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Introduction

Mathematical objects are usually defined in an abstract, coordinate-free way, which can make
them difficult to work with. A vector space over R is defined abstractly as a set together
with two operations, but for application purposes, we often choose a basis and think about
it as Rn. Similarly, a group is defined abstractly as a set with an operation, but for many
applications, it is convenient to find a presentation of it, that is, a set of generators and a
set of relations that they satisfy.

For example, the dihedral group D10 is generated by two elements, σ and %, that satisfy three
relations: σ2 = e, %5 = e, σ% = %−1σ. This determines the group uniquely: the elements are
any words in the letters σ, σ−1, %, %−1, simplified using the relations.

The free group on a given set of generators is the group that has no relations: its elements
are any words in the generators (and their inverses). Free groups play a crucial role in group
theory, since any group is a quotient of a free group by a normal subgroup that contains
all the necessary relations. Therefore, if we can understand free groups and their normal
subgroups, then we can understand all groups. Our project is a survey of the properties of
free groups and the tools to study them.

We begin by showing that a subgroup of a free group is free. While this is a natural thing
to expect (since the elements of the group do not satisfy any relations, we may expect the
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same to be true for the subgroups as well), it is by no means automatic. The proof is in fact
fairly technical and its main idea is a graph theoretic characterisation of a free group.

Next, we study free subgroups in linear groups. Our main tool is the so-called Ping-Pong
Lemma which provides a criterion for checking if two elements of a group generate a free

subgroup. For example, we show that the matrices

(
1 0
2 1

)
and

(
1 2
0 1

)
generate a free

subgroup of GL(2,R); however, the matrices

(
1 0
1 1

)
and

(
1 1
0 1

)
have a non-trivial

relation between them. At this point, it is natural to ask: how many pairs of elements of
GL(2,R) generate a free subgroup? By introducing a measure on the group GL(2,R), we
conclude that the answer is almost all of them.

Finally, we present a way of studying free groups using topology. Given a free group F , we
construct a topological space X whose fundamental group is F . We can then use topological
properties of X to deduce algebraic properties of the group F . Most notably, covering space
theory allows us to prove a number of results about subgroups of free groups. We prove
Hall’s recursive formula for the number of subgroups of index n in F and hence obtain an
asymptotic approximation, also known as the subgroup growth.

For the sake of self-containment, we also include an appendix on group actions and an
appendix on covering space theory at the end.

We would like to thank our supervisor, Professor Martin Liebeck, for suggesting different
topics to pursue and helping us with the difficulties we encountered along the way.

1. Free groups and free products

In this section, we provide all the necessary background on free groups, presentations, and
free products, following [Löh11, Chapter 2].

1.1. Free groups. We start by reviewing the standard notions related to generating sets.
We introduce free groups using the universal property, and prove their existence and unique-
ness.

Definition 1.1.

• Let G be a group and let S ⊆ G. The subgroup generated by S (denoted 〈S〉) is the
smallest subgroup (with respect to inclusion) of G that contains S. This subgroup
always exists and can be expressed as follows:

〈S〉 =
⋂
{H | S ⊆ H,H ≤ G}

= {sp11 · · · spnn | n ∈ N, s1, · · · , sn ∈ S, p1, · · · , pn ∈ {±1}}.
• A group G is finitely generated if it contains a finite subset that generates G.
• The rank of a group G (denoted rank(G)) is the smallest cardinality of a generating

set for G, that is rank(G) = min{|X| : X ⊆ G, 〈X〉 = G}. If G is finitely generated,
then the rank of G is a non-negative integer.

We sometimes abuse the notation and write 〈g, h〉 instead of 〈{g, h}〉 and 〈S1, S2〉 instead of
〈S1 ∪ S2〉.

Examples 1.2 (Generating sets).
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(1) If G is any group, then 〈G〉 = G.
(2) The group (Z,+) has two generating sets: 〈1〉 = 〈2, 3〉 = Z. Since |{1}| = 1,

rank(Z,+) = 1.
(3) For a non-trivial group G, we have rank(G) = 1 if and only if G is a cyclic group.

We now introduce free groups using the universal property.

Definition 1.3 (Free groups, universal property). Let S be a set. A free group F generated
by S satisfies the following universal property: for any group G and any function ϕ : S → G
there is a unique group homomorphism ϕ : F → G extending ϕ, so that the following diagram
commutes:

S G

F

ϕ

ϕ

where the map from S to F is the inclusion map. We call S a free generating set for F .

We will show that for any set S there exists a unique free group generated by S. We will
first prove existence by constructing a free group as a set of words under concatenation.

Definition 1.4 (Words and reduced words).

• Let S be a set. Define A = S ∪S−1, where S−1 = {s−1 | s ∈ S}; i.e. A contains every
element of S, and s−1 will be inverse of s ∈ S. Then we define A∗ to be the set of all
(finite) sequences over A; in particular this includes the empty word ε. This set A∗

is the set of words generated by S.
• Let n ∈ N and let s1, . . . , sn ∈ A. The word s1 . . . sn ∈ A∗ is reduced if

sj+1 6= s−1j and s−1j+1 6= sj

for all j ∈ {1, . . . , n− 1} (in particular, ε is reduced). We write Fred(S) for the set of
reduced words in A∗.

Proposition 1.5 (Construction of a free group, existence). The set Fred(S) of reduced words
forms a free group with respect to the group law Fred(S)× Fred(S)→ Fred(S) given by

(s1 . . . sn, sn+1 . . . sm) 7→ (s1 . . . snrsn+1+r . . . sn+m),

where s1 . . . sn and sn+1 . . . sm are elements of Fred(S), and

r = max{k ∈ {0, · · · ,min(n,m−1)} | sn−j = s−1n+1+j and s−1n−j = sn+1+j for j = 0, . . . , k−1}

Proof. We prove this is a group first.

• The group law is well-defined because the product of two reduced words is reduced.
• The empty word ε (which is reduced) is the identity under the group law.
• The inverse of a word is obtained by taking the reversed sequence and replacing

letters by their inverses. (For example (a−1b2)−1 = b−2a)
• It remains to prove that this group law is associative: Instead of giving a formal

proof involving lots of indices, we sketch the argument graphically (Figures 1 and
2): Let x, y, z ∈ Fred(S); we want to show that (xy)z = x(yz). By definition, when
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concatenating two reduced words, we have to remove the maximal reduction area
where the two words meet.
(1) If the reduction areas of x, y and y, z have no intersection in y, then clearly

(xy)z = x(yz) (Figure 1).
(2) If the reduction areas of x, y and y, z have a non-trivial intersection y′′ in y, then

the equality (xy)z = x(yz) follows by carefully inspecting the reduction areas
in x and z and the neighbouring regions, as indicated in Figure 2; notice that
because of the overlap in y′′ , we know that x′′ and z′′ coincide (they both are
the inverse of y′′).

Figure 1. Associativity: case (1). Source: [Löh11, p. 44].

Figure 2. Associativity: case (2). Source: [Löh11, p. 44].

It remains to show it is a free group. To do that we verify that the universal property is
satisfied. Let G be a group and let ϕ : S → G be a map. This defines a map ϕ∗ : A∗ → G
(where A∗ is the set of all words). Then

ϕ = ϕ∗|Fred(S) : Fred(S)→ G

is also a group homomorphism. Clearly, ϕ̄|S = ϕ since S ⊂ Fred(S). Since S generates
Fred(S), it follows that ϕ is the only possible homomorphism. Hence, Fred(S) is freely
generated by S. �

Remark 1.6. An alternative (but similar) construction involves defining an equivalence
relation on A∗ and letting the group be its equivalence classes. (For more details, see [Löh11,
Theorem 2.2.7].)

We now turn to the uniqueness of free groups.

Theorem 1.7. Let S be a set. Then, up to isomorphism, there is only one free group
generated by S.
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Proof. We prove this using the universal property. Suppose there are two free groups F1 and
F2 freely generated by S. We want to show they are isomorphic to each other. Let ϕ1 and
ϕ2 be the inclusion map from S to F1 and F2 respectively (these are set theoretical maps).
Because F1 is freely generated by S, there exists a unique homomorphism ϕ̄1 : F1 → F2

such that ϕ̄1 ◦ ϕ1 = ϕ2, and similarly a unique homomorphism ϕ̄2 : F2 → F1 such that
ϕ̄2 ◦ ϕ2 = ϕ1. (They are the candidates for our isomorphisms)

The composition f2 = ϕ̄1 ◦ ϕ̄2 : F2 → F2 is a homomorphism such that:

f2 ◦ ϕ2 = ϕ̄1 ◦ (ϕ̄2 ◦ ϕ2) = ϕ̄1 ◦ ϕ1 = ϕ2

Note the identity map also has this property. But by the universal property, for the map
ϕ2 : S → F2, there is a unique homomorphism f2 : F2 → F2 such that f2 ◦ ϕ2(s) = ϕ2(s)
for also s ∈ S. Since the identity map has the property, we deduce f2 = idF2 . Similarly, the
composition f1 = ϕ̄2 ◦ ϕ̄1 : F1 → F1 is the identity map on F1.

