SHIMURA

SHímura Internet Michigan University Reading Adventures

TALK 2: HERMITAN SYMMETRIC DOMAINS (ANDYG,5,513)
Milue defines mauifdds, metrics, etc: we anit that heve.
Hemitian forms.

$$
V \text { v.sp: } \mathbb{R}, \gamma \in \operatorname{End}(V) \text { s.f. } f^{2}=-1
$$

A Herm form on (V, \mathcal{J}) is: $(,):, V \times V \rightarrow \mathbb{C}$ s.t.

$$
\begin{aligned}
(J u, v) & =i(u, v) \\
(u, v) & =(v, u)
\end{aligned}
$$

$\leadsto \operatorname{Re}((\because, \cdot))$ associated real form.
$u \longmapsto(u, u)$ ass. quadratic fam.
Given a real mauifdd:

- an aluost couplex stucture on M is a chaice of \mathcal{F} for avely $T_{p}(M)$ in a coutimiosly ronging way,
- it is integrable if

$$
\left.\begin{aligned}
& T M M_{u} \cong U \times V V_{1} \leadsto \text { induced map } \\
& T M I_{V} \cong V \times V_{2}
\end{aligned} \quad T M \|_{U \times V} \rightarrow T M \right\rvert\, W \times V .
$$ presenves complex structuve

- a hemitialn metric on M is a metric g s.t.

$$
g(j u, z v)=g(u, v) .
$$

Syumetric spaces.

- A manifdld is homogenears if its autanaphism group acts transitively.
- A mauifdd is symuetric if $\exists p \in M, i \in \operatorname{Aut}(M)$ s.t. $i^{2}=I d$
\& p is isolated fixed poict.
- A manifld is a Hemitian symuetric space if it is a Hemition manifdd which is sycumetric.

Note: for a Hewn, mauifold: $I_{s}(M, g)=I_{s}\left(M^{\infty}, g\right) \cap H_{d}(M)$.
Exauples. (i) $H=\{z \in \mathbb{C} \mid \operatorname{In}(z)>0\}$

- $\frac{d x d y}{y^{2}}$ defenes a $\underset{\text { metric }}{\text { Hemition }}\left\{\frac{(d x)^{2}+(d y)^{2}}{y^{2}}\right.$ actual metric?
- $\operatorname{PGL}_{2}(\mathbb{R})=\operatorname{Aut}(H)$
- $z \longmapsto-\frac{1}{z}$ is the cutcmaphisen maling it squmetric $(p=i)$

$$
i \longmapsto-\frac{1}{i}=i
$$

(2) $M=\mathbb{P}^{1}=S^{2} \leq \mathbb{R}^{3}$
for the group $\delta \circ(3) \ni\left(\begin{array}{ll}-1 & 1 \\ -1\end{array}\right)$
(3) \mathbb{C} / Λ

3 main types of squmuctric spaces

A. Hermitian symmetric derain is a Hermitian symmetric space of nou-coupaet type.

FACT. Suppose M is a HSD. Then
Is $(M, g)^{+}$is naturally a lie group, adjoint, non-compact.
Example. $H g=\left\{\begin{array}{c}\text { symunctic complex } g \times g \text { matrices } \\ X+i Y \text { st. } Y \text { is pos - def. }\end{array}\right\} \subseteq \mathbb{C}^{\frac{q(4+1)}{(1)}}$

$$
\leadsto \operatorname{Aut}(H g)=S_{p_{2 g}}(\mathbb{R})
$$

A domain is a coin open subset of \mathbb{C}^{n}.
Thu. Every banded domain has a canonical metric of negative curative.
(If is omitted.)
Hence every bold symm domain is a HSD.
Every. HSD cam be embedded in \mathbb{P}^{n} as a bounded domain.
Example $H \cong \underset{(d i s e)}{\mathbb{D}} \subseteq \mathbb{C}$

For any sym space $S, I_{S}(M, g)$ is a lie group and

$$
S \cong I_{s}(M, g)+/ K_{p} \quad K_{p}=\text { stabilizer of } p
$$

Note that: $\quad I_{C}(M, g) \subseteq I_{S}\left(M^{\infty}, g\right)$ and...
Fact. $I_{s}(\mu, g)^{+}=I_{s}\left(\mu^{\infty}, g\right)^{+}=H \alpha(M)^{+}$.
Thu. (M, g) is an HSD
Then H ll $(M)^{+}$is an algebraic lie group:
there is an alg. Lie group $G \subseteq G L\left(\right.$ Lie $\left.\left(H_{d}(M)+\right)\right)$ st. $G(\mathbb{R})=H$ H $(M)+$.

$$
\begin{aligned}
&\{H S D D\} \\
& D \longmapsto\left\{\begin{array}{l}
\text { real adjoint } \\
\text { ie group }
\end{array}\right\} .
\end{aligned}
$$

Now we want to think abact going bade.
Let D be an $H S D$ with $p \in D$.
Thin $\exists!u_{p}: U_{1} \longrightarrow H d(D)$ st. $u_{p}(z)$ fixes p \& acts lie z on $T_{p}(D)$.

