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The examples will be symmetry groups of objects in 2 or 3 dimensions. Let us start with an

example in 2-d.

Consider the distance structure on R? i.e. the distance function d: R? x R* — Ry =
{r € R: x > 0} that assigns to two vectors the distance between them. For x = (1, z3),

y = (¥1,92), we have

d(x,y) = \/($1 —y1)? + (22 — y)*.

An isometry of R? is a bijection f: R?> — R? such that
d(f(x), f(y)) = d(x,y)
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for any x,y € R2 In other words, an isometry is a distance-preserving bijection.

Examples. (1) Rotations. If P € R? and 6 is an angle, then define ppg to be the rotation
through angle 6 anticlockwise with center P.

op,0(x)

(3) Translations. If v € R?, then define 7, by 7 (x) = x + V.

X v v (x)

> e

J

Remark. There are isometries that are not of type (1), (2), or (3), for example a glide-
reflection f = 0,07y, v a vector parallel to line [. On the other hand, every isometry can be
built by composing reflections, rotations, and translations.

(Tricky exercise. Step 1: an isometry that fixes 2 points, fixes the line also.
Step 2: an isometry that fixes 2 points must be the identity or a reflection.
Step 3: an isometry that fixes 3 non-collinear points is the identity.

Step 4: any isometry is determined by its value on 3 non-collinear points.)

Definition. Let I(R?) be the set of all isometries of R2.
Proposition 1.1. The set I(R?) under the composition of functions is a group.

Proof. (Closure) Say f,g € I(R?). The composite of two bijections is a bijection, so f o g is
a bijection. Furthermore, if x,y € R2, then

d((f o 9)(x),(fog)(y)) =d(f(9(x)), f(9(y))) definition of fog

=d(g9(x),9(y)) f is an isometry
=d(x,y) g is an isometry

(Associativity) Composition of functions is always associative.

(Identity) Define e: R? — R? by e(x) = x. Then for all f € I(R?)
foe=f=cof

and e € I(R?) (easy).
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(Inverses) Say f € I(IR?). Then f is a bijection, so there exists an inverse function f~': R? —
R? such that fo f~' = f~'o f =e. Need to check that f~! € I(R?). It is a bijection—does
it preserve lengths?

Take any x,y € R%. Then
d(f~1(x), f7(y) = d(f(f71(x). F(fT)HY)) = dx,y),

since f is an isometry, and thus f~! € I(R?). Therefore, inverses exist. 0]

Of course, I(IR?) is hugely infinite. Therefore, we will consider subgroups of isometries which
preserve particular subsets of R2.

Say II C R? is a subset. For g € I(R?), define
g() :=={g(z) | = € 1}.

(Abuse of notation. In computing, function overloading.)

Example. Let II be an equilateral triangle centred at the origin pointing up:

IT

Let g = go» be the rotation by 7 centred at 0. Then g(II) is the triangle upside down:

g(IT)
On the other hand, if [ is the y-axis and o; the reflection about [, then o;(II) = II

3

Definition. Say II C R?. Then the symmetry group of II is
G(I) := {g € I(R?) | g(II) = 11} = {the isometries sending II to itself}.
Example. If IT is the triangle above, then
G(IT) = {e, 01, 00,2x/3, - - - }-
Proposition 1.2. The set G(I1) is a subgroup of I(R?).
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Proof. (1) If e is the identity map, then e(I) = II by definition, so e € G(II).
(2) If z,y € G(II), then

(zoy)(Il) = a(y(ID)
(T1) since y € G(II)
=TI since x € G(II)

I
8

so zoy € G(II).
(3) If z € G(II), then
r€GI) = 2() =1 = 2 (1) =27 (1) = I =2~ (II),
so z~1 € G(II). O

Strategy to work out G(II):

e Write down all the elements we can think of.
e Prove there are no more.

Examples.

(1) Equilateral triangle, centred at the origin.

Note that G(II) contains (at least): 3 rotations: e, 0 = o3, 0%, 3 reflections: oy,
09, 03 about (respectively) [y, Iy, I3.

Next, note that each symmetry of II sends corners to corners, so it induces a permu-
tation of the corners. If we label the corners by 1, 2, 3 (anticlockwise), then

e

0
o
01
)
03

A

Now say g € G(II) is any element. Then g permutes the corners, but all 6 permu-
tations of corners are listed above, so g has to agree with one of our elements on
corners. Thus g must be one of the elements we already thought of (an isometry is
determined by what it does to 3 non-collinear points). Therefore

G(H) = {67 o, QQa 01,02, 03}'



M2PM2: ALGEBRA 2 5

To compute the group law, work in S5 instead, for example
ooy — (123)(23) = (12) < o3.

We will see later that G(II) is ‘isomorphic’ to Ss.
(2) Square, centred at the origin.

ll 1 4
l2 e
Iy .9 3
s

We note that G = G(II) contains 4 reflections (o; about [; for i = 1,2,3,4) and 4
rotations e, 0 = go/2, 0%, 0°. Therefore, |G| > 8.
We claim that |G| = 8. To show that, take g € G. Since g preserves distance, it also
preserves the corners. Furthermore, g sends opposite corners to opposite corners and
adjacent corners to adjacent corners. Say the corners are labeled 1, 2, 3, 4 (as above)
and suppose g(1) =i, 1 < i < 4. Then g¢(2) is a neighbour of i, i.e. “c + 1 or i — 17
(where 4 +1=1,1—1=4), call it j. Then:
g(l) =1,
9(2) =1,
g(3) = corner opposite g(1) = i,
g(4) = corner opposite g(2) = 7,
and g is determined by what it does to corners. Total number of possibilities for ¢ is
hence at most
(no. of i) x (no. of j) =4 x2 =238,
and |G| < 8.

But we already found 8 elements of G, so |G| > 8, and thus |G| = 8. So we have
shown

G = {67 o, 927 037 O1y--- 704}'
This group is called Dg, the dihedral group of order 8.
To work out multiplication in Dg, let us look at what our elements do to corners

(& — €

o — (1234)
2 = (13)(24)
0* — (1432)
oy — (24)
oy = (12)(34)
o3 — (13)
or — (14)(23)
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We can use this to multiply elements, for example
o9 003 = (12)(34)(13)
which sends 1 to 4, 4 to 3, 3 to 2, 2 to 1, and thus
090 03 = (1432) = ps.
Let H C Dg be the cyclic subgroup generated by o. Then
H = {e,0,0° 0’}

Let 0 = 01. Then o € H, so the right coset Ho of H is not H. Therefore, HNHo = ()
and |H| = |Ho| = 4 which shows

Ho = {01,09,03,04}.
Finally, we can write
D8 = H U HJ = {67 0, 927 Q37 o, 00, Q207 Q30}7

a better notation for the elements of Dy.
What equations do o and g satisfy?
Easy ones: ¢* = e and 02 = e. What is 0o?

oo = (24)(1234) = (14)(23) = 0’0
for some ?. Let us try oo
o’o = (1432)(24) = (14)(23).
Finally, we get the equation
op = Q30 = Q_lcr.

We now claim that these are the only 3 equations we need to figure out any product
of 2 elements of Ds.
For example, consider (oo)(0?c). We have

ooo*c = o(op)oo
=o(07'0)oo
0
(

=00 (00)o

= (07 'o)o

= 971
This will work in general, because we have a method of getting the ps to the left
of the os. Hence Dg is generated by o and o subject to the relations ¢* = 02 = e,

~1
co=p0 0.

(3) Regular polygons. Let II be a regular n-gon with n > 3 and G = G(II). Then G
contains n rotations

€, 0 = O2n/n, 927 BRI Qn_l
and n reflections

0O =01,02,...,0p.
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Hence |G| > 2n. We claim that |G| < 2n. If g € G, then g sends corners to corners.
Say g(1) = i, n choices. Then ¢g(2) = j has to be a corner neighbouring i (“j = i4+1"),
2 choices for j. Now ¢(3) is a neighbour of j that is not ¢, 1 choice, etc. This means

(no. of possibilities for g) < ( no. of choices for (i, j)) = 2n,
so |G| < 2n. Hence G = [2n|.

Definition. The dihedral group Ds, is the group of symmetries of a regular n-gon.

Part (3) of the example showed that |Ds,| = 2n and
Do, =1e,0,0%...,0" " ,01,00,...,00}.
Same trick as for Dg: 0 = 01, H = (0). Then Ho # H and we check that
Dy, = {e,0,0% ...,0" ", 0,00, 0%,...,0" o}

Clearly, 0" = e, 0? = e, and one checks that 0o = o 'o. This is on Problem Sheet 1, but
three ways of doing it are:

2

(1) Think about permuting corners.
(2) Since p, o are linear maps, we can check using matrices.

([ cosf —sind
9=\ sinf® cosf

(1),

(3) Pretend R?* = C and use complex numbers:

Q(Z) _ €2ﬂi/n2,

o(z) =z.

Because 0o = o0 'o, we can “move ¢’s to the right of ¢’s” and compute the multiplication
table of Dy,.

Example. Let II be the string
..RRRRRRRRR ..CR.
What is G(II)? There is a translation 7 sending each “R” to the next one. So
G(I) 2 (1) = {7" | n € Z},
an infinite cyclic group. Note that 7 sends the j* R to the (j +n)"* R.

We claim that G(IT) = (7). To see that, take g € G = G(II) and suppose g sends Ry = 0" R
to R, = n'"R. Then 77"¢ € G and it sends Ry to itself. But “R” has no symmetries, so
T "g = e, proving G = ().

Example. The above all works in R”. Example in R3: set I(R3) = isometries of R® and
IT = regular tetrahedron (or any platonic solid). A symmetry of II preserves the corners
and 4 corners of IT will determine the isometry. Can check G(II) = S, any permutation of
corners works. This is a tricky exercise.
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2. ISOMORPHISMS

Recall that a map preserving the structure of vector spaces was simply a linear map. In
this section, we will see maps between groups, but they will be a special kind of map—an
isomorphism.

Basic idea: the symmetry group of the equilateral triangle was somehow ‘equal’ to S3 without
actually being S3. The notion of isomorphism will formalise this.

Consider the following two groups:

e (=C3={reC|as’=1}={l,w,0°} with w = /3,
e H = subgroup of S5 generated by a 3-cycle a = (123), i.e. H = (a) = {e, a, a?}.

Multiplication tables.

G ‘ 1 w w? H ‘ e a a’
111 w w? el 1l a a?
wlw w1 a |l a a® 1
Wwlw? 1w atla®> 1 a

The multiplication tables are the same, except that the elements have different labels. For-
mally, there is a bijection G — H such that if g; — hy and gy — ho, then g1gs — hihs.

Definition. Let G and H be groups. A function f: G — H is an isomorphism if

(1) f is a bijection,
(2) forall z,y € G, f(zy) = f(2)f(y).

Notation. If there exists an isomorphism G — H, then we write G = H, and say G is
isomorphic to H.

Remark. Group isomorphism is an equivalence relation; indeed, we have the following:

QG§G;
o if G = H, then H = G,
e if G= H and H= K, then G = K.

We saw an example of this in Section 1: Dg = Sj3.
Question. Given 2 groups GG and H, how can we tell if they are isomorphic?
Example. Let G; = Cy = {£1, +i};

G5 = symmetry group of a non-square rectangle = {e, o, 01, 02};
G3 = (0) = cyclic subgroup of Dy generated by 0 = 0,2, G3 = {e, 0, 0, 0*}.

Which groups in that list are isomorphic?
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First of all, we show that G; = Gj3. Define f: G; — G3 by

1
l
-1
—1

2

Q3

e i" — o" for all n € {0,1,2,3} or all n € Z. Tt is a bijection and
famit) = famm)

= "t definition of f

= f(™)f(i") definition of f

1111

We now claim that G; 2 G5 (even though both have size 4). We prove this by contradiction.
Suppose there exists an isomorphism f: G; — Gs. Every element x € G, satisfies 22 = e

(apart from e, all elements have order 2). Say

f(l) =x € G2
f(1) =y € G
Then
f(=1) = f@@)
= f(i)? f is an isomorphism
= 72
=e
and
fA) = f(1%)
= f(1)? f is an isomorphism
= y2
=ec

Therefore, f(—1) = f(1), so f is not a bijection, a contradiction. Hence G % Gs.

Then also G35 2 G,, as G3 = (7 and = is an equivalence relation.

General strategy for isomorphism questions:

e If you think 2 groups are isomorphic, try and find an isomorphism.
e If you think they are not, try and find a “group-theoretic thing” that one group has

and the other does not.
Here are some examples.
Proposition 2.1. Let G, H be groups.

(1) If |G| # |H|, then G % H.
(2) If G is abelian and H is not, then G % H.

(3) Suppose there exists k € Z>y such that G and H have different numbers of elements

of order k. Then G 2 H.
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However, the converse of the proposition does not hold. Note that (1)—(3) are just examples:
we cannot use them to prove that 2 groups are isomorphic.

We precede the proof of Proposition 2.1 with a demonstration of its use.

Examples.

(1) G = Dy, H=S5. Then |G| =10 and |H| = 5! =120, s0o G ¥ H.

(2) G = Sy, H = Cyy = cyclic group of order 24. Then |G| = |H| = 24, but G is not
abelian and H is, so G 2 H.

(3) G = C4, H = symmetric group of a non-square rectangle. Then G has 1 element of
order 2, but H has 3 elements of order 2, so G 2% H.

(4) G = (R, +), H= (R*, x). Then (R, +) has no element of order 2, but (R*, x) has
one, namely —1, so G % H.

To prove Proposition 2.1, we will need the following lemma.

Lemma 2.2.

(1) If f: G — H is an isomorphism, then f(eq) = ep.
(2) If f: G — H is an isomorphism and g € G has order n, then f(g) has order n.

Proof. For (1), let f(eq) = h € H. Then

h = f(eg) definition
= f(e(; X 6@)
= f(eg)? f isomorphism
— B2

so h = h? and multiplying both sides by h~! we get h = ey.

For (2), assume f: G — H be an isomorphism. By (1), if ¢ = eq, then f(g) = ey. Because
f is a bijection, we can deduce that if g # eq, then f(g) # eg. So say g has order n > 1.
Then

g#ec: g’ Fea g Fea
but ¢" = eq, so taking images of these under f,

fg) # em, f(9)* = [(g*) # em,.... [(9)""" = f(g"") # em,
but f(g)" = f(¢g") = f(eq) = ey by (1). So f(g) has order exactly n. OJ

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. All the proofs go by contradiction, i.e. suppose that G = H and
f: G — H is an isomorphism.

Since f: G — H is a bijection, |G| = |H]|, so (1) is clear.

In (2) we want to show that if G is abelian, then H is abelian as well. So suppose that G is
abelian. To show H is abelian, let hy, ho € H. Since f is a bijection, for some g1, g» € G:

hy = f(gl)v
hy = f(g2).
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Then

92) f is an isomorphism
G201) G abelian

)f(g1) f isomorphism
2hy definition

so H is abelian.