So in conclusion, we have ϕ̄2 ◦ ϕ̄1 = idF1 and ϕ̄1 ◦ ϕ̄2 = idF2 , this shows that they are indeed
isomorphisms. �

Proposition 1.8 (Rank of free groups). Let F be a free group and S ⊂ F be a free generating
set, then rank(F ) = |S|

Proof. We need to show if S ′ a generating set of F , then |S ′| ≥ |S|. By the universal property,
for every function from S to C2, there is a homomorphism from F to C2; conversely, every
homomorphism can be defined this way (since S generates F the value of a homomorphism
on S determines it uniquely). Hence there are exactly 2|S| homomorphisms from F to C2

(since the uniqueness part from the universal property). On the other hand, if S ′ generates
F , then there are at most 2|S

′| homomorphisms from F to C2 (may have repeats), so 2|S
′|

is an upper bound for the number of homomorphisms, which is greater than 2|S|, and hence
|S ′| ≥ |S|. (This follows directly when they are finite; if they are infinite, then use Generalized
Continuum Hypothesis from set theory.) �

Corollary 1.9. All free generating sets of F have the same cardinality.

Using this Corollary and the uniqueness of free groups, we can finally define the free group
of rank r.

Definition 1.10 (Free group Fr). Let r ∈ N and let S = {x1, · · · , xr}, where x1, · · · , xr are
n distinct elements. Then we write Fr for the group freely generated by S, and call it the
free group of rank r.

Proposition 1.11. A group is finitely generated if and only if it is the quotient of a finitely
generated free group.

Proof. By the first isomorphism theorem, this is equivalent to the statement: a group G is
finitely generated if and only if there exists a finitely generated free group F and a surjective
group homomorphism F → G. Note a quotient of a finitely generated group is finitely
generated (the image of the generators generate the image). Conversely, let G be a finitely
generated group, say generated by the finite set S ⊆ G. Let F be the free group generated
by S, then F is finitely generated. Using the universal property of F we find a group
homomorphism ϕ : F → G that is the identity on S (hence surjective), the G ∼= F/ker(ϕ),
which is what we want. �
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1.2. Presentations. Free groups are important in group theory, because any group is a
quotient of a free group by a normal subgroup. This is the so-called presentation of a group.

Definition 1.12 (Presentation). Let S be a set, and let R ⊂ (S ∪ S−1)∗ be a subset; let
F (S) be the free group generated by S. Then the group

〈S|R〉 = F (S)/〈R〉/F (S)

is said to be generated by S with the relations R; if G is a group with G ∼= 〈S|R〉, then 〈S|R〉
is a presentation of G. Here, 〈R〉/F (S) is the smallest normal subgroup of F (S) contains R.
It always exists and can be expressed as:

〈R〉/F (S) =
⋂
{N | S ⊂ N,N / G}

= {g−11 sp11 g1 · · · g−1n spnn gn | n ∈ N, s1, · · · , sn ∈ S, p1, · · · , pn ∈ {±1}, g1, · · · , gn ∈ G}
A group G is finitely presented if there exists a finite generating set S and a finite relation
set R such that G ∼= 〈S|R〉.

Examples 1.13 (Presentations of groups).

• 〈x|xn〉 ∼= Cn, for all n ≥ 1
• 〈x, y|xn, ym, xyx−1y−1〉 ∼= Cn × Cm, for all n,m ≥ 1
• 〈x1, x2, · · · , xr|∅〉 ∼= Fr, for all r ≥ 1
• 〈ρ, σ|ρn, σ2, ρσρσ−1〉 ∼= D2n, for all n > 1
• 〈s, t|s2, t3, (st)5〉 ∼= A5

More generally, if G1
∼= 〈S1|R1〉 and G2

∼= 〈S2|R2〉, then G1 ×G2
∼= 〈S1, S2|R1, R2, [R1, R2]〉,

where [R1, R2] is the commutator.

Theorem 1.14. Every group has a presentation.

Proof. Let G be a group, and consider the free group F (G) generated by G. Then by the
universal property of free groups, there exists a unique homomorphism ϕ : F (G)→ G such
that ϕ|G = idG. Note this homomorphism is surjective since the identity map is surjective.
And also note ker(ϕ)/F (G), so 〈ker(ϕ)〉/F (S) = ker(ϕ). So by the First Isomorphism Theorem,

〈G|ker(ϕ)〉 = F (G)
ker(ϕ)

∼= Im(ϕ) = G,

which is a presentation for G. �

Remark 1.15. Every finite group has a finite presentation. Indeed, one can take the entire
group G as the generators and the multiplication table as the relations.

Remark 1.16 (Word problem, Novikov-Boone Theorem). The problem of deciding for given
generators and relations whether a given word in these generators represents the trivial
element in the corresponding group, is undecidable (in the sense that no such algorithm will
ever exist). For more details, see Novikov-Boone Theorem [LS01, Theorem 6.3].

1.3. Free products. The free product of groups is a way of multiplying groups that does
not add any new relations. For example, the free product of free groups will again be a free
group.

Definition 1.17 (Free product, universal property). A group G together with homomor-
phisms α1 : G1 → G and α2 : G2 → G is called a free product of G1 and G2 (denoted
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G1 ∗ G2) if the following universal property is satisfied: For any group H with homomor-
phisms ϕ1 : G1 → H and ϕ2 : G2 → H, there is exactly one homomorphism ϕ : G → H of
groups with ϕ ◦ α1 = ϕ ◦ α2, i.e. the following diagram commutes:

G G2G1

H

α1 α2

ϕ1 ϕ2

ϕ

Theorem 1.18. Free products exist and are unique up to isomorphism.

Proof. The uniqueness part is very similar to the proof of Theorem 1.7. It involves using
universal property to find suitable isomorphisms.

For the existence part, we consider the presentation

G = 〈G1 tG2 | RG1 ∪RG2〉 ∼= F (G1 tG2)/〈RG1 ∪RG2〉/

where Gi is the underlying set of group Gi, and RGi
= {ghk−1|g, h, k ∈ Gi such that gh =

k ∈ Gi}. The elements of G1 and G2 are treated as different letters, and hence we used the
disjoint union symbol t. And naturally we have maps αi : Gi → G, αi(g) = Ng.

Let H be any group with group homomorphisms ϕ1 : G1 → H and ϕ2 : G2 → H. To find a
homomorphism ϕ : G → H, we use the universal property of free groups together with the
presentation: for the map ϕ : G1 tG2 → H,

ϕ(g) =

{
ϕ1(g) if g ∈ G1;
ϕ1(g) if g ∈ G2,

there exists a homomorphism ϕ : G→ H that vanishes on the set of relations and ϕ◦α1 = ϕ1,
ϕ ◦ α2 = ϕ2 by construction.

Assume that we have another homomorphism ψ : G→ H with ψ ◦α1 = ϕ1 and ψ ◦α2 = ϕ2.
Then ψ|G1tG2 = ϕ|G1tG2 . And since the image of G1tG2 under the projection map generates
G, we see ϕ = ψ and ϕ is indeed unique. �

Examples 1.19 (Free products).

• Fr1 ∗ Fr2 ∼= Fr1+r2 for any r1, r2 ∈ N.
• C2 ∗ C2

∼= D∞, where D∞ is the infinite dihedral group.
• C2 ∗ C3

∼= PSL(2,Z), where PSL(2,Z) is the modular group. (See Proposition 3.3.)

2. Subgroups of free groups are free

The goal of this section is to prove that any subgroup of a free group is free. To do that,
we start by introducing Cayley graphs and considering actions of free groups on trees. For
a background on group actions, see Appendix A. Throughout this section, we follow [Löh11,
Chapters 3, 4] and [Ser03, Chapter 1.2].

Definition 2.1. Let G be a group generated by a set S ⊆ G. The Cayley Graph of G with
respect to S is Cay(G,S) = (V,E), where the set of vertices is V = G and the set of edges
is E = {{g, g · s} | g ∈ G, s ∈ S\{e}}.
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Examples 2.2. The first examples are Cayley graphs of Z with respect to different gener-
ating sets, {1} and {2, 3}.