If (See p. $14-15$ in Nile.)
Prop, For D, D^{\prime} with $p \in D, p^{\prime} \in D$ I and

$$
\alpha: T_{p}(D) \longrightarrow T_{p^{\prime}}\left(D^{\prime}\right)
$$

presences sectional curvature, α extends to an isometry.
Then use this to show that z extends to an ant.
A Canton inndution of a comected alg. gp G / \mathbb{R} is an inrdution θ s.t. is compact.

$$
G^{\theta}=\left\{g \in G(\mathbb{C}) \left\lvert\, g=O\left(\frac{q}{q}\right)\right.\right\}
$$

This can always be realized as $G \longrightarrow G L(V)$

$$
T \longmapsto\left(T^{-1}\right)^{T}
$$

Thun Canton iurdution $\Longleftrightarrow G$ is
exists $\quad \longleftrightarrow$ reductive
Moreover, all Carton inductions ave conjugate.
Prop. Id is a Carton iurdution $\Longleftrightarrow G(\mathbb{R})$ is compact.
Note: U, is compact \& abelidu \Rightarrow. its cauplex ureps ave characters

$$
z \longmapsto z^{n} \text { for } n \in \mathbb{Z} \text {. }
$$

- its real ines are

$$
\begin{aligned}
& z=x+i y \underset{\text { \& the trivial rep. }}{\longmapsto}\binom{x}{-x}^{n}
\end{aligned}
$$

\& the trivial rep.
Thu. $D=H S D, p \in D \leadsto U_{p}: U_{1} \longrightarrow H a l(D)^{+}$
(a) We get a rep on $H=\mathrm{lie}\left(H_{0}(\mathbb{D})^{+}\right)$given of ado $u p$

Then: only ineps in this rep are $-1,1$, trivial.
(b) Conjugating by a(-1) gives Ho (D) a Cartan iurdution.
(c) $u_{p}(-1)$ does not project to $I d$ in any simple factor of G.

If We know that $D \cong H d(D)^{+} / K_{p}$.

$$
\begin{aligned}
& \Rightarrow T_{p}(D) \cong T_{e}(G) / T_{e}\left(K_{p}\right) \text { olleve } G=H d(D)^{+} \text {. } \\
& u_{p}(z) \text { acts by } z \text { Haw doss } u_{p}(z) \text { acts tribally } \\
& U_{p}(z) \text { act ? (bic } U_{p}(z) \text { conumtes with } K_{p}
\end{aligned}
$$

This proves (a).
For (b), Nilue cites Helgason.
For (c), if up (-1) projects to Id, that factor is compact.
Since G is of non-coupact type, that factor is also non-compact. I
Cordlain If G is a real adjoint lie group and $u: u \rightarrow G$ Satisfies $(a),(b),(c)$ above, then $D=$ conjugates of a by efts of $G(\mathbb{R})^{+}$ is an HSD.
Pf. Let k_{n} be what fixes a when we act by conjugation. Then: $\Rightarrow D=\left(G(\mathbb{R})^{\dagger} / k_{u}\right) \cdot u$ males D into a smooth maciifdd.
Moreover,
$\begin{aligned} & T_{u}(D)= T_{e}\left(G(\mathbb{R})^{+}\right) / T_{e}\left(k_{u}\right) \quad \Rightarrow \quad T_{n}(D) \text { can be made a } \mathbb{C} \text {-vector space } \\ &\text { (w/ an integrable } \mathbb{C} \text {-v.sp structure })\end{aligned}$
λ
ky $\pm 1,0$ (w/ an integrable C-v.sp-structeve)
u acts by $\pm 1,0$ wacks by 0
$\Rightarrow D$ is a couples manifold.
Finally, since $u(-1)$ is Carter, D gets a Hemistions metric.
CONCLUSION

$$
\begin{aligned}
& \left\{\begin{array}{l}
H S D w / \\
\text { point } p \in D
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\text { Real adjoint lie gps with } \\
\text { lat. } u, \rightarrow G \\
\text { sa), }(b),(c)
\end{array}\right\} \\
& D \longmapsto \mathrm{Hol}(\mathrm{D})^{+} \\
& D=G / k_{u} \longleftrightarrow(G, u)
\end{aligned}
$$

