TALK 4: CONNECTED SHIMURA VARIETIES (ANGUS, 5/27)(1) Connected Shimura datum(2) Arithmetic subgroups(2) Arithmetic subgroups(2) The (Baily - Evel), The (Borel)(3) Connected Shimura varietyRaview. (Area talk 2):
$$\left\{ HSD D \\ u' p \in D \right\} \iff \left\{ \begin{array}{c} G adjoid R-liegroup \\ u: U_{1} \longrightarrow G(R) \\ s.t. (a), (b), (c) \end{array} \right\}$$
(a) $1, 2, 2^{-1}$ are all charactors of neps(b) ad (u(-1)) is a Cantan involution(c) $u(-1) \iff 1 \forall simple factors of G $\left\{ HSD D \right\} \iff \left\{ \begin{array}{c} G(R)^{+} - conf. dass of U_{1} \rightarrow G(R) \\ TUJ is G(R)^{+} - conf. dass of u_{1} \rightarrow G(R) \\ \end{array} \right\}$ Pl A connected Shimura dotating is a pair (G, D) where.G s.s. alg. ap / R.D conseponds to $G^{ad}(R)^{+} - conf. dass of u_{1} \rightarrow G(R) \\ s.t. (SU1) 2, (1, 2^{-1} are all charactors of Adu, (SU2) ad(u(-1)) is a Cartar involution, (SU3) Gad has no Q-factor H s.t. H(R) is compact.Image 4.7U: U, I are u is trivial \iff H is compact(SV3) G^{ad} has no Q-factor H s.t. $U \rightarrow G^{ad} \rightarrow$ H is trivialThen SV3 \iff SU3 by the lemma ! Hence (Su3) \ll (c) obsere!$$

Example (Siepel upper half plane).
The = {Signum.nxh matrices
$$X + iY = J \cdot Y$$
 pos definite }
 $\mathcal{F}_{2n}(R) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G_{2n}(R) \mid \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in (A = B) \in (A = B) \cap (A = B) = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \right\}^{-1}$

with the action defined by
 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (A = A = B) \cdot (C = A = D)^{-1}$.
 $\begin{pmatrix} Vec_{B} & n = 1 \end{pmatrix}$, this is the etradiand action $S_{12}(R) \subseteq H$
 $\begin{pmatrix} Vec_{B} & n = 1 \end{pmatrix}$, this is the etradiand action $S_{12}(R) \subseteq H$
 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is an involution fixing iIn and we can define
ho: $(R, \longrightarrow Spen(R) \\ X + iy \mapsto \begin{pmatrix} X = I & -yI_{R} \\ Y = I & XI_{R} \end{pmatrix} \longrightarrow (Spen, H_{R})$ is a connected Statuard
 $2a.$ Antithunstic subgroups.
Def. G alg. gp/Q
 $P \leq G(Q)$ is arithmetic if $\exists G \hookrightarrow GI_{R} \leq A$ image of Γ is commensuable
 $W/G(Q) \cap GI_{R}(Z)$
 $\Gamma \cap GI_{R}(Z) \log G(Q)$
 $P = A Subgroup P \leq G(R)$ is configurate $\Gamma(N) = G(Q) \cap f = IM$ und (N) ?
A subgroup $P \leq G(R)$ is configuration $I \to image$ of Γ is arithmetic
 Γ and $\Gamma \cap F(N) \leq G(R) \cap f = iM$ und (N) ?
A subgroup $P \leq G(R)$ is configuration $I \to image$ of Γ is arithmetic
 Γ arithmetic
 Γ arithmetic
 $I \cap G(R) = V \cap G(R) \cap f = iM$ und (N) ?
 Not all arithmetic subgroups are congruence ! See appendix in Milne.
Fact: G simply connected, non-split, $+SI_{2} \to ycs$.

Neat subgroups.

• V v. sp.
$$\longrightarrow$$
 g \in Aut(V) is near if $\langle eigenvalues of g \rangle \subseteq \mathbb{C}^{\times}$ is torsion-free

- · q E G(Q) is neat if I faithful rep. V s.t. q is neat on V
- $\Gamma \subseteq G(\mathbb{Q})$ is neat if all $q \in \Gamma$ are neat

26. Theorems of Baily-Borel & Borel.

Thuy (Baily - Bovel).

D = HSD, $\Gamma \subseteq Hol D^{+}$ torsion-free => $D(\Gamma) := \Gamma \setminus D$ has a compactification $D(\Gamma)^{*}$ s.t. $D(\Gamma)^{*}$ is a projective variety /C.

Rough idea: use "automorphic found" as global section of an angle line \underline{Ex} [Nh $\longrightarrow X(P)$ modular curve = $\frac{1}{2}$ froj ($\underbrace{\oplus}_{S}$ Sh($\underline{\Gamma}$)) modular forms

Cor. $D(\Gamma)$ is quasi-projective. Note that for $\Gamma \subseteq \Gamma'$, we have a map $D(\Gamma') \longrightarrow D(\Gamma)$. It is regular by the foll. Thus, Thus (Borel). If V is a quasi-proj. variety s.t. $f: V^{au} \longrightarrow D(\Gamma)^{an}$ is holomorphic $\Rightarrow f: V \longrightarrow D(\Gamma)$ is regular.

Idea: Use Ricard's Big Theorem.

3. Connected Shinura varieties.

Let (G, D) be a connected Shinner datum.

Examples · (SL2, G) ~> YIT open modular curve

4. Adelic description and double cosets.

S.C.

Then:
$$\lim_{\Gamma} \Gamma \setminus P = \lim_{K} G(\Omega) \setminus P \times G(A, f) / K$$

= $G(\Omega) \setminus D \times G(A, f)$