The second example is the Cayley graph of F2 with respect to the generating set {a, b}.

Source for diagrams: [Löh11, p. 40].

Proposition 2.3 ([Löh11, Example 4.1.9]). Let G be a group and S be a generating set for G.
Then left translation action ϕ : G → Aut (Cay(G,S)) given by ϕ(g) = fg and fg(h) = g · h,
where the set Aut (Cay(G,S)) is a set of automorphisms of the Cayley graph Cay(G,S), is
a well-defined action.

Proof. Firstly, we show that ϕ is well-defined, i.e. fg ∈ Aut (Cay(G,S)) which means that for
all x, y ∈ G, x is adjacent to y if and only if fg(x) is adjacent to fg(y). Suppose x is adjacent
to y in the Cayley graph; then there exists s ∈ S such that x = y · s. Then fg(y) = g · y and

fg(x) = fg(y · s) = g · y · s = fg(y) · s.

So fg(x) is adjacent to fg(y). The other implication follows the same argument with inverses.

We now show that ϕ is a group homomorphism, that is, fg ◦ fh = fg·h. For any x ∈ G,

(fg ◦ fh) (x) = fg (fh(x)) = g · (h · x) = (g · h) · x = fg·h(x)

which completes the proof. �

Proposition 2.4 ([Löh11, Prop. 4.1.10]). Let G be a group and S be a generating set for G.
The left translation action on the Cayley graph Cay(G,S) is free if and only if S does not
contain any elements of order 2.

Proof. Let us denote the left translation action by ϕ(g) = fg, where fg(h) = g · h.
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First, note that ϕ always acts freely on the set of verices V = G. Thus, we only have to
consider the action ϕ on E.

Suppose that there exists s ∈ S such that s2 = e. Take v ∈ V , then let v′ = s · v. Since s is
a generator, {v, v′} ∈ E. Now,

fs(v) = s · v = v′

fs(v
′) = s · v′ = s · s · v = v

So, fs ({v, v′}) = {v′, v}, and fs is not free.

Conversely, suppose that the action ϕ is not free. Then we seek to find an element in S of
order 2.

Since ϕ is not free, but ϕ acts freely on V , then for some g ∈ G \ {e} and {v, v′} ∈ E we
have

g · {v, v′} = {g · v, g · v′} = {v, v′}.
We know that since v and v′ are in an edge, for some s ∈ S ∪ S−1 we have v = v′ · s, and
s 6= e. There are two cases to consider:

(1) If g· = v and g · v′ = v′, then g = e, since ϕ acts freely on V , a contradiction.
(2) If g · v = v′ and g · v′ = v, then:

v′ = g · v = g · v′ · s = v · s = v′ · s · s.
Thus s2 = e, since ϕ acts freely on V . Finally, since s 6= e, we conclude that s has
order 2.

This completes the proof. �

Theorem 2.5 ([Löh11, Theorem 4.2.1]). A group is free if and only if it admits a free action
on a (non-empty) tree.

We will prove this by Lemmas 2.8 and 2.12, but first we need to introduce some more theory.

Theorem 2.6 ([Ser03, Prop. 1.15]). Let F be a free group, which is freely generated by
S ⊂ F . Then the corresponding Cayley graph, X = Cay(F, S) is a tree.

In this proof, the elements of the basis set S both denote the group elements and edges of
the Cayley graph. The use is clear form the context.

Proof. Since F is freely generated by S, we can write any element g ∈ F uniquely as g =
sε11 s

ε2
2 . . . sεnn , where si ∈ S and εi ∈ {±1}. Take any g, h ∈ F . Then g = sε11 s

ε2
2 . . . sεnn and

h = tξ11 t
ξ2
2 . . . t

ξn
n . So the vertices corresponding to g and h in the graph X are connected by

the path from g to h:

s−εnn , . . . , s−ε11 , tξ11 , t
ξ2
2 , . . . , t

ξn
n .

Thus we conclude that X is connected.

We now need to show that it contains no cycles. Suppose for a contradiciton that X does
contain a cycle and denote it by

p = sε11 , s
ε2
2 , . . . , s

εn
n

where if si = si+1 then εi = εi+1, and n > 2. Then e = sε11 s
ε2
2 . . . sεnn which is a non-trivial

relation on the elements of S, contradicting the fact that S freely generates F . �
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Note that in general the converse statement is not true. We therefore add another hypothesis
to obtain the following theorem.

Theorem 2.7 ([Ser03, Prop. 1.15]). Let G be a group and S be a generating set of G such
that S∩S−1 = ∅. If the the Cayley graph X = Cay(G,S) is a tree, then G is freely generated
by S.

Proof. Suppose, for a contradiction, that S does not freely generate G. Then there is a non-
trivial word (a word which does not reduce to the identity) such that its image is the point e.
Choose such a word of minimal length, n, and denote it ĝ = sε11 s

ε2
2 . . . sεnn . Where si ∈ S and

εi ∈ {±1}. Let Pi denote the image of the element sε11 . . . sεii in X, where i ∈ {1, 2, . . . n},
and let P0 denote the image of eG. Since ĝ is minimal, then the Pi’s are all distinct, for
i ∈ {0, 1, . . . n − 1}. (Suppose Pi = Pj for some i, j ∈ {0, 1, . . . n − 1}, then s

εi+1

i+1 . . . s
εj
j is a

shorter element than ĝ). So, we have that P0 = Pn, and the points Pi and Pi+1 are adjacent
in X. Thus we have a cycle in X, which is contradiction with X being a tree. �

We can now prove the first implication of Theorem 2.5.

Lemma 2.8. If a group is free, then it admits a free action on a non-empty tree.

Proof. Let F be a free group, freely generated by S; then Cay(F, S) is a tree by Theorem 2.6.
We will show that F acts freely on Cay(F, S) by left translations (see Proposition 2.3). Since
S is a free generating set, then none of its elements has order 2 (otherwise, s2 = e is a
non-trivial relation). Then by Proposition 2.4, the left translation is a free action on the
graph. �

To prove the other implication of Theorem 2.5, we need to introduce spanning trees. Recall
that a subtree is a subgraph which is also a tree.

Definition 2.9. Let X be a connected graph, and ϕ : G → Aut (X) be an action of G on
X. A spanning tree for ϕ is a subtree Y of X such that #G(x) ∩ Y = 1 for each x ∈ X, i.e.
each orbit of the action is represented by exactly one vertex of Y .

Remark 2.10. Orbits are distinct by Proposition A.7.

Theorem 2.11 ([Löh11, Theorem 4.2.4]). Every action of a group on a connected graph by
graph automorphisms admits a spanning tree.

This proof involves partial and total orderings, and uses Zorn’s lemma. For more details, see
[Rei95, Section 1.7].

Proof. Let G be a group acting on the connected graph X. Let TG be the set of all subtrees
of X that contain at most one element from each orbit G(v). We see that the subset relation,
⊆, is a partial ordering on this set, and that the proper subset relation, ⊂, is a total ordering
on this set.

Any sequence {Ai}∞i=1 of elements of TG such that A1 ⊂ A2 ⊂ . . . (a totally ordered chain)
has an upper bound,

⋃∞
i=1Ai (where we take separately the union of the edges and the

vertices). Therefore, we can apply Zorn’s lemma, to obtain that there is a maximal element
T ∈ TG. This means that for all T ′ ∈ TG, we have that:

(1) T 6⊂ T ′
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We claim that T is a spanning tree for the action of G on X. Firstly, since T ∈ TG we have
that there is at most one element of each orbit in T . We now need to show that there is at
least one element from each orbit in T .

Suppose contrary that there exists v ∈ X such that no points of G(v) are in T . Since X
is connected, for any u ∈ T there exists a path from u to v in the graph X. Let p be the
shortest path in X that connects some vertex u ∈ T to some vertex in G(v) and let n be the
length of p.

Let v′ be the first point along this path such that v′ 6∈ T . Consider the orbit G(v′) of v′. We
have two possible cases: either (a) G(v′) ∩ T = ∅ or (b) G(v′) ∩ T 6= ∅.

(a) Suppose that they are disjoint and let u′ denote an element in T which is connected to
v′. (This exists since v′ is the first element in the path that is not in T , so the element
before v′ in the path is in T ). Then if we take the tree T , and add the edge {u′, v′} and
the vertex v′, we obtain a new tree, T ?. Clearly, T ? has at most one element of any orbit,
so T ? ∈ TG, and T ⊂ T ?, which contradicts equation 1.