For (3), we will show that for all ¥ € Z>,, G and H have the same number of elements of
order k. So fix k € Z>; and let

Gr={x € G |o(x) =k},
Hy ={y e H |o(y) = k}.
We claim that f sends G} bijectively onto Hy.

If z € G and o(z) = k, then o(f(z)) = k by Lemma 2.2(b). Hence f: Gy — H given by
f(x) = f(z) for v € G}, is well-defined. Consider the inverse function f~': H — G, which is
also an isomorphism. Then f=1: H, — G}, is also well-defined and because fof~! = f~lof =
identity, we see that Gy bijects with Hy, so |G| = |Hg|. O

Cyclic groups. Recall that a group is cyclic if it is generated by a single element.

Proposition 2.3.

(1) If G is cyclic and |G| = n, then G = C,,.
(2) If G is cyclic and infinite, then G = (Z,+).
Proof. For (1), suppose G is cyclic, say G = (z) and o(z) = n. This means
G={ex2* . . . 2"}
Recall that C,, = {1,w,w?,...,w" '} with w = e*™/". So let us define f: G — C,, by
fl@")=w for 0 <r<n-—1.
Because x and w both have order n, we could even write
f(l,r) — w?”
for all » € Z. Then f is a bijection and, furthermore, by the definition of f and exponentia-
tion:
f(xrxs) — f(xr+s> — errs — wrws — f(Ir)f(Is)
Thus f is an isomorphism and G = C,.
For (2), say G = (z) but suppose G is infinite. Then o(z) = oo, so
G={ . o022 exs*as® .}
Define f: G — 7Z by
f@)=r
for all » € Z. This is clearly a bijection and, futhermore, by the definition of f and expo-
nentiation:

fla'a®) = f(@"™) =r+s=f(a") + f(z°).
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Thus f is an isomorphism and G = Z. U

Remark. Proposition 2.3 (1) says that all cyclic groups of size n are isomorphic to C,. We
say that up to isomorphism (which means: count isomorphic things as the same) there is
only one cyclic group of order n. Similarly, (2) says that up to isomorphism, there is only
one infinite cyclic group.

As a consequence: if G is a group, p is a prime number, and |G| = p, then G = C, by
Lagrange’s theorem. Hence, up to isomorphism, there is only one group of order p.

This is very useful, because without the “up to isomorphism” trick, there are infinitely many
groups of every order.

Example. There are infinitely many groups of order 1. For if 2 € R, let G = {z} and let us
define a group law x by x xx = z. Then (G, *) is a group and |G| = 1. While G is probably
not equal to C, G = (] trivially.

Example. Let G = (Z,+), take g =2 € G and H = (g). Then
H=1{ .., -6-4,-20,24,..},

so H C G but H # G. But we can prove that H = G either by noticing that H is infinite
and cyclic, so H = Z by Proposition 2.3(2), or simply defining f: G — H by f(n) = 2n, an
isomorphism.

3. PARITY OF PERMUTATIONS

Recall that if n € Z>1, then S, is the group of all permutations of {1,2,...,n}. From 1st
year: every element of S, is a product of disjoint cycles. What we are going to do in this
section is assign a sign (4+1 or —1) to each permutation: the permutations with sign +1 will
be even and the permutations with sign —1 will be odd.

Exercise (hard, for now). A transposition in S, is a permutation of the form (ij) with
1 # j, i.e. “swap two around”.

Q1. Is the identity element of S3 equal to a product of an odd number of transpositions?
Q2. What about 5,7

We will attach a sign to a permutation (an element of S,,). We start with the case S3. Set
A = (21 — x9) (21 — x3) (29 — T3).

A permutation o € S3 is going to permute the x; in the obvious way (permutation repre-
sentation of S3), for example, if o = (13), then o(z1) = 23, 0(22) = 2, o(x3) = x;. What
is 0(A)?
o(A) = (13)((:101 — x9) (1 — w3) (29 — mg))
= (23 — x2) (w3 — 21) (72 — 71)

= (2o — 21)(x3 — 1) (73 — 72)
=-A
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Another example, o = (123):

o(A) = (123)(($1 — x9) (1 — w3) (29 — xg))
= (29 — x3)(r2 — 1) (73 — 71)
= (2o — 21)(r3 — 1) (72 — ¥3)
=A

Each permutation will send A to +A. That is the sign! By the above, the sign of (13) is —
and the sign of (123) is +.

Boring exercise. Check that sign is + for e, (123), (132) and sign is — for (13), (12), (23).

General case. Let n € Z>4, 21, ...,x, variables and define
1<i<j<n

For o € S, let o permute the z; in the obvious way (by permuting the indices) to get
o(A) = +A.
Definition. The signature or sign of o is

+1 ifo(A)=A
-1 ifo(A)=-A

Another way of thinking about it. If o € S,,, then the signature of o is (—1)%, where d is the

number of sign changes in A, i.e.

d=+#{(i.j) [ 1 <i<j<nando(i)>o(j)}

Notation. We write sgn(o) for the signature of o, i.e. sgn is a function

sgn: S, — {£1}.

We call o an even permutation if sgn(o) = +1 and odd if sgn(o) = —1.
Note. This definition is unusable for big n. How can we work out sgn(g) for g € Sip?
Here is a great first step.

Proposition 3.1.

(1) For any x,y € Sy, sgn(zy) = sgn(x)sgn(y),
(2) sgn(e) = +1 and sgn(z™!) = sgn(x),
(3) Ift = (rs) is a 2-cycle, then sgn(t) = —1.

Proof. For (1), we note that z(A

ry(A) =z(y(A)) definition
( definition
=sgn(y)(x(A))  z does not move signs
S

= sgn(y)sgn(z)A definition

[
8
o
@
=
<
>

so sgn(zy)A = sgn(y)sgn(x)A which yields sgn(xy) = sgn(x)sgn(y).
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We now use (1) to prove (2):
sgn(z)sgn(z ) = sgn(xz™') = sgn(e) = 1
where sgn(e) = 1 because e(A) = A. Then sgn(z~!) = sgn(z)~! = sgn(z), as requested.

Finally, to show (3) let t = (rs) with 1 < r, s < n and assume without loss of generality that
r < s. We need to count the number of brackets (z; — x;) which contribute a sign change.
The question becomes: how many (i, 7) have i < j but t(i) > t(j)?

A careful count shows that the brackets that change sign are:

(X — Tpi1), (Tp — pga), . oo (T — T4 1)
similarly
(Tri1 = 2s), (Trg2 — Ts)y oy (T51 — )
and finally
(x, — xy).

Total number of brackets here is:
d=(s—1—-r)+(s—1—-r)+1=2(s—1—-7r)+1
which is an odd number, so (—1)? = —1 and we get sgn(t) = —1. O

As we will see later, (1) actually shows that sgn: S,, — Cs is a homomorphism.

This proposition now gives a strategy for computing the sgn of a permutation without ever
thinking about A. We can express the permutation ¢ as a product

o =tity.. .1,
of n 2-cycles, and then (1) and (3) give
sgn(o) = (=)™
Proposition 3.2. Let ¢ = (ajas .. .a,) be an r-cycle. Then
c = (a1a,)(ara,—1) ... (a1as3)(aras).

Hence ¢ is a product of r — 1 2-cycles.

Proof. Compute! Check the product on RHS sends:

aq — Q9
a9 — as

Ar—1 — Gy

a, — a1
so it is exactly c. 0
Proposition 3.3. If ¢ is an r-cycle, then sgn(c) = (—1)""%.

Proof. By Proposition 3.2, ¢ is a product of r — 1 2-cycles, so by Proposition 3.1 (1) and (3)
we get sgn(o) = (—1)"1. O
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Proposition 3.4.

(1) Every g € S, is a product of 2-cycles.
(2) If g = c1co ... oy with ¢; a cycle of length r;, then

sgn(g) = (—1)n= D+ D+t (m=1),
Proof. By 1st year, any g € S, is a product of (disjoint) cycles, so (1) follows from Proposi-
tion 3.2. Then (2) follows from Propositions 3.3 and 3.1 (1) O
Example. Let 0 = (123)(4567). To compute sgn(o), we note that (by Proposition 3.2):

(123)(4567) = (13)(12)(47)(46)(45),
so sgn(o) = (—1)° = —1. Alternatively, Proposition 3.3 (2) yields

sgn((123)(4567)) = (—1)BDFE-D — (_1)5 = 1,
Alternatively, use pro method: sgn(123) = +1, sgn(4567) = —1 by Proposition 3.3, so
sgn((123)(4567)) = —1

Example. Let 0 = (12)(345)(6789). Then

sgn(o) = (—1) x (+1) x (=1) = +1.

The sgn function breaks S,, up into 2 disjoint pieces:
Sp ={0:sgn(o) =+1}U{o: sgn(o) = —1}.
What can we say about these pieces?
Definition. For n € Z,>1, let the alternating group be
A, ={o €S, sgn(o) =+1}.
|Pr(|)/position 3.5. The subset A, C S, is a subgroup and if n > 2 then |A,| = (n!)/2 =
Snl/2.

We will see later that A, is actually the kernel of sgn, so it is immediately a subgroup of .S,,.
However, we also give a direct proof below.

Proof. We will show that A, is a subgroup:

(1) sgn(e) = +1 by Proposition 3.1 (1), so e € A,,.
(2) If z,y € A, then sgn(z) = sgn(y) = +1 by definition, so sgn(xy) = +1 and zy € A,.
(3) If x € A,,, then sgn(z) = +1, so sgn(z~!) = +1 by Proposition 3.1 and 7! € A,,.
Now say n > 2 and set 7 = (12). Consider the coset A,,7. We claim that:
A,m={o € S,:sgn(o) = —1}.

In general, a good strategy to prove sets X and Y are equal is to show X CY and Y C X.
So first, suppose that € A, 7. Then x = o7 for some ¢ with sgn(c) = +1. But sgn(7) = —1
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by Proposition 3.1 (3), so

sgn(z) =sgn(or
(o)sgn( ) by Proposition 3.1 (1)
qs

1)

For the other inclusion, consider y € S,, and sgn(y) = —1 and set ¢ = y7. Then

sgn(o) = sgn(y)sgn(r) = (=1) x (=1) = +1
by Proposition 3.1, so o € A, and y = y72 = (y7)7 = 0T € A,T.

We just proved that

Sn = A, UA,T
and since both cosets have the same cardinality, |A,| = |S,|/2 = n!/2. O
Examples.
(n=0) Ay = Sp = {empty function}, so |Sy| = |Ag| = 1.
(n=1) Ay =5 ={e}.
(n=2) Sy ={e, (12)} and Ay = {e}.
(n =3) In Ss: e, (123), (132) all have sign +1, (12), (13), (23) all have sign —1. Thus

Ay = {e, (123), (132)} = Cs.

(n =4) Sycycle types: e (+1), 2-cycle (—1), 3-cycle (+1), 4-cycle (—1), and “24-2"-cycle (+1).
Therefore:

Ay ={e,(12)(34),(13)(24), (14)(23), all 8 of the 3-cycles}

Remark. For n > 5, the group A, is a so-called simple group.

4. DIRECT PRODUCTS

Idea: let G; and G be groups. We can form the product set (cartesian product)
G1 X Gy ={(91,92): 91 € G1, 92 € Ga}.

Define a multiplication on G X Gs.
Definition. For g, h; € G and go, hy € Go, we define
(91,92) x (h1, h2) = (91h1, g2h2).

Clearly a well-defined product. Check the axioms.

Proposition 4.1. G x Gy becomes a group with this multiplication.

Proof. Associativity: If g1, hq, k1 € G1 and gs, ho, ko € Go, then

(91, 92)((h1, ha) (K1, k2)) = (g1, g2) (haka, hoks)

(91(h1k1), g2(hak))

= ((g1h1)k1, (g2hs2)(k2)) by associativity of Gy and Go
(
(

(
= (g1h1, goha) (K1, k2)
= (91792)(h1,h2))(k1,k2)
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TL;DR version: G1, G5 associative = (G; x (G5 associative.

It is easy check to check that inverse of (g1, ¢2) is (97, g5 ) and the identity is (e}, e) for e
identity of G;. U

If |G| = a, |H| = b, then |G x H| = ab. For example, Sy x S7, C1y X Z.
Basic observations about G x H.

(1) If G = {e}, then H = G x H via the obvious map h — (e, h). Similarly, G x {e} = G.
In general, for any groups G, H, there is a subgroup G x {eg} C G x H, i.e.

G x{en} ={(g,en) | g € G}

and this subgroup is isomorphic to G. Similarly, {eq} x H C G x H is a subgroup
isomorphic to H. (“z-axis and y-axis”).
(2) G x H= H x G (isomorphism sends (g, h) to (h,g))
Example. Let G = H = Cy = {+1,—1}. Then
GxH=0xC={(1,1)=e¢,(1,-1)=a,(-1,1) =b,(—1,-1)}.
Note that
ab=(1,—1) x (=1,1) = (=1, -1)
which is the 4th element.

H e ‘ a ‘ b ‘ab
e |l e b | ab
al|alelab| b
b||lblab| e | a
abllab| b | a | e

It is easy to check that Cy x (5 is isomorphic to the symmetries of a non-square rectangle.

We can do more than 2 groups. Start with groups Gi, Gs, ..., G,. Define
Gy x Gy x -+ x G ={(g1,92,---,9-): gi € Gi}.
with the group law:

(glnga B 7.g7‘)(h17 h?a SR hr) = (glh1792h27 s ,grhr>-
It is easy to check that the group axioms are satisfied.

The group G X Gg x --- X G, is called the direct product of the G;.

Remark. For r = 0, we get {0} = C;. For r = 1, we just get G; again. We can even do
r = 00:

(91792, .. ) € HGz
i=1
with the obvious multiplication.

Example (r = 3). The direct product Cy x Cy x Cs is a group of size 8 whose elements are
triples (+1,41,41). Note that 22 = e for all z € Cy x Cy x Cb.
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Proposition 4.2.

(1) The order of G1 X Go X -++ X G, is |G1| X |Ga| X -+ X |G,].
(2) If all the G; are abelian, then so is G X -+ X G,..
(3) If v = (x1,22,...,2,) € Gy X -+ X G, then

o(z) = lem(o(x;)).

Proof. (1) is clear. For (2), say z = (21,...,2,) and y = (y1,...,¥,) in the product. Assume
all G; are abelian and let us prove xy = yx. We have

ry = (x1y1, T2y, ..., 2,y,) definition
= (121, Yo2, . . ., yrx,) all G; abelian
=yx definition

For (3), recall that the order of x € G is the smallest k € Z, k > 1, such that ¥ = e (or +o0
if no such k exists). If o(x) = n then

' =e < t=multiple of n

Assume o(x;) = n; < +oo for all i. Let n = lem(ny,no,...,n,). First note

= (al,xy, ..., x) = (e1,€,...,6)

»r

because n is a multiple of n; for 1 <17 <.

