \times S_{3} \times C_{2} .
$$

Then for $g=(\varrho,(123),-1)$, where ϱ is a rotation of order 5 , we have

$$
o(g)=\operatorname{lcm}(5,3,2)=30 .
$$

Let us think of some groups of order 8. Let us even think of abelian groups of order 8:

$$
\begin{gathered}
C_{8} \\
C_{4} \times C_{2} \\
C_{2} \times C_{2} \times C_{2}
\end{gathered}
$$

Are any two of these isomorphic? No! Let us look at elements of order 2.

Group	elements of order 2	number of elements of order 2
C_{8}	-1	1
$C_{4} \times C_{2}$	$(-1,1),(1,-1),(-1,-1)$	3
$C_{2} \times C_{2} \times C_{2}$	all $(\pm 1, \pm 1, \pm 1)$ except $(1,1,1)$	7

Structure theorem for finite abelian groups.

Theorem 4.3. Every finite abelian group is isomorphic to a direct product of cyclic groups.

Proof. See for example R. Allenby, Rings, Fields and Groups (p. 254).
So to compute all abelian groups of order n, we must write down all factorisations $n=$ $n_{1} n_{2} \ldots n_{r}$ and then the groups

$$
C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{r}}
$$

give us a complete list. For example, for $n=4$, every abelian group of order 4 is isomorphic to C_{4} or $C_{2} \times C_{2}$. For $n=8$, every abelian group of order 8 is isomorphic to one of

$$
C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}
$$

Now let us try $n=6$:

$$
C_{6}, C_{2} \times C_{3},
$$

so any abelian group of order 6 is isomorphic to either C_{6} or $C_{2} \times C_{3}$. However

$$
C_{2} \times C_{3} \cong C_{6} .
$$

Indeed, $-1 \in C_{2}$ has order 2 and $\omega=e^{2 \pi i / 3} \in C_{3}$ has order 3 , so $x=(-1, \omega) \in C_{2} \times C_{3}$ has order $\operatorname{lcm}(2,3)=6$. Therefore $\langle x\rangle$ has size 6 and so must be all of $C_{2} \times C_{3}$.

We can conclude that up to isomorphism, there is only one abelian group of order 6 , namely C_{6}.
In general, the following proposition holds.
Proposition 4.4. If $\operatorname{hcf}(m, n)=1$, then

$$
C_{m} \times C_{n} \cong C_{m n} .
$$

Proof. If $g \in C_{m}$ has order m and $h \in C_{n}$ has order n, then $(g, h) \in C_{m} \times C_{n}$ has order $\operatorname{lcm}(m, n)=m n / \operatorname{hcf}(m, n)=m n$. Thus $\langle(g, h)\rangle$ has order $m n$ and must generate $C_{m} \times C_{n}$ which is thus cyclic.

Exercise. What are all abelian groups of size 12 ?

5. Groups of small order

In this section, we consider the problem of finding all groups of size n up to isomorphism.
Remark. For $n=2048$, this is an open problem! No one knows how many groups of order 2048 there are, up to isomorphism. The largest lower bound I found is 1774274116992170.

In this chapter, we will solve this problem for $n \leq 7$. Let us start with the simplest cases first:
($n=1$) The only group is C_{1}.
($n=2$) Since 2 is prime, the only group is C_{2}.
In general, if p is prime and G has order p, then G is cyclic. This solves the problem for $n=2,3,5,7$ and we are left with the cases $n=4,6$.
Proposition 5.1. Up to isomorphism, the only groups of size 4 are C_{4} and $C_{2} \times C_{2}$.

Proof. Say G is a group and $|G|=4$. What are the orders of the elements of G ? Firstly, $o(g)=1$ if and only if $g=e$. If there is a $g \in G$ such that $o(g)=4$, then $|\langle g\rangle|=4=|G|$ and $G \cong C_{4}$. So suppose that $G \nsubseteq C_{4}$. Then we can write

$$
G=\{e, x, y, z\} \text { with } o(x)=o(y)=o(z)=2 .
$$

To check that $x y=z$, note that $x^{2}=y^{2}=e$, but $x, y \neq e$ and $x \neq y$. Now, if $x y=e$, then $x y=x^{2}=x x$ and $y=x$, a contradiction. Similarly, if $x y=x(x y=y)$, then $y=e(x=e)$, a contradiction. Thus $x y=z$ and the same argument shows $y x=z$.

Therefore, we can write out the multiplication table of G :

	e	x	y	z
e	e	x	y	z
x	x	e	z	y
y	y	z	e	x
z	z	y	x	e

and note that this is the same as the multiplication table of $C_{2} \times C_{2}$, i.e. $G \cong C_{2} \times C_{2}$ via $e \mapsto(1,1), x \mapsto(-1,1), y \mapsto(1,-1), z \mapsto(-1,-1)$.

Groups of order 6. Can think of C_{6}, D_{6}, S_{3}. Now, $S_{3} \cong D_{6}$ and also $C_{6} \cong C_{2} \times C_{3}$ but $C_{6} \not \neq D_{6}$. So is the answer that $|G|=6$ implies $G \cong C_{6}$ or D_{6} ?

Lemma 5.2. If G is a finite group and $|G|$ is even, then there exists $g \in G$ such that $o(g)=2$.

Proof. Proof by contradiction: assume there is no $g \in G$ such that $o(g)=2$. Then for all $g \in G$ either $g=e$ or $g \neq g^{-1}$. Then we can list all elements of G to be

$$
G=\left\{e, g_{1}, g_{1}^{-1}, g_{2}, g_{2}^{-1}, \ldots, g_{r}, g_{r}^{-1}\right\}
$$

and $|G|=2 r+1$ is odd, a contradiction.
Remark (Cauchy's Theorem). If p is prime and $|G|=$ multiple of p, then there exists $g \in G$ such that $o(g)=p$. (This will not be proved in this course.)

Proposition 5.3. Up to isomorphism, the only groups of order 6 are C_{6} and D_{6}.

Proof. Let G be a group with $|G|=6$. Note that $e \in G$ has order 1 and all the other elements of G have orders $2,3,6$. If some element has order 6 , then $G \cong C_{6}$, so suppose no element has order 6. By Lemma 5.2, there is an element of order 2 in G. But not all the elements can have order 2-if they did, then (by Problem Sheet 2) either $|G|=2$ or $|G|$ is a multiple of 4 .

Therefore, we know that if $|G|=6$ and $G \not \approx C_{6}$, then there exist elements $x \in G$ of order 3 and $y \in G$ of order 2. Set $H=\langle x\rangle \cong C_{3} \subseteq G,|H|=3,|G|=6$. Then $y \notin H$, since the elements of H have order 1 or 3 . Thus

$$
G=H \cup H y=\left\{e, x, x^{2}, y, x y, x^{2} y\right\}
$$

What is $y x$? If $y x \in H$, then $y \in H x^{-1}=H$ which is impossible. Thus $y x \in H y$. First, $y x=y$ implies $x=e$, so $y x \neq y$. Moreover, if $y x=x y$, then:

$$
\begin{gathered}
(y x)^{1}=x y \neq e \\
(y x)^{2}=x y x y=x^{2} y^{2}=x^{2} \neq e \\
(y x)^{3}=x y x y x y=x^{3} y^{3}=y \neq e
\end{gathered}
$$

so $o(x y) \neq 1,2,3$, but $x y \in G$, a contradiction. Therefore, $y x=x^{-1} y$ and

$$
G=H \cup H y=\left\{e, x, x^{2}, y, x y, x^{2} y\right\}
$$

with the relations $x^{3}=e, y^{2}=e, y x=x^{-1} y$. Thus $G \cong D_{6}$ via $x \mapsto \varrho, y \mapsto \sigma$.
Summary of this chapter:

Size	Groups
1	C_{1}
2	C_{2}
3	C_{3}
4	$C_{4}, C_{2} \times C_{2}$
5	C_{5}
6	C_{6}, D_{6}
7	C_{7}

Remark. For some chosen higher orders:

Size	Groups
8	$C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}, D_{8}$, and one other
9	$C_{9}, C_{3} \times C_{3}$
10	C_{10}, D_{10}
32	51 groups
1024	$49,487,365,422$ groups
2048	unknown

Interestingly, $\approx 99.2 \%$ of all groups of order at most 2000 have order 1024.

6. Homomorphisms, normal subgroups, And factor groups

Homomorphisms are functions between groups which preserve the group multiplication.
Definition. Let G, H be groups. A function $\varphi: G \rightarrow H$ is a homomorphism if

$$
\varphi(x y)=\varphi(x) \varphi(y)
$$

for all $x, y \in G$.
Note that an isomorphism is a homomorphism which is also a bijection.

Examples.

(1) Let G, H be any groups. Define $\varphi: G \rightarrow H$ by $\varphi(x)=e_{H}$ for all $x \in G$. This is the trivial homomorphism.
(2) The signature function sgn: $S_{n} \rightarrow C_{2}$ is a homomorphism, because for all $x, y \in S_{n}$ we have $\operatorname{sgn}(x y)=\operatorname{sgn}(x) \operatorname{sgn}(y)$ by Proposition 3.1 (1).
(3) Define $\varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{C}^{\times}, \times\right)$by $\varphi(x)=e^{2 \pi i x}$ for $x \in \mathbb{R}$. Check it is a group homomorphism: if $x, y \in \mathbb{R}$, then

$$
\varphi(x+y)=e^{2 \pi i(x+y)}=e^{2 \pi i x} \cdot e^{2 \pi i y}=\varphi(x) \varphi(y)
$$

(4) Define $\varphi: D_{2 n} \rightarrow C_{2}$ by $\varphi\left(\varrho^{i} \sigma^{j}\right)=(-1)^{j}$ for all $i, j \in \mathbb{Z}$.

Dodgy definition: need to check it is well-defined, i.e. if $\varrho^{i} \sigma^{j}=\varrho^{k} \sigma^{l}$ we had better make sure $(-1)^{j}=(-1)^{l}$. (Otherwise φ would not be a function.) Let us check we are ok: if $\varrho^{i} \sigma^{j}=\varrho^{k} \sigma^{l}$, then

$$
\begin{gathered}
\varrho^{-k} \varrho^{i} \sigma^{j}=\sigma^{l} \\
\varrho^{-k} \varrho^{i}=\sigma^{l} \sigma^{-j} \\
\sigma^{l-j}=\varrho^{i-k} \in\langle\varrho\rangle,
\end{gathered}
$$

so $l-j$ had better be even, $(-1)^{l}=(-1)^{j}$, and φ is well defined.
In words, φ sends rotations to +1 and reflections to -1 .
Finally, check ϱ is a homomorphism: take $x=\varrho^{i} \sigma^{j}, y=\varrho^{k} \sigma^{l}$. Then $\varphi(x)=(-1)^{j}$, $\varphi(y)=(-1)^{l}$. Moreover

$$
x y=\varrho^{i} \sigma^{j} \varrho^{k} \sigma^{l} .
$$

Note that $\sigma \varrho^{k}=\varrho^{-k} \sigma$ and $\sigma^{0} \varrho^{k}=\varrho^{k}=\varrho^{k} \sigma^{0}$, so we can write $\sigma^{j} \varrho^{k}=\varrho^{ \pm k} \sigma^{j}$ (where the sign depends on the value of j). Thus

$$
x y=\varrho^{i} \varrho^{ \pm k} \sigma^{j} \sigma^{l}=\varrho^{i \pm k} \sigma^{j+l}
$$

and

$$
\varphi(x y)=(-1)^{j+l}=(-1)^{j}(-1)^{l}=\varphi(x) \varphi(y)
$$

(5) (Exercise.) If G, H are groups, then there are projection maps

$$
\begin{gathered}
G \times H \rightarrow G \\
(g, h) \mapsto g
\end{gathered}
$$

and

$$
\begin{gathered}
G \times H \rightarrow H \\
(g, h) \mapsto h
\end{gathered}
$$

These are both group homomorphisms!
Proposition 6.1. Say $\varphi: G \rightarrow H$ is a group homomorphism. Then
(1) $\varphi\left(e_{G}\right)=e_{H}$,
(2) $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$ for all $x \in G$,
(3) for $x \in G$, the order of $\varphi(x)$ divides $o(x)$.

Proof. For (1), set $h=\varphi\left(e_{G}\right)$. Then

$$
\begin{aligned}
h & =\varphi\left(e_{G} e_{G}\right) & & e_{G}^{2}=e_{G} \\
& =\varphi\left(e_{G}\right) \varphi\left(e_{G}\right) & & \varphi \text { is a homomorphism } \\
& =h^{2} & & \text { definition }
\end{aligned}
$$

so $h=e_{H}$, canceling h.

For (2), take $x \in G$. Then $x x^{-1}=e_{G}$. Apply φ to get $\varphi\left(x x^{-1}\right)=\varphi\left(e_{G}\right)$. Thus

$$
\begin{aligned}
\varphi(x) \varphi\left(x^{-1}\right) & =\varphi\left(e_{G}\right) \quad & \quad \text { group homomorphism } \\
& =e_{H} & \text { by }(1)
\end{aligned}
$$

so $\varphi\left(x^{-1}\right)=$ inverse of $\varphi(x)=\varphi(x)^{-1}$.
Finally, for (3) set $o(x)=k$. Then

$$
\underbrace{x x \ldots x}_{k \text { times }}=e_{G} \text {. }
$$

Apply φ to get

$$
\varphi(x)^{k}=\varphi\left(e_{G}\right)=e_{H}
$$

since φ is a group homomorphism and using (1). Thus $k=$ multiple of order of $\varphi(x)$, so the order of $\varphi(x)$ divides k.

Image and kernel. Recall that two important subspaces of vector spaces are the image and the kernel of a linear map. In this section, we discuss the analogous notions for groups and group homomorphisms.

Definition. Let $\varphi: G \rightarrow H$ be a group homomorphism. The image of φ is

$$
\operatorname{im}(\varphi)=\{\varphi(x) \mid x \in G\} \subseteq H
$$

Proposition 6.2. The image $\operatorname{im}(\varphi)$ of a homomorphism $\varphi: G \rightarrow H$ is a subgroup of H.
Proof. First, $\varphi\left(e_{G}\right)=e_{H}$ by Proposition 6.1, so $e_{H} \in \operatorname{im}(\varphi)$. Next, if $\varphi(x), \varphi(y) \in \operatorname{im}(\varphi)$, then

$$
\varphi(x) \varphi(y)=\varphi(x y) \in \operatorname{im}(\varphi)
$$

Finally, say $\varphi(x) \in \operatorname{im}(\varphi)$. Then

$$
\varphi(x)^{-1}=\varphi\left(x^{-1}\right) \in \operatorname{im}(\varphi)
$$

by Proposition 6.1. Thus the image is a subgroup of H.
Question. There is a non-trivial homomorphism $S_{3} \rightarrow C_{2}$ (namely, sgn). Is there a nontrivial homomorphism

$$
S_{3} \rightarrow C_{3} ?
$$

Note that

$$
\begin{gathered}
S_{3} \supseteq\langle(123)\rangle \cong C_{3}, \\
S_{3} \supseteq\langle(12)\rangle \cong C_{2} .
\end{gathered}
$$

We also have

$$
\operatorname{sgn}: S_{3} \rightarrow C_{2}
$$

and $\operatorname{sgn}(e)=\operatorname{sgn}((123))=\operatorname{sgn}((132))=1, \operatorname{sgn}((i, j))=-1$ and sgn is a group homomorphism. However, we claim that the only group homomorphism $S_{3} \rightarrow C_{3}$ is the trivial one (i.e. the one that sends all $g \in S_{3}$ to $1 \in C_{3}$).

Suppose $\varphi: S_{3} \rightarrow C_{3}$ is a group homomorphism. Say $\sigma=(12)$ is a 2-cycle. Then $o(\sigma)=2$, so $o(\varphi(\sigma))$ divides 2 by Proposition 6.1. Thus $o(\varphi(\sigma))$ is 1 or 2 , but $\varphi(\sigma) \in C_{3}$, which only has elements of order 1 and 3 , so $o(\varphi(\sigma))=1$ and $\varphi(\sigma)=1 \in C_{3}$. Similarly,

$$
\varphi((23))=\varphi((13))=1
$$

However, note $(123)=(13)(12)$, so

$$
\begin{aligned}
\varphi((123)) & =\varphi((13)) \varphi((12)) \quad \varphi \text { is a group homomorphism } \\
& =1 \times 1=1
\end{aligned}
$$

Similarly, $\varphi((132))=\varphi((12)(13))=1 \times 1=1$. Finally, by Proposition 6.1, $\varphi(e)=1$, and we have shown φ is trivial.

Definition. Let $\varphi: G \rightarrow H$ be a group homomorphism. The kernel of φ is

$$
\operatorname{ker}(\varphi):=\left\{x \in G: \varphi(x)=e_{H}\right\} \subseteq G
$$

Proposition 6.3. The kernel $\operatorname{ker}(\varphi)$ of a homomorphism $\varphi: G \rightarrow H$ is a subgroup of G.
Proof. First, $\varphi\left(e_{G}\right)=e_{H}$ by Proposition 6.1, so $e_{G} \in \operatorname{ker}(\varphi)$. Next, suppose $x, y \in \operatorname{ker}(\varphi)$, i.e. $\varphi(x)=\varphi(y)=e_{H}$. Hence

$$
\varphi(x y)=\varphi(x) \varphi(y)=e_{H} e_{H}=e_{H}
$$

so $x y \in \operatorname{ker}(\varphi)$. Finally, say $x \in \operatorname{ker}(\varphi)$. Then $\varphi(x)=e_{H}$, so

$$
\begin{aligned}
\varphi\left(x^{-1}\right) & =\varphi(x)^{-1} \quad \text { Proposition } 6.1 \\
& =e_{H}^{-1} \\
& =e_{H}
\end{aligned}
$$

so $x^{-1} \in \operatorname{ker}(\varphi)$ by definition.