(b) Suppose that there is an element in G(v′)∩T , i.e. there exists g ∈ G such that g · v′ ∈ T .
Let p′ denote the subpath of p connecting v′ to v and m be its length. Clearly m < n,
since the path p starts at u which is in T , whilst v′ is not in T. It also clear that
m 6= 0; otherwise, v′ = v, and hence G(v′) = G(v), so there cannot be an element in the
intersection of G(v′) and T .

Consider the path g · p, which connects the vertex g · v′ to g · v. Then we have a path
g · p′ of length m connecting a vertex in T to a vertex in G(v), where 0 < m < n. This
contradicts the fact that p was chosen to be the shortest path connected a vertex u ∈ T
to a vertex in G(v).

This completes the proof. �

Now we have enough tools to prove the other implication of Theorem 2.5.

Lemma 2.12. If a group admits a free action on a non-empty tree, then it is free.

Proof. Let G be a group which acts freely on a tree, T , by graph automorphisms. Then by
Theorem 2.11 there exists a spanning tree T ′ for this action. In this proof, we call an edge
of T essential if one of its vertices is in T ′, whilst the other vertex is not. (Then by the
uniqueness of paths in trees, the edge is also not in T ′).

The proof consists of three parts: constructing a generating set S, showing that it generates
G, and showing that it freely generates G.

Step 1. Construction of S. Take any essential edge f = {u, v} of T , where u is a vertex
of T ′, and v is not a vertex of T ′. Since T ′ is a spanning tree, there exists a group element
gf ∈ G such that g−1f · v is a vertex in T ′. (We can say equivalently that v is a vertex of
gf · T ′). The element gf is uniquely determined; indeed, if we have two distinct elements of
G, gf and g′f with this property, then gf · v 6= g′f · v since G acts freely on X. So we have two
distinct representatives of the orbit G(v) in T ′, which contradicts that T ′ is a spanning tree.

Let S̃ = {gf ∈ G | f is an essential edge of T}. Then S̃ has the following properties:

(1) The identity element of G is not in S̃, by definition.

(2) S̃ has no element of order 2:
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Suppose gf has order 2, so gf = g−1f , and let f = {u, v} be the corresponding
essential edge, where u ∈ T ′, and v ∈ gf ·T ′. Then gf · u ∈ gf ·T ′, and gf · v ∈ T ′. So
the edge gf · f = {gf · u, gf · v} links T ′ to gf · T ′. We see that the edge f also links
these two trees. Since T is a tree, then these edges are the same by the uniqueness
of paths. This contradicts that G acts freely on T .

(3) If gf = gf ′ , then f = f ′:
Both of the edges f and f ′ connect the spanning tree T ′ to gf · T ′. Then since T

is a tree, we must have that f = f ′.

(4) If g ∈ S̃, then g−1 ∈ S̃:
Let f = {u, v} be the corresponding essential edge for g (i.e. g = gf ). Then

g−1 · f = {g−1 · u, g−1 · v}, and g−1 · v ∈ T ′, so g−1 is also an essential edge. We want
to find the element h of G such that h−1 · (g−1 · u) ∈ T ′. Since u ∈ T ′, then clearly

h = g−1. So g−1 = h = g(g−1·f) ∈ S̃

So every element of S̃ has a unique partner, namely its inverse. So we can split S̃ into two
sets by choosing one element from each pair to go into S and the other into S−1. Then we
have:

S ∩ S−1 = ∅; |S| = |S̃|
2

Step 2. S generates G. It is enough to show that S̃ generates G, since S ∩ S−1 = ∅.

Take any g ∈ G; we want to show that g can be written as s1s2 · · · sn, where si ∈ S̃. Take
any v ∈ T ′, and let p denote the path from v to g · v. Then the path p passes through copies
of T ′:

g0 · T ′, . . . , gn · T ′,
where these graphs are in the order that p passes through them, and any consecutive graphs
are distinct. Note that g0 is the identity element in G, and gn = g.

Take any j ∈ {0, . . . , n − 1}, then gj · T ′ and gj+1 · T ′ are joined by the edge fj = {uj, vj}.
Clearly

g−1j · fj = {g−1j · u, g−1j · v}
is an essential edge. So there exists sj ∈ S̃ such that s−1j · (g−1j · vj) ∈ T ′. We also have that

vj ∈ gj+1 · T ′, so g−1j+1 · vj ∈ T ′.

Since T ′ has only one element from G(v), then

g−1j+1 · vj = s−1j · (g−1j · vj).

Also, since the group action is free, we can conclude that g−1j+1 = s−1j · g−1j , which we can

rearrange to sj = g−1j gj+1.

Recall that g = gn, g0 = eG, so we can write:

g = g−10 · gn
= g−10 · g1 · g−11 · . . . · g−1n−1 · gn
= s0 · . . . · sn−1

So, for all g ∈ G, we can generate g from elements of S̃, and hence from S.

Step 3. S freely generates G. By Theorem 2.7, it suffices to show that Cay(G,S) does

not contain any cycles. Indeed, Cay(G,S) = Cay(G, S̃), since S̃ = S ∪ S−1.
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Suppose, for a contradiction, that there is a cycle P0, . . . , Pn−1 in Cay(G, S̃), where Pi cor-
responds to a vertex on the Cayley graph. Let gi denote the group element who’s image is

Pi. Then the elements σj = g−1j · gj+1 is in S̃ for all j ∈ {1, n− 1}, since they correspond to

edges on the Cayley graph. We also have that σn = g−1n−1 · g is in S̃, (since it corresponds to
the edge that completes the cycle.)

Figure 3. Diagram for proof of Lemma 2.12

gj · T ′ gj+1 · T ′ gj+2 · T ′

gj · fj

gj+1 · fj+1

For all j ∈ {1, . . . n}, let fj be an essential between T ′ and σj · T ′. We want to show that we
can connect the vertices of gj ·T ′ and gj+1 ·T ′ without going through any other copies of T ′.
For the following paragraph, it may be helpful to look at Figure 3.

Since gj+1 ·T ′ is connected, then there is a path from all the vertices of gj+1 ·T ′ to the vertex
of gj+1 · fj+1 in gj+1 · T ′. We notice that gj+1 · T ′ = gj · (σj · T ′), so since T ′ and σj · T ′
are connected by fj, then gj · T ′ is connected to gj · (σj · T ′) = gj+1 · T ′ by gj · fj. So we
can extend the path we previously had in gj+1 · T ′ with the essential edge gj · fj so that we
connect gj · T ′ to gj+1 · T ′ without going through any other copies of T ′.

We concatenate these paths together, and obtain a path from g0 · T ′ to gn · T ′ via the
trees g1 · T ′, . . . , gn · T ′. However, since P0, . . . , Pn−1 is a cycle in the Cayley graph, then
gn = g0 · σ1 · . . . · σn = g0. Thus we see that our path in T is a cycle, which contradicts the
fact that T is a tree. �

Another way to prove the lemma is to use covering space theory. We follow the ideas briefly
presented in [Löh11, Remark 4.2.5].

Alternative proof of Lemma 2.12. Suppose G acts freely on a tree T . Since the action is free,
for each t ∈ T there exists a neighbourhood U such that g1(U) ∩ g2(U) 6= ∅ implies g1 = g2
for any g1, g2 ∈ G, so we can use Theorem B.4 to obtain a covering map p : T → T/G and

G ∼=
π1(T/G)

p∗(π1(T ))
∼= π1(T/G),

since a tree is contractible. Finally, since T is a tree, T/G is a tree with some of the vertices
identifies, i.e. a graph. There exists a spanning tree for the graph T/G with the action of
G by Theorem 2.11, so if we contract it, we conclude that T/G is homotopically equivalent
to a bouquet of circles. Then G ∼= π1(T/G) is a free group by Seifert-van Kampen theorem
[Hat02, Theorem 1.20]. �
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Lemmas 2.8 and 2.12 together yield Theorem 2.5. The main theory of the section now follows
as a corollary to Theorem 2.5.

Corollary 2.13 ([Löh11, Corollary 4.3.1]). Subgroups of free groups are free.

Proof. Let F be a free group, and H be a subgroup of F . Then F acts freely on a tree by
Theorem 2.5. Then clearly H also acts freely on this tree, so again by Theorem 2.5, H is
free. �

One can also prove this result directly using covering space theory. We follow the ideas
briefly presented in [Löh11, Remark 4.3.3].

