
NOTES ON CHAPTER 5 OF MILNE’S SHIMURA VARIETIES

DAVID SCHWEIN

Abstract. This document is notes from a talk given in the Summer 2020 SHIMURA
learning seminar on Shimura varieties, following Chapter 5 of Milne’s notes on this sub-
ject [Mil17]. The goal of this talk was to define Shimura varieties in general and prove basic
properties about them.

1. Preliminaries on reductive groups

In this section we set up some notation for reductive groups that will be used throughout
the talk; along the way, we will explain what the notation means in examples, usually SLn
or GLn. Let G be a reductive group over a field k. For us, the definition of reductive, which
we won’t recall here, includes the assumption that G be connected.

The abelian reductive groups are precisely the algebraic tori, those groups T that are
isomorphic over the algebraic closure k̄ of k to Gn

m, for some n.
Let Z denote the center of G. For example, the center of SLn is the group µn. This

example shows that even though G is connected, Z need not be connected. For this reason,
we must sometimes work instead with the connected center Z◦, the largest central subtorus
of G.

A reductive group G is semisimple if its connected center is trivial. For example, SLn
and PGLn are semisimple, but GLn is not because its center is Gm, the scalar diagonal
matrices.

A map G → H of reductive groups is an isogeny if it is (étale-locally) surjective and its
kernel is finite. Examples of isogenies include any nontrivial multiplication Gm → Gm and
the projection SLn → PGLn. A word of warning: surjective group homomorphisms need
not be surjective on k-points. For example, the map SLn(k) → PGLn(k) is generally not
surjective because its cokernel is k×/(k×)n.

The isogeny is central if, in addition, its kernel is contained in the center of the source.
The central isogenies are the best-behaved for the structure theory of reductive groups. For
example, there is an “exceptional”, non-central isogeny SO2n → Sp2n when k has charac-
teristic two. For this reason, in these notes, we will always take the word isogeny to mean
central isogeny.

The notion of isogeny is extremely useful in the structure theory of reductive groups be-
cause it gives a classification of semisimple groups. Specifically, consider the category Isog of
semisimple groups with morphisms the isogenies, and for each semisimple group G, the con-
nected component IsogG of Isog containing G. The semisimple group G is simply-connected
if it is an initial object of IsogG, and is adjoint if it is a final object of IsogG.

One of the main results in the structure theory of reductive groups is that for any semisim-
ple G, the category IsogG does indeed have an initial object, called the simply-connected
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cover Gsc of G, and a final object, called the adjoint quotient Gad of G. This result fails for
non-semisimple groups: the group Gm admits infinitely many self-isogenies.

Given this result, we can easily describe the elements of IsogG: they are the quotients
of Gsc by subgroups of its center, a finite group. In particular, the adjoint group of G is
just the quotient G/Z. For example, the group SLn is simply-connected, its adjoint quotient
is PGLn, and the groups isogenous to SLn are of the form SLn /Γ where Γ is a subgroup
of µn. For another example, the simply-connected cover of SOn is the spin group Spinn, and
the adjoint group of SOn is SOn /µ2 if n is even and SOn otherwise.

An algebraic group is simple if it has no nontrivial normal algebraic subgroups. Simplicity
of G does not imply simplicity of G(k), as we have seen with G = PGLn. A second main
result in the structure theory of reductive groups is that every adjoint group G is a product
of simple algebraic groups, which are in addition semisimple, and the simple factors are
unique. By passing to the simply-connected cover, it follows that every simply-connected
group is uniquely a product of quasi-simple simply-connected groups, that is, semisimple
groups whose adjoint quotient is simple.

The derived subgroup Gder of G is the unique smooth connected subgroup of G such that
Gder(k̄) = [G(k̄), G(k̄)], the commutator subgroup of G(k̄). The existence of such a group is
proved in Brian Conrad’s lecture notes on algebraic groups [Con, Corollary 16.4.1] and also
SGA3 [Gro11, Exposé VI, Corollaire 7.10]. A reductive group is semisimple if and only if it
equals its derived subgroup. In particular, PGLn and SLn are semisimple. Usually Gder(k)
is strictly larger than the commutator subgroup of G(k). For example, the commutator
subgroup of PGLn(k) is the image in PGLn(k) of the commutator subgroup of GLn(k),
which is SLn(k), and we have already seen that in general the image of SLn(k) in PGLn(k)
is a proper subgroup.