Examples.

(0) Let $\varphi: G \rightarrow H$ be the trivial homomorphism, $\varphi(g)=e_{H}$ for all $g \in G$. Then $\operatorname{im}(\varphi)=\left\{e_{H}\right\}$ and $\operatorname{ker}(\varphi)=G$.
(1) Suppose $\varphi: G \rightarrow H$ an isomorphism. Then $\operatorname{im}(\varphi)=H$ as φ is a bijection (so a surjection). Moreover, $\varphi\left(e_{G}\right)=e_{H}$ and φ is a bijection (so an injection), so $\operatorname{ker}(\varphi)=$ $\left\{e_{G}\right\}$.
(2) Consider the signature homomorphism sgn: $S_{n} \rightarrow C_{2}$. If $n \geq 2$, then

$$
\operatorname{im}(\operatorname{sgn})=C_{2}
$$

Moreover

$$
\operatorname{ker}(\operatorname{sgn})=\left\{g \in S_{n}: \operatorname{sgn}(g)=+1\right\}=A_{n}
$$

by definition of A_{n}. (This gives a new proof that A_{n} is a subgroup of S_{n}, but this is really the same as the old proof.)
(3) Define $\varphi: D_{2 n} \rightarrow C_{2}$ by $\varphi\left(\varrho^{i} \sigma^{j}\right)=(-1)^{j}$. We checked earlier that this is well-defined. Since $\varphi(\sigma)=-1$ and $\varphi(e)=+1$, so $\operatorname{im}(\varphi)=C_{2}$. The kernel of φ will be

$$
\operatorname{ker}(\varphi)=\left\{\varrho^{i} \sigma^{j}: j \text { even }\right\}
$$

but $\sigma^{2}=e$, so

$$
\operatorname{ker}(\varphi)=\left\{\varrho^{i}: i \in \mathbb{Z}\right\}=\langle\varrho\rangle=\{\text { rotations }\} .
$$

(4) Let $\varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{C}^{\times}, \times\right)$be defined by $\varphi(x)=e^{2 \pi i x}$. Here

$$
\begin{gathered}
\operatorname{ker}(\varphi)=\left\{x \in \mathbb{R}: e^{2 \pi i x}=1\right\}=\mathbb{Z} \\
\operatorname{im}(\varphi)=S^{1}=\text { unit circle }=\{z:|z|=1\}
\end{gathered}
$$

Geometrically: think of \mathbb{R} as a spiral which we project down onto S^{1}.

Normal subgroups. These are special subgroups of a group.
For example, $\langle(123)\rangle \subseteq S_{3}$ is a normal subgroup but $\langle(12)\rangle$ is not! We will see this later.
Say G is a group and $N \subseteq G$ is a subgroup. If $g \in G$, then by $g^{-1} N g$ we mean the set

$$
\left\{g^{-1} n g: n \in N\right\} .
$$

Note that for an abelian group $g^{-1} N g=N$, trivially.
Definition. Let G be a group, $N \subseteq G$ be a subgroup. We say that N is a normal subgroup of G if $g^{-1} N g=N$ for all $g \in G$.

Notation: we write $N \triangleleft G$ for a normal subgroup $N \subseteq G$.

Examples.

(1) Let G be any group. The identity subgroup $\left\{e_{G}\right\} \subseteq G$ is normal, because

$$
g^{-1}\left\{e_{G}\right\} g=\left\{g^{-1} e_{G} g\right\}=\left\{e_{G}\right\}
$$

i.e. $\left\{e_{G}\right\} \triangleleft G$. Similarly, $G \triangleleft G$ as (easy exercise) for any $g \in G$:

$$
g^{-1} G g=G
$$

(2) Let G be any abelian group. Then any subgroup N of G is normal because

$$
g^{-1} N g=\left\{g^{-1} n g: n \in N\right\}=\left\{n g^{-1} g: n \in N\right\}=\{n: n \in N\}=N
$$

A non-example in S_{3} : take $g=(13), n=(12)$; then

$$
g^{-1} n g=(13)(12)(13)=(23) .
$$

Now, setting $G=S_{3}$ and $N=\langle(12)\rangle \subseteq G$ we get

$$
g^{-1} N g=\left\{g^{-1} e g, g^{-1}(12) g\right\}=\{e,(23)\}=\langle(23)\rangle \neq N
$$

Thus N is not a normal subgroup of G.
Remark. Even if $\sigma^{-1} N \sigma=N$ for some $\sigma \in S_{3}$, for example $\sigma=e$ or $\sigma=(12), N$ may not be a normal subgroup! For $\sigma=(13)$, we may have $\sigma^{-1} N \sigma \neq N$, and this is enough to say that N is not normal.

Lemma 6.4. Say G is a group and N is a subgroup. Then $N \triangleleft G$ if and only if $g^{-1} N g \subseteq N$ for all $g \in G$.

Proof. The 'only if' implication is obvious. For the 'if' implication, suppose $g^{-1} N g \subseteq N$ for all $g \in G$ and take an arbitrary $\sigma \in G$. We will show that

$$
\sigma^{-1} N \sigma=N .
$$

Setting $g=\sigma$, we get

$$
\sigma^{-1} N \sigma \subseteq N
$$

and setting $g=\sigma^{-1}$, we get

$$
\sigma N \sigma^{-1} \subseteq N
$$

Multiplying the second equation from the left by σ^{-1} and from the right by σ, we deduce that

$$
N=\sigma^{-1} \sigma N \sigma^{-1} \sigma \subseteq \sigma^{-1} N \sigma
$$

so combining this with $\sigma^{-1} N \sigma \subseteq N$ we get equality, as requested.
We can apply this to show that A_{n} is a normal subgroup of S_{n}. Take an arbitrary $g \in S_{n}$. All we need to check is that if $h \in A_{n}$, then $g^{-1} h g \in A_{n}$, but

$$
\operatorname{sgn}\left(g^{-1} h g\right)=\operatorname{sgn}\left(g^{-1}\right) \operatorname{sgn}(h) \operatorname{sgn}(g)=\operatorname{sgn}\left(g^{-1}\right) \operatorname{sgn}(g)=\operatorname{sgn}(e)=1
$$

since $\operatorname{sgn}(h)=+1$. Thus $A_{n} \triangleleft S_{n}$.
Proposition 6.5. Suppose $\varphi: G \rightarrow H$ is a group homomorphism. Then $\operatorname{ker}(\varphi) \triangleleft G$.

Remark.

(1) Note that $\operatorname{im}(\varphi)$ may not be a normal subgroup of H. For example, if $i:\langle(12)\rangle \hookrightarrow S_{3}$ is the inclusion, then $\operatorname{im}(i)=\langle(12)\rangle$ is not a normal subgroup of S_{3}.
(2) Proposition 6.5 also has a converse. If $N \triangleleft G$, we will later on see how to build $\varphi: G \rightarrow H$ with kernel N.

Proof of Proposition 6.5. Let $\varphi: G \rightarrow H$ be a homomorphism and write $N=\operatorname{ker}(\varphi)$. Choose arbitrary $g \in G$ and $n \in N$. By Lemma 6.4, we just need to check that $g^{-1} n g \in N$, i.e. prove that $\varphi\left(g^{-1} n g\right)=e_{H}$. We have

$$
\begin{aligned}
\varphi\left(g^{-1} n g\right) & =\varphi\left(g^{-1}\right) \varphi(n) \varphi(g) & & \varphi \text { is a group homomorphism } \\
& =\varphi\left(g^{-1}\right) e_{H} \varphi(g) & & \text { as } n \in N \\
& =\varphi\left(g^{-1}\right) \varphi(g) & & \\
& =\varphi\left(g^{-1} g\right) & & \varphi \text { is a group homomorphism } \\
& =e_{H} & &
\end{aligned}
$$

which shows that $N \triangleleft G$.

Examples.

(1) Take $\varphi: G \rightarrow H$, the trivial homomorphism $\left(\varphi(g)=e_{H}\right.$ for all $\left.g \in G\right)$. Then $\operatorname{ker}(\varphi)=G \triangleleft G$. Similarly, $\varphi: G \rightarrow G$ the isomorphism $\varphi(g)=g$ for all $g \in G$ gives $\operatorname{ker}(\varphi)=\left\{e_{G}\right\} \triangleleft G$.
(2) Take sgn: $S_{n} \rightarrow C_{2}$ to get

$$
\operatorname{ker}(\operatorname{sgn})=A_{n} \triangleleft S_{n}
$$

(3) Take $\varphi: D_{2 n} \rightarrow C_{2}, \varphi\left(\varrho^{i} \sigma^{j}\right)=(-1)^{j}$. Then

$$
\operatorname{ker}(\varphi)=\langle\varrho\rangle \triangleleft D_{2 n}
$$

a new example of a normal subgroup.
Factor groups. In this section, given a group G and a subgroup $H \subseteq G$, we want to divide G by H, i.e. get a quotient group or a factor group G / H.
Consider $G / H=X=\{H g: g \in G\}$ and let us try to make X into a group. For $H y$ and $H z$ in X, try to define

$$
(H y)(H z)=H y z .
$$

What could go wrong? Elements of X can have more than one name!

Example. Take $G=S_{3}$ and $H=\langle(12)\rangle$. The issue: we can have distinct elements $y_{1}, y_{2} \in G$ such that $H y_{1}=H y_{2}$. For example, take $y_{1}=(23), y_{2}=(123)$. Then

$$
\begin{aligned}
H y_{1} & =\left\{y_{1},(12) y_{1}\right\}=\{(23),(123)\} . \\
H y_{2} & =\left\{y_{2},(12) y_{2}\right\}=\{(123),(23)\} .
\end{aligned}
$$

(Reminder from 1st year: in general, $H \gamma=H \delta$ if and only if $\gamma \delta^{-1} \in H$.) So an element of X will have $|H|$ names in general. Let us go back to the multiplication. For the above H, y_{1}, y_{2}, we have:

$$
\begin{gathered}
\left(H y_{1}\right)^{2}=H y_{1} \cdot H y_{1}=H\left(y_{1}\right)^{2}=H e=H \\
\left(H y_{2}\right)^{2}=H y_{2} \cdot H y_{2}=H\left(y_{2}\right)^{2}=H(132) \neq H
\end{gathered}
$$

because (132) $\notin H$. Hence $H y_{1}$ is an element of order 2, but $H y_{2}$ is not. But $H y_{1}=H y_{2}$.
What went wrong? The multiplication on X was not well-defined!
Problem. In general, we can find $y_{1}, y_{2}, z_{1}, z_{2} \in G$ such that

$$
\begin{aligned}
H y_{1} & =H y_{2} \\
H z_{1} & =H z_{2}
\end{aligned}
$$

but

$$
H y_{1} z_{1} \neq H y_{2} z_{2}
$$

Indeed, we just saw an explicit example with

$$
H=\langle(12)\rangle, \quad y_{1}=(23)=z_{1}, \quad y_{2}=(123)=z_{2} .
$$

If the above happens, then we will never manage to put a group structure on X in a natural way.
Lemma 6.6. Suppose $N \triangleleft G$. Then $g N=N g$ for all $g \in G$.
Proof. If $g \in G$, then by normality of N, we know $g^{-1} N g=N$, so multiplying from the left by g, we get $N g=g N$.

In general, if $H \subseteq G$, then the cosets we saw last year are $H g=$ right cosets, but we can also talk about left cosets $g H=\{g h: h \in H\}$ and in general right cosets are not left cosets, $g H \neq H g$.
But for normal subgroups N, we just saw that $g N=N g$ for all $g \in G$.
Lemma 6.7. Suppose $N \triangleleft G$. If $N y_{1}=N y_{2}$ and $N z_{1}=N z_{2}$, then $N y_{1} z_{2}=N y_{2} z_{2}$.
Proof. We have

$$
\begin{array}{rlll}
N y_{1} z_{1} & =\left(N y_{1}\right) z_{1} & & \text { definition } \\
& =\left(y_{1} N\right) z_{1} & & \text { by Lemma } 6.6 \\
& =y_{1}\left(N z_{1}\right) & & \text { associativity } \\
& =y_{1}\left(N z_{2}\right) & & \text { assumption } \\
& =\left(y_{1} N\right) z_{2} & & \text { associativity } \\
& =\left(N y_{1}\right) z_{2} & & \text { by Lemma } 6.6 \\
& =\left(N y_{2}\right) z_{2} & & \text { assumption } \\
& =N y_{2} z_{2} & & \text { definition }
\end{array}
$$

which completes the proof.

Theorem 6.8. Suppose $N \triangleleft G$ and let G / N denote the set of right cosets of N in G. Define a multiplication by $(N y)(N z)=N y z$. Then this is well-defined and makes G / N into a group.

Remark. By Lemma 6.6, G / N is also the set of left cosets of N in G.
Proof. The multiplication is well-defined by Lemma 6.7. It is enough to check the group axioms:
(Associativity) We have

$$
(N x N y) N z=N x y N z=N(x y) z=N x(y z)=N x N y z=N x(N y N z) .
$$

(Identity) If $e \in G$ identity, then $H e=H$ is the identity in G / N, because

$$
(H x)(H e)=H x e=H x=H e x=(H e)(H x) .
$$

(Inverses) The inverse of $H x$ is $H x^{-1}$, because

$$
(H x)\left(H x^{-1}\right)=H x x^{-1}=H e=H=H e=H x^{-1} x=\left(H x^{-1}\right)(H x)
$$

This completes the proof.
Definition. We call G / N the factor group of G by N or the quotient of G by N.
Examples.
(1) $G=\mathbb{Z}, N=3 \mathbb{Z}=$ multiples of 3 . Since G is abelian and N is a subgroup, N is necessarily normal. The cosets are:

$$
\begin{gathered}
N=\{\ldots,-6,-3,0,3,6, \ldots\} \\
N+1=\{\ldots,-5,-2,1,4,7, \ldots\}=\{3 k+1: k \in \mathbb{Z}\} \\
N+2=\{3 k+2: k \in \mathbb{Z}\}
\end{gathered}
$$

Set of cosets G / N has 3 elements $G / N=\{N, N+1, N+2\}$ and the group law is

$$
(N+y)+(N+z)=N+(y+z) .
$$

The group is generated by $x=N+1$ of order 3 :

$$
\begin{gathered}
x+x=(N+1)+(N+1)=N+2 \\
x+x+x=(N+1)+(N+2)=N+3=N,
\end{gathered}
$$

so $\mathbb{Z} / 3 \mathbb{Z} \cong C_{3}$.
(2) $A_{n} \triangleleft S_{n}, N \geq 2$. The factor group S_{n} / A_{n} has size 2 , so it must be isomorphic to C_{2}. The identity is A_{n} and the other element is $A_{n}(12)$ with order 2:

$$
A_{n}(12) \times A_{n}(12)=A_{n}(12)^{2}=A_{n} e=A_{n} .
$$

Examples. Take $G \triangleleft G$. Then

$$
G / G=\text { set of cosets of } G \text { in } G=\{G e\}=\{G\}
$$

has size 1, i.e. $G / G \cong C_{1}$.
Now, take $\{e\} \triangleleft G$. What is $G /\{e\}$? In general

$$
N g=\{n g: n \in N\},
$$

so in this case $N g=\{g\}$ and strictly speaking

$$
G /\{e\}=\left\{\left\{g_{1}\right\},\left\{g_{2}\right\}, \ldots\right\}
$$

if $G=\left\{g_{1}, g_{2}, \ldots\right\}$ and the obvious map

$$
\begin{aligned}
G & \rightarrow G /\{e\} \\
g & \mapsto\{g\}
\end{aligned}
$$

is an isomorphism.
Take $G=D_{2 n}, n \geq 3$ and let $N=\langle\varrho\rangle$. We know that $N \triangleleft G$. What is G / N ? Well, $|G / N|=|G| /|N|=2$ and thus $G / N \cong C_{2}$. Explicitly:

$$
G / N=\{N, N \sigma\}=\{\text { set of rotations, set of reflections }\} .
$$

Note that this shows again that rotation \times reflection $=$ reflection and reflection \times reflection $=$ rotation.

Fact. If $G=D_{2 n}$ and $N=\left\langle\varrho^{j}\right\rangle$ for $0 \leq j<n$, then $N \triangleleft G$.
(The proof is Q6 from Problem Sheet 5.)
Example. $G=D_{12}, N=\left\langle\varrho^{2}\right\rangle$. Then $|G|=12, N=3$, so $|G / N|=4$. Set $F=G / N$, which is a group of size 4 . Which one is it?