Alternative proof of Corollary 2.13. Suppose G is a subgroup of a free group Fr. Note that
Fr is the fundamental group of a bouquet X of r circles, so by Theorem B.2, G corresponds
to a connected pointed covering p : X̃ → X of X. Since X can be thought of as a graph,
the covering space X̃ is a connected graph. Then there exists a spanning tree for X̃ with
the action of G by Theorem 2.11, so by contracting the spanning tree, X̃ is homotopically
equivalent to a bouquet of circles. Therefore G ∼= π1(X̃) is a free group by the Seifert-van
Kampen theorem [Hat02, Theorem 1.20]. �

We can also calculate the rank of the subgroup, given its index.

Corollary 2.14 (Schreir index formula, [Löh11, Corollary 4.3.2]). Let F be a free group of
rank rF , and H be a subgroup of F with finite index k. Denote the rank of H as rH , then

rH = k(rF − 1) + 1

Proof. Let T = Cay(F, S), where S freely generates F . So T is a tree by Theorem 2.6. From
the proof of Lemma 2.12, we see that the rank of H is E

2
, where E denotes the number of

essential edges of the action of H on on T .

We will determine E by a counting argument. Let T ′ be a spanning tree for the action H
on T . Then since the index [F : H] = k, we see that T ′ has k vertices. Let dT (v) denote
the number of edges a vertex has, for all v ∈ T , and let V (T ′) denote the set of vertices of
T ′. We calculate the sum of the number of edges that the vertices of T ′ have in two different
ways.

The tree T ′ has k vertices, so it has k − 1 internal edges. Each edge is counted twice when
we sum over the tree, so we obtain that:∑

v∈V (T ′)

dT (v) = 2 · (k − 1) + E.

We also notice that because S freely generates F , every vertex has 2 · |S| = 2 · rF edges. So
we obtain ∑

v∈V (T ′)

dT (v) = 2 · rF · k.

Putting these two results together, we obtain that E = 2 · rF · k − 2(k − 1), so

rH = rF · k − k + 1 = k(rF − 1) + 1

which completes the proof. �

Corollary 2.15. The free group F2 = 〈a, b〉 contains a free subgroup of rank r.
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Proof. For r = 1, 〈a〉 is a subgroup of F2 of rank 1. For r ≥ 2, by the Shreier index formula
2.14 it is enough to find a subgroup of index k = r − 1. Define

G = {w ∈ F2 | sum of the powers of the generators in w is k}

where we interpret w as a reduced word in a and b. (For example, the sum of the powers in
a2ba−1 is 2.) First, note that G is a subgroup of F2:

• If the sum of the powers in w is nk, then the sum of the powers in w−1 is −nk.
• If the sum of the powers in w1, w2 is n1k, n2k, respectively, then the sum of the

powers in w1w2 is (n1 + n2)k.

Moreover, F2/G = {G, aG, a2G, . . . , ak−1G}, which shows that [F2 : G] = k. �

Remark 2.16 (Kurosh subgroup theorem). A more general result states that any subgroup
of a free product of groups is a free product of groups. For more details, see [CFR11, Theorem
14.8.8].

3. The Ping-Pong Lemma

This section is devoted to the Ping-Pong Lemma, a result that allows us to check if a group
is a free product of two groups.

Theorem 3.1 (Ping-Pong Lemma). Let G be a group acting on a set X. Let H1 and H2

be two subgroups of G, such that |H1| ≥ 3. If there are non-empty subsets X1, X2 ⊆ X such
that X2 6⊆ X1 and

(2) h(X2) ⊆ X1, for all h ∈ H1 \ {e}

(3) h(X1) ⊆ X2, for all h ∈ H2 \ {e}

then 〈H1, H2〉 ∼= H1 ∗H2.

Proof. We have to show that elements in Γ do not satisfy any other relation, i.e. if w is a
non-empty reduced word formed by letters in H1\{e} and H2\{e}, then w is not the identity.
We then have four cases:
(i) Suppose w starts and ends with an element of H1\{e}. Say

w = a1b1a2b2 . . . bk−1ak, for ai ∈ H1\{e} and bi ∈ H2\{e}.

Then we have

w(X2) = a1b1 . . . bk−1ak(X2) ⊆ a1b1 . . . ak−1bk−1(X1) by (2)

⊆ a1b1 . . . ak−1(X2) by (3)

. . .

⊆ a1(X2) ⊆ X1

We assumed X2 6⊆ X1, therefore w 6= e.

(ii) Suppose that w = a1b1a2 . . . bk. Then define a to be any element in H1\{e, a−11 }. One
can now use a same argument as part (i) with awa−1 to show

awa−1(X2) ⊆ X1
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which implies awa−1 6= e. Therefore w 6= e since awa−1 starts and ends with an element of
H1\{e}.

(iii) Suppose that w = b1a2b2 . . . ak. Similarly as before, define a to be any element in
H1\{e, a−1k }, and use a same argument as part (i) with awa−1 to show

awa−1(X2) ⊆ X1

which implies w 6= e.

(iv) Suppose that w = b1a2 . . . bk, let a ∈ H1\{e} and use the same argument as part (i) to
show w 6= e. �

The following corollary presents a special case of the Ping-Pong Lemma which is easier to
apply in practice.

Corollary 3.2. Let G be a group acting on a set X and let g1, g2 ∈ G such that o(g1) ≥ 3.
If there exist non-empty subsets X1, X2 ⊆ X such that X2 6⊆ X1 and for any n 6= 0

gn1 (X2) ⊆ X1,

gn2 (X1) ⊆ X2,

then 〈g1, g2〉 ∼= 〈g1〉 ∗ 〈g2〉.

Proof. Let H1 = 〈g1〉 and H2 = 〈g2〉 and apply the Ping-Pong Lemma 3.1 to obtain the
result. �

Throughout the rest of the section, we present various applications of the Ping-Pong Lemma.

Proposition 3.3 ([Alp93]). The modular group PSL(2,Z) is isomorphic to the free product
of cyclic groups C2 ∗ C3.

In order to prove this theorem we first need the following lemma from [Con].

Lemma 3.4. The matrices

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
generate SL(2,Z).

Proof. Take any

T =

(
a b
c d

)
∈ SL(2,Z).

Then for n ∈ Z:

AnT =

(
a+ cn b+ nd
c d

)
, BT =

(
−c −d
a b

)
We are going to apply a version of the division algorithm. If c = 0, then a = d = ±1 since
det(T ) = 1. Suppose now c 6= 0. If |a| < |c|, let T ′ = BT (this exchanges rows, with a sign
change), and use the following argument. If |a| ≥ |c|, define

a = cq + r (i.e. a− qc = r)
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such that 0 ≤ r < |c|. This is possible by the division algorithm. Now

A−q =

(
1 −q
0 1

)
, A−qT =

(
a− qc b− qd
c d

)
= T (1)

where a− qc < |c|. Now apply B on the left to T (1). If a− qc = r = 0, proceed to the next
step. If not, repeat this part of the algorithm with T (1). By the division algorithm, we will
eventually get r = 0. We obtain a matrix of the form

MT =

(
x y
0 z

)
∈ SL(2,Z), M ∈ 〈A,B〉

Therefore det(MT ) = 1 which implies x = z = ±1, so MT = ±Ay which gives the desired
result T ∈ 〈A,B〉, since M is invertible. �

We can now prove the previously stated theorem.

Proof of Theorem 3.3. Define two matrices in SL(2,Z) as follows:

A =

(
1 1
0 1

)
, B =

(
0 −1
1 0

)
By Lemma 3.4, A and B generate SL(2,Z). Therefore their images (say Ã and B̃) in

PSL(2,Z) = SL(2,Z)/〈±I〉 generate PSL(2,Z). This group acts on Ĉ by Möbius transfor-
mations: [

a b
c d

]
· z =

az + b

cz + d

where by [X] we denote the equivalence class of the matrix X ∈ SL(2,Z) in PSL(2,Z). Let

C = AB =

(
1 −1
1 0

)
.

Then B and C generate SL(2,Z), since A = CB−1, so letting C̃ be the image of C, B̃ and
C̃ also generate PSL(2,Z).

Now, let P be the set of positive irrational numbers and N be the set of negative irrational
numbers, which gives P,N ⊂ R ⊂ Ĉ. Note that C̃ has order 3 and B̃ has order 2 in PSL(2,Z).
Therefore, it is enough to check that B̃n(P ) ⊆ N for n = 1 and C̃n(N) ⊆ P for n = 1,−1.

The elements B̃, C̃ and C̃−1 act on Ĉ as follows:

B̃ : z 7→ −1

z
, C̃ : z 7→ z − 1

z
, C̃−1 : z 7→ 1

1− z
.