Although it is not true that every reductive group G is a product of a semisimple group
and a torus – this already fails for GLn – it is true up to isogeny: the multiplication map
Gder × Z → G is an isogeny.

There is a second way to canonically produce a torus from a reductive group G. The
abelianization Gab of G is the quotient G/Gder. Following Milne’s notation, we will usually
denote Gab by T , and the quotient map G→ T by ν. The restriction of ν to Z is an isogeny,
and its kernel is the center of Gder. For example, in the case of GLn, the map ν : GLn → T
is the determinant, and the restriction of ν to Z is thus Gm

n−→ Gm.

2. Definition of a Shimura datum

In this section, we define Shimura data following Deligne [Del79], explain their relationship
to the connected Shimura data defined in the previous lecture, and explain why the second
part of a Shimura datum is a disjoint union of Hermitian symmetric domains, after first
reviewing some facts about the component groups of real reductive groups. Recall that the
Deligne torus S is the Weil restriction of Gm from C to R, so that in particular S(R) = C×,
and that homomorphisms S→ GL(V ) correspond to Hodge structures on V . In the previous
lecture we phrased the definition of a connected Shimura datum using the circle U1, but in
this lecture we will instead use the Deligne torus. The definitions are related by the short
exact sequence

1→ Gm → S→ U1 → 1,

where the map S→ U1 is z 7→ z/z̄.
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Definition 1. A Shimura datum is a pair (G,X) consisting of a reductive group G over Q
and a G(R)-conjugacy class X of homomorphisms h : S → GR satisfying the following
conditions.

SV1: For all h ∈ X, the Hodge structure on Lie(G)C defined by ad ◦ h is of type

{(−1, 1), (0, 0), (1,−1)}.
SV2: For all h ∈ X, the automorphism ad(h(i)) of Gad

R is a Cartan involution.
SV3: For all h ∈ X, every projection of h onto a simple factor of Gad is nontrivial.

A morphism of Shimura data (G,X) → (G′, X ′) is a homomorphism G → G′ sending X
to X ′.

Remark 2. The axioms SV1, SV2, and SV3 are equivalent to the axioms for a connected
Shimura datum given last time; in particular, our SV1 is equivalent to the earlier

SV1: for all h ∈ X, only the characters z, 1, and z−1 appear in the representation
(ad ◦ h,Lie(Gad)C) of U1.

Besides these superficial differences, the only change in the definition is that for a connected
Shimura datum, we consider Gad(R)+-conjugacy classes of homomorphisms to Gad

R whereas
for a general Shimura datum we consider G(R)-conjugacy classes of homomorphisms to G.
As we will see, this difference causes X to sometimes be disconnected.

Later, we will see that when G is simply-connected, the Lie group G(R) is connected and
the map G(R)→ Gad(R)+ is surjective. It follows that when G is simply-connected, the X in
the definition of a (connected or general) Shimura datum is the same for the two definitions.

Example 3. Let G = T be a torus. The only possibility for X is a singleton and the axioms
SV1, SV2, and SV3 are always satisfied. Nonetheless, this Shimura datum is an important
tool for studying the component sets of Shimura varieties.

Example 4. Let G = GL2 and let X be the conjugacy class of the homomorphism h0 :
a + bi 7→

[
a b
−b a

]
. Since the image of this homomorphism, the circle group U1, is its own

centralizer in G, there is a bijection between X and GL2(R)/U1(R) = H± := C−R given by
sending gh0g

−1 to gi.

Example 5. In the previous example, the space X remains unchanged (up to isomorphism)
if we replace GL2 by PGL2. At the same time, it is a classical fact that the group of isometries
of the upper half plane is precisely “PSL2(R)”, and as an algebraic group PSL2 = PGL2. The
resolution to this apparent contradiction is that what the literature calls PSL2(R), namely
SL2(R)/R×, is what we call the group PGL2(R)+. In this sense, the notation “PSL2” is
incorrect and misleading.

Example 6. Let G = SL2 and let X be the conjugacy class h′0(z) = h0(z/z̄), where h0 is the
homomorphism from Example 4. Then X is in bijection with the upper half-plane H ⊂ C.

This trio of examples generalizes in two ways, one due to Hilbert and the other to Siegel.