Solution: what are the cosets of N in G ?

$$
\begin{gathered}
N=\left\{e, \varrho^{2}, \varrho^{4}\right\} \\
N \varrho=\left\{\varrho, \varrho^{3}, \varrho^{5}\right\} \\
N \sigma=\left\{\sigma, \varrho^{2} \sigma, \varrho^{4} \sigma\right\} \\
N \varrho \sigma=\left\{\varrho \sigma, \varrho^{3} \sigma, \varrho^{5} \sigma\right\}
\end{gathered}
$$

Thus

$$
G / N=\{N, N \varrho, N \sigma, N \varrho \sigma\} .
$$

Let us check that if $f \in G / N$, then $f^{2}=e_{F}$:

$$
\begin{gathered}
N^{2}=(N e)^{2}=N e^{2}=N e=N \\
(N \varrho)^{2}=N \varrho N \varrho=N \varrho^{2}=N \\
(N \sigma)^{2}=N \sigma N \sigma=N \sigma^{2}=N e=N \\
(N \varrho \sigma)^{2}=N(\varrho \sigma)^{2}=N e=N
\end{gathered}
$$

and indeed G / N cannot be C_{4}, so it must be $C_{2} \times C_{2}$.
Example. Let $G=D_{12}$ and $N=\left\langle\varrho^{3}\right\rangle=\left\{e, \varrho^{3}\right\}$. Then $N \triangleleft G$, so $F=G / N$ is a group of size 6 , i.e. S_{3} or C_{6}. Which one?

$$
F=\left\{N, N \varrho, N \varrho^{2}, N \sigma, N \varrho \sigma, N \varrho^{2} \sigma\right\}
$$

Set $x=N \varrho, y=N \sigma$. Then what is $o(x)$? We have

$$
\begin{gathered}
x=N \varrho \neq N \\
x^{2}=N \varrho^{2} \neq N
\end{gathered}
$$

$$
x^{3}=N \varrho^{3}=N
$$

$\left(\varrho\right.$ has order 6 but $\varrho^{3} \in N$, so $\left.x^{3}=e_{F}\right)$ so $o(x)=3$. Moreover, $y \neq N$ and $y^{2}=(N \sigma)^{2}=$ $N \sigma^{2}=N$, so $o(y)=2$. Finally, is $y x=x y$ or not?

$$
\begin{aligned}
y x & =(N \sigma)(N \varrho) & & \text { definition } \\
& =N \sigma \varrho & & \text { definition } \\
& =N \varrho^{-1} \sigma & & \varrho, \sigma \in D_{12} \\
& =\left(N \varrho^{-1}\right)(N \sigma) & & \text { definition } \\
& =x^{-1} y & &
\end{aligned}
$$

Therefore, $F \cong D_{6}$.
Musings on finite group theory. We can now try to factor groups into "prime factors".
Analogue: big number $g, n=$ divisor of g, then $g=n \times g / n$ and if $1<n<g$, we have made progress. If g has no factors other than 1 or g, g is prime.

In group theory, analogue of "prime number" must be "group $G \neq\{e\}$ such that the only normal subgroups are $\{e\}$ and G."

Such a group is called a simple group and the strategy for understanding all groups is:
(1) understand all simple groups,
(2) understand how to glue them together to make all groups.
(1) is apparently "done". Here is the answer: cyclic groups of prime order, A_{n} for $n \geq 5$, various matrix groups, 26 sporadic examples (including the Monster Group).
(2) is hard :-(The problem is

$$
A_{3} \triangleleft S_{3} \text { and } S_{3} / A_{3}=C_{2}
$$

but $C_{2} \times A_{3} \cong C_{2} \times C_{3} \cong C_{6} \nsubseteq S_{3}$. In general, $N \triangleleft G, F=G / N$ but G might not be isomorphic to $F \times N$.

For a general finite group G, we can do the following:
Choose $G_{1} \neq G, G_{1} \triangleleft G, G_{1}$ large as possible.
Choose $G_{2} \neq G_{1}, G_{2} \triangleleft G_{1}, G_{2}$ large as possible.
Get $G_{n} \triangleleft \cdots \triangleleft G_{2} \triangleleft G_{1} \triangleleft G$, where G_{n} is simple.
Then G_{i} / G_{i+1} are all simple groups and G is built from these simple groups in a weird and complicated way.

The first isomorphism theorem. A group theory version of rank-nullity: say G, H are groups and $\varphi: G \rightarrow H$ is a group homomorphism. What new groups can we build? We have groups

$$
\begin{aligned}
& \operatorname{im}(\varphi) \subseteq H \\
& \operatorname{ker}(\varphi) \triangleleft G
\end{aligned}
$$

and a factor group $G / \operatorname{ker}(\varphi)$.

Theorem 6.9 (The first isomorphism theorem). Let $\varphi: G \rightarrow H$ be a group homomorphism. Then

$$
G / \operatorname{ker}(\varphi) \cong \operatorname{im}(\varphi)
$$

Corollary 6.10. If $\varphi: G \rightarrow H$ is a group homomorphism and $|G|$ is finite, then

$$
|G|=|\operatorname{ker}(\varphi)| \times|\operatorname{im}(\varphi)| .
$$

Note that this looks like rank-nullity theorem.
Proof of Theorem 6.9. We want to write down an isomorphism $\alpha: G / \operatorname{ker}(\varphi) \rightarrow \operatorname{im}(\varphi)$. Write $N=\operatorname{ker}(\varphi)$. We would like to say $\alpha(N g)=\varphi(g)$. To prove this is well-defined, we will show that if $\varphi: G \rightarrow H$ is a group homomorphism and $N=\operatorname{ker}(\varphi)$, then $N x=N y$ if and only if $\varphi(x)=\varphi(y)$ for all $x, y \in G$. We have

$$
\begin{aligned}
N x=N y & \Leftrightarrow x y^{-1} \in N & & \text { first year } \\
& \Leftrightarrow x y^{-1} \in \operatorname{ker}(\varphi) & & \text { definition } \\
& \Leftrightarrow \varphi\left(x y^{-1}\right)=e & & \text { definition } \\
& \Leftrightarrow \varphi(x) \varphi(y)^{-1}=e & & \varphi \text { group homomorphism } \\
& \Leftrightarrow \varphi(x)=\varphi(y) & &
\end{aligned}
$$

Hence we can define $\alpha: G / N \rightarrow \operatorname{im}(\varphi)$ by $\alpha(N x)=\varphi(x)$.
We will now show that α is a group isomorphism. Firstly, α is clearly surjective, because if $h \in \operatorname{im}(\varphi)$, then by definition, $h=\varphi(g)$ for some $g \in G$ and then $h=\alpha(N g)$. To show injectivity, suppose $\alpha(N x)=\alpha(N y)$ for some $x, y \in G$. Then, by definition, $\varphi(x)=\varphi(y)$. But we showed above that this is equivalent to $N x=N y$.

Finally, we check that α is a group homomorphism:

$$
\alpha(N x) \alpha(N y)=\varphi(x) \varphi(y)=\varphi(x y)=\alpha(N x y)=\alpha((N x)(N y))
$$

for any $x, y \in G$.

Examples.

(1) sgn: $S_{n} \rightarrow C_{2}, n \geq 2$. Then $\operatorname{ker}(\operatorname{sgn})=A_{n}$ and $\operatorname{im}(\operatorname{sgn})=C_{2}$, so we get

$$
S_{n} / A_{n} \cong C_{2}
$$

(2) $\varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{C}^{\times}, \times\right), \varphi(x)=e^{2 \pi i x}$. Then

$$
\begin{gathered}
\operatorname{im}(\varphi)=\{z \in \mathbb{C}:|z|=1\}=S^{1} \\
\operatorname{ker}(\varphi)=\left\{x: e^{2 \pi i x}=1\right\}=\mathbb{Z}
\end{gathered}
$$

so the theorem shows $\mathbb{R} / \mathbb{Z} \cong S^{1}$.
(3) Is there a non-trivial group homomorphism $S_{3} \rightarrow C_{3}$? New answer: Say $\varphi: S_{3} \rightarrow C_{3}$ was a non-trivial group homomorphism. Then $\operatorname{im}(\varphi) \neq\{1\}$, so $\operatorname{im}(\varphi)=C_{3}$ and by the theorem $S_{3} / \operatorname{ker}(\varphi) \cong C_{3}$. But them $|\operatorname{ker}(\varphi)|=2$ and $\operatorname{ker}(\varphi)=\{e,(i j)\}$ for some 2 -cycle $(i j)$. But this subgroup cannot be normal! For example, $(13)\langle(12)\rangle(13) \neq$ $\langle(12)\rangle$, so no such φ exists.

Recall that the kernel of a group homomorphism is a normal subgroup. The converse is also true - every normal subgroup is a kernel of a group homomorphism.

Proposition 6.11. Say $N \triangleleft G$. Define $\varphi: G \rightarrow G / N$ by $\varphi(x)=N x$. Then φ is a group homomorphism and $\operatorname{ker}(\varphi)=N$.

Proof. We have $\varphi(x y)=N x y$ and

$$
\varphi(x) \varphi(y)=(N x)(N y)=N(x y)
$$

so φ is a group homomorphism. Moreover:

$$
\operatorname{ker}(\varphi)=\{x: \varphi(x)=N\}=\{x: N x=N\}
$$

and $N x=N$ if and only if $x \in N$, so $\operatorname{ker}(\varphi)=N$.
Finally, given a group G, we will explain how to find all groups H such that there exists a surjective homomorphism $\varphi: G \rightarrow H$.
If $\varphi: G \rightarrow H$ is a surjection, then by the first isomorphism theorem $H=\operatorname{im}(\varphi) \cong G / \operatorname{ker}(\varphi)$. But $\operatorname{ker}(\varphi)$ is a normal subgroup and by Proposition 6.11 any normal subgroup is a kernel of a homomorphism. Therefore, all we need to do is:
(1) List all normal subgroups of G.
(2) For each $N \triangleleft G$, compute G / N to get the possible H 's (up to isomorphism).

Example. Take $G=S_{3}$. Normal subgroups: $\langle e\rangle$ and G. Any other normal subgroups have size 2, 3. Easy to check S_{3} has no normal subgroups of size 2 and A_{3} is the only normal subgroup of size $3, A_{3}=\langle(123)\rangle$. Then

$$
\begin{gathered}
G /\{e\} \cong G=S_{3} \\
G / G \cong C_{1} \\
G / A_{3} \cong C_{2}
\end{gathered}
$$

is the complete list of groups H such that there exists a surjective homomorphism $S_{3} \rightarrow H$.

7. Determinants

Consider the matrix

$$
M=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Recall that the determinant of M is:

$$
\operatorname{det}(M)=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
$$

6 terms: each a product of 3 entries, 1 from each row, 1 from each column. Each product has a \pm sign.

Here is an interesting way to think about this determinant! Each of the 6 terms in the sum $\operatorname{det}(M)$ gives us a permutation of $\{1,2,3\}$ in the following way: send $i \rightarrow j$ if $a_{i j}$ is present in the term. (This is a permutation because each term has one entry in each row and one entry in each column.) Explicitly:

term	permutation	sign
$a_{11} a_{22} a_{33}$	e	+
$a_{12} a_{23} a_{31}$	(123)	+
$a_{13} a_{21} a_{32}$	(132)	+
$a_{13} a_{22} a_{31}$	(13)	-
$a_{12} a_{21} a_{33}$	(12)	-
$a_{11} a_{23} a_{32}$	(23)	-

Note that each sign is the signature of the corresponding permutation!
Hence, if $M=\left(a_{i j}\right)$ as above, $1 \leq i, j \leq 3$, then we can write the determinant succinctly as

$$
\operatorname{det}(M)=\sum_{\pi \in S_{3}} \operatorname{sgn}(\pi) a_{1 \pi(1)} a_{2 \pi(2)} a_{3 \pi(3)}
$$

For example, if $\pi=(12)$ then $\pi(1)=2, \pi(2)=1, \pi(3)=3$, so we get the term $-a_{12} a_{21} a_{33}$.
Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Definition. The determinant of $A=\left(a_{i j}\right)$ is

$$
\operatorname{det}(A)=|A|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \pi(1)} a_{2 \pi(2)} \ldots a_{n \pi(n)}
$$

Examples.

$(n=1)$ If $A=\left(a_{11}\right)$, then $\operatorname{det}(A)=a_{11}$.
($n=2$) If $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, then $\operatorname{det}(A)=+a_{11} a_{22}-a_{12} a_{21}$.
($n=3$) We did this above already!
$(n=4)$ Here $\operatorname{det}(A)$ is the sum of $4!=24$ terms.
Remark. Where do $a_{i j}$'s live?
Answer 1: For applied purposes, they are all real or complex numbers.
Answer 2: They are all elements of an underlying ground field E. Some examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, $\mathbb{Q}(i), \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / p \mathbb{Z}$ etc.

The theory of vector spaces holds over a general field!

Our first main aim is to figure out how $|A|$ changes when we apply row operations.
Recall that if $A=\left(a_{i j}\right)$ is an $n \times n$ matrix, its transpose is $A^{T}=\left(b_{i j}\right)$ with $b_{i j}=a_{j i}$.
Proposition 7.1. If A is $n \times n$, then $|A|=\left|A^{T}\right|$.

Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ with $b_{i j}=a_{j i}$. Then

$$
\begin{aligned}
|B| & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1 \pi(1)} b_{2 \pi(2)} \ldots b_{n \pi(n)} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{\pi(1) 1} a_{\pi(2) 2} \ldots a_{\pi(n) n}
\end{aligned}
$$

Now the permutation that sends $\pi(i)$ to i for each i is the inverse of π. Therefore

$$
|B|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}
$$

where $\sigma=\pi^{-1}$ and we have rearranged the $a_{i j}$ in the product. Moreover, $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$, so we can sum over σ instead of π to get

$$
|B|=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}=|A|
$$

which completes the proof.
(As a consequence, any result involving determinants and row operations will have an analogue with determinants and column operations.)

Proposition 7.2. If B is obtained from A by swapping 2 rows (or 2 columns), then $|B|=$ $-|A|$.

Proof. Let us prove it for columns. The result for rows will follow from Proposition 7.1. Say $\tau=(r s)$ and let us swap the r th and s th column in A to get B. Set $B=\left(b_{i j}\right), A=\left(a_{i j}\right)$. Then

$$
b_{i j}=a_{i \tau(j)},
$$

so

$$
|B|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1 \pi(1)} b_{2 \pi(2)} \ldots b_{n \pi(n)}=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \tau \pi(1)} a_{2 \tau \pi(2)} \ldots a_{n \tau \pi(n)}
$$

Write $\sigma=\tau \pi$. then $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau) \operatorname{sgn}(\pi)=-\operatorname{sgn}(\pi)$ and

$$
|B|=\sum_{\sigma \in S_{n}}(-\operatorname{sgn}(\sigma)) b_{1 \sigma(1)} b_{2 \sigma(2)} \ldots b_{n \sigma(n)}=-|A|
$$

as requested.

Proposition 7.3.

(1) If A has a row of 0 's then $\operatorname{det}(A)=0$.
(2) If A has 2 identical rows (or columns) then $\operatorname{det}(A)=0$.
(3) If A is upper-triangular, i.e.

$$
A=\left(\begin{array}{cccc}
a_{11} & & & \star \\
& a_{22} & & \\
& & \ddots & \\
0 & & & a_{n n}
\end{array}\right)
$$

(or A is lower triangular), then $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}=a_{11} a_{22} \ldots a_{n n}$.

Proof. For (1), $|A|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \pi(1)} a_{2 \pi(2)} \ldots a_{n \pi(n)}$ but each term contains an element from the row of zeroes, so their product is 0 and $|A|=0$.

For (2), say rows r and s of A are equal. If we swap those rows, then by Proposition 7.2 we change the sign of $\operatorname{det}(A)$, but we do not change A. Thus

$$
\operatorname{det}(A)=-\operatorname{det}(A)
$$

and $\operatorname{det}(A)=0$ (if the field E has characteristic $\neq 2$).
For (3), if A is upper triangular, then $a_{i j}=0$ if $i>j$ and it is not hard to check that every term in the sum must then vanish apart from the one corresponding to $\pi=$ identity. Hence

$$
|A|=\operatorname{sgn}(e) a_{11} a_{22} \ldots a_{n n}=a_{11} a_{22} \ldots a_{n n}
$$

If A is lower triangular, then A^{T} is upper triangular, so we are done.

We can now see the effect that elementary rows operations have on $|A|$.

Theorem 7.4.

(1) If a row of A is multiplied by a scalar λ to get B, then $|B|=\lambda|A|$.
(2) If two rows of A are swapped to get B, then $|B|=-|A|$.
(3) If a scalar multiple of one row of A is added to another row to get B, then $|B|=|A|$.
(4) If B is obtained from A by any elementary row operation [i.e. part (1) with $\lambda \neq 0$ or (2) or (3) above], then $|A| \neq 0 \Leftrightarrow|B| \neq 0$.

Proof. In (1), every term of $|A|$ gets multiplied by a factor of λ, so the sum gets multiplied by a factor of λ as well, and $|B|=\lambda|A|$.
Part (2) was Proposition 7.2.
For (3), suppose $\mu \times($ row $k)$ is added to (row l) for a scalar μ. Then $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, and $b_{i j}=a_{i j}$ unless $i=l$ in which case $b_{l j}=a_{l j}+\mu a_{k j}$. Therefore,

$$
\begin{aligned}
|B| & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) b_{1 \pi(1)} b_{2 \pi(2)} \ldots b_{n \pi(n)} \\
& =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \pi(1)} a_{2 \pi(2)} \ldots\left(a_{l \pi(l)}+\mu a_{k \pi(l)}\right) \ldots a_{n \pi(n)} \\
& =|A|+\mu \times(\text { determinant of a matrix with rows } k \text { and } l \text { the same }) \\
& =|A|
\end{aligned}
$$

by Proposition 7.3 (2).
Finally, (4) follows immediately from (1)-(3).
Remark. We can also deduce that if B is obtained from A by applying elementary column operations, then again

$$
|A| \neq 0 \Leftrightarrow|B| \neq 0
$$

(Just apply $|A|=\left|A^{T}\right|$).