Hence

B̃(P ) ⊆ N, C̃(N) ⊆ P, C̃−1(N) ⊆ P

so Corollary 3.2 implies

〈B̃, C̃〉 ∼= 〈B̃〉 ∗ 〈C̃〉 ∼= C2 ∗ C3

since B̃ has order 2 and C̃ has order 3. �

The Ping-Pong Lemma 3.1 also allows us to check that SL(2,R) contains a free group of
rank 2 as a subgroup.
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Proposition 3.5. The subgroup of SL(2,R) generated by

A =

(
1 0
2 1

)
, B =

(
1 2
0 1

)
is free of rank 2.

Proof. To use Corollary 3.2, we let SL(2,R) act on R2 by linear transformations, and define:

X1 =

{(
x
y

)
such that |x| > |y|

}
⊂ R2

X2 =

{(
x
y

)
such that |x| < |y|

}
⊂ R2

g1 =

(
1 2
0 1

)
g2 =

(
1 0
2 1

)
Note that

gn1 =

(
1 2n
0 1

)
, gn2 =

(
1 0

2n 1

)
.

Hence, for n 6= 0 and v = (x, y)T ∈ X2:

gn1 v =

(
x+ 2ny

y

)
Now |x + 2ny| ≥ |2ny| − |x| > |2ny| − |y| ≥ |y| since v ∈ X2, thus gn1 v ∈ X1. Similarly
one can prove that for n 6= 0, gn2 (X1) ⊆ X2. Therefore, by Corollary 3.2,

〈g1, g2〉 ∼= 〈g1〉 ∗ 〈g2〉 ∼= F2,

since these two matrices are of infinite order. �

Remark 3.6. If we let A =

(
1 t
0 1

)
and B =

(
1 0
t 1

)
, for any |t| ≥ 2, then we can

adjust the above argument to show that 〈A,B〉 ∼= F2.

However, not every pair of matrices of this form generates a free group.

Example 3.7. The subgroup of SL(2,R) generated by the matrices

A =

(
1 0
1 1

)
, B =

(
1 1
0 1

)
is not free. Indeed,

ABA−1BAB−1 =

(
1 0
1 1

)(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
1 0
0 1

)
is a non-trivial relation between A and B. It turns out that these matrices generate SL(2,Z)

Remark 3.8. One can find matrices A and B of the form described in Remark 3.6 with
|t| < 2 that do generate a free group. Indeed, suppose t is any transcendental number with
|t| < 2 (for example, t = π/4), meaning that it is not the root of any non-zero polynomial
with integer coefficients. Any word in A, A−1, B, B−1 is of the form(

p1(t) p2(t)
p3(t) p4(t)

)
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where pi is a polynomial with integer coefficients. If there was a non-trivial relation between
A and B, then we would have p2(t) = p3(t) = 0 and at least one of p2 and p3 would be
non-trivial, which would contradict transcendentality of t. Therefore, 〈A,B〉 ∼= F2.

Another example from [dlH00] shows how to construct a subgroup isomorphic to Fr in the
modular group.

Proposition 3.9. Let r ∈ N and let D1, D2, . . . , D2r be 2r closed discs in Ĉ = C ∪ {∞}.
For any k ∈ {1, 2, . . . , 2r}, let hk ∈ PSL(2,C) be such that hk(Ĉ \D2k−1) ⊆ D2k (existence
is assumed here). Then

〈h1, h2, . . . , hr〉 ∼= Fr.

Proof. For k = 1, . . . , r, let Xk = D2k−1 ∪D2k. By construction, hn1 (X2) ⊂ X1 and hn2 (X1) ⊂
X2 for n 6= 0 and X1 6= X2, so we can apply Corollary 3.2 to X1 and X2 to show that

〈h1, h2〉 ∼= 〈h1〉 ∗ 〈h2〉 ∼= F2

Now, apply the Ping-Pong Lemma 3.1 to X1 ∪X2 and X3 with the subgroups 〈h1, h2〉 and
〈h3〉 to obtain:

〈h1, h2, h3〉 ∼= 〈h1, h2〉 ∗ 〈h3〉 ∼= 〈h1〉 ∗ 〈h2〉 ∗ 〈h3〉 ∼= F3.

Continuing in this way, we show that

〈h1, h2, . . . , hr〉 ∼= 〈h1〉 ∗ 〈h2〉 ∗ · · · ∗ 〈hr〉 ∼= Fr

which completes the proof. �

4. Free subgroups in linear groups

The main goal of this section is to show that almost all n-tuples of elements of GL(n,C)
generate free groups. For that sake, we review the notions of solubility and the Haar measure.

4.1. Solubility. In this subsection, we recall the definition of solubility and prove that free
groups of rank at least 2 are not soluble following [Rot95, p. 102–103].

Definition 4.1. A group G is called soluble if there are normal subgroups

{e} = G0 CG1 C · · ·CGk = G

such that Gj+1/Gj is abelian.

Proposition 4.2. Let G be a group and N C G. Then G is soluble if and only if both N
and G/N are soluble. More generally, any subgroup and any factor group of a soluble group
are soluble.

Proof. Suppose G is soluble, then there is a composition series

{e} = G0 CG1 C · · ·CGk = G

such that Gj+1/Gj is abelian. Then the series

{e} = {e} ∩N = G0 ∩N CG1 ∩N C · · ·CGk ∩N = G ∩N = N

is a composition series for N (recall that the intersection S ∩N is a normal subgroup of S),
and each factor is abelian because

(Gi+1 ∩N)/(Gi ∩N) = (Gi+1 ∩N)/(Gi+1 ∩Gi ∩N) ∼= (Gi+1 ∩N)Gi/Gi < Gi+1/Gi
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by the Second Isomorphism Theorem and since subgroups of an abelian group are abelian.

Let G/N be a quotient group; then note that Gj+1N/N CGjN/N , so that

{e} = G0N/N C G1N/N C · · · C Gk−1N/N C GkN/N = G/N.

Moreover, (GiN/N)/(Gi−1N/N) ∼= GiN/Gi−1N is abelian by the Third Isomorphism Theo-
rem.

Conversely, suppose N and G/N are soluble with {e} = N0 C N1 C · · · C Nk = N and
{e} = K0 CK1 C · · ·CKk = G/N and let ϕ : G→ G/N be the quotient map. Then

{e} = N0 CN1 C · · ·CNk = N C ϕ−1(K0)C · · ·C ϕ−1(Nk) = G

is a composition series for G with abelian factor groups. �

Theorem 4.3. A free group Fr is soluble if and only if r = 1.

Proof. If r = 1, then Fr ∼= Z, which is abelian. Then {e} / Fr is a composition series for Fr
with abelian factors.

Conversely, assume for a contradiction Fr for some r > 1. Since the free group of rank 2
contains the free group of rank r for each r by Corollary 2.15, we only need to show F2 is not
soluble by Proposition 4.2. Recall that by Proposition 1.11 every finitely generated group
is a quotient of a free group. One can show that A5 can be generated by 2 elements (see
Examples 1.13), so A5

∼= F2/N for some N C F2. Since A5 is not soluble, F2 is not soluble
by Proposition 4.2. The proof is complete. �

Corollary 4.4. A subgroup of a soluble group cannot be isomorphic to a free group of rank
greater than 1.

Proof. By Proposition 4.2, a subgroup of a soluble group is soluble. But Fr is not soluble
for r ≥ 2, hence it cannot be a subgroup. �

4.2. Almost all subgroups of GL(n,C) are free. We now turn to the main theorem of
the section. To make rigorous sense of measuring subsets in a group, we introduce the Haar
Measure following [AM07, Chapter 2].

Recall that a topological group is a topological space and a group such that the group’s
binary operation and inverse function are both continuous. Moreover, a topological space
is locally compact if every point has a compact neighbourhood, and it is Hausdorff if every
two distinct point have non-intersecting neighbourhoods.

Definition 4.5 (Haar Measure). Let G be a locally compact Hausdorff topological group.
A measure µ is called a left Haar measure if µ(xE) = µ(E) for every x in G and every
measurable E ⊂ G.

By Haar’s Theorem, such a (non-trivial) measure always exists and is unique up to a multi-
plicative factor.

Examples 4.6 (Examples of Haar measures).