Conversely, if 0 < m < n, then we claim that 2™ # e. Indeed, since m < lem(n;), there
exists ¢ such that n; does not divide m, so x* # e;. Therefore

™= (2 xl ) # (e, €y 6r)
and we have shown that the order of z is n. O

Example. Consider the group
G:Dl()XSgXCQ.
Then for g = (o, (123), —1), where p is a rotation of order 5, we have

o(g) = lem(5, 3,2) = 30.

Let us think of some groups of order 8. Let us even think of abelian groups of order 8:

Cs
04 X 02
CQ X Cg X CQ
Are any two of these isomorphic? No! Let us look at elements of order 2.

Group ‘ elements of order 2 ‘ number of elements of order 2

Cs -1 1

C’4 X C(2 <_17 1)7 (L _1)7 (_L _1) 3

Cy x Cy x Cy | all (£1,£1,+1) except (1,1,1) 7

Structure theorem for finite abelian groups.

Theorem 4.3. FEvery finite abelian group is isomorphic to a direct product of cyclic groups.
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Proof. See for example R. Allenby, Rings, Fields and Groups (p. 254). O

So to compute all abelian groups of order n, we must write down all factorisations n =
ning ...n, and then the groups

Cpy X Cpy X oo x Cy,

give us a complete list. For example, for n = 4, every abelian group of order 4 is isomorphic
to Cy or Cy x Cy. For n = 8, every abelian group of order 8 is isomorphic to one of

Cg, 04 X 02, CQ X 02 X CQ.

Now let us try n = 6:
067 CZ X 037
so any abelian group of order 6 is isomorphic to either Cg or Cy x C5. However

02 X OggCG.

Indeed, —1 € C, has order 2 and w = ¢*™/3 € C3 has order 3, so = (—1,w) € Cy x C3 has
order lem(2,3) = 6. Therefore (x) has size 6 and so must be all of Cy x Cs.

We can conclude that up to isomorphism, there is only one abelian group of order 6,
namely Cj.

In general, the following proposition holds.
Proposition 4.4. If hef(m,n) =1, then
Con X Cp = Chop.
Proof. 1f g € C,, has order m and h € C,, has order n, then (g,h) € C,, x C,, has order

lem(m,n) = mn/hef(m,n) = mn. Thus ((g, h)) has order mn and must generate C,, x C,,
which is thus cyclic. U

Exercise. What are all abelian groups of size 127

5. GROUPS OF SMALL ORDER

In this section, we consider the problem of finding all groups of size n up to isomorphism.
Remark. For n = 2048, this is an open problem! No one knows how many groups of or-
der 2048 there are, up to isomorphism. The largest lower bound I found is 1774274116992170.
In this chapter, we will solve this problem for n < 7. Let us start with the simplest cases
first:

(n = 1) The only group is C}.

(n = 2) Since 2 is prime, the only group is Cs.

In general, if p is prime and G has order p, then G is cyclic. This solves the problem for
n =2,3,5,7 and we are left with the cases n =4, 6.

Proposition 5.1. Up to isomorphism, the only groups of size 4 are Cy and Cy x C5.
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Proof. Say G is a group and |G| = 4. What are the orders of the elements of G? Firstly,
o(g) = 1 if and only if g = e. If there is a g € G such that o(g) = 4, then [(¢9)| = 4 = |G|
and G = (4. So suppose that G 2 Cy. Then we can write

G ={e,x,y,z} with o(x) = o(y) = o(2) = 2.

To check that xy = z, note that 22 = y? = e, but ,y # e and x # y. Now, if 2y = e, then
ry = 2% = zx and y = z, a contradiction. Similarly, if zy = z (xy = y), then y = e (z = ¢),
a contradiction. Thus zy = 2 and the same argument shows yxr = z.

Therefore, we can write out the multiplication table of G:

e K] o0
< w0 8K
SIEC RS IS N
o 8w

e 8O

and note that this is the same as the multiplication table of Cy x Cy, i.e. G = (5 x Cy via
e— (L), z— (—=1,1), y— (1,-1), z— (—1,-1). O

Groups of order 6. Can think of (g, Dg, S3. Now, S3 = Dg and also Cg = Cy x (3 but
Cs 2 Dg. So is the answer that |G| = 6 implies G = Cg or Dg?

Lemma 5.2. If G is a finite group and |G| is even, then there exists g € G such that
o(g) =2.

Proof. Proof by contradiction: assume there is no g € G such that o(g) = 2. Then for all
g € G either g = e or g # g~'. Then we can list all elements of G to be

G = {679179;159279517 SR 797“79;1}
and |G| = 2r + 1 is odd, a contradiction. O

Remark (Cauchy’s Theorem). If p is prime and |G| = multiple of p, then there exists g € G
such that o(g) = p. (This will not be proved in this course.)

Proposition 5.3. Up to isomorphism, the only groups of order 6 are Cg and Dg.

Proof. Let G be a group with |G| = 6. Note that e € GG has order 1 and all the other elements
of G have orders 2,3,6. If some element has order 6, then G = Cj, so suppose no element
has order 6. By Lemma 5.2, there is an element of order 2 in G. But not all the elements
can have order 2—if they did, then (by Problem Sheet 2) either |G| = 2 or |G| is a multiple
of 4.

Therefore, we know that if |G| = 6 and G % Cg, then there exist elements x € G of order
3and y € G of order 2. Set H = (x) = C3 C G, |H| =3, |G| = 6. Then y ¢ H, since the
elements of H have order 1 or 3. Thus

G=HUHy= {e,x,xz,y,xy,ny}.
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What is y2? If yz € H, then y € Hz~! = H which is impossible. Thus yz € Hy. First,
yx =y implies © = e, so yx # y. Moreover, if yxr = xy, then:
(yx)' =zy #e,
(ya)® = ayry = 2°y* =a® # ¢,

(y2)® = zyayry = 2°y’ =y # e,
so o(ry) #1,2,3, but zy € G, a contradiction. Therefore, yz = z~'y and

G = HUH?J: {eaxax27yvxy7x2y}

S=¢,y?=¢,yr =2 'y. Thus G = Dg via x + g, y — 0. O

with the relations =

Summary of this chapter:

Size Groups
1 Ch
2 Cs
3 Cs
4 04, CQ X Cg
) Cs
6 Cs, Dg
7 Cr
Remark. For some chosen higher orders:
Size Groups
8 Cg, 04 X Cg, CQ X CQ X CQ, Dg, and one other
9 Cy, C3 x C3
10 Cho, Do
32 51 groups
1024 49,487,365,422 groups
2048 unknown

Interestingly, &~ 99.2% of all groups of order at most 2000 have order 1024.

6. HOMOMORPHISMS, NORMAL SUBGROUPS, AND FACTOR GROUPS

Homomorphisms are functions between groups which preserve the group multiplication.
Definition. Let G, H be groups. A function ¢: G — H is a homomorphism if
p(zy) = p(x)e(y)
for all z,y € G.
Note that an isomorphism is a homomorphism which is also a bijection.

Examples.

(1) Let G, H be any groups. Define ¢: G — H by ¢(x) = ey for all z € G. This is the
trivial homomorphism.
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(2) The signature function sgn: S,, — Cy is a homomorphism, because for all x,y € S,
we have sgn(zy) = sgn(x)sgn(y) by Proposition 3.1 (1).

(3) Define ¢: (R,+) — (C*, x) by ¢(z) = ¢*™ for z € R. Check it is a group homo-
morphism: if z,y € R, then

(’0(1, + y) _ 627ri($+y) _ 627ria: . eQm‘y _ ¢<x)¢(y)

(4) Define ¢: Dy, — Cy by p(g'c?) = (—=1)7 for all i, j € Z.
Dodgy definition: need to check it is well-defined, i.e. if p'07 = o*o! we had better
make sure (—1)7 = (—=1)". (Otherwise ¢ would not be a function.) Let us check we
are ok: if p'o’/ = pFo!, then

oMo'l =0

I
oo = oloi
o' =07 e (o),
so [ — j had better be even, (—1)! = (=1)7, and ¢ is well defined.
In words, ¢ sends rotations to +1 and reflections to —1. A
Finally, check g is a homomorphism: take z = ¢‘c7, y = g*c!. Then ¢(z) = (1),
¢(y) = (=1)". Moreover
xy = o'’ kol
Note that oo = 97%0 and 0%0* = o* = ¢*0°, so we can write 079" = oo (where
the sign depends on the value of j). Thus
vy = g'otFoiol = gtkgit
and
play) = (1) = (1) (=1)" = p(x)o(y).

(5) (Exercise.) If G, H are groups, then there are projection maps
GxH—-G
(9,h) =g

and
GxH—H

(g,h) — h

These are both group homomorphisms!

Proposition 6.1. Say ¢: G — H s a group homomorphism. Then
(1) @(eG) =€,

(2) p(xz7!) = p(x)! for allx € G,
(3) for x € G, the order of ¢(x) divides o(x).

Proof. For (1), set h = ¢(eg). Then

h = plegeq) et = eq
= p(eg)p(eq) ¢ is a homomorphism
= h? definition

so h = ey, canceling h.
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For (2), take z € G. Then zz~! = eg. Apply ¢ to get p(xz™!) = p(eq). Thus
o(x)e(x™!) = p(eg) ¢ group homomorphism

= €H by (1)

so ¢(z7!) = inverse of p(x) = ¢(z)~ .

Finally, for (3) set o(z) = k. Then
IL...T = €q.
k times
Apply ¢ to get
()" =plec) = en
since @ is a group homomorphism and using (1). Thus k£ = multiple of order of ¢(x), so the
order of p(z) divides k. O

Image and kernel. Recall that two important subspaces of vector spaces are the image
and the kernel of a linear map. In this section, we discuss the analogous notions for groups
and group homomorphisms.

Definition. Let ¢: G — H be a group homomorphism. The image of ¢ is
im(p) = {¢(z) | z € G} C H.
Proposition 6.2. The image im(y) of a homomorphism ¢: G — H is a subgroup of H.

Proof. First, ¢(eq) = ey by Proposition 6.1, so ey € im(gp). Next, if p(z), p(y) € im(yp),
then

p(x)e(y) = p(zy) € im(p).
Finally, say ¢(z) € im(¢). Then
p(x) " =p(a7") € im(p)
by Proposition 6.1. Thus the image is a subgroup of H. U

Question. There is a non-trivial homomorphism S3 — C3y (namely, sgn). Is there a non-
trivial homomorphism
83 — 03?

Note that

S3 D ((123)) = Cs,

S3 2 ((12)) = Cs.
We also have

sgn: S35 — Cf

and sgn(e) = sgn((123)) = sgn((132)) = 1, sgn((4,4)) = —1 and sgn is a group homomor-
phism. However, we claim that the only group homomorphism S3 — Cj is the trivial one
(i.e. the one that sends all g € S35 to 1 € Cj).

Suppose ¢: S5 — (3 is a group homomorphism. Say ¢ = (12) is a 2-cycle. Then o(o) = 2,
so o(¢(0)) divides 2 by Proposition 6.1. Thus o(¢(0)) is 1 or 2, but (o) € C3, which only
has elements of order 1 and 3, so o(p(0)) =1 and ¢(0) =1 € C3. Similarly,

p((23)) = »((13)) = 1.
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However, note (123) = (13)(12), so
p((123)) = 2

1
Similarly, ¢((132)) = ¢((12)(13)) = 1 x 1 = 1. Finally, by Proposition 6.1, p(e) = 1, and we
have shown ¢ is trivial.

Definition. Let ¢: G — H be a group homomorphism. The kernel of ¢ is
ker(p) :={r € G: p(x) =en} CG.
Proposition 6.3. The kernel ker(¢) of a homomorphism ¢: G — H is a subgroup of G.

Proof. First, p(eq) = ey by Proposition 6.1, so e € ker(y). Next, suppose z,y € ker(p),
i.e. p(x) = ¢(y) = ey. Hence
p(zy) = p(z)p(y) = emen = en
so xy € ker(p). Finally, say = € ker(¢). Then p(z) = eg, so
o) = pla)?

:eH
:eH

so 27! € ker(y) by definition. O

Proposition 6.1

Examples.

(0) Let ¢: G — H be the trivial homomorphism, ¢(g) = ey for all ¢ € G. Then
im(¢) = {ex} and ker(p) = G.

(1) Suppose ¢: G — H an isomorphism. Then im(p) = H as ¢ is a bijection (so a
surjection). Moreover, ¢(eg) = ey and ¢ is a bijection (so an injection), so ker(¢) =

{ec}

(2) Consider the signature homomorphism sgn: S,, — Cy. If n > 2, then
im(sgn) = Co.
Moreover
ker(sgn) = {g € S,,: sgn(g) = +1} = A,
by definition of A,. (This gives a new proof that A, is a subgroup of S,,, but this is
really the same as the old proof.)
(3) Define ¢: Do, — Cq by ¢(0'c7) = (—1)7. We checked earlier that this is well-defined.
Since ¢(0) = —1 and ¢(e) = +1, so im(p) = Cy. The kernel of ¢ will be
ker(p) = {0’07 j even}
but 02 = e, so
ker(¢) = {0": i € Z} = () = {rotations}.
(4) Let p: (R, +) — (C*, x) be defined by ¢(z) = €*™®. Here
ker(¢) = {x € R: ™ =1} = Z,
im(p) = S' = unit circle = {2: |2| = 1}.
Geometrically: think of R as a spiral which we project down onto S*.
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Normal subgroups. These are special subgroups of a group.

For example, ((123)) C Ss is a normal subgroup but ((12)) is not! We will see this later.

Say G is a group and N C G is a subgroup. If g € G, then by g7 Ng we mean the set
{g7'ng: n € N}.

Note that for an abelian group g 'Ng = N, trivially.

Definition. Let G be a group, N C G be a subgroup. We say that N is a normal subgroup

of Gif g7'Ng= N for all g € G.

Notation: we write N <1 G for a normal subgroup N C G.

Examples.

(1) Let G be any group. The identity subgroup {ec} C G is normal, because
9 {eatg = {97 eag} = {ec},
i.e. {eg} < G. Similarly, G < G as (easy exercise) for any g € G:
g 'Gg =G.
(2) Let G be any abelian group. Then any subgroup N of G is normal because
g 'Ng={g'ng:ne N ={ng'g:ne N} ={n:ne N}=N.

A non-example in S5: take g = = (12); then

(13), n
g~ 'ng = (13)(12)(13) = (23).
Now, setting G = S5 and N = ((12)) C G we get
g 'Ng={g""eg,g7" (12)g} = {e, (23)} = ((23)) # NV.
Thus N is not a normal subgroup of G.

Remark. Even if 67! No = N for some ¢ € 53, for example o = ¢ or 0 = (12), N may not
be a normal subgroup! For ¢ = (13), we may have 0 "'No # N, and this is enough to say
that N is not normal.

Lemma 6.4. Say G is a group and N is a subgroup. Then N <G if and only if g7*Ng C N
forallg e G.