Expansion by rows (or columns). If $A=\left(a_{i j}\right), n \times n$, and if we now fix $1 \leq i, j \leq n$, we say that the (i, j) th minor of A is the $(n-1) \times(n-1)$ matrix that you get by removing the i th row and j th column of A.

Example. Take

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Then (taking $i=2, j=3$), the (2,3)th minor will be

$$
\left(\begin{array}{ll}
1 & 2 \\
7 & 8
\end{array}\right)
$$

Notation: $A_{i, j}$ is the (i, j) th minor.
Proposition 7.5 (Laplace expansion of determinants). Let A be $n \times n, A=\left(a_{i j}\right)$. Then:

- "Expansion by 1st row":

$$
|A|=a_{11}\left|A_{11}\right|-a_{12}\left|A_{12}\right|+a_{13}\left|A_{13}\right|+\cdots \pm a_{1 n}\left|A_{1 n}\right|
$$

- "Expansion by ith row":

$$
|A|=(-1)^{i-1} a_{i 1}\left|A_{i 1}\right|-a_{i 2}\left|A_{i 2}\right|+a_{i 3}\left|A_{i 3}\right|+\cdots \pm a_{i n}\left|A_{i n}\right|,
$$

- "Expansion by jth column":

$$
|A|=(-1)^{j-1} a_{1 j}\left|A_{1 j}\right|-a_{2 j}\left|A_{2 j}\right|+a_{3 j}\left|A_{3 j}\right|+\cdots \pm a_{n j}\left|A_{i j}\right|,
$$

Proof. We will first prove (1). We have:

$$
|A|=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1 \pi(1)} a_{2 \pi(2)} \ldots a_{n \pi(n)}
$$

Strategy: each term is $\pm a_{1 i} a_{2 \pi(2)} \ldots a_{n \pi(n)}$ for some i, so we can group together the $a_{1 i}$ terms and show that they sum to $a_{1 i}\left|A_{1 i}\right|$.
Terms featuring a_{11}. These are $a_{11} \sum_{\pi \in X} a_{2 \pi(2)} \ldots a_{n \pi(n)}$ where $X=\left\{\pi \in S_{n}: \pi(1)=1\right\}$. Now:

$$
A_{11}=\left(\begin{array}{cccc}
a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & & \vdots \\
a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

and if $\pi(1)=1$, then we can think of π as a permutation of $\{2,3, \ldots, n\}$, so the terms featuring a_{11} sum to $a_{11}\left|A_{11}\right|$.
Terms featuring a_{12}. Trick: swap columns 1 and 2 of A to get

$$
B=\left(\begin{array}{ccccc}
a_{12} & a_{11} & a_{13} & \ldots & a_{1 n} \\
a_{22} & a_{21} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n 2} & a_{n 1} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

which changes the determinant to $-|A|$. Now, use the previous part with matrix B instead to get that the terms mentioning a_{12} sum to $a_{12}\left|B_{11}\right|=-a_{12}\left|A_{12}\right|$.
Terms featuring a_{13}. Trick: first swap columns 2 and 3 , then swap columns 1 and 2 . This does not change the determinant and shows that the terms featuring a_{13} sum to $a_{13}\left|A_{13}\right|$.

Continue in this way to get (1).
For (2), use the same trick but with rows: swap rows i and $i-1$, then $i-1$ and $i-2$, etc., finally, 2 and 1 . The i th row is now at the top. All other rows are still in order. Now apply (1) to the new matrix to get $(-1)^{i-1}|A|=a_{i 1}\left|A_{i 1}\right|-a_{i 2}\left|A_{i 2}\right|+a_{i 3}\left|A_{i 3}\right|+\cdots \pm a_{i n}\left|A_{\text {in }}\right|$, as requested.
Finally, (3) follows from (2) using $\left|A^{T}\right|=|A|$ (Proposition 7.1).
Remark. In a_{13} terms if we had only swapped columns 1 and 3 , we would not have gotten A_{13} as a $(1,1)$ minor of the new matrix! Hence we also swap columns 2 and 3 .

Theorem 7.6. For an $n \times n$ matrix A, the following are equivalent:
(1) $|A| \neq 0$,
(2) A is invertible,
(3) The system of equation $A x=0$ has only the solution $x=0$,
(4) A can be reduced to I_{n} by elementary row operations.

Proof. We know that (2), (3), and (4) are all equivalent by M1GLA (Geometry and Linear Algebra).
Assume (1), $|A| \neq 0$. Put A into echelon form, using elementary row operations to get a new matrix A^{\prime}. By Theorem $7.4(4),\left|A^{\prime}\right| \neq 0$. Hence last row of A^{\prime} cannot be all 0 by Proposition 7.3, so

$$
A^{\prime}=\left(\begin{array}{llll}
1 & & & \star \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right)
$$

and now it is easy to reduce A^{\prime} to I_{n} using elementary row operations, so we have shown (4).
So now suppose (4), i.e. A can be reduced to I_{n} by elementary row operations. As $\left|I_{n}\right|=$ $1 \neq 0$, by Theorem $7.4,|A| \neq 0$, so (1) holds.

Corollary 7.7. Suppose A is $n \times n$. If $A x=0$ has a non-zero solution x, then $|A|=0$.
We will now state the main theorem of this chapter.
Theorem 7.8. If A, B are $n \times n$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

To prove it, we will need elementary matrices, which we define below.
If $r \neq 0$ and $1 \leq i \leq n$, define $A_{i}(r)=$ identity with i th row multiplied by r :

$$
A_{i}(r)=\left(\begin{array}{cccccc}
1 & & & & & \\
& 1 & & & 0 & \\
& & \ddots & & & \\
& & & r & & \\
& 0 & & & \ddots & \\
& & & & & 1
\end{array}\right)
$$

If $1 \leq i, j \leq n, i \neq j$, define $B_{i, j}=$ identity with i th and j th rows swapped (there is no way I am going to write this one down nicely).
Finally, if s is a scalar, $1 \leq i, j \leq n, i \neq j$, define $C_{i, j}(s)=$ identity with $s \times j$ th row added to i th row:

$$
C_{i, j}(s)=\left(\begin{array}{ccccccc}
1 & & & & & & \\
& 1 & & & & 0 & \\
& & \ddots & & & & \\
& s & & 1 & & & \\
& & & & 1 & & \\
& 0 & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

where the s is in the (i, j) entry of the matrix.
Examples. If $n=2$:

$$
\begin{aligned}
A_{1}(7) & =\left(\begin{array}{ll}
7 & 0 \\
0 & 1
\end{array}\right) \\
A_{1}(-3) & =\left(\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right) \\
B_{12} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
C_{12}(3) & =\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

What happens when we multiply an elementary matrix by a matrix? Set

$$
M=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Then:

$$
A_{1}(7) M=\left(\begin{array}{ll}
7 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
7 & 14 \\
3 & 4
\end{array}\right)
$$

which is M with 1st row multiplied by 7 ,

$$
B_{12} M=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)
$$

which is M with 1st and 2 nd rows swapped,

$$
C_{12}(3) M=\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
10 & 14 \\
3 & 4
\end{array}\right)
$$

which is M with 3 times 2 nd row added to 1st row.
Proposition 7.9. Let M be an $n \times n$ matrix. An elementary row operation on M changes it to $E M$ where E is an elementary matrix.

Proof. Exercise!
Proposition 7.10. The determinants and inverses of elementary matrices are:

matrix	determinant $\operatorname{det}(E)$	inverse E^{-1}
$A_{i}(r)$	r	$A_{i}(1 / r)$
$B_{i j}$	-1	$B_{i j}$
$C_{i j}(s)$	1	$C_{i j}(-s)$

Proof. For the determinants, you could use Theorem 7.4 (with I_{n}). For inverses, you could use Proposition 7.9.

Or you could check everything directly.
The following result is very useful.
Proposition 7.11. Every invertible matrix can be expressed as a product of elementary matrices.

Proof. Let A be invertible. By Theorem 7.6, (2) implies (4), can reduce A to I_{n} using elementary row operations. By Proposition 7.9, the first row operation sends A to $E_{1} A$ with E_{1} an elementary matrix. The seconds row operations sends it to

$$
E_{2} E_{1} A
$$

where E_{2} is a second elementary matrix. Continuing, we deduce:

$$
I_{n}=E_{k} E_{k-1} \ldots E_{3} E_{2} E_{1} A
$$

and all the E_{i} are elementary matrices. Hence

$$
A=\left(E_{k} E_{k-1} \ldots E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} \ldots E_{k-1}^{-1} E_{k}^{-1}
$$

but by Proposition 7.10 the inverse of an elementary matrix is also an elementary matrix, so we are done!
Example. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right)$. Since $\operatorname{det} A \neq 0, A$ is invertible.
By reducing A to the identity, we find:

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) \\
\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(where the consecutive matrices correspond to consecutive row operations we apply to reduce A to the identity).

Therefore, we have

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

and we are done.

The following Proposition is a key step towards proving $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ (Theorem 7.8).

Proposition 7.12. If A is an $n \times n$ matrix and E is an elementary matrix, then $\operatorname{det}(E A)=$ $\operatorname{det}(E) \operatorname{det}(A)$.

Proof. Let $B=E A .3$ cases:
(1) If $E=A_{i}(r)$, then $B=A$ with i th row multiplied by r, so $\operatorname{det}(B)=r \operatorname{det}(A)=$ $\operatorname{det}(E) \operatorname{det}(A)$.
(2) If $E=B_{i j}$, then $B=A$ with i th and j th rows swapped, so $\operatorname{det}(B)=-\operatorname{det}(A)=$ $\operatorname{det}(E) \operatorname{det}(A)$.
(3) If $E=C_{i j}(s)$, then similarly $\operatorname{det}(E A)=\operatorname{det}(A)=\operatorname{det}(E) \operatorname{det}(A)$.

Proposition 7.13. Let A be invertible. By Proposition 7.11, can write $A=E_{1} \ldots E_{k}$, each E_{i} elementary. Then

$$
|A|=\left|E_{1}\right|\left|E_{2}\right| \ldots\left|E_{k}\right|
$$

Proof. Induction on k with 7.12 as the base step.
We can finally prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
Proof of Theorem 7.8. Case 1. If $|A|=0$ or $|B|=0$, then $|A B|=0$ by Q6 from Problem Sheet 7.

Case 2. Say $|A| \neq 0$ and $|B| \neq 0$. By Proposition 7.11,

$$
\begin{gathered}
A=E_{1} E_{2} \ldots E_{k} \\
B=F_{1} F_{2} \ldots F_{l}
\end{gathered}
$$

for E_{i}, F_{j} elementary matrices. Then

$$
A B=E_{1} \ldots E_{k} F_{1} \ldots F_{l}
$$

so 7.13 implies

$$
|A B|=\left|E_{1}\right| \ldots\left|E_{k}\right|\left|F_{1}\right| \ldots\left|F_{l}\right|=|A||B|
$$

and we are done!
Proposition 7.14. Let P be an invertible $n \times n$ matrix. Then
(1) $\operatorname{det}\left(P^{-1}\right)=1 / \operatorname{det}(P)$
(2) If A is an $n \times n$ matrix, then $\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$.

Proof. For (1), note that $P P^{-1}=I_{n}$ and so

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(P P^{-1}\right)=\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)
$$

For (2):

$$
\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P)=\operatorname{det}(A) \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)=\operatorname{det}(A)
$$

by part (1).

8. Matrices and linear transformations

Reminder from M1P2 (Algebra 1). Say V is a finite-dimensional vector space (over a ground field E, where $E=\mathbb{R}$ is a fine choice). Say $T: V \rightarrow V$ is a linear map.
Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V. Say

$$
\begin{gathered}
T v_{1}=a_{11} v_{1}+a_{21} v_{2}+\cdots+a_{n 1} v_{n} \\
T v_{2}=a_{12} v_{1}+a_{22} v_{2}+\cdots+a_{n 2} v_{n} \\
\vdots \\
T v_{n}=a_{1 n} v_{1}+a_{2 n} v_{2}+\cdots+a_{n n} v_{n}
\end{gathered}
$$

where $a_{i j} \in E$.
The matrix of T with respect to B is

$$
[T]_{B}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

Proposition 8.1. If $S, T: V \rightarrow V$ are linear maps, and $S T=S \circ T$ is the composition, then

$$
[S T]_{B}=[S]_{B}[T]_{B}
$$

(Even easier: $[S+T]_{B}=[S]_{B}+[T]_{B}$ and $[\lambda S]_{B}=\lambda[S]_{B}$.)
Consequences:
(1) Notation as above, and say $[T]_{B}=A$. Then $T^{2}=T \circ T$ and $[T \circ T]_{B}=A^{2}$. More generally,

$$
\left[T^{k}\right]_{B}=A^{k}
$$

Most general setting: say $p(x)=c_{m} x^{m}+c_{m-1} x^{m-1}+\cdots+c_{1} x+c_{0}$ is a polynomial with coefficients $c_{i} \in E$. Let us define

$$
p(T)=c_{m} T^{m}+\cdots+c_{1} T+c_{0} I
$$

where $T: V \rightarrow V$ as before and $I: V \rightarrow V$ is the identity function $I(v)=v$. Note that $[I]_{B}=I_{n}$, the identity matrix. Then

$$
p(T): V \rightarrow V
$$

is a linear map. Also

$$
p(A)=c_{m} A^{m}+\cdots+c_{1} A+c_{0} I_{n}
$$

and one checks $[p(T)]_{B}=p(A)$.
(2) Notation as above. Define $G L(V)$ to be the set of invertible linear maps $V \rightarrow V$. This is in fact a group under composition of functions. This is a group and the map

$$
G L(V) \rightarrow G L(n, E)
$$

defined by $T \mapsto[T]_{B}$ is an isomorphism of groups.
Change of basis. Say V has 2 bases $B=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}, C=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$, and

$$
\begin{gathered}
f_{1}=p_{11} e_{1}+p_{21} e_{2}+\cdots+p_{n 1} e_{n} \\
\vdots \\
f_{n}=p_{1 n} e_{1}+p_{2 n} e_{2}+\cdots+p_{n n} e_{n}
\end{gathered}
$$

The change of basis matrix P from B to C is

$$
P=\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 n} \\
p_{21} & \ldots & p_{2 n} \\
\vdots & & \vdots \\
p_{n 1} & \ldots & p_{n n}
\end{array}\right)
$$

Proposition 8.2. If $T: V \rightarrow V$ is a linear map, then $[T]_{C}=P^{-1}[T]_{B} P$.
As an amazing consequence,

$$
\operatorname{det}\left([T]_{C}\right)=\operatorname{det}\left([T]_{B}\right)
$$

(by Proposition 7.14) i.e. a linear map $T: V \rightarrow V$ has a well-defined determinant.
Definition. Two $n \times n$ matrices A and B are similar if there exists an invertible P such that $B=P^{-1} A P$.

Remark.

(1) If we define $A \sim B \Leftrightarrow A$ is similar to B, then \sim is an equivalence relation.
(2) The matrices $[T]_{B}$ and $[T]_{C}$ are similar.
(3) By Proposition 7.14, similar matrices have the same determinant.

Definition. Let $T: V \rightarrow V$ be a linear map. The determinant $\operatorname{det}(T)$ of T is defined to be $\operatorname{det}\left([T]_{B}\right)$ for B any basis of V.

This is well-defined by remark (2) above!

Example. Let V be a vector space of polynomials over R of degree ≤ 2. Define $T: V \rightarrow V$ by $T(p(x))=p(3 x+1)$. Find $\operatorname{det}(T)$.

Solution. Set $B=\left\{1, x, x^{2}\right\}$. Need $[T]_{B}$. We have

$$
\begin{gathered}
T(1)=1 \\
T(x)=3 x+1 \\
T\left(x^{2}\right)=(3 x+1)^{2}=9 x^{2}+6 x+1
\end{gathered}
$$

so we have

$$
[T]_{B}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 6 \\
0 & 0 & 9
\end{array}\right)
$$

and we have $\operatorname{det}(T)=1 \times 3 \times 9=27$.

9. Characteristic polynomial

Let $T: V \rightarrow V$ be a linear transformation where V is a finite-dimensional vector space.
Definition.
(1) We say $v \in V$ is an eigenvector of T if $v \neq 0$ and $T(v)=\lambda v$ for some $\lambda \in E$ (ground field).
(2) We say λ as above is an eigenvalue of T.
(3) The characteristic polynomial of T is the determinant

$$
\operatorname{det}(x I-T)
$$

Proposition 9.1.

(1) The eigenvalues of T are the zeroes of the characteristic polynomial of T.
(2) If λ is an eigenvalue of T and we define $E_{\lambda} \subseteq V$

$$
E_{\lambda}=\{v \in V: T(v)=\lambda v\} .
$$

Then E_{λ} is a vector subspace of V.
(3) The matrix $[T]_{B}$ is diagonal if and only if the basis B consists of eigenvectors of T.