Example 7. There is a Shimura datum with group G = GSp2n and X = H+
n t H−n , the

Siegel half-spaces. We will study this Shimura datum next week. It generalizes the previous
examples because GSp2 = GL2.

Example 8. Let F be a totally real field of degree n, let B be a (degree-two) quaternion
algebra over F , and let G = B×. Suppose that B splits at all real places of F , so that

B ⊗F R = M2(R)n, GR = GLn2,R .
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Taking self-products of Example 4 gives a Shimura datum (G,X) with X ' (H±)n, called a
Hilbert Shimura datum.

Our next goal is to show that the conjugacy class X is not just a set, but has a canonical
structure of a Hermitian symmetric domain. To exhibit this structure, we will relate the
arbitrary Shimura data defined above to the connected Shimura data of the previous lecture.

2.1. Connected components of real reductive groups. By definition, a real reductive
group G is connected; hence its group of real points is connected in the Zariski topology. This
does not imply, however, that its group of real points is connected in the analytic topology,
the topology for which G(R) is a Lie group. The ultimate source of this discrepancy is the
disconnectedness of R×.

Example 9. The group of real points of the torus Gm is R×, and π0(R×) = Z/2Z. More
generally, π0((R×)n) = (Z/2Z)2. Later, this fact will tell us that for any reductive G the
group π0(G(R)) is of the form (Z/2Z)n for some n.

Example 10. The group GLn(R) has two connected components, and the determinant
map GLn(R) → R× exhibits the these components of GLn(R) as the preimages of the two
components of R×. Similarly, π0(PGL2(R)) = Z/2Z.

Example 11. Given natural numbers p and q, possible zero, let n = p + q and let O(p, q)
be the linear automorphisms of Rn preserving the hyperplane x21 + · · ·+x2p−x2p+1−· · ·−x2n.
The group O(p, q) is called the indefinite orthogonal group (at least when pq 6= 0). It is
well known that O(p, q) is disconnected for the same reason as GLn: the determinant map
hits both components of R×. To get a connected algebraic group we must take the special
orthogonal group SO(p, q), the kernel of the determinant. When p = 0 or q = 0, the Lie
group SO(p, q) = SO(n) is connected. However, when pq 6= 0, it can be shown that SO(p, q)
has two connected components; see for instance [FH91, Exercise 7.2].

Let G(R)+ be the connected component of G(R) (in the analytic topology) that contains
the identity; it is a normal subgroup of G(R)+.

The following proposition is of independent interest, and also explains why the two defi-
nitions of Shimura datum coincide for simply-connected groups.

Proposition 12.
(1) Let G → H be a surjective homomorphism of algebraic groups over R. The induced

map G(R)+ → H(R)+ is surjective.
(2) If G is a simply-connected algebraic group over R then the Lie group G(R) is con-

nected.

In general, it is possible for Lie groups to have a countable infinity of connected compo-
nents; for example, the kernel of the map to SL2(R) from its universal cover, the metaplectic
group, has kernel Z. However, a theorem of Whitney shows that this defect cannot happen
for the real points of algebraic groups, or more generally, smooth varieties.

Theorem 13 ([Whi57, Theorem 3]). Let V be a smooth variety over R. Then the topological
space V (R) has finitely many connected components.

A theorem of Matsumoto describes the possible component groups of G(R).

Theorem 14 ([Mat64, Théorème 1]). Let G be a connected algebraic group and let S ⊆ G
be a maximal split torus. Then
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(1) G(R) = G(R)+S(R); and
(2) the homomorphism π0(S(R)) → π0(G(R)) is surjective, so that π0(G(R)) is an ele-

mentary abelian 2-group.

One final piece of notation. Given a real reductive group G, let G(R)+ be the preimage
of Gad(R)+ under the map G(R) → Gad(R). There is an evident containment G(R)+ ⊆
G(R)+, but in general it is a proper containment. For example,

(R× ×GLn(R))+ = R>0 ×GLn(R)+, (R× ×GLn(R))+ = R× ×GLn(R)+.

2.2. Induced connected Shimura data. Given a Shimura datum (G,X), we would like to
construct a connected Shimura datum with group Gder. The challenge, then, is to construct
the Gad(R)+-conjugacy class Xder of homomorphisms S → Gder

R out of the G(R)-conjugacy
class X. As Examples 4 and 6 showed, we should not generally expect that X = Xder;
rather, Xder should be a connected component of X.