Proof. The ‘only if” implication is obvious. For the ‘if” implication, suppose g 'Ng C N for
all g € G and take an arbitrary o € G. We will show that

o 'No = N.
Setting g = o, we get
o 'No CN
and setting g = o1, we get
oNo~ ' C N.
Multiplying the second equation from the left by ¢! and from the right by o, we deduce

that
N=0¢"'9No"'c Co'No
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so combining this with 0 ='No C N we get equality, as requested. 0

We can apply this to show that A, is a normal subgroup of S,. Take an arbitrary g € S,,.
All we need to check is that if h € A, then g~ 'hg € A, but

sgn(g~'hg) = sgn(g~")sgn(h)sgn(g) = sgn(g™')sgn(g) = sgn(e) = 1
since sgn(h) = +1. Thus A, < S,,.

Proposition 6.5. Suppose ¢: G — H is a group homomorphism. Then ker(y) < G.

Remark.

(1) Note that im(¢) may not be a normal subgroup of H. For example, if i: ((12)) < Ss
is the inclusion, then im(:) = ((12)) is not a normal subgroup of Ss.

(2) Proposition 6.5 also has a converse. If N < G, we will later on see how to build
¢: G — H with kernel N.

Proof of Proposition 6.5. Let ¢: G — H be a homomorphism and write N = ker(¢). Choose
arbitrary ¢ € G and n € N. By Lemma 6.4, we just need to check that g~'ng € N, i.e.
prove that ¢(g~'ng) = ex. We have

o(g7'ng) = ¢(g7He(n)p(g) ¢ is a group homomorphism
=o(g Hexgp(g) asneN
=¢(g7)e(g)
= (g 1g) @ is a group homomorphism
=ey
which shows that N < G. O

Examples.

(1) Take ¢: G — H, the trivial homomorphism (p(g) = ey for all ¢ € G). Then
ker(¢) = G < G. Similarly, ¢: G — G the isomorphism ¢(g) = g for all g € G gives
ker(p) ={eq} < G.

(2) Take sgn: S,, — C5 to get

ker(sgn) = A, < S,.
(3) Take ¢: Dy, — Cy, p(g'0?) = (—1). Then
ker(¢) = (0) < Day,
a new example of a normal subgroup.
Factor groups. In this section, given a group GG and a subgroup H C G, we want to divide
G by H, i.e. get a quotient group or a factor group G/H.

Consider G/H = X = {Hg: g € G} and let us try to make X into a group. For Hy and Hz
in X, try to define

(Hy)(Hz) = Hyz.

What could go wrong? Elements of X can have more than one name!
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Example. Take G = S3 and H = ((12)). The issue: we can have distinct elements y, y» € G
such that Hy, = Hys. For example, take y; = (23), yo = (123). Then

Hyy = {y1, (12)y1} = {(23), (123)}.

Hy, = {ys, (12)y>} = {(123), (23)}.
(Reminder from 1st year: in general, Hy = HJ if and only if 7~! € H.) So an element

of X will have |H| names in general. Let us go back to the multiplication. For the above
H,y1, 1y, we have:
(Hy))? = Hy, - Hyy = H(y,)> = He = H
(H?/2)2 = Hys - Hys = H(?/z)Q =H(132) # H
because (132) € H. Hence Hy, is an element of order 2, but Hys is not. But Hy; = Hys.

What went wrong? The multiplication on X was not well-defined!

Problem. In general, we can find vy, ys, 21, 22 € G such that

Hy, = Hys

HZl = HZQ
but

Hy21 # Hyzzs.
Indeed, we just saw an explicit example with
H=((12)), y1=(23) =2, yo=(123) = 2.

If the above happens, then we will never manage to put a group structure on X in a natural
way.

Lemma 6.6. Suppose N <<G. Then gN = Ng for all g € G.

Proof. If g € G, then by normality of N, we know ¢~ 'Ng = N, so multiplying from the left
by g, we get Ng = gN. 0

In general, if H C G, then the cosets we saw last year are Hg = right cosets, but we can
also talk about left cosets gH = {gh: h € H} and in general right cosets are not left cosets,

gH # Hg.
But for normal subgroups N, we just saw that gN = Ng for all g € G.
Lemma 6.7. Suppose N <<G. If Ny; = Nys and Nz = Nz, then Nyizo = Nys2o.

Proof. We have
Nyizy = (Nyy)z definition
= (y1N)z; by Lemma 6.6
=y (Nz) associativity
= y1(Nzy) assumption
= (y1N)z associativity
= (Ny1)z2 by Lemma 6.6
= (Ny2)ze assumption
= Nys2zo definition
which completes the proof. O
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Theorem 6.8. Suppose N <G and let G/N denote the set of right cosets of N in G. Define a
multiplication by (Ny)(Nz) = Nyz. Then this is well-defined and makes G/N into a group.

Remark. By Lemma 6.6, G/N is also the set of left cosets of NV in G.

Proof. The multiplication is well-defined by Lemma 6.7. It is enough to check the group
axioms:

(Associativity) We have
(NeNy)Nz = NxyNz = N(zy)z = Nx(yz) = NxNyz = Nx(NyNz).
(Identity) If e € G identity, then He = H is the identity in G/N, because
(Hx)(He) = Hre = Hr = Hex = (He)(Hz).
(Inverses) The inverse of Hx is Hx ™!, because
(Hr)(Hz ') = Hrzx ' = He=H = He = Hv 'z = (Hx ')(Hz)
This completes the proof. 0]
Definition. We call G/N the factor group of G by N or the quotient of G by N.

Examples.

(1) G = Z, N = 3Z = multiples of 3. Since GG is abelian and N is a subgroup, N is
necessarily normal. The cosets are:

N={.,-6-3036,...}
Ntl={..,-5-2147. 3 ={3k+1:kecZ),
N+2={3k+2: keZ}
Set of cosets G/N has 3 elements G/N = {N, N + 1, N + 2} and the group law is
(N+y)+(N+2)=N+(y+=2).
The group is generated by x = N + 1 of order 3:
r+rx=(N+1)+(N+1)=N+2

r+r+r=(N+1)+(N+2)=N+3=N,
so Z/3Z = Cs.
(2) A, <S,, N > 2. The factor group S, /A, has size 2, so it must be isomorphic to Cs.
The identity is A,, and the other element is A, (12) with order 2:

An(12) x A,(12) = A, (12)* = A,e = A,.
Examples. Take G <1 G. Then
G /G = set of cosets of G in G = {Ge} = {G}
has size 1, i.e. G/G = (Y.
Now, take {e} < G. What is G/{e}? In general
Ng = {ng: n € N},
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so in this case Ng = {¢g} and strictly speaking
G/er = {{a} g2}, }
if G ={g1,92,...} and the obvious map
G — G/{e}

g9~ {g}
is an isomorphism.

Take G = Dy,, n > 3 and let N = (p). We know that N < G. What is G/N? Well,
|G/N| =|G|/|N| = 2 and thus G/N = C,. Explicitly:

G/N = {N,No} = {set of rotations, set of reflections}.

Note that this shows again that rotation x reflection = reflection and reflection x reflection
= rotation.

Fact. If G = Dy, and N = (¢’) for 0 < j <mn, then N < G.

(The proof is Q6 from Problem Sheet 5.)

Example. G = D3, N = (¢?). Then |G| =12, N = 3, so0 |G/N| = 4. Set F = G/N, which
is a group of size 4. Which one is it?

Solution: what are the cosets of N in G?

N = {e, 0%, 0"}
No={o,0° 0"}
No = {0, 0%, 0"}
Noo = {go, 0’0, 0°c}
Thus
G/N ={N,No,No,Noo}.
Let us check that if f € G/N, then f? = ep:
N? = (Ne)? = Ne? = Ne= N
(No)*? = NgoNo=Ng> =N
(No)? = NoNo = No? = Ne= N
(Noo)* = N(¢o)> = Ne= N
and indeed G/N cannot be Cj, so it must be Cy x Cs.

Example. Let G = Dy and N = (¢®) = {e,0°}. Then N <G, so F' = G/N is a group of
size 6, i.e. S3 or Cg. Which one?

F ={N,Ng,N¢*>, No,Noo, N’}
Set x = Np, y = No. Then what is o(z)? We have
r=No#N
> =Nog*#N
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23 =Ng*=N

(o has order 6 but ¢* € N, so 2* = er) so o(x) = 3. Moreover, y # N and y* = (No)? =
No? = N, so o(y) = 2. Finally, is yz = zy or not?

yr = (No)(Np)  definition

= Nop definition
=No'o 0,0 € Dy
= (No 1) (No) definition
= xily

Therefore, F' =2 Dy.

Musings on finite group theory. We can now try to factor groups into “prime factors”.

Analogue: big number g, n = divisor of g, then ¢ =n x g/n and if 1 < n < g, we have made
progress. If g has no factors other than 1 or g, ¢ is prime.

In group theory, analogue of “prime number” must be “group G # {e} such that the only
normal subgroups are {e} and G.”

Such a group is called a simple group and the strategy for understanding all groups is:

(1) understand all simple groups,
(2) understand how to glue them together to make all groups.

(1) is apparently “done”. Here is the answer: cyclic groups of prime order, A, for n > 5,
various matrix groups, 26 sporadic examples (including the Monster Group).

(2) is hard :-( The problem is

A3 <1 S3 and Sg/Ag = (Y
but Cy x A3 = Cy x C3 =2 Cg ¥ S3. In general, N < G, F = G/N but G might not be
isomorphic to F' x N.

For a general finite group GG, we can do the following:
Choose G1 # G, G1 < G, G large as possible.
Choose Gy # G, Gy < Gy, G4 large as possible.

Get G, < --- <1 Gy < G < G, where G, is simple.

Then G;/G;,q are all simple groups and G is built from these simple groups in a weird and
complicated way.

The first isomorphism theorem. A group theory version of rank-nullity: say G, H are
groups and ¢: G — H is a group homomorphism. What new groups can we build? We have
groups

im(p) C H

ker(p) < G
and a factor group G/ ker(yp).
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Theorem 6.9 (The first isomorphism theorem). Let ¢: G — H be a group homomorphism.
Then

G/ ker(p) = im(yp)
Corollary 6.10. If ¢: G — H is a group homomorphism and |G| is finite, then
|G| = [ker(p)] x [im(e)].

Note that this looks like rank-nullity theorem.

Proof of Theorem 6.9. We want to write down an isomorphism a: G/ ker(¢) — im(yp). Write
N = ker(p). We would like to say a(Ng) = ¢(g). To prove this is well-defined, we will show
that if ¢: G — H is a group homomorphism and N = ker(y), then Nz = Ny if and only if
o(z) = ¢(y) for all z,y € G. We have
Nz =Ny &ay'eN first year

&y~ € ker(p)  definition

S pzyt)=e definition

& p(x)p(y)~! =e ¢ group homomorphism

< o(x) = ¢(y)
Hence we can define av: G/N — im(p) by a(Nz) = ¢(x).
We will now show that a is a group isomorphism. Firstly, « is clearly surjective, because
if h € im(p), then by definition, h = ¢(g) for some g € G and then h = a(Ng). To show
injectivity, suppose a(Nz) = a(Ny) for some x,y € G. Then, by definition, ¢(x) = ¢(y).
But we showed above that this is equivalent to Nx = Ny.

Finally, we check that « is a group homomorphism:

a(Nz)a(Ny) = e(z)p(y) = ¢(ry) = a(Nay) = a((Nz)(Ny))
for any z,y € G. O

Examples.

(1) sgn: S, — Cy, n > 2. Then ker(sgn) = A,, and im(sgn) = Cs, so we get
Sn/An = Cs.
(2) : (R, +) = (C*, x), p(x) = ¢*™**. Then
im(p) ={z€C: 2] =1} = 5"
ker(p) = {z: ™ =1} =7

so the theorem shows R/Z = S*.
(3) Is there a non-trivial group homomorphism S3 — C3? New answer: Say ¢: S3 — Cj

was a non-trivial group homomorphism. Then im(p) # {1}, so im(p) = C5 and by

the theorem S3/ ker(p) = C5. But them |ker(y)| = 2 and ker(¢) = {e, (ij)} for some

2-cycle (ij). But this subgroup cannot be normal!l For example, (13)((12))(13) #
((12)), so no such ¢ exists.

Recall that the kernel of a group homomorphism is a normal subgroup. The converse is also
true—every normal subgroup is a kernel of a group homomorphism.



32 KEVIN BUZZARD

Proposition 6.11. Say N << G. Define ¢: G — G/N by p(x) = Nz. Then ¢ is a group
homomorphism and ker(p) = N.

Proof. We have p(zy) = Nxy and
p(x)p(y) = (Nz)(Ny) = N(zy)
so ¢ is a group homomorphism. Moreover:
ker(¢) = {o: ¢(z) = N} = {a: No = N}
and Nz = N if and only if 2 € N, so ker(p) = N. O

Finally, given a group G, we will explain how to find all groups H such that there exists a
surjective homomorphism ¢: G — H.

If ¢: G — H is a surjection, then by the first isomorphism theorem H = im(yp) = G/ ker(p).
But ker(y) is a normal subgroup and by Proposition 6.11 any normal subgroup is a kernel
of a homomorphism. Therefore, all we need to do is:

(1) List all normal subgroups of G.
(2) For each N < G, compute G/N to get the possible H’s (up to isomorphism).

Example. Take G = S5. Normal subgroups: (e¢) and G. Any other normal subgroups have
size 2, 3. Easy to check S5 has no normal subgroups of size 2 and Aj is the only normal
subgroup of size 3, A3 = ((123)). Then

G/} =G =S5,
G/G =y
G/A; = Cy

is the complete list of groups H such that there exists a surjective homomorphism S3 — H.

7. DETERMINANTS

Consider the matrix
a1l G2 013
M = 21 G22 (23
az1 G322 0ass
Recall that the determinant of M is:

det(M) = a11a22a33 + a12a23a31 + Q13091032 — Q13022031 — A12021A33 — (11023032

6 terms: each a product of 3 entries, 1 from each row, 1 from each column. Each product
has a =+ sign.

Here is an interesting way to think about this determinant! Each of the 6 terms in the sum
det(M) gives us a permutation of {1,2,3} in the following way: send i — j if a;; is present
in the term. (This is a permutation because each term has one entry in each row and one
entry in each column.) Explicitly:
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term permutation | sign
(11022033 e +
a12A9230431 (123) +
1309210432 (132) +
413022031 (13) -
12021033 (12) -
11023032 (23) -

Note that each sign is the signature of the corresponding permutation!

33

Hence, if M = (a;j) as above, 1 <14, j < 3, then we can write the determinant succinctly as

det(M) = Z SEN(T) A1 (1) B2 (2)A37(3) -

TES3

For example, if 7 = (12) then n(1) = 2, 7(2) = 1, 7(3) = 3, so we get the term —aj2a91a33.