Proof. (1) and (3) were proved in M1P2 (Algebra I).
To prove (2):

$$
\begin{aligned}
E_{\lambda} & =\{v \in V: T(v)=\lambda v\} \\
& =\{v \in V:(T-\lambda I)(v)=0\} \\
& =\text { kernel of the linear map } T-\lambda I: V \rightarrow V
\end{aligned}
$$

so it is a subspace.
Definition. The subspace E_{λ} is called the λ-eigenspace of T.
Corollary 9.2. Let V be a non-zero finite-dimensional vector space over E and say $T: V \rightarrow$ V is a linear transformation. If E is algebraically closed, then T has an eigenvalue $\lambda \in E$.

Proof. The characteristic polynomial of T is a non-constant polynomial over E, so it has a root λ. So use 9.1 (1).

Note that \mathbb{C} is algebraically closed, so this holds for $E=\mathbb{C}$.
Example (of an eigenspace). Let $E=\mathbb{R}, V=\mathbb{R}^{2}$. Let $T: V \rightarrow V$ be

$$
T\binom{a}{b}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)\binom{a}{b}
$$

Take $B=\left\{\binom{1}{0},\binom{0}{1}\right\}$ so that $[T]_{B}$ is the matrix above. The eigenvalues of T are just 2, characteristic polynomial $=(x-2)^{2}$. Then

$$
E_{2}=\left\{\binom{a}{b}:\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)\binom{a}{b}=2\binom{a}{b}\right\}
$$

Need

$$
\begin{cases}2 a+b & =2 a \\ 2 b & =2 b\end{cases}
$$

The solution is $b=0$, so the eigenspace is

$$
E_{2}=\left\{\binom{a}{0}\right\}
$$

Example (of an eigenspace). For $T=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ the 2 -eigenspace is just \mathbb{R}^{2} !
Diagonalisation. Recall that some matrices are diagonalisable and some are not. The aim of this subsection is to determine when we can diagonalise a matrix.

Proposition 9.3. Let $T: V \rightarrow V$ a linear map, V finite-dimensional vector space. Suppose $v_{1}, v_{2}, \ldots, v_{k} \in V$ are all eigenvectors for T with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, i.e.

$$
T v_{i}=\lambda_{i} v_{i}
$$

Suppose all the λ_{i} 's are distinct. Then $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.
Proof. Induction on k. True for $k=1$, because $v_{1} \neq 0$. Suppose that

$$
v_{1}, v_{2}, \ldots, v_{k}
$$

are linearly independent. Assume for a contradiction that

$$
\begin{equation*}
r_{1} v_{1}+r_{2} v_{2}+\cdots+r_{k} v_{k}=0 \tag{1}
\end{equation*}
$$

for $r_{i} \in E$ and not all equal to 0 . Applying T to the equation, we get

$$
\begin{equation*}
r_{1} \lambda_{1} v_{1}+r_{2} \lambda_{2} v_{2}+\cdots+r_{k} \lambda_{k} r_{k}=0 \tag{2}
\end{equation*}
$$

Thus subtracting (2) from λ_{k} times (1):

$$
r_{1}\left(\lambda_{k}-\lambda_{1}\right) v_{1}+r_{2}\left(\lambda_{k}-\lambda_{2}\right) v_{2}+\cdots+r_{k-1}\left(\lambda_{k}-\lambda_{k-1}\right) v_{k-1}=0
$$

so by linear independence of v_{1}, \ldots, v_{k-1}, we get

$$
r_{i}\left(\lambda_{k}-\lambda_{i}\right)=0
$$

for $i=1,2, \ldots, k-1$. But the λ_{j} 's are all distinct, so $\lambda_{k}-\lambda_{i} \neq 0$ for $i=1,2, \ldots, k-1$, and hence

$$
r_{1}=r_{2}=\cdots=r_{k-1}=0
$$

Substituting back into (2), we deduce that $r_{k} v_{k}=0$. But v_{k} is an eigenvector, so $v_{k} \neq 0$, and $r_{k}=0$. Thus we have shown that $r_{i}=0$ for $i=1,2, \ldots, k$, which contradicts our assumption.

Corollary 9.4.

(1) Say $\operatorname{dim} V=n$ and suppose $T: V \rightarrow V$ has a characteristic polynomial with distinct roots in E. Then there exists a basis B of V such that $[T]_{B}$ is diagonal.
(2) Let A be an $n \times n$ matrix and suppose the characteristic polynomial of A has n distinct roots in E. Then there exists an invertible P such that $P^{-1} A P$ is diagonal.

Proof. For (1), say the roots are $\lambda_{1}, \ldots, \lambda_{n}$ are distinct. Choose v_{1}, \ldots, v_{n} eigenvectors such that $T\left(v_{i}\right)=\lambda_{i} v_{i}$. Then by Proposition 9.3, the v_{i} are linearly independent. But there is n of them, so they form a basis B and $[T]_{B}$ is diagonal.
For (2), set $V=E^{n}$ and define $T: V \rightarrow V$ by $T(v)=A v$. The result follows from (1).
Example. Say A is an upper triangular matrix, and diagonal entries are distinct. Then A is diagonalisable. For example:

$$
\left(\begin{array}{ccc}
-3 & 2 & 9 \\
0 & 4 & 6 \\
0 & 0 & 1
\end{array}\right)
$$

is diagonalisable, i.e. there exists P such that $P^{-1} A P$ is diagonal.
This is because the characteristic polynomial of

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & & & \star \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

is $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$. Now, apply 9.4 , since λ_{i} are distinct.
Problem with our toolkit so far:

$$
\left(\begin{array}{ccc}
-3 & 2 & 9 \\
0 & 4 & 6 \\
0 & 0 & -3
\end{array}\right)
$$

has 2 equal eigenvalues. Is that matrix diagonalisable or not?
Algebraic and geometric multiplicities of eigenvalues. Set-up: V is a finite-dimensional vector space over E and $T: V \rightarrow V$ is a linear map. Moreover, $p(x)$ is the characteristic polynomial of T and $\lambda \in E$ is an eigenvalue for T. Since $p(\lambda)=0$, we can factor $(x-\lambda)$ out of $p(x)$, and write:

$$
p(x)=(x-\lambda)^{a(\lambda)} q(x)
$$

with $a(\lambda) \in \mathbb{Z}_{\geq 1}$.
We call the number $a(\lambda)$ the algebraic multiplicity of λ. By convention: if $\lambda \in E$ is not a root of $p(x)$, i.e. not an eigenvalue, then $a(\lambda)=0$.

If $n=\operatorname{dim} V$, then n is the degree of $p(x)$. Therefore:

$$
\sum_{\lambda \in E} a(\lambda) \leq n
$$

with equality if E is algebraically closed or, more generally, if $p(x)$ factors as a product of linear factors.

Also, recall the λ-eigenspace

$$
E_{\lambda}=\{v \in V: T(v)=\lambda v\} \subseteq V
$$

Set $g(\lambda)=\operatorname{dim} E_{\lambda}$. Note that $g(\lambda) \in \mathbb{Z}_{\geq 1}$, because λ is an eigenvalue, so there exists an eigenvector v with eigenvalue λ, and $0 \neq v \in E_{\lambda}$.

We call the number $g(\lambda)$ the geometric multiplicity of λ. Again, by convention $g(\lambda)=0$ if $\lambda \in E$ is not an eigenvalue.

Note that if A is an $n \times n$ matrix, define $a(\lambda)$ and $g(\lambda)$ in the same way, using $T: E^{n} \rightarrow E^{n}$ given by $T(v)=A v$.

Example. Let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right)$ whose characteristic polynomial is $p(x)=(x-3)(x-4)$. Therefore, $a(3)=a(4)=1$ (eigenvalues are 3 and 4).
Check that $g(3)=1$ (this is clear as $g(3) \geq 1$ and conversely if $g(3)=2$, then $E_{3}=\mathbb{R}^{2}$ and A would be $3 I$) and similarly $g(4)=1$.
Now, let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$ whose characteristic polynomial is $p(x)=(x-3)^{2}$. Therefore, $a(3)=2$ (eigenvalue is 3). But $g(3)=1$, because:

$$
E_{3}=\left\langle\binom{ 1}{0}\right\rangle
$$

Proposition 9.5. Say V is a finite dimensional vector space and $T: V \rightarrow V$ is a linear map with λ an eigenvalue. Then $g(\lambda) \leq a(\lambda)$.

Proof. Say $g(\lambda)=r$. Then the eigenspace $E_{\lambda} \subseteq V$ is r-dimensional, so pick a basis $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ for E_{λ}. Extend it to a basis for V :

$$
B=\left\{v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{s}\right\} .
$$

What can we say about $[T]_{B}$?

$$
\begin{aligned}
T\left(v_{1}\right) & =\lambda v_{1} \\
& \vdots \\
T\left(v_{r}\right) & =\lambda v_{r} \\
T\left(w_{1}\right) & =a_{11} v_{1}+\cdots+a_{r 1} v_{r}+b_{11} w_{1}+b_{21} w_{2}+\cdots+b_{s 1} w_{s} \\
& \vdots \\
T\left(w_{s}\right) & =a_{1 s} v_{1}+\cdots+a_{r s} v_{r}+b_{1 s} w_{1}+b_{2 s} w_{2}+\cdots+b_{s s} w_{s}
\end{aligned}
$$

Therefore:

$$
[T]_{B}=\left(\begin{array}{ccc|ccc}
\lambda & & 0 & a_{11} & \ldots & a_{1 s} \\
& \ddots & & \vdots & & \vdots \\
0 & & \lambda & a_{r 1} & \ldots & a_{r s} \\
\hline & 0 & & b_{11} & \ldots & b_{1 s} \\
\vdots & & \vdots \\
& & & b_{s 1} & \ldots & b_{s s}
\end{array}\right)
$$

So if we let $A=\left(a_{i j}\right)$ and $B=b_{i j}$, then

$$
[T]_{B}=\left(\begin{array}{c|c}
\lambda I_{r} & A \\
\hline 0 & B
\end{array}\right)
$$

We claim that the characteristic polynomial of $[T]_{B}$ is $(x-\lambda)^{r} \times($ characteristic polynomial of matrix B). Indeed, the characteristic polynomial of $[T]_{B}$ is the determinant of

$$
x I-[T]_{B}=\left(\begin{array}{c|c}
(x-\lambda) I_{r} & -A \\
\hline 0 & x I_{s}-B
\end{array}\right)
$$

which is exactly $(x-\lambda)^{n} \operatorname{det}\left(x I_{s}-B\right)$ by Q5 from Problem Sheet 7 .
Theorem 9.6. Say $\operatorname{dim} V=n$ and $T: V \rightarrow V$ linear map and $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues and $p(x)$ is the characteristic polynomial of T,

$$
p(x)=\left(x-\lambda_{1}\right)^{a\left(\lambda_{1}\right)} \ldots\left(x-\lambda_{m}\right)^{a\left(\lambda_{m}\right)} .
$$

Then the following are equivalent:
(1) There exists a basis B of V consisting of eigenvectors (i.e. T is diagonalisable, i.e. $[T]_{B}$ is diagonal);
(2) $\sum_{i=1}^{m} g\left(\lambda_{i}\right)=n$;
(3) $g\left(\lambda_{i}\right)=a\left(\lambda_{i}\right)$ for all i.

Proof. It is easy to show that (2) is equivalent to (3):

$$
\sum_{i=1}^{m} a\left(\lambda_{i}\right)=\operatorname{deg} p(x)=n
$$

and $g\left(\lambda_{i}\right) \leq a\left(\lambda_{i}\right)$ for all i, so

$$
\sum_{i=1}^{m} g\left(\lambda_{i}\right) \leq \sum_{i=1}^{m} a\left(\lambda_{i}\right)=n
$$

with equality if and only if $g\left(\lambda_{i}\right)=a\left(\lambda_{i}\right)$.
We will now show that (1) is equivalent to (2). First, assume (1) and say B is a basis of eigenvectors for T. We will show (2). If $B_{i} \subseteq B$ consists of elements with eigenvalues λ_{i}, then

$$
B_{i} \subseteq E_{\lambda_{i}}=\lambda_{i} \text {-eigenspace }
$$

and B is the disjoint union of the B_{i} 's. Thus

$$
n=|B|=\sum_{i=1}^{m}\left|B_{i}\right| .
$$

Now, $B_{i} \subseteq E_{\lambda_{i}}$ is a linearly independent subset, so

$$
\left|B_{i}\right| \leq \operatorname{dim}\left(E_{\lambda_{i}}\right)=g\left(\lambda_{i}\right) .
$$

Therefore:

$$
\begin{aligned}
n & =\sum_{i=1}^{m}\left|B_{i}\right| \\
& \leq \sum_{i=1}^{m} g\left(\lambda_{i}\right) \\
& \leq \sum_{i=1}^{m} a\left(\lambda_{i}\right) \\
& =n
\end{aligned}
$$

so equalities hold everywhere and (2) holds.
Finally, we suppose (2), $\sum_{i=1}^{m} g\left(\lambda_{i}\right)=n$, and show (1). For each $i, 1 \leq i \leq m$, let B_{i} be a basis for $E_{\lambda_{i}}$, and let $B=\bigcup_{i=1}^{m} B_{i}$. Note that one eigenvector cannot have 2 eigenvalues, so the B_{i} are disjoint. Therefore:

$$
|B|=\sum_{i=1}^{m} g\left(\lambda_{i}\right)=n
$$

and it suffices to prove that B is a linearly independent set. So set $\left|B_{i}\right|=n_{i}, B_{i}=$ $\left\{b_{i 1}, b_{i 2}, \ldots, b_{i n_{i}}\right\}$, and say we have a linear combination

$$
\sum_{i=1}^{m}\left(\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}\right)=\sum_{j=1}^{n_{1}} \lambda_{1 j} b_{1 j}+\cdots+\sum_{j=1}^{n_{m}} \lambda_{m j} b_{m j}=0
$$

Now, set $v_{i}=\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}$ for $i=1,2, \ldots, m$. Then

$$
v_{1}+v_{2}+\cdots+v_{m}=0
$$

with each $v_{i} \in E_{\lambda_{i}}$ and, in particular, $T\left(v_{i}\right)=\lambda_{i} v_{i}$. If any of the v_{i} were non-zero, then we would have a non-zero linear relation $\lambda_{1} v_{1}+\cdots+\lambda_{m} v_{m}=0$ on eigenvectors with distinct eigenvalues, contradicting Proposition 9.3. Thus for $i=1,2, \ldots, m$ we have $v_{i}=0$ and

$$
\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}=v_{i}=0
$$

so since B_{i} is a linearly independent set, $\lambda_{i j}=0$ for $j=1, \ldots, n_{i}$.
Thus B is a linearly independent set of size n in V and (1) follows.
We can use this theorem to check whether explicit linear maps or matrices can be diagonalised.

Example. Consider the matrix:

$$
\left(\begin{array}{lll}
-3 & 1 & -1 \\
-7 & 5 & -1 \\
-6 & 6 & -2
\end{array}\right)
$$

Its characteristic polynomial is $(x+2)^{2}(x-4)$, so $a(-2)=2, a(4)=1$. We know that $1 \leq g(4) \leq a(4)=1$, so $g(4)=1$.
What about $g(-2)$? Note that E_{-2} is the kernel of the map given by the matrix:

$$
A+2 I=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-7 & 7 & -1 \\
-6 & 6 & 0
\end{array}\right)
$$

and the rank of this matrix is 2 (to see this: look at the columns). Therefore, by the RankNullity Theorem, its nullity is 1 and $g(-2)=1<a(-2)$. Hence the matrix cannot by diagonalised by Theorem 9.6.

10. Upper-TRIANGULARISATION

A matrix is upper triangular if it is of the form:

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & & & \star \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right)
$$

In this chapter, we will show that any matrix over \mathbb{C} is similar to an upper triangular matrix. We first prove some basic properties of upper triangular matrices.

Proposition 10.1. Suppose

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & & & \star \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\mu_{1} & & & \star \\
& \mu_{2} & & \\
& & \ddots & \\
0 & & & \mu_{n}
\end{array}\right)
$$

Then:
(1) the characteristic polynomial of A is $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right)$ and the determinant is $\lambda_{1} \ldots \lambda_{n}$
(2) $A B=\left(\begin{array}{cccc}\lambda_{1} \mu_{1} & & & \star \\ & \lambda_{2} \mu_{2} & & \\ & & \ddots & \\ 0 & & & \lambda_{n} \mu_{n}\end{array}\right)$

$$
\text { (3) } A^{k}=\left(\begin{array}{cccc}
\lambda_{1}^{k} & & & \star \\
& \lambda_{2}^{k} & & \\
& & \ddots & \\
0 & & & \lambda_{n}^{k}
\end{array}\right)
$$

Proof. Easy exercise.

We have seen that there exist matrices that you cannot diagonalise, for example

$$
\left(\begin{array}{ll}
7 & 1 \\
0 & 7
\end{array}\right)
$$

has $g(7)=1, a(7)=2, g(7)<a(7)$.
However
Theorem 10.2. Say $E=\mathbb{C}$ (or any algebraically closed field).
(1) If V is an n-dimensional vector space over E and $T: V \rightarrow V$ is a linear map, then there exists a basis B of V such that $[T]_{B}$ is upper triangular.
(2) If A is an $n \times n$ matrix over E, then there exists invertible $n \times n$ matrix P such that $P^{-1} A P$ is upper-triangular.