By composition with the adjoint quotient map, each homomorphism h : S→ GR gives rise
to a homomorphism h̄ : S→ Gad

R . It is not so hard to show that this assignment is injective.
The image X of X under h 7→ h̄ need not be a Gad(R)+ conjugacy class, but it is acted on
by this group. We will thus choose Xder to be some Gad(R)+-orbit in X. It is easy to see
that the pair (Gad, Xad,+) satisfies the axioms of a connected Shimura datum. In particular,
Xad,+ has a canonical structure of a Hermitian symmetric domain.

Let Xad be the Gad(R)-conjugacy class of homomorphisms containing Xder. [Mil17, Propo-
sition 4.9] shows that Xder is a connected component of Xad and its stabilizer is Gad(R)+.
Hence Xad has a canonical structure of a finite disjoint union of symmetric domains, and its
set of components can be (noncanonically) identified with the elementary abelian 2-group
Gad(R)/Gad(R)+. Evidently the action of the group Gad(R) on Xad permutes the compo-
nents.

Returning now to the original Shimura datum (G,X), we see that X ⊆ Xad, or equiva-
lently, the isomorphic set X, is a finite union of connected components of Xad, each isomor-
phic to Xder. Every component has the same stabilizer, the preimage G(R)+ of Gad(R)+,
and therefore the components set of X can be identified with the group G(R)/G(R)+. There
is an inclusion

π0(X) ' G(R)/G(R)+ ↪→ Gad(R)/Gad(R)+ ' π0(X
ad)

but it is not in general an isomorphism, for instance, when G = SL2.
Although Xder was not obtained canonically from X because we choose a Gad(R)+-orbit,

the resulting connected Shimura datum does not depend on this choice up to isomorphism,
and is therefore canonically attached to the original Shimura datum.

3. Definition of a Shimura variety

Let (G,X) be a Shimura datum and let K be a compact-open subset of G(Af). The goal
of this section is to show that the double coset space

ShK(G,X) := G(Q)\X ×G(Af)/K,

where G(Q)×Kop acts on X ×G(Af) by q(x, a)k 7→ (qx, qak), has a canonical structure of
a complex variety; a Shimura variety is any variety isomorphic to such an object. We will
then assemble all the Shimura varieties for a fixed Shimura datum into a tower, and explain
how this tower gives information about automorphic representations.
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Remark 15. For comparison with global fields of positive characteristic, it is often useful
to formulate the definitions to be uniform in all places of Q, so that ∞ is not distinguished
in any way. In the case of Shimura varieties, this formulation is the observation that

ShK(G,X) ' G(Q)\G(A)/(K∞ ×K)

where K∞ is the centralizer of X in G(R).

3.1. Variety structure. The proof that ShK(G,X) is a variety has two steps. First, de-
compose the space into components that are quotients of Hermitian symmetric domains by
(torsion-free) arithmetic groups, hence varieties. Second, show that there are finitely many
connected components. In this subsection we will discuss only the first step, and leave the
second to a later section, where we calculate the components set of ShK(G,X) more carefully.

In what follows, we will need the group G(Q)+ := G(Q) ∩G(R)+.

Lemma 16. Let (G,X) be a Shimura datum, let K be a compact open subgroup of G(Af),
let C := G(Q)+\G(Af)/K, and for g ∈ C, let Γg := gKg−1 ∩G(Q)+.

(1) The set C is finite.
(2) The map [x] 7→ [x, g] is a homeomorphism

∐
g∈C Γg\X+ → ShK(G,X).

Proof. (1) is a routine calculation. It requires the fact that the for every connected com-
ponent X+ of X, the natural map G(Q)+\X+ × G(Af) → G(Q)\X × G(Af) is a bijection;
this can be proved using the fact that G(Q) is dense in G(R). (2) can be proved using
strong approximation when Gder is simply-connected, and the general case “is not much
more difficult”. �

When Gder is simply-connected, we can give an even better description of the components
set of ShK(G,X), reducing it to the abelianization T . As we will see later, this means that
the components set is a “zero-dimensional Shimura variety”. Let T (R)† be the image of the
map ν : Z(R)→ T (R), a finite-index subgroup, and let T (Q)† := T (Q) ∩ T (R)†.