Let A = (a;;) be an n X n matrix:

11
21

an1

a2
22

an2

Definition. The determinant of A = (a;;) is

det(A) = [A] = )~ sgn(m)a1x(1)a2r(2) - - - Gnnm)

ﬂESn

Examples.

If A= (ay;), then det(A) = ay;.

a21

Remark. Where do a;;’s live?

Answer 1: For applied purposes, they are all real or complex numbers.

A1n
Q2n,

CLTLTL

)
YIFA=( M0 2 then det(A) = +

= ase )’ en de = +a11092 — A120a9].
)

Answer 2: They are all elements of an underlying ground field E. Some examples: Q, R, C,

Q(i), /27, 7./ pZ etc.

The theory of vector spaces holds over a general field!

Our first main aim is to figure out how |A| changes when we apply row operations.

Recall that if A = (a;;) is an n X n matrix, its transpose is AT = (b;;) with b;; = aj;.

Proposition 7.1. If A is n x n, then |A] = |AT].
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PT‘OOf. Let A= ((J,Z'j), B = (bw) with bij = Qjj- Then
Bl = X Sgn(7>b17r(1)b27r(2) o bpn(n)

TI'GSn

= Z Sgﬂ(ﬂ)amnaw(z)z - Qr(n)n
TESy

Now the permutation that sends 7 (i) to i for each i is the inverse of w. Therefore
|13|:= 2{: Sgn(ﬁ)alamjaggm)...anaun
7r65’n

where 0 = 77! and we have rearranged the a;; in the product. Moreover, sgn(r) = sgn(7 1),
so we can sum over ¢ instead of m to get

B = 3 sen(0)atomze - -ty = 4]
O’ESn

which completes the proof. O

(As a consequence, any result involving determinants and row operations will have an ana-
logue with determinants and column operations.)

Proposition 7.2. If B is obtained from A by swapping 2 rows (or 2 columns), then |B| =
—|Al.

Proof. Let us prove it for columns. The result for rows will follow from Proposition 7.1. Say
7 = (rs) and let us swap the rth and sth column in A to get B. Set B = (b;;), A = (a;j).
Then

bij = Qir(5),
SO
Bl = Z sg(m)b1r(1)b2r(2) - - - bumn) = Z SEN(T ) A1 rr(1)A2rn(2) - - - nrre(n)

TESh TESh
Write 0 = 7. then sgn(o) = sgn(7)sgn(m) = —sgn(7) and

|B| = Z (—=sgn(0))bio(1)b20(2) - - - brom) = —| A,

gESy

as requested. 0

Proposition 7.3.

(1) If A has a row of 0’s then det(A) = 0.
(2) If A has 2 identical rows (or columns) then det(A) = 0.
(3) If A is upper-triangular, i.e.

aiq *

O Qnn

(or A is lower triangular), then det(A) = [] ai; = annass . .. anpp.
i=1
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Proof. For (1), |A] = > sgn(m)aix(1)@2x(2) - - - Gnr(n) but each term contains an element from
WES’n
the row of zeroes, so their product is 0 and |A| = 0.

For (2), say rows r and s of A are equal. If we swap those rows, then by Proposition 7.2 we
change the sign of det(A), but we do not change A. Thus

det(A) = — det(A)
and det(A) = 0 (if the field E has characteristic # 2).

For (3), if A is upper triangular, then a;; = 0 if ¢ > j and it is not hard to check that every
term in the sum must then vanish apart from the one corresponding to m = identity. Hence

|A| = sgn(e)auagg e Qpp = 110922 .. . App-

If A is lower triangular, then A7 is upper triangular, so we are done. O

We can now see the effect that elementary rows operations have on |A|.

Theorem 7.4.

(1) If a row of A is multiplied by a scalar \ to get B, then |B| = A A]|.

(2) If two rows of A are swapped to get B, then |B| = —|A|.

(3) If a scalar multiple of one row of A is added to another row to get B, then |B| = |A|.

(4) If B is obtained from A by any elementary row operation [i.e. part (1) with A # 0 or
(2) or (3) above], then |A| # 0 < |B| # 0.

Proof. In (1), every term of |A| gets multiplied by a factor of A, so the sum gets multiplied
by a factor of A as well, and |B| = A|A|.

Part (2) was Proposition 7.2.

For (3), suppose p x (row k) is added to (row [) for a scalar . Then A = (a;;), B = (b;j),
and b;; = a;; unless ¢ = [ in which case b;; = a;; + pag;. Therefore,

|B‘ = Z Sgn(ﬂ-)blﬂ'(l)b%r@) B bnw(n)

7T€Sn
= > sgn(T)air(1)a2x(2) - - - (Qr)y + POkr(@)) - - - Anr(n)

Tl'GSn
= |A| + p X (determinant of a matrix with rows k and [ the same)
= [4]

by Proposition 7.3 (2).
Finally, (4) follows immediately from (1)—(3). O

Remark. We can also deduce that if B is obtained from A by applying elementary column
operations, then again

A £0 & [B] £0,
(Just apply |A] = |AT]).
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Expansion by rows (or columns). If A = (a;;), n x n, and if we now fix 1 <i,j < n, we
say that the (i, j)th minor of A is the (n — 1) X (n — 1) matrix that you get by removing the
1th row and jth column of A.

Example. Take

1 2 3

A=\ 4 5 6

7 89

Then (taking i = 2, j = 3), the (2, 3)th minor will be

(75

Proposition 7.5 (Laplace expansion of determinants). Let A be n x n, A = (a;;). Then:

Notation: A; ; is the (7, 7)th minor.

e “Fxpansion by 1st row”
|A] = an|An| — arp|Asa| + ai3]Ass| + - - £ a1n| Asnl,
e “Expansion by ith row”:
Al = (=1)" an] An| — an|As| + ais|Ais| + - - - £ ain| Ainl,
e “FExpansion by jth column’

Al = (—1)tay| Avy| — asj|Agj| + asj|Asj| + - - - £ anj|Ayjl,

Proof. We will first prove (1). We have:
|A| = Z sgn(7)A1r(1)A2r(2) - - - Cnr(n)-

TESH
Strategy: each term is ay;asr(2) . .. Gpr(n) for some i, so we can group together the ay; terms
and show that they sum to ay;|Ay;].

Terms featuring ai;. These are a1 D Gor(2) ... Gnrn) Where X = {m € S,: 7(1) = 1}.

TeX
Now:
Qg2 Q23 ... Q2n
a3z a3z ... dA3zp
Ay = .
Ap2 QAp3 ... Qnp
and if (1) = 1, then we can think of 7 as a permutation of {2,3,... ,n}, so the terms

featuring a;; sum to aq;| A1l
Terms featuring a;,. Trick: swap columns 1 and 2 of A to get
a2 a1 @iz ... Qip

Ag2 A21 Q23 ... Q2n
B = ]

Qp2 Apl1 Qp3 ... dnp



M2PM2: ALGEBRA 2 37

which changes the determinant to —|A|. Now, use the previous part with matrix B instead
to get that the terms mentioning ajs sum to ajs|Bii| = —aja|Aisl.

Terms featuring a;3. Trick: first swap columns 2 and 3, then swap columns 1 and 2. This
does not change the determinant and shows that the terms featuring a3 sum to a;3|A;3|.

Continue in this way to get (1).

For (2), use the same trick but with rows: swap rows ¢ and ¢ — 1, then ¢ — 1 and i — 2, etc.,
finally, 2 and 1. The ith row is now at the top. All other rows are still in order. Now apply
(1) to the new matrix to get (—1)""'A| = a;1|Ai| — ain|Aia| + as3|Ass| + -+ £ ain|Ainl, as
requested.

Finally, (3) follows from (2) using |AT| = |A| (Proposition 7.1). O

Remark. In a3 terms if we had only swapped columns 1 and 3, we would not have gotten
Ajz as a (1,1) minor of the new matrix! Hence we also swap columns 2 and 3.

Theorem 7.6. For an n x n matriz A, the following are equivalent:

) 1Al #0,

) A is invertible,

) The system of equation Ax = 0 has only the solution x = 0,
) A can be reduced to I,, by elementary row operations.

(1
(2
(3
(4

Proof. We know that (2), (3), and (4) are all equivalent by MIGLA (Geometry and Linear
Algebra).

Assume (1), |A] # 0. Put A into echelon form, using elementary row operations to get a
new matrix A’. By Theorem 7.4 (4), |A’| # 0. Hence last row of A’ cannot be all 0 by
Proposition 7.3, so

1 *
A =
0 1
and now it is easy to reduce A’ to I,, using elementary row operations, so we have shown (4).

So now suppose (4), i.e. A can be reduced to I,, by elementary row operations. As |I,| =
1 # 0, by Theorem 7.4, |A| # 0, so (1) holds. O

Corollary 7.7. Suppose A isn x n. If Az =0 has a non-zero solution x, then |A| = 0.

We will now state the main theorem of this chapter.

Theorem 7.8. If A, B are n X n, then det(AB) = det(A) det(B).

To prove it, we will need elementary matrices, which we define below.

If r # 0 and 1 < i <mn, define A;(r) = identity with 7th row multiplied by r:
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1

If 1 <i4,j <n,i#j, define B;; = identity with ith and jth rows swapped (there is no way
[ am going to write this one down nicely).
Finally, if s is a scalar, 1 <14,j <mn, i # j, define C; ;(s) = identity with s x jth row added

to ¢th row:
1

1 0

where the s is in the (i, j) entry of the matrix.

Examples. If n = 2:

0 1)
Al(—3)_<(1) _03>
e(11)
can-(3 )

What happens when we multiply an elementary matrix by a matrix? Set

1 2
=54
Then:

which is M with 1st row multiplied by 7,

s = (95) (5 7)=(72)

which is M with 1st and 2nd rows swapped,



M2PM2: ALGEBRA 2 39

C2(3)M = (

1 3
01

which is M with 3 times 2nd row added to 1st row.

1 2
3 4

)(

)-(24)

Proposition 7.9. Let M be an n x n matriz. An elementary row operation on M changes
it to EM where E is an elementary matrix.

Proof. Exercise!

O

Proposition 7.10. The determinants and inverses of elementary matrices are:

matriz | determinant | inverse
FE det(FE) E-1

A;i(r) r Ai(1/r)

Cij(s) 1 Cij(—s)

Proof. For the determinants, you could use Theorem 7.4 (with I,,). For inverses, you could
use Proposition 7.9.

Or you could check everything directly. O

The following result is very useful.

Proposition 7.11. Every invertible matrix can be expressed as a product of elementary
matrices.

Proof. Let A be invertible. By Theorem 7.6, (2) implies (4), can reduce A to I, using
elementary row operations. By Proposition 7.9, the first row operation sends A to F; A with
E; an elementary matrix. The seconds row operations sends it to

EyE A
where Fs is a second elementary matrix. Continuing, we deduce:
I, =EyE, ... E3EyFE A
and all the E; are elementary matrices. Hence
A= (EwEy ... BE) ' =E'Ey' B B!
but by Proposition 7.10 the inverse of an elementary matrix is also an elementary matrix, so

we are donel! O

12 ) Since det A # 0, A is invertible.

Example. Let A = ( 10

By reducing A to the identity, we find:

10
11

(o 1)

J5

10
11

(4
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Lo ) (o )G (A 8)= (o v)

(where the consecutive matrices correspond to consecutive row operations we apply to reduce
A to the identity).

Therefore, we have

Ao (1O (1Yt o N oY1 10
11 0 1 012) “\{-11)\o1)\o2
and we are done.

The following Proposition is a key step towards proving det(AB) = det(A) det(B) (Theorem
7.8).

Proposition 7.12. If A is an n xn matriz and E is an elementary matriz, then det(EFA) =
det(E) det(A).
Proof. Let B = FA. 3 cases:

(1) If E = A;(r), then B = A with ith row multiplied by r, so det(B) = rdet(4) =
det(E) det(A).

(2) If E = Byj, then B = A with ith and jth rows swapped, so det(B) = —det(A) =
det(E) det(A).

(3) If E = Cjj(s), then similarly det(EFA) = det(A) = det(E) det(A).

O

Proposition 7.13. Let A be invertible. By Proposition 7.11, can write A = Fy ... Ey, each
E; elementary. Then
|A| = |Ey||Es| . . . | Exl.

Proof. Induction on k£ with 7.12 as the base step. U
We can finally prove that det(AB) = det(A) det(B).

Proof of Theorem 7.8. Case 1. If |[A| =0 or |B| = 0, then |AB| = 0 by Q6 from Problem
Sheet 7.

Case 2. Say |A| # 0 and |B| # 0. By Proposition 7.11,
A=FFE,...Ey
B=FF..F
for E;, F; elementary matrices. Then
AB=FE,...E.Fi... F

so 7.13 implies
|AB| = |E1|... |Ex|| | ... [F| = [A]| B
and we are done! OJ

Proposition 7.14. Let P be an invertible n X n matrixz. Then
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(1) det(P~') =1/ det(P)
(2) If A is an n x n matriz, then det(P~'AP) = det(A).
Proof. For (1), note that PP~! = I, and so
1 = det(I,) = det(PP ") = det(P) det(P").
For (2):
det(P~'AP) = det(P 1) det(A) det(P) = det(A) det(P~') det(P) = det(A)
by part (1). O

8. MATRICES AND LINEAR TRANSFORMATIONS

Reminder from M1P2 (Algebra 1). Say V is a finite-dimensional vector space (over a ground
field E, where E' =R is a fine choice). Say T: V — V is a linear map.
Let B = {v1,v,...,v,} be a basis of V. Say

TUl = a11V1 + a921U2 + -+ Ap1Un,

TUQ = Q12V] + QU2 + - -+ + Ap2Un,

T, = a1,v1 + A2,V + =+ App Uy,

where a;; € E.

The matriz of T with respect to B is

a1 a2 ... QAip

21 A29 ... Q9
Tp = .

Ap1 Ap2 ... App

Proposition 8.1. If S,T: V — V are linear maps, and ST = SoT is the composition, then
[ST]5 = [S]B[T]s-

(Even easier: [S + T|g = [S]p + [T]p and [\S]s = A[S]5.)
Consequences:

(1) Notation as above, and say [T]p = A. Then T? = T oT and [T o T|z = A% More
generally,

[T*) 5 = A"
Most general setting: say p(x) = @™ + cpp_12™ 1 + -+ + c17 + ¢ is a polynomial
with coefficients ¢; € E. Let us define

p(T) =cp T+ -+ T + ol
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where T: V' — V as before and /: V' — V is the identity function /(v) = v. Note
that [I]p = I, the identity matrix. Then

p(T): V-V
is a linear map. Also
p(A) = CmAm + -+ ClA + C()In

and one checks [p(T)]g = p(A).
(2) Notation as above. Define GL(V') to be the set of invertible linear maps V' — V.
This is in fact a group under composition of functions. This is a group and the map

GL(V) = GL(n, E)
defined by T + [T]p is an isomorphism of groups.
Change of basis. Say V has 2 bases B = {ey,ea,...,e,}, C ={f1, f2, ..., fu}, and

fi = puer +parea+ -+ puiey

fn = Pn€1 + Panea + - - + Dpntn.
The change of basis matrix P from B to C' is

Pir ... DPin
po|
Pn1 -+ Dnn

Proposition 8.2. If T: V — V is a linear map, then [T|c = P7'[T|pP.