Proof. First, note that (1) for $n \Leftrightarrow(2)$ for n. We will prove them both by induction on n. More precisely, we will show that (2) for $n-1$ implies (1) for n.
Base case $n=1$. Suppose $\operatorname{dim} V=1$ and pick any $0 \neq v \in V$; this is a basis and $[T]_{B}=(\lambda)$ is uppertriangular.

Inductive step. Assume that (2) is true for $\operatorname{dim} V<n$ and prove (1) for $\operatorname{dim} V=n$. Take $T: V \rightarrow V$ linear, $\operatorname{dim}(V)=n$. By Proposition 9.1, T has an eigenvalue λ (take any root of the characteristic polynomial). Choose an eigenvector $0 \neq v \in V$ such that $T v=\lambda v$ and extend to a basis of $V,\left\{v, e_{2}, e_{3}, \ldots, e_{n}\right\}=C$. What is $[T]_{C}$? We know that $T v=\lambda v$, but we do not know anything about $T e_{i}$. So the matrix looks like:

$$
[T]_{C}=\left(\begin{array}{c|ccc}
\lambda & ? & ? & \ldots
\end{array}\right) ?
$$

where M is some matrix, $(n-1) \times(n-1)$. By the inductive hypothesis, there exists invertible $(n-1) \times(n-1)$ matrix Q such that $Q^{-1} M Q$ is upper triangular. Set

$$
P=\left(\begin{array}{c|ccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
\hline 0 & & & & \\
0 & & & & \\
\vdots & & & & & \\
0 & & & & \\
0 & & & & &
\end{array}\right)
$$

then

$$
P^{-1}=\left(\begin{array}{c|cccc}
1 & 0 & 0 & \ldots 0 & 0 \\
\hline 0 & & & & \\
0 & & & & \\
\vdots & & & Q^{-1} & \\
0 & & & \\
0 & & & &
\end{array}\right)
$$

and

$$
P^{-1}[T]_{C} P=\left(\begin{array}{c|cccc}
\lambda & ? & ? & \ldots & ? \\
\hline 0 & \ldots & & & \\
0 & & & & \\
\vdots & & Q^{-1} M Q & & \\
0 & & & & \\
0 & & &
\end{array}\right)
$$

which is upper triangular. This shows (2) for n. To see (1), take B to be the basis you get from C after applying P.

In practice, how do we actually upper-triangularise a matrix?
Basic strategy: find as many linearly independent eigenvectors as you can-use those as the first few elements, and extend to a basis. Will it work?

Say $\operatorname{dim} V=n$. If you find n linearly independent eigenvectors, then $[T]_{B}$ is diagonal! If you only find $n-1$, say $e_{1}, e_{2}, \ldots, e_{n-1}$ eigenvectors, then extend to a basis e_{1}, \ldots, e_{n} of V. Then

$$
[T]_{B}=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & 0 & ? \\
0 & \lambda_{2} & \ldots & 0 & ? \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_{n-1} & ? \\
0 & 0 & \ldots & 0 & ?
\end{array}\right)
$$

because $T e_{i}=\lambda_{i} e_{i}$ if $i<n$ and e_{n} is anything. Thus $[T]_{B}$ is upper-triangular.
If you can only find $n-2$, then you need to look at the proof, and decide where to go next.
Cayley-Hamilton theorem. If A is an $n \times n$ matrix, $A=\left(a_{i j}\right)$ and if $f(x)=a_{m} x^{m}+$ $\cdots+a_{1} x+a_{0}$ is any polynomial (with coefficients in the ground field), then it makes sense to talk about

$$
f(A)=a_{m} A^{m}+\cdots+a_{1} A+a_{0} I_{n} .
$$

Theorem 10.3 (Cayley-Hamilton). Let A be an $n \times n$ matrix and let $p(x)$ be the characteristic polynomial, $p(x)=\operatorname{det}(x I-A)$. Then $p(A)=0$, the zero matrix.

Example. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Then $p(x)=x^{2}-5 x-2$, so

$$
p(A)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{2}-\left(\begin{array}{cc}
5 & 10 \\
15 & 20
\end{array}\right)-\left(\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right)-\left(\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right)=0
$$

as expected.
A bogus proof the Cayley-Hamilton Theorem 10.3 is to say $p(x)=\operatorname{det}(x I-A)$, so

$$
p(A)=\operatorname{det}(A I-A)=\operatorname{det}(A-A)=\operatorname{det}(0)=0 .
$$

However, this makes no sense, since $p(A)$ should be a matrix not a number. The reason this is bogus is that x is supposed to be a number, so you cannot substitute A for x in the determinant. What does $x-a_{11}$ mean if $x=A$?

The following proposition is a preparation for the proof.
Proposition 10.4. Let A and B be similar $n \times n$ matrices, i.e. $B=P^{-1} A P$ for some invertible $n \times n$ matrix P. Then
(1) A and B have the same characteristic polynomial,
(2) if $f(x)$ is any polynomial, then

$$
f(B)=P^{-1} f(A) P,
$$

(3) if $f(B)=0$, then $f(A)=0$.

Proof. For (1), we have:

$$
\begin{aligned}
\operatorname{det}(x I-B) & =\operatorname{det}\left(x I-P^{-1} A P\right) & & \text { definition } \\
& =\operatorname{det}\left(P^{-1} x I P-P^{-1} A P\right) & & P^{-1} I P=I \\
& =\operatorname{det}\left(P^{-1}(x I-A) P\right) & & \\
& =\operatorname{det}(x I-A) & & \text { by } 7.14(2)
\end{aligned}
$$

For (2), first note:

$$
B^{k}=P^{-1} A^{k} P
$$

for all $k \geq 0$. (Easy proof by induction on k.) Now, if $f(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$, then $f(B)=a_{m} P^{-1} A^{m} P+\cdots+a_{1} P^{-1} A P+a_{0} I=P^{-1}\left(a_{m} A^{m}+\cdots+a_{1} A+a_{0}\right) P=P^{-1} f(A) P$. Finally, (3) follows from (2).

Proof of Cayley-Hamilton Theorem 10.3. Let A be $n \times n$, with characteristic polynomial $p(x)$. By Theorem 10.2, there exists an invertible P such that $P^{-1} A P=B$ is upper triangular (with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$). [Note that we pretend the ground field is algebraically closed in this part of the proof.] We will show that $P(B)=0$. That suffices by Proposition 10.4 (3). Since A and B are similar, $p(x)$ is the characteristic polynomial of B by Proposition 10.4 (1). Since $x I-B$ is upper-triangular:

$$
p(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \ldots\left(x-\lambda_{n}\right) .
$$

To show that $p(B)=0$ (the zero matrix), we will show that $p(B) v=0$ (the zero vector) for any vector v. We have:

$$
p(B)=\left(B-\lambda_{1} I\right)\left(B-\lambda_{2} I\right) \ldots\left(B-\lambda_{n} I\right)
$$

so for any vector $v=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{T}$:

$$
\left(B-\lambda_{n} I\right) v=\left(\begin{array}{ccccc}
\lambda_{1}-\lambda_{n} & & & & \star \\
& \lambda_{2}-\lambda_{n} & & & \\
& & \ddots & & \\
& & & \lambda_{n-1}-\lambda_{n} & \\
0 & & & & 0
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n-1} \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n-1} \\
0
\end{array}\right)
$$

Next step:

$$
\left(B-\lambda_{n-1} I\right)\left(B-\lambda_{n} I\right) v=\left(\begin{array}{ccccc}
\lambda_{1}-\lambda_{n-1} & & & & \star \\
& \lambda_{2}-\lambda_{n-1} & & & \\
& & \ddots & & \\
& & & 0 & \star \\
0 & & & & \lambda_{n}-\lambda_{n-1}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n-1} \\
0
\end{array}\right)=\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\vdots \\
\gamma_{n-2} \\
0 \\
0
\end{array}\right)
$$

It is easy to check that this pattern continues and hence deduce that:

$$
\left(B-\lambda_{2} I\right) \ldots\left(B-\lambda_{n} I\right) v=\left(\begin{array}{c}
\delta_{1} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

The final step shows that
$p(B) v=\left(B-\lambda_{1} I\right)\left(B-\lambda_{2} I\right) \ldots\left(B-\lambda_{n} I\right) v=\left(\begin{array}{cccc}0 & & & \star \\ & \lambda_{2}-\lambda_{1} & & \star \\ & & \ddots & \\ \\ 0 & & & \\ \\ & & & \lambda_{n}-\lambda_{1}\end{array}\right)\left(\begin{array}{c}\delta_{1} \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)$
and this completes the proof.

11. Jordan Canonical Form

Idea: try to find out when two matrices are similar. Say A and B are similar matrices, i.e. $B=P^{-1} A P$. What do they have in common?

Proposition 11.1. Let A and B be similar matrices. Then A and B have the same:
(1) determinant
(2) characteristic polynomial
(3) eigenvalues and algebraic multiplicities
(4) geometric multiplicities
(5) rank and nullity
(6) trace

Proof. Firstly, (1) is 7.14 (2), (2) is 10.4, and (3) follows from (2).
For (4), say $B=P^{-1} A P$ and $\lambda \in E$. We will show that $\operatorname{dim} E_{\lambda}(A)=\operatorname{dim} E_{\lambda}(B)$, where $E_{\lambda}(M)$ is the λ-eigenspace for matrix M. Take $v \in E_{\lambda}(B)$ so that $B v=\lambda v$. Since $B=$ $P^{-1} A P, P B=A P$ and

$$
A P v=P B v=P(B v)=P(\lambda v)=\lambda P v
$$

so $P v \in E_{\lambda}(A)$. Therefore, $v \mapsto P v$ is a map $E_{\lambda}(B) \rightarrow E_{\lambda}(A)$. It is easy to check it is an invertible linear map with the inverse given by $v \mapsto P^{-1} v$. Therefore, $\operatorname{dim} E_{\lambda}(B)=$ $\operatorname{dim} E_{\lambda}(A)$.

For (5), we first check that the nullities coincide:

$$
\begin{aligned}
\operatorname{null} A & =\operatorname{dim} \operatorname{ker} A & & \\
& =\operatorname{dim} E_{0}(A) & & \text { definition } \\
& =\operatorname{dim} E_{0}(B) & & \text { by }(4) \\
& =\operatorname{dim} \operatorname{ker} B & & \text { definition } \\
& =\operatorname{null} B & &
\end{aligned}
$$

and by the rank-nullity theorem the ranks also coincide.
Finally, to show (6) we note that the trace is the coefficient of x^{n-1} in the characteristic polynomial:
$\operatorname{det}(x I-A)=\left(\begin{array}{ccccc}x-a_{11} & -a_{12} & -a_{13} & \cdots & -a_{1 n} \\ -a_{21} & x-a_{22} & & & \\ -a_{31} & & \ddots & & \\ \vdots & & & & x-a_{n n}\end{array}\right)=x^{n}-\left(a_{11}+\cdots+a_{n n}\right) x^{n-1}+\cdots$.
But by (2) the characteristic polynomials of A and B coincide.
Is the converse true? Say A and B are $n \times n$ matrices with the same characteristic polynomial, rank, nullity etc. Is A similar to B ? No! Take the following matrices:

$$
A=\left(\begin{array}{cccc}
7 & 1 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 7 & 1 \\
0 & 0 & 0 & 7
\end{array}\right) \quad B=\left(\begin{array}{cccc}
7 & 1 & 0 & 0 \\
0 & 7 & 1 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right)
$$

We have $\operatorname{det} A=\operatorname{det} B=7^{4}$ and their characteristic polynomials are $(x-7)^{4}$. The only eigenvalue is 7 and its algebraic multiplicity is 4 . Moreover, $g(7)=2$ for both A and B :

$$
E_{7}(A)=\left\langle e_{1}, e_{3}\right\rangle, \quad E_{7}(B)=\left\langle e_{1}, e_{4}\right\rangle .
$$

Since $\operatorname{det} A=\operatorname{det} B \neq 0$, their rank is 4 and their nullity is 0 . Finally, their traces are both 28 .

However, A and B are not similar! For example,

$$
\begin{aligned}
& (A-7 I)^{2}=0 \\
& (B-7 I)^{2} \neq 0
\end{aligned}
$$

so they cannot be similar by Proposition 10.4 (3).
In general, how do we check 2 matrices are similar? One way-put them both into Jordan Canonical Form. The rest of this chapter will explain this.

Jordan blocks. Ingredients: integer $n \geq 1, \lambda \in E$. We define a Jordan block to be

$$
J_{n}(\lambda)=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & & & 0 \\
& \lambda & 1 & 0 & & \\
& & \lambda & 1 & & \\
& & & \ddots & & \\
& & & & \lambda & 1 \\
0 & & & & & \lambda
\end{array}\right)
$$

Examples.

$$
J_{2}(7)=\left(\begin{array}{ll}
7 & 1 \\
0 & 7
\end{array}\right) \quad J_{4}(0)=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad J_{1}\left(3 \frac{1}{2}\right)=\left(3 \frac{1}{2}\right)
$$

Proposition 11.2 (Basic properties of Jordan blocks). Set $J=J_{n}(\lambda)$. Then
(1) characteristic polynomial of J is $(x-\lambda)^{n}$.
(2) λ is the only eigenvalue of $J, a(\lambda)=n, g(\lambda)=1$.
(3) Set $K=J-\lambda I=J_{n}(0)$. The linear map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by K sends

$$
e_{n} \mapsto e_{n-1} \mapsto e_{n-2} \mapsto \cdots \mapsto e_{2} \mapsto e_{1} \mapsto e_{0}
$$

(4) $(J-\lambda I)^{n}=0$ and for $1 \leq i \leq n-1$:

$$
(J-\lambda I)^{i}=\left(\begin{array}{cccccccc}
0 & 0 & \ldots & 0 & 1 & & & 0 \\
0 & 0 & \ldots & 0 & 0 & 1 & & \\
& & & & & & \ddots & \\
& & & & & & & 1 \\
& & & & & & & 0 \\
& & 0 & & & & & 0 \\
& & 0 & & & & \vdots \\
& & & & & & & 0
\end{array}\right)
$$

where the 1 in the first row appears in the $(i+1)$ th column etc.
(5) If $\mu \neq \lambda$, then $J-\mu I$ is invertible.

Proof. Since $J_{n}(\lambda)$ is upper-triangular, (1) is clear, and the only thing to prove in (2) is $g(\lambda)=1$. Need to solve

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & \ddots & & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n-1} \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

but LHS $=\left(v_{2}, v_{3}, \ldots, v_{n}, 0\right)^{T}$, so $E_{\lambda}\left(J_{n}(\lambda)\right)=\left\{\left(v_{1}, 0, \ldots, 0\right)^{T}: v_{1} \in E\right\}$ is 1-dimensional.
(3) is clear.

For (4), first note that $(J-\lambda I)^{n}$ kills every basis vector by (3), so $(J-\lambda I)^{n}=0$. For any $1 \leq i \leq n-1$, note that by (3), $(J-\lambda I)^{i}$ sends

$$
\begin{aligned}
e_{n} & \mapsto e_{n-i} \\
e_{n-1} & \mapsto e_{n-i-1} \\
\vdots & \\
e_{i+1} & \mapsto e_{1} \\
e_{i} & \mapsto 0 \\
\vdots & \\
e_{1} & \mapsto 0
\end{aligned}
$$

and (4) follows from writing this linear map in the basis $\left\{e_{1}, \ldots, e_{n}\right\}$.
For (5), note that $J-\mu I=J_{n}(\lambda-\mu)$ which has determinant $(\lambda-\mu)^{n} \neq 0$.
Remark. Since $a(\lambda)=n, g(\lambda)=1, J_{n}(\lambda)$ is diagonalisable if and only if $n=1$.
Block diagonal matrices. If A is an $n \times n$ matrix and B is an $m \times m$ matrix, define

$$
A \oplus B=\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right)
$$

an $(n+m) \times(n+m)$ matrix.
For example:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \oplus(5)=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

More generally, if A_{1}, \ldots, A_{k} are matrices and A_{i} is $n_{i} \times n_{i}$, then

$$
A_{1} \oplus A_{2} \oplus \cdots \oplus A_{k}=\left(\begin{array}{c|c|c|c}
A_{1} & 0 & 0 & 0 \\
\hline 0 & A_{2} & 0 & 0 \\
\hline 0 & 0 & \ddots & 0 \\
\hline 0 & 0 & 0 & A_{k}
\end{array}\right)=\left(\begin{array}{cccc}
A_{1} & & & 0 \\
& A_{2} & & \\
& & \ddots & \\
0 & & & A_{k}
\end{array}\right)
$$

Proposition 11.3 (Basic properties of \oplus). Let $A=A_{1} \oplus \cdots \oplus A_{k}$. Then
(1) If $p_{i}(x)$ is the characteristic polynomial of A_{i}, then the characteristic polynomial of A is

$$
\prod_{i=1}^{k} p_{i}(x)
$$

(2) The set eigenvalues of A is the union of the sets of eigenvalues of A_{i}.
(3) For any λ :

$$
\operatorname{dim} E_{\lambda}(A)=\sum_{i=1}^{k} E_{\lambda}\left(A_{i}\right)
$$

(4) For any polynomial $f(x)$:

$$
f(A)=f\left(A_{1}\right)+\cdots+f\left(A_{k}\right)
$$

Proof. For (1), we have that

$$
\operatorname{det}(x I-A)=\operatorname{det}\left(\begin{array}{c|c|c|c}
x I-A_{1} & 0 & 0 & 0 \\
\hline 0 & x I-A_{2} & 0 & 0 \\
\hline 0 & 0 & \ddots & 0 \\
\hline 0 & 0 & 0 & x I-A_{k}
\end{array}\right)=\operatorname{det}\left(x I-A_{1}\right) \ldots \operatorname{det}\left(x I-A_{k}\right)
$$

by Q5 from Problem Sheet 7 and (2) follows from (1) immediately. Moreover, (3) is Q5 from Problem Sheet 6.