Theorem 17. Let (G,X) be a Shimura datum with Gder simply-connected and let

C ′ := T (Q)†\T (Af)/ν(K).

Then for K sufficiently small, there is an isomorphism π0(ShK(G,X)) ' C ′.

Proof. Milne’s proof is quite long, and we will only point out the places in the proof where
the simple-connectivity of H := Gder is used. First, it is used to ensure the vanishing of the
Galois cohomology groups H1(Q`, H). Second, it is used to ensure that the map

H1(Q, H)→
∏
`≤∞

H1(Q`, H)

is injective, or in other words, that the Hasse principle holds. �

Remark 18. Deligne gave a general description of the components set in his report on
Shimura varieties [Del79, Résumé 2.1.16], but Milne considers only the case when Gder is
simply-connected because that assumption simplifies the description.

Corollary 19. If K is sufficiently small then ShK(G,X) has a canonical structure of a
complex variety.

Proof. We saw last time that the quotient Γg\X+ has a canonical structure of a complex
variety when Γg is torsion-free, in particular neat; and when K is sufficiently small, each Γg
will be neat. �
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3.2. Towers of Shimura varieties. For applications to the theory of automorphic forms,
one of the main motivations for Shimura varieties, it is more useful to packages the Shimura
varieties ShK(G,X), for varying K, into a single object. In this subsection, we will explain
how to make such a package, and how it relates to the theory of automorphic forms.

Definition 20. The tower of Shimura varieties attached to a Shimura datum (G,X) is the
inverse system

Sh(G,X) := (ShK(G,X))K

of Shimura varieties, indexed by some partially ordered set of sufficiently small compact-open
subgroups K of G(Af).

Here “K sufficiently small” means that ShK(G,X) is a variety, which holds, for instance,
if each Γg is neat.

Remark 21. Implicit in the definition is the assertion that the transition maps are regular.
That is, given K ′ ≤ K be compact open subgroups of G(Af) such that ShK(G,X) and
ShK′(G,X) are Shimura varieties, the induced map ShK′(G,X)→ ShK(G,X) is regular.

The main purpose for assembling Shimura varieties into a tower is that towers of Shimura
varieties are acted on by adelic groups. Specifically, for each g ∈ G(Af) the map

ρK(g) : ShK(G,X)→ Shg−1Kg(G,X)

defined by [x, a] 7→ [x, ag] is regular, as we mentioned earlier, and these maps assemble into
a right action ρ of G(Af) on the tower Sh(G,X). (Again, there is an assertion that the
map ρK(g) is a morphism of varieties.)

Remark 22. The cohomology of a tower of Shimura varieties is an inverse system of abelian
groups (or vector spaces, depending on the coefficient field). Since cohomology is contravari-
ant, this cohomology tower is equipped with a left action of G(Af), and the limit of the
system is thus a representation of G(Af). This construction is of great importance for the
Langlands correspondence.

Since the transition maps in a tower of Shimura varieties are finite, hence affine, the limit

S := lim←−
K

ShK(G,X)

of this inverse system exists in the category of C-schemes. In general S is not finite type;
however, it is locally Noetherian and regular and it admits a right action of G(Af). The
Shimura varieties in the tower can be recovered from the limit S because

ShK(G,X) = S/K.

We can also describe the limit as a double coset space.

Theorem 23. Let (G,X) be a Shimura datum and let Z(Q)− be the closure of Z(Q) in Z(Af).
Then

lim←−
K

ShK(G,X) =
G(Q)

Z(Q)

∖
X × (G(Af)/Z(Q)−.

If the axiom SV5 holds (defined below) then

lim←−
K

ShK(G,X) = G(Q)\X ×G(Af).



8 DAVID SCHWEIN

In the case where SV5 holds, we recognize the limit as the kind of space on which an adelic
automorphic form is defined.

One final note: Deligne showed that the formation of the tower of Shimura varieties is
functorial.

Theorem 24. A morphism (G,X)→ (G′, X ′) of Shimura data induces a morphism

Sh(G,X)→ Sh(G′, X ′)

of towers of Shimura varieties, which is a closed embedding if G→ G′ is injective.

Remark 25. Milne has an example showing that the induced morphism of inverse systems
need not preserve the level; the example uses Siegel and Hilbert varieties. Perhaps Attilio
can discuss this example in his lecture.