As an amazing consequence,
det([T]¢) = det([T]B)
(by Proposition 7.14) i.e. a linear map T: V — V has a well-defined determinant.

Definition. Two n X n matrices A and B are similar if there exists an invertible P such

that B= P1AP.

Remark.

(1) If we define A ~ B < A is similar to B, then ~ is an equivalence relation.
(2) The matrices [T]p and [T]¢ are similar.
(3) By Proposition 7.14, similar matrices have the same determinant.

Definition. Let 7: V' — V be a linear map. The determinant det(T') of T is defined to be
det([T]p) for B any basis of V.

This is well-defined by remark (2) above!
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Example. Let V be a vector space of polynomials over R of degree < 2. Define T: V — V'
by T(p(x)) = p(3z + 1). Find det(T).
Solution. Set B = {1,x,2*}. Need [T]5. We have
T(1)=1
T(x)=3x+1
T(x?) = 3z + 1) =92% + 6z + 1

so we have

T)p =

o O =
S W
NeRNerag s

and we have det(7) =1 x 3 x 9 = 27.

9. CHARACTERISTIC POLYNOMIAL

Let T: V' — V be a linear transformation where V' is a finite-dimensional vector space.

Definition.

(1) We say v € V is an eigenvector of T if v # 0 and T'(v) = Av for some A € E (ground
field).

(2) We say A as above is an eigenvalue of 7.
(3) The characteristic polynomial of T is the determinant

det(xl —T).
Proposition 9.1.
(1) The eigenvalues of T are the zeroes of the characteristic polynomial of T
(2) If X is an eigenvalue of T and we define Ex C'V
Ey={veV:T(v) = v}

Then E\ is a vector subspace of V.
(3) The matriz [T)p is diagonal if and only if the basis B consists of eigenvectors of T

Proof. (1) and (3) were proved in M1P2 (Algebra I).
To prove (2):
E, ={veV:T({) =}
={veV:(T-X)(v)=0}
= kernel of the linear map T'— \[: V =V
so it is a subspace. 0]

Definition. The subspace F, is called the \-eigenspace of T
Corollary 9.2. Let V' be a non-zero finite-dimensional vector space over E and sayT: V —

V' is a linear transformation. If E is algebraically closed, then T' has an eigenvalue A\ € E.

Proof. The characteristic polynomial of T" is a non-constant polynomial over E, so it has a
root A. So use 9.1 (1). O
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Note that C is algebraically closed, so this holds for £ = C.

Example (of an eigenspace). Let E =R, V =R2 Let T: V — V be
1(5)-(32)C)

Take B = {(é), (?)} so that [T|p is the matrix above. The eigenvalues of T are just 2,

characteristic polynomial = (z — 2)%. Then

{5 (32) () -2())

2a +b =2a
2b =2b

The solution is b = 0, so the eigenspace is

Need

2 0

Example (of an eigenspace). For T = ( 0 2

) the 2-eigenspace is just R?!

Diagonalisation. Recall that some matrices are diagonalisable and some are not. The aim
of this subsection is to determine when we can diagonalise a matrix.

Proposition 9.3. Let T: V — V a linear map, V' finite-dimensional vector space. Suppose

V1, V2, ..., 0 €V are all eigenvectors for T with corresponding eigenvalues Ay, ..., A, i.e.
T’Ui = )\,ﬂ)i
Suppose all the \;’s are distinct. Then vy, vq, ..., v are linearly independent.

Proof. Induction on k. True for k = 1, because v; # 0. Suppose that
V1, Vg, e ey Vg
are linearly independent. Assume for a contradiction that
(1) vy + ToUs + - + 71U =0
for r; € F and not all equal to 0. Applying T" to the equation, we get
(2) TN UL + ToAaUs + - - + 1A = 0.
Thus subtracting (2) from A times (1):
r1( A — A)vr +r2( A — A2)vg + -+ - + 11 (A — Ag1)vp—1 =0
so by linear independence of vy, ..., vx_1, we get
ri(Ak — X)) =0

fort=1,2,...,k—1. But the \;’s are all distinct, so A\, = \; #0fori=1,2,...,k—1, and
hence
T1:T‘2:"':Tk_1:0.
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Substituting back into (2), we deduce that rxv, = 0. But vy is an eigenvector, so vy, # 0,
and r, = 0. Thus we have shown that r; = 0 for ¢« = 1,2,...,k, which contradicts our
assumption. 0

Corollary 9.4.

(1) Say dimV = n and suppose T: V — V has a characteristic polynomial with distinct
roots in E. Then there exists a basis B of V' such that [T is diagonal.

(2) Let A be an nxn matriz and suppose the characteristic polynomial of A has n distinct
roots in E. Then there exists an invertible P such that P~YAP is diagonal.

Proof. For (1), say the roots are Aq,..., A, are distinct. Choose vy, ..., v, eigenvectors such
that T'(v;) = Av;. Then by Proposition 9.3, the v; are linearly independent. But there is n
of them, so they form a basis B and [Tp is diagonal.

For (2), set V = E™ and define T: V' — V by T'(v) = Av. The result follows from (1). O

Example. Say A is an upper triangular matrix, and diagonal entries are distinct. Then A
is diagonalisable. For example:

-3 29
0 46
0 01

is diagonalisable, i.e. there exists P such that P~ AP is diagonal.
This is because the characteristic polynomial of

A *

0 Ao
is (x — A)(x — Aa) ... (x — A,). Now, apply 9.4, since \; are distinct.

Problem with our toolkit so far:

-3 2 9
0 4 6
0 0 =3

has 2 equal eigenvalues. Is that matrix diagonalisable or not?

Algebraic and geometric multiplicities of eigenvalues. Set-up: V is a finite-dimensional
vector space over £ and T: V' — V is a linear map. Moreover, p(x) is the characteristic
polynomial of 7" and A € E is an eigenvalue for T'. Since p(A) = 0, we can factor (z — A) out
of p(z), and write:

p(x) = (z = X)*Vg(z)
with CL()\) € ZZI-

We call the number a()\) the algebraic multiplicity of A\. By convention: if A € F is not a
root of p(x), i.e. not an eigenvalue, then a(\) = 0.
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If n =dimV, then n is the degree of p(x). Therefore:

Za()\) <n

AEE

with equality if E is algebraically closed or, more generally, if p(z) factors as a product of
linear factors.

Also, recall the A-eigenspace
Ex={veV:Tw) =M} CV.

Set g(A) = dim E). Note that g(A\) € Z>1, because X is an eigenvalue, so there exists an
eigenvector v with eigenvalue A\, and 0 # v € F).

We call the number g(\) the geometric multiplicity of A. Again, by convention g(\) = 0 if
A € F is not an eigenvalue.

Note that if A is an n X n matrix, define a(A) and g(\) in the same way, using 7': E™ — E"
given by T'(v) = Av.

411 whose characteristic polynomial is p(z) = (z — 3)(z — 4).
Therefore, a(3) = a(4) = 1 (eigenvalues are 3 and 4).

Check that ¢g(3) = 1 (this is clear as g(3) > 1 and conversely if g(3) = 2, then E3 = R? and
A would be 37) and similarly ¢g(4) = 1.

3 1
0 3
a(3) = 2 (eigenvalue is 3). But ¢g(3) = 1, because:

()

Proposition 9.5. Say V is a finite dimensional vector space and T: V — V is a linear map
with X an eigenvalue. Then g(\) < a()).

Example. Let A = ( g

Now, let A = whose characteristic polynomial is p(z) = (x — 3)%. Therefore,

Proof. Say g(\) = r. Then the eigenspace E), C V is r-dimensional, so pick a basis
{v1,v9,...,v,.} for E). Extend it to a basis for V:

B=A{vy,...,0,w1,..., ws}.
What can we say about [T]5?
T(vy) = A
T(v,) = v,

T(U)1> = a11Vq + -+ QAr1 Uy + b11w1 + b21w2 + -+ bslws

T(ws) = a1V + -+ apsUp + blswl + b?st +---+ bssws
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Therefore:
A O ai A1s
0 | A a;ul . a‘rs
Tls = 0 by ... b
b1 ... bgs

So if we let A = (a;;) and B = b;;, then

1]y = M, | A

"\ o |B

We claim that the characteristic polynomial of [T]|p is (x — A)"x (characteristic polynomial
of matrix B). Indeed, the characteristic polynomial of [T]p is the determinant of

ol = [T)s = ( (2= N, ' 5615_:43 )

which is exactly (x — \)" det(x; — B) by Q5 from Problem Sheet 7. O

Theorem 9.6. Say dimV = n and T:V — V linear map and \y,...,\,, are distinct
eigenvalues and p(x) is the characteristic polynomial of T,

p(z) = (x = X)) (2= Ny, )2Om),

Then the following are equivalent:

(1) There exists a basis B of V' consisting of eigenvectors (i.e. T is diagonalisable, i.e.
[T)p is diagonal);

2) 3 900) =n;
(3) g(\;) = a(N;) for alli.

Proof. 1t is easy to show that (2) is equivalent to (3):

S a(h) = degp(z) = n
i=1

and g(\;) < a()\;) for all i, so
D g) <D ah) =n
i=1 i=1

with equality if and only if g(\;) = a(\;).

We will now show that (1) is equivalent to (2). First, assume (1) and say B is a basis of
eigenvectors for 7. We will show (2). If B; C B consists of elements with eigenvalues \;,
then

B; C E), = \;-eigenspace
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and B is the disjoint union of the B;’s. Thus

n=|B|=>Y |Bi
i=1
Now, B; C E), is a linearly independent subset, so
B < dim(Ey,) = g(\)

Therefore:

3

I
o
E

S
I
—

IA
Mz
=N
>

-
I
A

IA
NgE
2
>

Il
2]

so equalities hold everywhere and (2) holds.

Finally, we suppose (2), > g(A;) = n, and show (1). For each ¢, 1 < i < m, let B; be a basis
i=1

for F,,, and let B = |J B;. Note that one eigenvector cannot have 2 eigenvalues, so the B;
i=1
are disjoint. Therefore:

Bl="g(\) =n

and it suffices to prove that B is a linearly independent set. So set |B;| = n;, B; =

{bi1, bi2, - . ., bin, }, and say we have a linear combination
m n; ni Nm
Z ( )\z]bz]> - Z )\Ublj + st + Z )\mjbmj - 0
i=1 \j=1 j=1 j=1

Now, set v; = i Aijbij for i =1,2,...,m. Then
j=1

v +v2 4+ v, =0

with each v; € E), and, in particular, T'(v;) = \v;. If any of the v; were non-zero, then we
would have a non-zero linear relation A\jv; + - -+ 4+ \,,v,, = 0 on eigenvectors with distinct

eigenvalues, contradicting Proposition 9.3. Thus for ¢+ = 1,2,...,m we have v; = 0 and
Z Aijbij = v =0,
j=1
so since B; is a linearly independent set, A\;; =0 for j =1,...,n,.
Thus B is a linearly independent set of size n in V' and (1) follows. O

We can use this theorem to check whether explicit linear maps or matrices can be diago-
nalised.



M2PM2: ALGEBRA 2 49

Example. Consider the matrix:

-3 1 -1
-7 5 -1
-6 6 —2

Its characteristic polynomial is (z + 2)*(z — 4), so a(—2) = 2, a(4) = 1. We know that
1<g(4) <a(4)=1,s0g(4) =1.

What about g(—2)? Note that E_ is the kernel of the map given by the matrix:

-1 1 -1
A+2l = =7 7 -1
-6 6 0

and the rank of this matrix is 2 (to see this: look at the columns). Therefore, by the Rank-
Nullity Theorem, its nullity is 1 and g(—2) = 1 < a(—2). Hence the matrix cannot by
diagonalised by Theorem 9.6.

10. UPPER-TRIANGULARISATION

A matrix is upper triangular if it is of the form:

A2

0 'An

In this chapter, we will show that any matrix over C is similar to an upper triangular matrix.
We first prove some basic properties of upper triangular matrices.

Proposition 10.1. Suppose

A * M1 *
A A2 B 2
0 Ao 0 fin
Then:
(1) the characteristic polynomial of A is (x — A1)(x —X2) ... (x—\,) and the determinant
18 )\1 N )\n
Atfin *
Aoft
(2) AB = e

0 Anfn
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A *
A5
(3) AF =
0 AR
Proof. Easy exercise. O

We have seen that there exist matrices that you cannot diagonalise, for example

(07)

has g(7) =1, a(7) = 2, g(7) < a(7).
However

Theorem 10.2. Say E' = C (or any algebraically closed field).

(1) If V is an n-dimensional vector space over E and T:V — V is a linear map, then
there exists a basis B of V' such that [T)p is upper triangular.

(2) If A is an n X n matriz over E, then there exists invertible n x n matriz P such that
P~YAP is upper-triangular.

Proof. First, note that (1) for n < (2) for n. We will prove them both by induction on n.
More precisely, we will show that (2) for n — 1 implies (1) for n.

Base case n = 1. Suppose dim V' = 1 and pick any 0 # v € V; this is a basis and [T']5 = (\)
is uppertriangular.

Inductive step. Assume that (2) is true for dim V' < n and prove (1) for dim V' = n. Take
T:V — V linear, dim(V) = n. By Proposition 9.1, T" has an eigenvalue A (take any root
of the characteristic polynomial). Choose an eigenvector 0 # v € V such that Tv = Av and
extend to a basis of V', {v,eq,e3,...,e,} = C. What is [T]¢? We know that Tv = Av, but
we do not know anything about Te;. So the matrix looks like:

jen)

where M is some matrix, (n—1) x (n—1). By the inductive hypothesis, there exists invertible
(n —1) x (n — 1) matrix @ such that Q='MQ is upper triangular. Set
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o O

OO e

then

and
A7O7 707

PHTcP =
e : Q' MQ

0
0
which is upper triangular. This shows (2) for n. To see (1), take B to be the basis you get
from C after applying P. O

In practice, how do we actually upper-triangularise a matrix?

Basic strategy: find as many linearly independent eigenvectors as you can—use those as the
first few elements, and extend to a basis. Will it work?

Say dimV = n. If you find n linearly independent eigenvectors, then [T|p is diagonall If

you only find n — 1, say ey, e, ..., e, 1 eigenvectors, then extend to a basis ey, ..., e, of V.
Then
M O .. 0 7
0O X ... 0 7
Tle=1] + + . &
0 0 ... A1
o o0 ... 0 7

because Te; = \e; if i < n and e, is anything. Thus [T is upper-triangular.

If you can only find n — 2, then you need to look at the proof, and decide where to go next.