For (4), it is enough to check that $A^{r}=A_{1}^{r} \oplus \cdots \oplus A_{k}^{r}$ which one can do by induction.
Jordan Canonical Form theorem. We are now ready to state the biggest theorem of this chapter.

Theorem 11.4 (Jordan Canonical Form). Every $n \times n$ matrix over an algebraically closed field E is similar to a matrix of the form

$$
J_{n_{1}}\left(\lambda_{1}\right) \oplus J_{n_{2}}\left(\lambda_{2}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)
$$

Furthermore, this "JCF matrix" is unique up to reordering of the factors.
We will prove this later. For now, assume the theorem temporarily. By uniqueness, the matrices

$$
J_{3}(7) \oplus J_{1}(7)=\left(\begin{array}{cccc}
7 & 1 & 0 & 0 \\
0 & 7 & 1 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right) \quad J_{2}(7) \oplus J_{2}(7)=\left(\begin{array}{cccc}
7 & 1 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 7 & 1 \\
0 & 0 & 0 & 7
\end{array}\right)
$$

are not similar, as we have seen before!

Remark.

(1) The λ_{i} in JCF Theorem 11.4 might not be distinct!
(2) JCF Theorem 11.4 is similar to the fundamental theorem of arithmetic (any positive integer is uniquely a product of primes).
(3) We work over an algebraically closed field to have all the eigenvalues.
(4) The characteristic polynomial of $J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)$ is

$$
\left(x-\lambda_{1}\right)^{n_{1}}\left(x-\lambda_{2}\right)^{n_{2}} \ldots\left(x-\lambda_{k}\right)^{n_{k}} .
$$

(5) $A \oplus B$ is similar to $B \oplus A$. To see this, let $C=A \oplus B$ and consider the linear map $E^{N} \rightarrow E^{N}$ given by $v \mapsto C v$. Then if A is $n \times n, B$ is $(N-n) \times(N-n)$, then we can write the linear map $v \mapsto C v$ in the basis

$$
\left\{e_{n+1}, e_{n+2}, \ldots, e_{N}, e_{1}, \ldots, e_{n}\right\}
$$

(where $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$ is the standard basis of E^{N}) to get $B \oplus A$.

Let us stop assuming JCF Theorem 11.4 and prove it!
Say A is any $n \times n$ matrix and assume that A is similar to

$$
J=J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)
$$

By rearranging the blocks, we can assume that

$$
J=J_{n_{1}}(\lambda) \oplus J_{n_{2}}(\lambda) \oplus \cdots \oplus J_{n_{g}}(\lambda) \oplus J_{n_{g+1}}\left(\mu_{1}\right) \oplus \cdots \oplus J_{k}\left(\mu_{k-g}\right)
$$

and none of the $\mu_{1}, \ldots, \mu_{k-g}$ are equal to λ.
Proposition 11.5. In the above setting:
(1) the algebraic multiplicity of λ in A is $n_{1}+\cdots+n_{g}$,
(2) the geometric multiplicity of λ in A is g,
(3) the geometric multiplicity of λ in A is $n-\operatorname{rank}(A-\lambda I)=n-\operatorname{rank}(J-\lambda I)$,
(4) for all $i \geq 1$ we have $\operatorname{rank}(A-\lambda I)^{i}=\operatorname{rank}(J-\lambda I)^{i}$.

The Proposition follows from combining the previous results of this section: Propositions 11.1, 11.2 , and 11.3. We will use them in the proof without further reference.

Proof. For (1), we have that the characteristic polynomial of A is the characteristic polynomial of J which is

$$
(x-\lambda)^{n_{1}+\cdots+n_{g}}\left(x-\mu_{1}\right)^{n_{g+1}} \cdots\left(x-\mu_{k-g}\right)^{n_{k}} .
$$

To show (2), recall that $J_{n_{i}}(\lambda)$ has the geometric multiplicity of λ equal to 1 (and if $\mu \neq \lambda$, $J_{n_{i}}(\mu)$ has the geometric multiplicity of λ equal to 0), so J has geometric multiplicity of λ equal to $\underbrace{1+1+\cdots+1}_{g \text { times }}=g$.
Part (3) follows from the definition of the geometric multiplicity and the rank-nullity theorem:

$$
g(\lambda)=\operatorname{dim} \operatorname{ker}(A-\lambda I)=n-\operatorname{rank}(A-\lambda I)=n-\operatorname{rank}(J-\lambda I)
$$

Finally, for (4) note that 10.4 (2) implies $(A-\lambda I)^{i}$ and $(J-\lambda I)^{i}$ are similar, so we are done.

Example. (Assume JCF theorem 11.4.)
Find the JCF of

$$
A=\left(\begin{array}{ccccc}
3 & 5 & 0 & 0 & 1 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 9 & 0 & -1 \\
0 & 0 & 0 & 9 & 0 \\
0 & 0 & 0 & 0 & 9
\end{array}\right)
$$

Since A is upper-triangular, we easily see that its characteristic polynomial is

$$
(x-3)^{2}(x-9)^{3}
$$

Therefore, we can write

$$
J=\bigoplus_{i=1}^{r} J_{n_{i}}(3) \oplus \bigoplus_{j=1}^{s} J_{m_{j}}(9)
$$

First, consider the eigenvalue $\lambda=3$. Since $a(3)=2, n_{1}+\cdots+n_{r}=2$. Moreover, the rank of

$$
A-3 I=\left(\begin{array}{ccccc}
0 & 5 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & -1 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 6
\end{array}\right)
$$

is readily 4 , so $g(3)=5-4=1$. Thus $r=1$ and $n_{1}=2$.
Now, consider the eigenvalue $\lambda=9$. Since $a(9)=3, m_{1}+\cdots+m_{s}=3$. Moreover, the rank of

$$
A-9 I=\left(\begin{array}{ccccc}
-6 & 5 & 0 & 0 & 1 \\
0 & -6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is readily 3 , so $g(9)=5-3=2$. Thus $s=2$ and $m_{1}+m_{2}=3$. So $m_{1}=1, m_{2}=2$ (up to permutation of factors).

Therefore:

$$
J=J_{2}(3) \oplus J_{1}(9) \oplus J_{2}(9)
$$

Proposition 11.6. Suppose

$$
\begin{aligned}
& A=J_{a_{1}}\left(\lambda_{1}\right) \oplus J_{a_{2}}\left(\lambda_{2}\right) \oplus \cdots \\
& B=J_{b_{1}}\left(\mu_{1}\right) \oplus J_{b_{2}}\left(\mu_{2}\right) \oplus \cdots
\end{aligned}
$$

are two similar matrices in JCF. Then, after re-ordering blocks of B if necessary, A and B have the same number of blocks, and

$$
\begin{aligned}
& J_{a_{1}}\left(\lambda_{1}\right)=J_{b_{1}}\left(\mu_{1}\right), \\
& J_{a_{2}}\left(\lambda_{2}\right)=J_{b_{2}}\left(\mu_{2}\right),
\end{aligned}
$$

Strategy of the proof: need to check that we can figure out numbers like $a_{1}, \lambda_{1}, a_{2}, \lambda_{2}$ etc. using only properties which are unchanged if we replace J_{1} by a similar matrix (invariant under conjugation).

The kind of questions we now have to answer is: Why is $J_{1}(\lambda) \oplus J_{4}(\lambda)$ not similar to $J_{2}(\lambda) \oplus J_{3}(\lambda)$?
We will illustrate the idea of the proof by showing these matrices are not similar. We have

$$
\begin{aligned}
& A=J_{1}(\lambda) \oplus J_{4}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 \\
0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right) \\
& B=J_{2}(\lambda) \oplus J_{3}(\lambda)=\left(\begin{array}{lllll}
\lambda & 1 & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 & 0 \\
0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right)
\end{aligned}
$$

Suppose A is similar to B. Then $A-\lambda I$ is similar to $B-\lambda I$ by Proposition 10.4 (2). We have:

$$
\begin{aligned}
& A-\lambda I=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& B-\lambda I=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

They both have rank 3. Also, $(A-\lambda I)^{2}$ and $(B-\lambda I)^{2}$ must be similar. We have:

$$
\begin{aligned}
& (A-\lambda I)^{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& (B-\lambda I)^{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

One has rank 1 and one has rank 2. This contradicts 11.1 (5). Thus A and B are not similar.

Proof of Proposition 11.6. First, let us assume that all the λ_{i} and all the μ_{j} are equal to one number, λ.

New notation: Let us reorder the blocks in A so that

$$
a_{1} \leq a_{2} \leq a_{3} \leq \ldots
$$

Say that m_{1} of the a_{i} 's equal $1, m_{2}$ of the a_{i} 's equal 2 , etc. Then

$$
A=J_{1}(\lambda)^{m_{1}} \oplus J_{2}(\lambda)^{m_{2}} \oplus \cdots,
$$

where $J_{1}(\lambda)^{m_{1}}=J_{1}(\lambda) \oplus \cdots \oplus J_{1}(\lambda), m_{1}$ times. We have:

$$
A=\left(\begin{array}{llll|llll|l}
\lambda & & & & & & & & \\
& \lambda & & & & & & & \\
& & \ddots & & & & & & \\
& & & \lambda & & & & & \\
\hline & & & & \lambda & 1 & & & \\
& 0 & \lambda & & & & \\
& & & & & & \lambda & 1 & \\
& & & & & & \lambda & & \\
& & & & & & & \ddots & \\
\hline & & & & & & & & \ddots
\end{array}\right)
$$

where the first part has dimension $m_{1} \times m_{1}$, second part has dimension $\left(2 m_{2}\right) \times\left(2 m_{2}\right)$, etc.
Say the largest block that occurs is a block of size r. So $m_{r} \neq 0$ and $m_{r+1}=m_{r+2}=\cdots=0$. Then $(A-\lambda I)^{r}=0$ (raise $A-\lambda I$ to the power r). (This is because $\left(J_{n}(\lambda)-\lambda I\right)^{n}=0$ by Proposition 11.2 (4)).

What is $(A-\lambda I)^{r-1}$? Well, raising $J_{n}(\lambda)-\lambda I$ to power $r-1$ will kill it if and only if $n \leq r-1$. But $\left(J_{r}(\lambda)-\lambda I\right)^{r-1} \neq 0$ and by Proposition 11.2 (4), it has rank 1. By Proposition 11.3 (3), we deduce that the rank of $(A-\lambda I)^{r-1}$ equal number of blocks of size r which is m_{r}. So if A and B are similar, they have the same m_{r}.

What about $(A-\lambda I)^{r-2}$? Each block of size r contributes 2 to the rank, each block of size $r-1$ contributes 1 , all others contribute nothing. Thus:

$$
\operatorname{rank}(A-\lambda I)^{r-2}=2 m_{r}+m_{r-1}
$$

So if A and B are similar, they have the same m_{r-1}.
Continuing in this way, we show that if A and B are similar, then they have the same r and the same m_{1}, \ldots, m_{r}, so blocks are the same after reordering.

In general, the similar matrices A and B may have lots of eigenvalues. Since A and B have the same characteristic polynomials, they have the same eigenvalues with algebraic multiplicities. Now, observe that if $\mu \neq \lambda$

$$
\left(J_{a}(\mu)-\lambda I\right)^{n}
$$

is an invertible matrix, so it has rank $a\left(J_{a}(\mu)\right.$ is an $a \times a$ matrix). Therefore, if we look at the ranks of $(A-\lambda I)^{n}$ and $(B-\lambda I)^{n}$, the contributions from the Jordan blocks with eigenvalue μ will be the same (the dimension of the block). Thus we can repeat the same
trick to show that, for a fixed eigvenvalue λ, the Jordan blocks of A and B with eigenvalues λ are the same (up to reordering).

The conclusion so far is that any matrix is similar to at most one matrix in JCF (regarding permutations of blocks as the same).
We still need to prove that any matrix is similar to at least one matrix in JCF.
Let A be an $n \times n$ matrix. How to find P such that $P^{-1} A P$ is in JCF? Set $V=\mathbb{C}^{n}$ and let us define $T: V \rightarrow V$ by $T(v)=A v$. If $E=$ standard basis of V, then

$$
[T]_{E}=A
$$

If we can find a new basis F such that $[T]_{F}=J$ and

$$
J=J_{a_{1}}\left(\lambda_{1}\right) \oplus J_{a_{2}}\left(\lambda_{2}\right) \oplus \cdots
$$

then we are done, as if P is an approporiate change of basis matrix, then $[T]_{F}=P^{-1}[T]_{E} P$, so $J=P^{-1} A P$.

Say $T: V \rightarrow V$ is a linear map. We need to find a basis, F, such that $[T]_{F}$ is a JCF matrix.
There are 3 ingredients in the proof:
(A) Method of braking V up as a direct sum of subspaces $V=V_{1} \oplus \cdots \oplus V_{k}$. This is an abstract analogue of $A=A_{1} \oplus \cdots \oplus A_{k}$.
(B) Break V up as above such that if $T: V \rightarrow V$, then

$$
\begin{gathered}
T\left(V_{1}\right) \subseteq V_{1} \\
T\left(V_{2}\right) \subseteq V_{2} \\
\vdots \\
T\left(V_{k}\right) \subseteq V_{k}
\end{gathered}
$$

and such that T restricted to V_{i} only has 1 eigenvalue.
(C) Prove the existence of JCF for linear maps with just 1 eigenvalue.

We will start with (C), the existence of JCF matrices that have one eigenvalue only.
Theorem 11.7. Say V is a vector space of dimension n, and suppose $S: V \rightarrow V$ is linear and the characteristic polynomial of S is x^{n} (equivalently, only eigenvalue of S is 0). Then V has a basis B such that

$$
[S]_{B}=J_{n_{1}}(0) \oplus J_{n_{2}}(0) \oplus \cdots \oplus J_{n_{g}}(0)
$$

Before we start the proof, let us think about what B will look like. Say

$$
B=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}, e_{n_{1}+n_{2}+1}, \ldots\right\}
$$

where n_{1} is the size of the first block, n_{2} is the size of the second block etc. By definition of $[S]_{B}:$

$$
\begin{gathered}
S\left(e_{n_{1}}\right)=e_{n_{1}-1} \\
S\left(e_{n_{1}-1}\right)=e_{n_{1}-2}
\end{gathered}
$$

$$
\begin{gathered}
S\left(e_{2}\right)=e_{1} \\
S\left(e_{1}\right)=0
\end{gathered}
$$

Similarly for the next Jordan block:

$$
\begin{gathered}
S\left(e_{n_{1}+n_{2}}\right)=e_{n_{1}+n_{2}-1} \\
\vdots \\
S\left(e_{n_{2}+2}\right)=e_{n_{1}+1} \\
S\left(e_{n_{1}+1}\right)=0
\end{gathered}
$$

With this motivation, we introduce a temporary definition (it will simplify the proof; however, it is not a standard notion that you will find in a textbook).

Definition. A chain is a finite sequence of vectors

$$
v, S(v), S^{2}(v), \ldots, S^{d-1}(v)
$$

such that $S^{d}(v)=0$ and $S^{d-1}(v) \neq 0$.
For example, $e_{n_{1}}, e_{n_{1}-1}, \ldots, e_{1}$ is a chain (as above).
Remark. If $0 \neq v \in V$ and $S(v)=0$, then $\{v\}$ is a perfectly good chain (length 1).
We can now restate Theroem 11.7 using chains: If the only evalue of S is 0 , then V has a basis which is a finite disjoint union of chains (because any permutation of a basis is a basis).

Proof of Theorem 11.7. Induction on $n=\operatorname{dim} V$. Base case $n=1: S=(0)$ and any basis will do!

Inductive step: $\operatorname{dim} V=n \geq 2$ and $S: V \rightarrow V$, only eigenvalue is 0 . If $0 \neq v \in V$ is an eigenvector with eigenvalue 0 , then $S v=0 v=0$, so $\operatorname{dim} \operatorname{ker}(S)>0$ as it contains v, so $\operatorname{dim}(\operatorname{im}(S))<n$ by rank-nullity theorem.

So let us set $W=\operatorname{im}(S)=S(V)$. Then $\operatorname{dim} W<n$. Restriction of S to W is a linear map $S_{\mid W}: W \rightarrow V$, but the image of this linear map is $\subseteq \operatorname{im}(S)=W$, so the restriction $S_{\mid W}$ of S is a linear map $W \rightarrow W$.

Remark: if λ is an eigenvalue for $S_{\mid W}$ and $0 \neq w$ is an eigenvector with eigenvalue λ, then $S(w)=\lambda w$. But $w \in V$, so $\lambda=0$.