• A Haar measure on (R,+) is the Lebesgue measure.
• A Haar measure on (R∗,×) is given by µ(E) =

∫
E

1
|t|dt.
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• A Haar measure on G = GL(n,R) is given by µ(E) =
∫
E

1
|det(X)|ndX, where dX

denotes the Lebesgue measure on Rn×n.
• Similarly, a Haar measure on GL(n,C) is given by µ(E) =

∫
E

1
|det(X)|2ndX.

Theorem 4.7. For each r > 0, and for almost all r-tuples (g1, . . . , gr) of elements of G =
GL(n,C), the group generated by g1, . . . , gr is free on these r elements. (‘Almost all’ is to be
interpreted in terms of Haar measure on Gr.)

Proof. Let w be a free word in Fr (for example, r = 2 and w = a2b). Such a word defines an
analytic map, which we also call w : Gr = G× · · · ×G→ G (in our case, w(g1, g2) = g21g2).

The set of r-tuples which are generators of free subgroups of rank r is

X = Gr \
⋃
w∈Fr
w 6=e

w−1(e)

In other words, the set of free generators is equal to the set of all r-tuples except those
that give a relation. Since F2 is countable and Fr can be thought as a subset of F2 (as it
is isomorphic to a subgroup of F2 by Corollary 2.15), we conclude that Fr is countable for
r ≥ 1. Now, taking the measure of both sides and using the countable additivity property
for measures, we get:

µ(X) = µ(Gr)−
∑
w∈Fr
w 6=e

µ(w−1(e))

For any analytic mapping from a connected analytic manifold M to an analytic manifold N ,
the pre-image of a point in N is either the whole of M or has measure zero in M . Thus, if
we show the pre-image of the identity is not the entire Gr, then we will have µ(w−1(e)) = 0
for any w 6= e in Fr, and hence we will show that µ(X) = µ(Gr).

To show the pre-image is not Gr, we first note that GL(n,C) contains a free subgroup of

rank r. Indeed, by Proposition 3.5 the matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
generate a free subgroup

of rank 2 of GL(2,Z) ≤ GL(2,C). One can easily generalize this to matrices

diag

((
1 2
0 1

)
, In−2

)
and diag

((
1 0
2 1

)
, In−2

)
∈ GL(n,C)

that generate a free group of rank 2 in GL(2,Z). Therefore, by Corollary 2.15, GL(2,Z)
contains a free subgroup of rank r. Finally, note that w−1(e) = Gr if and only if the
relation w is satisfied throughout G. However, G has a free subgroup, so no relation will be
satisfied. �

Remark 4.8 (General form of Theorem 4.7). The result is true if we replace G = GL(n,C)
with any connected, finite-dimensional, non-soluble Lie group. For the proof of the general
case, see [Eps71].

Remark 4.9. One natural question to ask at this point is: given a1, · · · , ar ∈ GL(n,C) such
that 〈a1, · · · , ar〉 is a free group of rank r, is there a way to choose a ar+1 ∈ GL(n,C) such
that 〈a1, · · · , ar+1〉 is a free group of rank r + 1?

For n = 1, this is impossible since (C,×) is abelian, which is soluble, and subgroup of a
soluble group cannot be free of rank greater than 1 by Theorem 4.3. Note that if we can
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prove for m = 2, then we can use the method from Theorem 4.7 to generalize the result to
any m ≥ 2.

For r = 1, the condition of 〈a1, · · · , ar〉 is a free group of rank r is the same as saying no
power of a1 is the identity matrix. In this case, the answer is yes. We can use the fact
that conjugation does not change the free group to either diagonalise or put the matrix into
the reflected Jordan form (in the sense of the 1’s are below the diagonal). Then construct
a matrix with 1’s on the diagonal and a transcendental number over the field generated by
adjoining the eigenvalues, and show they form a free group of rank 2. For more details, see
[Lie15].

For r ≥ 2, the answer is still yes [Bel15]. Note it is sufficient to answer it in SL(2,C). One

can define a ring R = C[t1, t2, t3, t4]/(t1t4 − t2t3 − 1), and let T =

(
t1 t2
t3 t4

)
∈ SL(2,C) and

show 〈a1, · · · , ar, T 〉 is free. Then for any non-trivial word w = w(a1 · · · , ar+1) in Fr+1, then
the equation w(a1 · · · , ar, T ) = I is a system of polynomial equations in t1, t2, t3, t4, which
defines a proper sub-variety Vw of SL(2,C). But SL(2,C) cannot be expressed as a countable
union of proper sub-varieties, and hence there exists a matrix ar+1 ∈ SL(2,C) that does not
lie in any Vw, then 〈a1, · · · , ar+1〉 is a free.

Corollary 4.10. If a1, · · · , ar ∈ GL(n,C) and 〈a1, · · · , ar〉 is a free group of rank r, then
for almost all ar+1 ∈ GL(n,C), the subgroup 〈a1, · · · , ar+1〉 is a free group of rank r + 1.
(Here again, almost all is interpreted in terms of Haar measure.)

Proof. The proof follows the same argument as the proof of Theorem 4.7. �

5. Fixed index subgroups

In this section, we will study subgroups of free groups Fr and the modular group C2 ∗ C3

with a fixed index n. We will provide two methods of counting these groups, one using
algebraic topology and one using group actions. We will then apply these results to study
the asymptotic growth of the number of subgroups of index n.

5.1. Counting using covering spaces. Let G be a group and let X be a topological
space (satisfying sufficient connectedness conditions; see Appendix B) such that π1(X) ∼= G.
Combining theorems B.2 and B.3 from Appendix B reduces the problem of finding subgroups
of fixed index to finding pointed path-connected coverings with a fixed number of sheets.

To apply the theorems to G = Fr, we need to construct a space whose fundamental group
is Fr. Since π1(S

1) ∼= Z and Fr ∼= Z∗r, we can apply the Seifert-van Kampen theorem [Hat02,
Theorem 1.20] to the join S1 ∨ S1 ∨ . . . ∨ S1 of r circles (also known as the bouquet of r
circles)

. . .
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to obtain

π1(S
1 ∨ S1 ∨ . . . ∨ S1︸ ︷︷ ︸

r times

) ∼= Fr.

Altogether, we obtain the following corollary from the two theorems.

Corollary 5.1. There is a one-to-one correspondence between subgroups of Fr of index n
and connected n-sheeted pointed covering spaces of the join of r circles, i.e. connected directed
coloured graphs with:

(1) n vertices,
(2) r colours of the directed edges,
(3) the in-degree and the out-degree in any colour equal to 1, for any vertex,
(4) a chosen base vertex.

We have therefore reduced the problem of counting the number of subgroups of Fr of index n
to a purely combinatorial exercise. We can now prove a general recursive formula for an(Fr),
where we denote the number of subgroups of G of index n by an(G). Note that a1(G) = 1 for
any group G, so we just need to express an(Fr) in terms of ak(Fr) for k ∈ {1, 2, . . . , n− 1}.

Theorem 5.2 (Hall’s formula, [Hal49, Theorem 5.1]). For r ≥ 2, n ≥ 1, we have

an(Fr) = n(n!)r−1 −
n−1∑
k=1

[(n− k)!]r−1ak(Fr).

Before the proof of the theorem, we give two examples where we can write down the covering
spaces and the groups explicitly.

Example 5.3 (n = 2, r = 2). We want to find all the 2-sheeted connected pointed coverings
of S1 ∨ S1. We start by writing all of the coverings down. The two colours, red and blue,
correspond to the two circles in S1 ∨ S1. Note that since the graphs have 2 vertices, it does
not matter which one is the base point; this is consistent with the fact that any subgroup of
index 2 is normal.

G1

G′1
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G2

To clarify how these graphs form covering spaces for S1 ∨ S1, we can also sketch them in a
way that makes the projection maps obvious.