Cayley—Hamilton theorem. If A is an n X n matrix, A = (a;;) and if f(z) = a,a™ +
-+« + a1 + ag is any polynomial (with coefficients in the ground field), then it makes sense
to talk about

flA) =an, A"+ -+ a1 A+ apl,.
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Theorem 10.3 (Cayley—Hamilton). Let A be an n X n matriz and let p(z) be the charac-
teristic polynomial, p(x) = det(xl — A). Then p(A) =0, the zero matriz.

1 2
3 4

p<A):(1 i>2_(155 %)‘((2) g):<175 ;g>_(175 §g>:0

as expected.

Example. Let A = ( ) Then p(z) = 2% — 5z — 2, so

A bogus proof the Cayley—Hamilton Theorem 10.3 is to say p(z) = det(xzI — A), so
p(A) =det(AI — A) = det(A — A) = det(0) = 0.

However, this makes no sense, since p(A) should be a matrix not a number. The reason
this is bogus is that z is supposed to be a number, so you cannot substitute A for x in the
determinant. What does x — a;; mean if x = A?

The following proposition is a preparation for the proof.

Proposition 10.4. Let A and B be similar n X n matrices, i.e. B = P7YAP for some
wmvertible n x n matriz P. Then

(1) A and B have the same characteristic polynomial,
(2) if f(x) is any polynomial, then

f(B)= Pl f(A)P,
(3) if f(B) = 0, then f(A) = 0.

Proof. For (1), we have:

det(x] — B) = det(xl — P71AP) definition
=det(P~'zIP — P7'AP) P 'IP=1
= det(P~(zI — A)P)
= det(z] — A) by 7.14(2)

For (2), first note:

Bf = ptA*P
for all £ > 0. (Easy proof by induction on k.) Now, if f(z) = a,, 2™ + -+ + a12 + ag, then
f(B) = anP *A™P + -4+ a,P"'AP + agl = P (apA™ + -+ a1 A +ag)P = P f(A)P.
Finally, (3) follows from (2). O

Proof of Cayley—Hamilton Theorem 10.5. Let A be n x n, with characteristic polynomial
p(x). By Theorem 10.2, there exists an invertible P such that P~'AP = B is upper triangu-
lar (with diagonal entries Ay, ..., \,). [Note that we pretend the ground field is algebraically
closed in this part of the proof.] We will show that P(B) = 0. That suffices by Propo-
sition 10.4 (3). Since A and B are similar, p(z) is the characteristic polynomial of B by
Proposition 10.4 (1). Since zI — B is upper-triangular:

p(z) = (x —A)(x—Aa) ... (x = \y).
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To show that p(B) = 0 (the zero matrix), we will show that p(B)v = 0 (the zero vector) for
any vector v. We have:

p(B) = (B—MI)(B—X\I)...(B—=\J),

so for any vector v = (ay, aa, ..., a,)T:
A=A *\ / a By
A2 = An Qo B
(B— XM\ )v = : = :
)\n—l B An Qp—1 anl
O 0 Qpy 0
Next step:
AL — Aot * By "
A2 — A1 s 72
(B=Xp_11)(B=X\I)v = : — :
0 * Yn—2
O /anl O
)\n - >\n—1 0 0
It is easy to check that this pattern continues and hence deduce that:
01
0
(B—=XI)...(B=X\,)v= :
0
0
The final step shows that
0 * 01 0
A2 — M 0 0
p(B)v = (B=MI)(B=XoI)...(B=\I)v = : = | :
0 0
0 A — M 0 0
and this completes the proof. 0J

11. JORDAN CANONICAL FORM

Idea: try to find out when two matrices are similar. Say A and B are similar matrices, i.e.
B = P7'AP. What do they have in common?

Proposition 11.1. Let A and B be similar matrices. Then A and B have the same:

) determinant

) characteristic polynomial

) eigenvalues and algebraic multiplicities
) geometric multiplicities

(1
(2
(3
(4
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(5) rank and nullity
(6) trace

Proof. Firstly, (1) is 7.14 (2), (2) is 10.4, and (3) follows from (2).

For (4), say B = P7'AP and A\ € E. We will show that dim E\(A) = dim E\(B), where
E\(M) is the A-eigenspace for matrix M. Take v € E\(B) so that Bv = Av. Since B =
P7'AP, PB = AP and

APv = PBv = P(Bv) = P(A\v) = A\Pv
so Pv € E)\(A). Therefore, v — Pv is a map E)\(B) — FE\(A). It is easy to check it

is an invertible linear map with the inverse given by v + P~lv. Therefore, dim E\(B) =
For (5), we first check that the nullities coincide:
nullA = dimker A
= dim Ey(A) definition
= dim Ey(B) by (4)
= dimker B definition
= nullB

and by the rank-nullity theorem the ranks also coincide.

Finally, to show (6) we note that the trace is the coefficient of "' in the characteristic
polynomial:

T — a1 —a12 —aiz ... —Qin
—G21 T — 422
det(x[—A) = —asy :xn—(a11+...+ann)xn71+...
—an1 T — Gpp
But by (2) the characteristic polynomials of A and B coincide. O

Is the converse true? Say A and B are nxn matrices with the same characteristic polynomial,
rank, nullity etc. Is A similar to B? No! Take the following matrices:

710 0 710 0
0700 0710
A=190 71 B=190 70
0007 0007

We have det A = det B = 7% and their characteristic polynomials are (z — 7)%. The only
eigenvalue is 7 and its algebraic multiplicity is 4. Moreover, ¢g(7) = 2 for both A and B:

E7(A> = <€1,6’3>, E7(B) = <€1, 64).

Since det A = det B # 0, their rank is 4 and their nullity is 0. Finally, their traces are
both 28.
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However, A and B are not similar! For example,
(A—-T71)*=0
(B—=TI)?*#0
so they cannot be similar by Proposition 10.4 (3).

In general, how do we check 2 matrices are similar? One way—put them both into Jordan
Canonical Form. The rest of this chapter will explain this.

Jordan blocks. Ingredients: integer n > 1, A € E. We define a Jordan block to be

A 10 0
A1 o0
A1
Jn(A) =
A1
0 A
Examples.
0100
71 0010 1 1
‘]2(7):<0 7) BWO=19090 1| 7 (35):(35)
0000

Proposition 11.2 (Basic properties of Jordan blocks). Set J = J,(\). Then
(1) characteristic polynomial of J is (x — \)™.
(2) A is the only eigenvalue of J, a(\) =n, g(A) = 1.
(3) Set K = J — X = J,(0). The linear map C* — C" defined by K sends

Ep > Ep_1 > Ep_o > - €y — €1 — €.

(4) (J=A)"=0and for1 <i<n-—1:

0 0
0 0

o O
O =
—_

—_

(J — M) =

o

0

0
where the 1 in the first row appears in the (i + 1)th column etc.
(5) If uw # A, then J — pl is invertible.
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Proof. Since J,(\) is upper-triangular, (1) is clear, and the only thing to prove in (2) is
g(A\) = 1. Need to solve

0 1 U1 0
0 1 (%) 0
01 Up—1 0

0 Un, 0

but LHS = (vg,v3, . ..,0,,0)T, so Ex(J,(A\)) = {(v1,0,...,0)T: v; € E} is 1-dimensional.
(3) is clear.

For (4), first note that (J — AI)™ kills every basis vector by (3), so (J — AI)™ = 0. For any
1 <i<n-—1, note that by (3), (J — )" sends

€, > €ep_;
€n-1 > En_j-1

€iy1 — €1
e; — 0
ez — 0
and (4) follows from writing this linear map in the basis {ey, ..., e,}.
For (5), note that J — pl = J,,(A — ) which has determinant (A — )" # 0. O

Remark. Since a(\) =n, g(\) =1, J,(A) is diagonalisable if and only if n = 1.
Block diagonal matrices. If A is an n X n matrix and B is an m X m matrix, define

o (313)

an (n+m) X (n + m) matrix.

For example:
1 20
( é Z ) @ () = 3 40
0 0 5

More generally, if Ay, ..., A, are matrices and A; is n; X n;, then

4, 0

Al o]0 o
0 A, 010 A,
Al@AQ@"'@Ak: —
0l .10 .
0] 0] 0]A O A,

Proposition 11.3 (Basic properties of ®). Let A= A, @ --- @ Ag. Then
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(1) If pi(x) is the characteristic polynomial of A;, then the characteristic polynomial of

A s
k
sz(a:)
i=1

(2) The set eigenvalues of A is the union of the sets of eigenvalues of A;.
(3) For any \:

dim Ey(A) =Y " E\(4;)

(4) For any polynomial f(x):
f(A) = f(A) + -+ f(AR).

Proof. For (1), we have that

xl — Ay 0 0 0

0 xl —As | O 0
det(z] — A) = det 0 0 : 0 =det(z] — Ay)...det(z] — Ay)

0 0 0 |zl — Ay

by Q5 from Problem Sheet 7 and (2) follows from (1) immediately. Moreover, (3) is Q5 from
Problem Sheet 6.

For (4), it is enough to check that A" = A] & - - - @& A}, which one can do by induction. [

Jordan Canonical Form theorem. We are now ready to state the biggest theorem of this
chapter.

Theorem 11.4 (Jordan Canonical Form). Every n x n matriz over an algebraically closed
field E is similar to a matriz of the form

I (A1) © Jng(A2) @ -+ @ T, (Ak)
Furthermore, this “JCF matriz” is unique up to reordering of the factors.

We will prove this later. For now, assume the theorem temporarily. By uniqueness, the
matrices

7 1 0 0 7 1 00
07 10 07 00
J3(7) @ i (7) = 0070 Jo(7) @ Jo(T) = 00 7 1
00 0 7 00 07

are not similar, as we have seen before!

Remark.

(1) The A; in JCF Theorem 11.4 might not be distinct!
(2) JCF Theorem 11.4 is similar to the fundamental theorem of arithmetic (any positive
integer is uniquely a product of primes).
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(3) We work over an algebraically closed field to have all the eigenvalues.
(4) The characteristic polynomial of J,, (A1) ® -+ @ J,,, (Ax) is

(x—A)™ (= X)™ (@ — )™,

(5) A@® B is similar to B & A. To see this, let C = A& B and consider the linear map
EYN — EN given by v + Cv. Then if Ais n x n, Bis (N —n) x (N —n), then we
can write the linear map v — Cv in the basis

{€n+1,€n+2, -5 EN, €L, .- ‘76n}

(where {eq,es,...,ex} is the standard basis of EV) to get B @ A.

Let us stop assuming JCF Theorem 11.4 and prove it!

Say A is any n X n matrix and assume that A is similar to
J=Jn, (M) B B T, (M)
By rearranging the blocks, we can assume that
J=Jny(N) & Joy(N) @ -+ @& oy (\) @ Ty, (112) @ -+ & Ji(piy)
and none of the p, ..., ux—4 are equal to A.

Proposition 11.5. In the above setting:

(1) the algebraic multiplicity of X\ in A is nq + -+ ny,

(2) the geometric multiplicity of X in A is g,

(3) the geometric multiplicity of A in A is n — rank(A — A\I) = n — rank(J — \I),
(4) for all i > 1 we have rank(A — A\I)" = rank(J — \I)".

The Proposition follows from combining the previous results of this section: Propositions 11.1,
11.2, and 11.3. We will use them in the proof without further reference.

Proof. For (1), we have that the characteristic polynomial of A is the characteristic polyno-
mial of J which is

(= N)™5 (= )" (= )"

To show (2), recall that J,,,(\) has the geometric multiplicity of A equal to 1 (and if p # A,
Jn; (1) has the geometric multiplicity of A equal to 0), so J has geometric multiplicity of A
equalto 1 +1+---+1=g.

—_—

g times

Part (3) follows from the definition of the geometric multiplicity and the rank-nullity theorem:
g(A\) = dimker(A — A\I) = n —rank(A — A\I) = n — rank(J — ).

Finally, for (4) note that 10.4 (2) implies (A — AI)* and (J — AI)" are similar, so we are
done. 0
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Example. (Assume JCF theorem 11.4.)
Find the JCF of

35 00 1
03 00 O
A=100 9 0 -1
0009 O
0000 9

Since A is upper-triangular, we easily see that its characteristic polynomial is
(x —3)*(z —9)°.

Therefore, we can write
J=E57..3) & P Jm, (9).
i=1 j=1

First, consider the eigenvalue A = 3. Since a(3) = 2, ny + -+ - + n, = 2. Moreover, the rank
of

0500 1
0000 O
A-3I=|1 00 6 0 -1
0006 O
0000 6

is readily 4, so g(3) =5 —4 =1. Thus r = 1 and ny = 2.

Now, consider the eigenvalue A = 9. Since a(9) = 3, m; + - - - + ms; = 3. Moreover, the rank
of

-6 5 00 1
0O -6 00 O
A—-9] = 0 0 0 0 -1
0 0 0 0 O
0 0O 0 0 O
is readily 3, so g(9) =5 —3 =2. Thus s =2 and my; + my = 3. So m; = 1, my = 2 (up to

permutation of factors).

Therefore:
J = J5(3) ® J1(9) & J2(9).

Proposition 11.6. Suppose
A=Jy(M)® (X)) @ -

B = Jb1(lul) S JbQ(pQ) D

are two similar matrices in JCF. Then, after re-ordering blocks of B if necessary, A and B
have the same number of blocks, and

Jal ()‘ )

1 Jbl (/Ll>7
Jaz ()‘2>

Jb2 (Mz),
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Strategy of the proof: need to check that we can figure out numbers like a;, A\, as, Ay etc.

using only properties which are unchanged if we replace J; by a similar matrix (invariant
under conjugation).

The kind of questions we now have to answer is: Why is J;(A) & Js(A) not similar to
J2(A) @ J3(A)?
We will illustrate the idea of the proof by showing these matrices are not similar. We have

A0 00O
00A100
A=JLNeLN)=]0 0 A 1 0
000 A 1
0000 A
A100 0
00X 000
B=JAhN&JN=|00Xx10
000 A 1
0000 A

Suppose A is similar to B. Then A — Al is similar to B — AI by Proposition 10.4 (2). We
have:

00 00O
00100
A-X=]100010
00001
00 0O0O
01 00O
000O0O
B-X=|00010
0 00O01
000O0O
They both have rank 3. Also, (A — AI)? and (B — A\I)? must be similar. We have:
00 00O
00010
(A=XI)*’=| 0000 1
00 00O
00 00O

(B—\)?=

SO o oo
S oo oo
S oo oo
SO o oo
OO = OO

One has rank 1 and one has rank 2. This contradicts 11.1 (5). Thus A and B are not similar.
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Proof of Proposition 11.6. First, let us assume that all the \; and all the p; are equal to one
number, .
New notation: Let us reorder the blocks in A so that

ap <ax<az<...
Say that my of the a;’s equal 1, my of the a;’s equal 2, etc. Then

A=J (N e N @,

where J;(A)™ = J1(A) & --- & J1(A), my times. We have:

A
A

O >
> =
o >
> =

where the first part has dimension m; x mq, second part has dimension (2ms) X (2ms), etc.