4. Zero-dimensional Shimura varieties

In this section we study the simplest class of Shimura varieties, those whose reductive
group is a torus T . In this case the Shimura varieties are just finite sets, but these sets are
of independent interest because, as we will show, they are the component sets of Shimura
varieties for simply-connected reductive groups.

We saw earlier that for any homomorphism h : S→ T , the pair (T, h) is a Shimura datum.
The corresponding Shimura variety for a compact-open subgroup K ≤ T (Af) is the finite set

T (Q)\T (Af)/K.

Ono [Ono61] studied this group and called it the class group Cl(T ) of the torus T ; the
terminology comes from the fact that the class group of the Weil restriction of Gm from a
number field F to Q is the class group of F . The finiteness of the class group is then a
special case of the theorem that the Shimura variety above is finite.

In the application to connected components, we will need to slightly extend the definition
of a zero-dimensional Shimura variety. Let Y be a finite set on which T (R)/T (R)+ acts
transitively. Define

ShK(T, Y ) := T (Q)\Y × T (Af)/K.

Lemma 26. For Y = T (R)/T (R)†, the natural map T (Q)†\T (Af)/K → T (Q)\Y ×T (Af)/K
is an isomorphism.

Proof. Use the denseness of T (Q) in T (R). �

It can be shown that when Gder is simply-connected, the map ν : G(Af) → T (Af) maps
compact-open subgroups to compact-open subgroups. It follows that when Gder is simply-
connected, its components set is a zero-dimensional Shimura variety.

Corollary 27. Let (G,X) be a Shimura datum with Gder simply-connected and let Y =
T (R)/T (R)†. Then

π0(ShK(G,X)) ' Shν(K)(T, Y ).

Example 28. Let (G,X) = (GL2,H±) and K = K(N), so that T = Gm and Y = {±1}.
Recall that

Q>0\A×f = Ẑ.
Since Q>0 = Q×/{±1}, it follows that

π0(ShK(G,X)) = Q×\{±1} × A×f /(1 +N Ẑ) = Ẑ×/(1 +N Ẑ) = (Z/nZ)×.
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5. Additional axioms

In this section we’ll discuss four additional axioms that one might impose on a Shimura
datum, and that simplify the theory; our main focus is on axiom SV5. We’ll first review
some terminology needed to state the axioms. A number field F is totally real if each of
its infinite places is real, totally real if each of its infinite places is complex, and complex
multiplication (or CM ) if it is a quadratic totally imaginary extension of a totally real field.
Let (G,X) be a Shimura datum. The restriction of any element h : S→ GR of X to Gm ⊆ S
factors through the center of G. The composition of this factorization with the inversion

map Gm
−1−→ Gm is called the weight homomorphism, denoted wX : Gm,R → Z◦R.

The four axioms are as follows.

SV2∗: For all h ∈ X, the automorphism ad(h(i)) is a Cartan involution of GR/wX(Gm).
SV4: The weight homomorphism Gm,R → Z◦R is defined over Q.
SV5: The group Z(Q) is a discrete subgroup of Z(Af).
SV6: The torus Z◦ splits over a CM-field.

When SV4 holds, for every representation of G on a Q-vector space V , the Hodge structure
induced on V by the Shimura datum is rational, meaning it is defined over Q.

5.1. Criterion for SV5. In this subsection we discuss a criterion for SV5 to be satisfied.
A k-torus T is anisotropic if every homomorphism T → Gm is trivial. The torus T contains
a largest anisotropic torus, which we will denote by T a. It can be shown that for k a local
field, T is anisotropic if and only if T (k) is compact.

Theorem 29. Let T be a torus over Q. The following are equivalent.

(1) T (Q) is discrete in T (Af). (SV5 for T = Z.)
(2) T (Z) is discrete in T (Af).
(3) T (Z) is finite.
(4) T a(R) is compact.

Proof. The equivalence of (1), (2), and (3) follows from a theorem of Serre that every finite-
index subgroup of T (Z) contains a congruence subgroup, and the equivalence of (1) and (4)
follows from a theorem of Ono. �

Corollary 30. A Shimura datum (G,X) satisfies SV5 if and only if the largest anisotropic
subtorus of Z remains anisotropic over R.
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