Therefore, we can apply the inductive hypothesis to $S_{\mid W}: W \rightarrow W$. Hence W has a basis which is a union of chains. Say a basis of W is

$$
\begin{gathered}
u_{1}, S\left(u_{1}\right), S^{2}\left(u_{1}\right), \ldots, S^{m_{1}-1}\left(u_{1}\right) \\
u_{2}, S\left(u_{2}\right), S^{2}\left(u_{2}\right), \ldots, S^{m_{2}-1}\left(u_{2}\right) \\
\vdots \\
u_{h}, S\left(u_{h}\right), S^{2}\left(u_{h}\right), \ldots, S^{m_{h}-1}\left(u_{h}\right) .
\end{gathered}
$$

and $S^{m_{1}}\left(u_{1}\right)=S^{m_{2}}\left(u_{2}\right)=\cdots=S^{m_{h}}\left(u_{h}\right)=0$.

Now we need a basis for V. Recall that $W=\operatorname{im}(S)=\{S(v): v \in V\}$. In particular, for $u_{i} \in \operatorname{im}(S)$, we can choose $v_{i} \in V$ such that

$$
S\left(v_{i}\right)=u_{i}
$$

and we have h slightly longer chains:

$$
\begin{gathered}
v_{1}, S\left(v_{1}\right), S^{2}\left(v_{1}\right), \ldots, S^{m_{1}}\left(v_{1}\right) \\
v_{2}, S\left(v_{2}\right), S^{2}\left(v_{2}\right), \ldots, S^{m_{2}}\left(v_{2}\right) \\
\vdots \\
v_{h}, S\left(v_{h}\right), S^{2}\left(v_{h}\right), \ldots, S^{m_{h}}\left(v_{h}\right)
\end{gathered}
$$

Note that $\operatorname{ker} S$ already contains $S^{m_{1}-1}\left(u_{1}\right), \ldots, S^{m_{h}-1}\left(u_{h}\right)$ which are linearly independent (but may not span $\operatorname{ker} S$). We can extend to a basis of $\operatorname{ker} S$ by throwing in vectors

$$
w_{1}, w_{2}, \ldots, w_{t}
$$

so that $\operatorname{dim} \operatorname{ker} S=h+t$.
We claim that the following chains

$$
\begin{gathered}
v_{1}, S\left(v_{1}\right), S^{2}\left(v_{1}\right), \ldots, S^{m_{1}}\left(v_{1}\right) \\
v_{2}, S\left(v_{2}\right), S^{2}\left(v_{2}\right), \ldots, S^{m_{2}}\left(v_{2}\right) \\
\vdots \\
v_{h}, S\left(v_{h}\right), S^{2}\left(v_{h}\right), \ldots, S^{m_{h}}\left(v_{h}\right) \\
w_{1} \\
w_{2} \\
\vdots \\
w_{t}
\end{gathered}
$$

form a basis. Let us first check linear independence. Suppose that

$$
\begin{align*}
0 & =\lambda_{11} v_{1}+\lambda_{12} S\left(v_{1}\right)+\cdots+\lambda_{1\left(m_{1}+1\right)} S^{m_{1}}\left(v_{1}\right) \\
& +\cdots \\
& +\lambda_{h 1} v_{h}+\lambda_{h 2} S\left(v_{h}\right)+\cdots+\lambda_{1\left(m_{h}+1\right)} S^{m_{h}}\left(v_{h}\right) \tag{1}\\
& +\mu_{1} w_{1}+\mu_{2} w_{2}+\cdots+\mu_{t} w_{t}
\end{align*}
$$

We will show that all the $\lambda_{i j}$'s and μ_{i} 's are 0 . First, apply S to equation (1) to get an equation in W :
$\lambda_{11} u_{1}+\lambda_{12} S\left(u_{1}\right)+\cdots+\lambda_{1 m_{1}} S^{m_{1}-1}\left(u_{1}\right)+\cdots+\lambda_{h 1} u_{h}+\lambda_{h 2} S\left(u_{h}\right)+\cdots+\lambda_{h m_{h}} S^{m_{h}-1}\left(u_{h}\right)=0$.
This is a linear relation on our basis for W, so

$$
\lambda_{11}=\lambda_{12}=\cdots=\lambda_{1 m_{1}}=\ldots=\lambda_{h 1}=\lambda_{h 2}=\ldots=\lambda_{h m_{h}}=0
$$

We substitute this back to (1) to get

$$
\lambda_{1\left(m_{1}+1\right)} S^{m_{1}}\left(v_{1}\right)+\cdots+\lambda_{h\left(m_{h}+1\right)} S^{m_{h}}\left(v_{h}\right)+\mu_{1} w_{1}+\cdots+\mu_{t} w_{t}=0
$$

which is a linear relation on our basis for $\operatorname{ker} S$, so

$$
\lambda_{1\left(m_{h}+1\right)}=\ldots=\lambda_{h\left(m_{h}+1\right)}=\mu_{1}=\ldots=\mu_{t}=0
$$

Therefore, our chains in V are linearly independent.

We now claim that the total number of elements in the proposed basis of chains is n. The total number is:

$$
\left(m_{1}+1\right)+\left(m_{2}+1\right)+\cdots+\left(m_{h}+1\right)+t=\left(m_{1}+\cdots+m_{h}\right)+h+t
$$

Our basis for W had size $m_{1}+\cdots+m_{h}$ and the dimension of the kernel of S was $h+t$, so the total number of vectors in the chains is

$$
\operatorname{dim} W+h+t=\operatorname{dim}(\operatorname{im}(S))+\operatorname{dim}(\operatorname{ker}(S))=n
$$

by rank-nullity. Hence the set must be a basis.
Corollary 11.8. If $S: V \rightarrow V$ has one eigenvalue λ then there exists a basis B for which $[S]_{B}$ is in $J C F$.

Proof. Apply Theorem 11.7 to $S-\lambda I$.
Direct sums of vector spaces. We will now show a method of braking up V as a direct sum of subspaces, an abstract analogue of the direct product of matrices. (This is point (A) of the outline before.)

Definition. Let V be a vector space, $V_{1}, \ldots, V_{s} \subseteq V$. We say that V is the direct sum of V_{1}, \ldots, V_{s} and write

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}
$$

if every $v \in V$ can be written uniquely as $v=v_{1}+v_{2}+\cdots+v_{s}$ with $v_{i} \in V_{i}$.
Examples. Let $V=\mathbb{R}^{3}, e_{1}, e_{2}, e_{3}$ standard basis vectors. Then

$$
\begin{gathered}
V=\operatorname{sp}\left(e_{1}\right) \oplus \operatorname{sp}\left(e_{2}\right) \oplus \operatorname{sp}\left(e_{3}\right) \\
V=\operatorname{sp}\left(e_{1}, e_{2}\right) \oplus \operatorname{sp}\left(e_{3}\right)
\end{gathered}
$$

More exotic example:

$$
\mathbb{R}^{2}=\operatorname{sp}\left(\binom{1}{0}\right) \oplus \operatorname{sp}\left(\binom{1}{1}\right)
$$

Proposition 11.9. The following are equivalent:
(1) $V=V_{1} \oplus \cdots \oplus V_{s}$,
(2) $\operatorname{dim} V=\sum_{i=1}^{s} \operatorname{dim} V_{i}$ and if B_{i} is a basis for V_{i}, then $B=B_{1} \cup \ldots \cup B_{s}$ is a basis for V.

Proof. Throughout the proof, we will use the notation $\left|B_{i}\right|=n_{i}$ and $B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots, b_{i_{n}}\right\}$ for $i=1,2, \ldots, s$.

We will first show (1) implies (2). Let B_{i} be a basis for V_{i}. We will check that $B=B_{1} \cup \ldots \cup B_{s}$ is a basis for V.

We will first show that B spans V. Say $v \in V$ and write $v=v_{1}+\cdots+v_{s}$ for $v_{i} \in V_{i}$. Each v_{i} is a linear combination of elements of B_{i}, so v is a linear combination of elements of B.
We will now show that B is linearly independent. Say we have a linear combination

$$
\sum_{i=1}^{s}\left(\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}\right)=\sum_{j=1}^{n_{1}} \lambda_{1 j} b_{1 j}+\cdots+\sum_{j=1}^{n_{s}} \lambda_{s j} b_{s j}=0 .
$$

Now, set $v_{i}=\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}$ for $i=1,2, \ldots, s$. Then

$$
v_{1}+v_{2}+\cdots+v_{s}=0
$$

But note that $0=0+0+\cdots+0$ since $0 \in V_{i}$ for all i. By definition of a direct sum, 0 can only be written as a sum of elements of the V_{i} in one way. Thus $v_{1}=v_{2}=\cdots=v_{s}=0$. But $B_{1}, B_{2}, \ldots, B_{s}$ are bases, so they are linearly independent and:

$$
\begin{gathered}
\lambda_{11}=\lambda_{12}=\cdots=\lambda_{1 n_{1}}=0 \\
\lambda_{21}=\lambda_{22}=\cdots=\lambda_{2 n_{2}}=0 \\
\vdots \\
\lambda_{s 1}=\lambda_{s 2}=\cdots=\lambda_{s n_{s}}=0
\end{gathered}
$$

Linear independence follows.
Therefore, $|B|=\sum_{i=1}^{s}\left|B_{i}\right|$ and $B=\bigcup_{i=1}^{s} B_{i}$ is a basis for V.
We will now show that (2) implies (1). Say $v \in V$ and write it as a linear combination of elements of $B=\bigcup_{i=1}^{s} B_{i}$:

$$
v=\sum_{i=1}^{s}\left(\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j}\right)
$$

so setting

$$
v_{i}=\sum_{j=1}^{n_{i}} \lambda_{i j} b_{i j} \in V_{i}
$$

for $i=1,2, \ldots, s$, we get that $v=v_{1}+\cdots+v_{s}$.
For uniqueness, say $v=v_{1}^{\prime}+\cdots+v_{s}^{\prime}$ for $v_{i}^{\prime} \in V_{i}$. Write v_{i}^{\prime} as a linear combination of B_{i}, the fixed basis for V_{i} :

$$
v_{i}^{\prime}=\sum_{j=1}^{n_{i}} \lambda_{i j}^{\prime} b_{i j} \in V_{i}
$$

Then $v_{1}+\ldots+v_{s}=v=v_{1}^{\prime}+\cdots+v_{s}^{\prime}$, so

$$
0=v-v=\sum_{i=1}^{s}\left(\sum_{j=1}^{n_{i}}\left(\lambda_{i j}-\lambda_{i j}^{\prime}\right) b_{i j}\right)
$$

so we have a linear relation on B. But B is a basis, so we get that $\lambda_{i j}=\lambda_{i j}^{\prime}$, and $v_{i}=v_{i}^{\prime}$ for $i=1,2, \ldots, s$, as requested.

Exercise: Let V be a vector space, and V_{1}, V_{2} be subspaces. Then

$$
V=V_{1} \oplus V_{2} \quad \Leftrightarrow \quad V=V_{1}+V_{2} \quad \text { and } \quad V_{1} \cap V_{2}=0
$$

where $V_{1}+V_{2}=\left\{v_{1}+v_{2}: v_{i} \in V_{i}\right\}$.
(Hint: $\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}-\operatorname{dim}\left(V_{1} \cap V_{2}\right)$.)

Lemma 11.10. Say $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}$ and say B_{i} basis for V_{i} and $B=$ union of the B_{i} 's. Suppose $T: V \rightarrow V$ is a linear map and $T\left(V_{i}\right) \subseteq V_{i}$ for all i. Write $T_{i}: V_{i} \rightarrow V_{i}$ for the restriction of T to V_{i}. Then

$$
[T]_{B}=\left[T_{1}\right]_{B_{1}} \oplus\left[T_{2}\right]_{B_{2}} \oplus \cdots \oplus\left[T_{s}\right]_{B_{s}} .
$$

Proof. Say $B_{1}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $T\left(e_{1}\right) \in V_{1}$ because $e_{1} \in V_{1}$. Thus

$$
\begin{gathered}
T\left(e_{1}\right)=a_{11} e_{1}+\cdots+a_{n 1} e_{n}+0 f_{1}+0 f_{2}+\cdots \\
\vdots \\
T\left(e_{n}\right)=a_{1 n} e_{1}+\cdots+a_{n n} e_{n}+0 f_{1}+0 f_{2}+\cdots
\end{gathered}
$$

and so

$$
[T]_{B}=\left(\left.\begin{array}{ccc|}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n_{1}} & \ldots & a_{n n}
\end{array} \right\rvert\,\right.
$$

and the lemma follows if you keep going.
Theorem 11.11. Suppose $T: V \rightarrow V, V$ a vector space over an algebraically closed field E. Suppose the characteristic polynomial of T is

$$
\prod_{i=1}^{s}\left(x-\lambda_{i}\right)^{a_{i}}
$$

with λ_{i} distinct eigenvalues. Define $V_{i} \subseteq V$ by

$$
V_{i}=\operatorname{ker}\left(T-\lambda_{i} I\right)^{a_{i}} .
$$

Then:
(1) $V=V_{1} \oplus \cdots \oplus V_{s}$,
(2) $T\left(V_{i}\right) \subseteq V_{i}$ for all i,
(3) the characteristic polynomial of $T_{\mid V_{i}}$, the restriction of T to V_{i}, is $\left(x-\lambda_{i}\right)^{a_{i}}$.

Corollary 11.12. Existence of Jordan Canonical Form.
Proof of Corollary 11.12. Because Corollary 11.8 applies to each V_{i} (only eigenvalue is λ_{i}), there exists a basis B_{i} such that $\left[T_{i}\right]_{B_{i}}$ is in JCF. So set $B=\bigcup B_{i}$ and use Lemma 11.10 to finish the proof.

Proof of Theorem 11.11. We will prove all three parts together by induction on s.
In the base case $s=1$ so $V_{1}=V$ and there is nothing to prove.
Inductive step. First, let us write characteristic polynomial of $T: V \rightarrow V$ as

$$
(x-\lambda)^{a} \times q(x)
$$

where λ is not a root of $q(x)$, and let $p(x)=(x-\lambda)^{a}$. The two key facts we will use are:
(i) $p(x), q(x)$ are coprime,
(ii) $p(T) q(T)=0$.
[Since λ is not a root of $q(x)$, (i) is trivial. Since $p(x) q(x)$ is the characteristic polynomial of T, (ii) follows from Cayley-Hamilton Theorem 10.3.]

By (i) and Euclid's algorithm for polynomials, there exist polynomials $\lambda(x)$ and $\mu(x)$ such that $\lambda(x) p(x)+\mu(x) q(x)=1$ and, substituting $x=T$, we get

$$
\begin{equation*}
\lambda(T) p(T)+\mu(T) q(T)=\mathrm{Id} \tag{2}
\end{equation*}
$$

Set:

$$
\begin{gathered}
V_{1}=\operatorname{ker}(T-\lambda I)^{a}=\operatorname{ker} p(T), \\
W=\operatorname{ker} q(T)
\end{gathered}
$$

We will show that $V=V_{1} \oplus W$.
Firstly, if $v \in V$, then by equation (2) we have

$$
\lambda(T) p(T) v+\mu(T) q(T) v=\operatorname{Id} v=v
$$

Set $w=\lambda(T) p(T) v$ and $v_{1}=\mu(T) q(T) v$. We have $w \in W$ as

$$
q(T) w=q(T) \lambda(T) p(T) v=\lambda(T)[p(T) q(T)] v=0
$$

where the last equality follows from (ii), and similarly $v_{1} \in V_{1}$ as

$$
p(T) v_{1}=p(T) \mu(T) q(T) v=\mu(T)[p(T) q(T)] v=0
$$

Therefore, $V=V_{1}+W$.
We now claim that $V_{1} \cap W=0$. If $v \in V_{1} \cap W$, then

$$
p(T) v=q(T) v=0
$$

and thus by equation (2)

$$
v=\operatorname{Id} v=\lambda(T) p(T) v+\mu(T) q(T) v=0
$$

Therefore $V_{1} \cap W=0$, which together with $V=V_{1}+V_{2}$ shows that $V=V_{1} \oplus W$.
Note that the only eigenvalue of $T_{\mid V_{1}}: V_{1} \rightarrow V_{1}, T$ restricted to V_{1}, is λ. Indeed, suppose contrary that some $\mu \neq \lambda$ is an eigenvalue of $T_{V_{1}}$ with eigenvector $v \in V_{1}$. Then $T(v)=\mu v$ so μ is also an eigenvalue of T, and $p(\mu) q(\mu)=0$. But $\mu \neq \lambda$ implies $p(\mu) \neq 0$, so $q(\mu)=0$, and hence $v \in \operatorname{ker}(q(T))=W$. However, we already showed that $V_{1} \cap W=0$, so $v=0$, a contradiction. Therefore, the characteristic polynomial of $T_{V_{1}}$ is $p(x)=(x-\lambda)^{a}$.
To check that $T\left(V_{1}\right) \subseteq V_{1}$, note that if $p(T) v_{1}=0$ then

$$
p(T) T v_{1}=T p(T) v_{1}=T(0)=0
$$

and similarly $T(W) \subseteq W$.
Therefore, we have shown that $V=V_{1} \oplus W$ and V_{1} satisfies (2) and (3).
In order to use the inductive hypotheses, we have to check that the characteristic polynomial of $T_{\mid W}: W \rightarrow W$ is $q(x)$. Let the characteristic polynomial be $f(x)$. Since $V=V_{1} \oplus W$, $T=T_{\mid V_{1}} \oplus T_{\mid W}$, and we have

$$
p(x) q(x)=f(x) q(x)
$$

so $f(x)=p(x)$. Therefore, we can decompose W in the same way by the inductive hypothesis to finish the proof.