Say the largest block that occurs is a block of size r. So m, # 0 and m, 1 = m,,5 =--- = 0.
Then (A — AI)" = 0 (raise A — A\ to the power r). (This is because (J,(\) — AI)" = 0 by
Proposition 11.2 (4)).

What is (A—AI)""'? Well, raising .J,,(A) —AI to power r—1 will kill it if and only if n < r—1.
But (J,(A) —AI)""! £ 0 and by Proposition 11.2 (4), it has rank 1. By Proposition 11.3 (3),
we deduce that the rank of (A — AI)"™! equal number of blocks of size r which is m,. So if
A and B are similar, they have the same m,..

What about (A — AI)"~2? Each block of size r contributes 2 to the rank, each block of size
r — 1 contributes 1, all others contribute nothing. Thus:

rank(A — \I)"7? = 2m, +m,_;.
So if A and B are similar, they have the same m,._;.

Continuing in this way, we show that if A and B are similar, then they have the same r and
the same myq, ..., m,, so blocks are the same after reordering.

In general, the similar matrices A and B may have lots of eigenvalues. Since A and B
have the same characteristic polynomials, they have the same eigenvalues with algebraic
multiplicities. Now, observe that if p # A

(Ja(p) = AD)"

is an invertible matrix, so it has rank a (J,(p) is an a x a matrix). Therefore, if we look
at the ranks of (A — AI)" and (B — AI)", the contributions from the Jordan blocks with
eigenvalue p will be the same (the dimension of the block). Thus we can repeat the same
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trick to show that, for a fixed eigvenvalue A, the Jordan blocks of A and B with eigenvalues
A are the same (up to reordering). O

The conclusion so far is that any matrix is similar to at most one matrix in JCF (regarding
permutations of blocks as the same).

We still need to prove that any matrix is similar to at least one matrix in JCF.

Let A be an n x n matrix . How to find P such that P~'AP is in JCF? Set V = C" and let
us define T': V' — V by T'(v) = Av. If E' = standard basis of V', then

T)r = A.
If we can find a new basis F' such that [T|p = J and
J = o (M) B Jay(A2) B -+

then we are done, as if P is an approporiate change of basis matrix, then [T]p = P~[T|gP,

so J =P tAP.
Say T: V — V is a linear map. We need to find a basis, F', such that [T|g is a JCF matrix.

There are 3 ingredients in the proof:
(A) Method of braking V' up as a direct sum of subspaces V =V; @ --- @ Vj. This is an

abstract analogue of A= Ay & --- & Ay.
(B) Break V' up as above such that if 7: V' — V, then

T(W1) €W,
T(V2) € Va,

T (Vi) C Vi
and such that T restricted to V; only has 1 eigenvalue.
(C) Prove the existence of JCF for linear maps with just 1 eigenvalue.

We will start with (C), the existence of JCF matrices that have one eigenvalue only.

Theorem 11.7. Say V s a vector space of dimension n, and suppose S:V — V is linear
and the characteristic polynomial of S is " (equivalently, only eigenvalue of S is 0). Then
V' has a basis B such that

1518 = Jn, (0) @ J, (0) @ - - @ Jn, (0).

Before we start the proof, let us think about what B will look like. Say

B = {617 €2,€3,--+,€ny; Cny+1y -+ -5 Cnydngs Cngdng 1y - - }

where n; is the size of the first block, ny is the size of the second block etc. By definition of
[S]5:
S(enl) = €ny—-1

S(enl—l) = €p—2
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5(62) = €1
S(@l) =0
Similarly for the next Jordan block:

S(€n1+n2) = €ni4ny—1

S<€n2+2) = €ni+1
S<en1+1) =0

With this motivation, we introduce a temporary definition (it will simplify the proof; however,
it is not a standard notion that you will find in a textbook).

Definition. A chain is a finite sequence of vectors
0, S(0), $2(v). ..., S (v)
such that S%(v) = 0 and S¥*(v) # 0.

For example, e,,,€,,1, ..., €1 is a chain (as above).

Remark. If 0 # v € V and S(v) = 0, then {v} is a perfectly good chain (length 1).

We can now restate Theroem 11.7 using chains: If the only evalue of S is 0, then V' has a
basis which is a finite disjoint union of chains (because any permutation of a basis is a basis).

Proof of Theorem 11.7. Induction on n = dim V. Base case n = 1: S = (0) and any basis
will do!

Inductive step: dimV =n > 2 and S: V — V, only eigenvalue is 0. If 0 # v € V is an
eigenvector with eigenvalue 0, then Sv = Ov = 0, so dimker(S) > 0 as it contains v, so
dim(im(S)) < n by rank-nullity theorem.

So let us set W = im(S) = S(V). Then dim W < n. Restriction of S to W is a linear map
Syw: W — V, but the image of this linear map is C im(S) = W, so the restriction Sy of S
is a linear map W — W.

Remark: if A is an eigenvalue for Sjy and 0 # w is an eigenvector with eigenvalue A, then
S(w) =Aw. But w € V, s0 A =0.

Therefore, we can apply the inductive hypothesis to Sy : W — W. Hence W has a basis
which is a union of chains. Say a basis of W is

Uy, S(ul)v 52(u1)7 sy Sml_l(ul)a
Ua, S(Ug), SQ(UQ), ceey SmQ_l(Ug),
Up, S(Uh), SQ(U}L), Ceey Smh_l(uh).

and S (uy) = S™(ug) = - -+ = S™(up) = 0.
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Now we need a basis for V. Recall that W = im(S) = {S(v): v € V}. In particular, for
u; € im(S), we can choose v; € V such that

S(UZ) = U;
and we have h slightly longer chains:
Uy, S(U1>, SQ(Ul), ey Sml(’Ul),
V2, S(’UQ), SQ(UQ), ey SmQ(’Ug),
Up, S(Uh), SQ(Uh), e Sk (Uh).

Note that ker S already contains S™ ! (uy),..., ™ *(uy) which are linearly independent
(but may not span ker S). We can extend to a basis of ker S by throwing in vectors

w1, W, ...,Wt
so that dimker S = h + ¢.
We claim that the following chains
U1, S(U1>, SZ(Ul), ey Sml(’Ul)7
Vg, S(’Ug), 52(1}2), PN SmQ(Ug),
Up,, S(Uh), 52(Uh), ey Smh(vh).
wy
w2
Wy

form a basis. Let us first check linear independence. Suppose that

0 = 11U1 -+ /\125(1)1) + -+ >\1(m1+1)5m1 (1)1)
+ An1vn 4+ An2S(vn) + -+ Ay +1)S™ (vp)
+ pwy + pows + - A Wy

We will show that all the \;;’s and p;’s are 0. First, apply S to equation (1) to get an
equation in W:

Aty + A2S (ug) + - A Ay S™ T (wg) -+ Ay + Mn2S (up) -+ )\hthmh_1<Uh) = 0.
This is a linear relation on our basis for W, so
M=A2==Am, =...= A =A2=...= A\pp, =0
We substitute this back to (1) to get
Mmi+1) ST (V1) 4 -+ F Mgy S™ " (0p) + pwy + -+ pwy =0
which is a linear relation on our basis for ker .S, so
/\1(mh+1) =...= )‘h(mh-i-l) = =...=pu=0.

Therefore, our chains in V' are linearly independent.
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We now claim that the total number of elements in the proposed basis of chains is n. The
total number is:
(mi+1)4+me+1)+--+mp+1)+t=(m1+---+my) +h+t

Our basis for W had size mq + - - - + m;, and the dimension of the kernel of S was h + t, so
the total number of vectors in the chains is

dim W + h + ¢ = dim(im(95)) + dim(ker(5)) =n
by rank-nullity. Hence the set must be a basis. U

Corollary 11.8. If S: V — V has one eigenvalue X\ then there exists a basis B for which
[S]p is in JCF.

Proof. Apply Theorem 11.7 to S — AI. 0J

Direct sums of vector spaces. We will now show a method of braking up V as a direct
sum of subspaces, an abstract analogue of the direct product of matrices. (This is point (A)
of the outline before.)

Definition. Let V' be a vector space, Vi,..., Vs C V. We say that V is the direct sum of
Vi,..., Vs and write
V=VieoVho -V,

if every v € V' can be written uniquely as v = v; + vy + - - - + v with v; € V.
Examples. Let VV = R3, e;, €5, e3 standard basis vectors. Then
V' =sp(e1) ® sp(ez) @ sp(es),
V = sp(ey, e2) @ sp(es).

R? = sp (@) o (@) |

Proposition 11.9. The following are equivalent:

More exotic example:

LHV=Vie &V,
(2) dimV = > dimV; and if B; is a basis for V;, then B = B1U...U By is a basis for V.
i=1

Proof. Throughout the proof, we will use the notation |B;| = n; and B; = {b;1, bia, . . ., bin, }
fori=1,2,...,s.

We will first show (1) implies (2). Let B; be a basis for V;. We will check that B = B;U...UB
is a basis for V.

We will first show that B spans V. Say v € V and write v = v; + - - - + v, for v; € V;. Each
v; 18 a linear combination of elements of B;, so v is a linear combination of elements of B.

We will now show that B is linearly independent. Say we have a linear combination

S n; ni Ns
3] SR B SIWARERD VAR
j=1 j=1 j=1

i=1
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U

1\IOW7 set V; = Z )\ijb'ij for i = 1, 2, e, S Then
=1

U1+UQ+"'—|—U5:0
But note that 0 =040+ --- 4+ 0 since 0 € V; for all <. By definition of a direct sum, 0 can

only be written as a sum of elements of the V; in one way. Thus v; = v, =--- = v, = 0. But
By, B, ..., By are bases, so they are linearly independent and:

A= A2 == A, =0,

Ao1 = Agg = -+ = Agy, = 0,

/\sl :/\32:"':/\3115 =0.

Linear independence follows.
Therefore, |B| = > |B;| and B = | B; is a basis for V.
i=1 i=1

We will now show that (2) implies (1). Say v € V and write it as a linear combination of

elements of B = |J B;:
i=1

so setting

fori=1,2,...,s, we get that v =v; + -+ + vs.

For uniqueness, say v = v + - - - + v} for v] € V;. Write v] as a linear combination of B;, the
fixed basis for V;:

U; = Z)\;jbw € ‘/;
j=1
Then vy +...+vs=v=0v] +---+ 0., s0
OZU—U:Z (Z <)\U —)\;])bl])
=1 \j=1

so we have a linear relation on B. But B is a basis, so we get that \;; = Aj;, and v; = v; for

1=1,2,...,s, as requested. 0

Exercise: Let V' be a vector space, and Vi, V5 be subspaces. Then
V=VieV, &« V=Vi+V, and VNV =0

where Vi + Vo = {v; + v9: v; € Vi}.

(Hint: dim(V; 4+ V5) = dim Vj + dim Vo — dim(V; N V5).)
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Lemma 11.10. Say V=V, ® Vo & --- &V, and say B; basis for V; and B = union of the
B;’s. Suppose T:V — V is a linear map and T(V;) C V; for all i. Write T;: V; — V; for
the restriction of T to V;. Then

[T)5 = [T1], ® [Talp, ® - & [T4]s,-

Proof. Say By = {ey,es,...,e,} and T(ey) € V; because e; € V;. Thus
T(el) =ape; + -+ apey + Of1 + 0f2 + -

T(e,) = aper + -+ + appen +0f1 +0fy + - -

and so
ai;p ... Qip
Qpy oo Qpp
[T =
and the lemma follows if you keep going. 0

Theorem 11.11. Suppose T': V — V V' a vector space over an algebraically closed field F.
Suppose the characteristic polynomial of T is

s

[z —x)

i=1
with X\; distinct eigenvalues. Define V; CV by

Vi = ker(T — N\ 1)*.
Then:

(2) T(V;) C Vi for all i,
3) the characteristic polynomial of Ty, the restriction of T to V;, is (x — \;
Vi

Corollary 11.12. Euxistence of Jordan Canonical Form.
Proof of Corollary 11.12. Because Corollary 11.8 applies to each V; (only eigenvalue is \;),
there exists a basis B; such that [T;]p, is in JCF. So set B = |J B; and use Lemma 11.10 to
finish the proof. U
Proof of Theorem 11.11. We will prove all three parts together by induction on s.
In the base case s =1 so Vi =V and there is nothing to prove.
Inductive step. First, let us write characteristic polynomial of T: V' — V as

(z = A)* x q(z)

where X is not a root of ¢(z), and let p(z) = (x — A)*. The two key facts we will use are:
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(i) p(x), q(z) are coprime,
(i) p(T)q(T) = 0.

[Since A is not a root of ¢(x), (i) is trivial. Since p(z)q(z) is the characteristic polynomial of
T, (ii) follows from Cayley—Hamilton Theorem 10.3.]

By (i) and Euclid’s algorithm for polynomials, there exist polynomials A(x) and p(x) such
that A(x)p(z) + u(x)g(x) = 1 and, substituting x = T', we get

(2) AT)p(T) + u(T)q(T) = 1d.
Set:
Vi =ker(T — A\I)* = kerp(T),
W = kerq(T).
We will show that V =V, & W.
Firstly, if v € V', then by equation (2) we have
MNT)p(T)v + (T)g(T)v = Idv = .
Set w = A(T)p(T)v and vy = u(T)q(T)v. We have w € W as
¢(T)w = q(T)MT)p(T)v = MT)[p(T)q(T)]v = 0
where the last equality follows from (ii), and similarly v; € V; as
p(T)vr = p(T)u(T)q(T)v = u(T)[p(T)q(T)]v = 0.
Therefore, V =V, + W.
We now claim that ViNW =0. If v € Vi N W, then
p(T)v =q(T)v =0
and thus by equation (2)
v=1Idv = XT)p(T)v+ w(T)q(T)v = 0.
Therefore V; N W = 0, which together with V' = V; 4+ V5 shows that V =V, & W.

Note that the only eigenvalue of T}y, : Vi — Vi, T restricted to Vi, is A. Indeed, suppose
contrary that some p # X is an eigenvalue of T}y, with eigenvector v € Vi. Then T'(v) = pw
so i is also an eigenvalue of T', and p(u)g(p) = 0. But u # A implies p(u) # 0, so g(u) =0,
and hence v € ker(¢q(T')) = W. However, we already showed that Vi "W =0, so v = 0, a
contradiction. Therefore, the characteristic polynomial of T}y, is p(z) = (x — A)*.

To check that 7'(V;) € Vi, note that if p(T")v; = 0 then
p(T)Tvy =Tp(T)vy =T(0) =0
and similarly T'(W) C W.
Therefore, we have shown that V' =V, @ W and V; satisfies (2) and (3).

In order to use the inductive hypotheses, we have to check that the characteristic polynomial
of Tjw: W — W is q(x). Let the characteristic polynomial be f(z). Since V =V, @ W,
T =Ty, ® Tjw, and we have
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so f(x) = p(z). Therefore, we can decompose W in the same way by the inductive hypothesis
to finish the proof. 0
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