G1 G′1 G2

We have three different graphs corresponding to the three subgroups of index 2 in F2. The
elements of the corresponding groups will be cycles in the graphs. If we denote the generators
corresponding to the colours red and blue by r and b, respectively, and find the generating
cycles, we obtain that the three subgroups of index 2 in F2 = 〈b, r|〉 are

G1 = 〈b, r2, rbr〉, G′1 = 〈r, b2, brb〉, G2 = 〈b2, r2, br〉

As expected, all these subgroups are free (Corollary 2.13) and they have rank 3 (Schreier
index formula 2.14). Moreover, the result is consistent with Hall’s formula 5.2, since

3 = 2 · 2− 1 = 2(2!)2−1 − a1(F2)

Example 5.4 (n = 3, r = 2). We want to find all the 3-sheeted connected pointed coverings
of S1 ∨ S1. We start by writing all of the coverings without base points down. The two
colours, red and blue, correspond to the two circles in S1 ∨ S1.
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G1

G2 G′2

G3 G′3 G4 G′4

By inspection, we can see that these are all the possible graphs satisfying (1)–(3) from
Corollary 5.1. Each one of them corresponds to a conjugacy class of subgroups of index 3
in F2 by Theorem B.3. We will denote the generators corresponding to the colours red and
blue by r and b, respectively. The elements of the corresponding groups will be cycles that
start and end at the base point. By considering different placements of the base points and
by finding the generating cycles, we obtain the following table:
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graph choices of base point the corresponding conjugate subgroups of index 3

G1 3 〈b, r2, rb2r, rbrbr〉, 〈r, b2, br2b, brbrb〉, 〈r2, b2, rbr, brb〉
G2 1 〈r3, b, rbr2, r2br〉
G′2 1 〈b3, r, brb2, b2rb〉
G3 1 〈b3, r3, br−1, rb−1〉
G′3 1 〈b3, r3, br, rb〉
G4 3 〈r3, b2, br−1, r2br〉, 〈r3, b2, br, rbr2〉, 〈r3, b, rbr, rb−1r〉
G′4 3 〈b3, r2, rb−1, b2rb〉, 〈b3, r2, rb, brb2〉, 〈b3, r, brb, br−1b〉

As expected, all these subgroups are free (Corollary 2.13) and they have rank 5 (Schreier
index formula 2.14).

These are all the subgroups of index 3 in F2 = 〈b, r|〉. Therefore:

a3(F2) = 3 + 1 + 1 + 1 + 1 + 3 + 3 = 13

which is consistent with Hall’s formula 5.2:

a3(F2) = 3(3!)−
2∑

k=1

[(3− k)!]ak(Fr) = 18− 2 · a1(F2)− a2(F2) = 18− 2− 3 = 13,

where we can use Example 5.3 or the formula again to obtain a2(F2) = 3.

By Theorem B.2, each of the graphs corresponds to a different conjugacy class of subgroups,
so we can also deduce that the number of conjugacy classes is 7 and the number of normal
subgroups is 4.

We now turn to the proof of Theorem 5.2. We omit the original proof of the theorem, and
present instead a proof that relies on covering space theory. We will also present a more
elementary proof using permutation representations in Section 5.2.

Proof of Theorem 5.2. The main idea of the proof is to count the number N of any (con-
nected or not) graphs satisfying conditions (1)–(4) from Corollary 5.1 with a chosen base
point and an order on the set of the vertices, say {1, 2, . . . , n}.

Note that condition (3) implies that the set of (directed) edges in one colour induces a per-
mutation of the n vertices. Explicitly, the permutation π maps any vertex v ∈ {1, 2, . . . , n}
to the unique vertex connected to it, i.e.

v π(v)

Therefore, we have n choices for the base point, and for any edge colour we have n! indepen-
dent arrangements of the edges in that colour.

N = n(n!)r.

We will now count the number N in a different way, using the numbers ak(Fr) for k =
1, 2, . . . , n, therefore proving the desired result. We first choose the base point (n choices).
Let us fix k and count the number of graphs satisfying conditions (1)–(4) with the property
that the base point lies in a connected component on exactly k vertices:
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choose k−1 ordered points that will be in the connected
component with the base point

(n−1)!
(n−k)! choices

for the k points, choose which covering with a base point
they correspond to

ak(Fr) choices

for the n− k points, arrange them in any way [(n− k)!]r choices

In total, we obtain:

n · (n!)r = N = n ·
n∑
k=1

(
(n− 1)!

(n− k)!
· ak(Fr) · [(n− k)!]r

)
,

and the result follows by rearranging. �

The advantage of using covering theory is that one can write find a set of generators for the
subgroups (which we know are free by Corollary 2.13). We turn our attention particularly
to subgroups of index n = 2. From the formula in Theorem 5.2, we immediately see that

(4) a2(Fr) = 2r − 1.

We strengthen this result below by writing down the subgroups explicitly.

Proposition 5.5. Any subgroup G of Fr of index 2 can be obtained as follows: fix k ∈
{0, 1, . . . , r− 1} and choose k generators a1, . . . , ak of Fr so that Fr = 〈a1, . . . , ak, b1, . . . , bl|〉
where l = r − k; then G is freely generated by

a1, . . . , ak,

b21, . . . , b
2
l ,

b1b2, b1b3, . . . , b1bl,

b1a1b1, b1a2b1, . . . , b1akb1.

Note that this is consistent with equation (4); the total number of subgroups of Fr of index
2 is:

r−1∑
k=0

(
r

k

)
=

r∑
k=0

(
r

k

)
− 1 = 2r − 1.

Moreover, the number of free generators for each of these groups is k + l + (l − 1) + k =
2(k + l)− 1 = 2n− 1, which is consistent with the Scheier index formula 2.14.

Proof. Recall that a subgroup G of index 2 of Fr corresponds to a connected graph on 2
vertices satisfying the conditions (1)–(4) from Corollary 5.1. Note that if one of the vertices
has a loop of a given colour, then so does the other. Let k ∈ {0, 1, . . . , r− 1} be the number
of loops on a vertex and a1, . . . , ak be the colours of the loops. Then all the other edges in
l = r − k colours, b1, . . . , bl, have to connect the two vertices.

In general, the graph will hence look as follows.
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a1a2ak . . . a1 a2 ak. . .
b1

b2

bl

...

b1

b2

bl

...

The elements of the group G will now correspond to cycles (paths that start and end at the
same vertex of the graph). We identify the colous a1, . . . , ak, b1, . . . , bl with the generators of
the free group with multiplication corresponding to composition of paths. We note that the
paths

a1, . . . , ak,

b21, . . . , b
2
l ,

b1b2, b1b3, . . . , b1bl,

b1a1b1, b1a2b1, . . . , b1akb1

are all cycles in the graph (so they correspond to elements of G) and there are no relations
between them. Let us denote the group generated by these cycles H ⊆ G and show that
H = G. A cycle of the graph starting at the base point is a disjoint union of cycles that only
visit the base point twice (at the start and at the end of the cycle). Therefore, it is enough
to show that a general element

biabj

where a is a word in a1, . . . , ak, is a product of the cycles. The proof goes by induction on
the number of letters of a. For a 1-letter word a, we have that b1ab1 ∈ H, so:

biabj = b2i (b1bi)
−1(b1ab1)(b

2
1)
−1(b1bj) ∈ H.

Moreover, if biabj ∈ H and a′ is a 1-letter word, then by the above argument we have
bja
′bj ∈ H, so:

biaa
′bj = (biabj)(bj)

−2(bja
′bj) ∈ H.

This completes the proof. �
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5.2. Counting using permutation representations. We now turn to another method
of finding the numbers an(G), following [LS03, Chapters 1, 2]. We revisit Hall’s recursive
formula 5.2 and generalize it to any free product of groups.

Our main tool in this section is the permutation representation of a group. There is a
correspondence between subgroups H of index n of a group G and transitive permutation
representations ϕ : G → Sym(n) of G (homomorphisms from G to Sym(n) such that ϕ(G)
acts transitively on {1, . . . , n}):

• Given a subgroup H of index n, let us label the set of cosets G/H with numbers
1, 2, . . . , n so that H has the label 1. This gives rise to (n − 1)! distinct transitive
actions ϕ : G→ Sym(n) that satisfy H = StabG(1), the stabilizer of 1.
• Given a transitive action ϕ : G→ Sym(n), the stabilizer StabG(1) of 1 is a subgroup

of index n.

Therefore, if an(G) is the number of subgroups of G of index n, then we can reduce the prob-
lem of finding an(G) to the problem of finding the number tn(G) of transitive permutation
representations:

(5) an(G) = tn(G)/(n− 1)!

Now, we express the numbers tn(G) recursively in terms of the number

hn(G) = #Hom(G, Sym(n))

of all homomorphisms from G to Sym(n).

Lemma 5.6 ([LS03, Lemma 1.1.3]). Let G be a group. Then

hn(G) =
n∑
k=1

(
n− 1

k − 1

)
tk(G)hn−k(G).

Proof. Let us first calculate the number

hn,k = #{ϕ : G→ Sym(n) | #G(1) = k}

where we denote the orbit of 1 in the action by G(1), for each k. There are:

•
(
n−1
k−1

)
ways to choose the other members of G(1),

• tk(G) ways to act on the orbit G(1) (the action is transitive, since G(1) is an orbit),
• hn−k(G) ways to act on the complement {1, 2, . . . , n} \G(1).

Therefore:

hn,k(G) =

(
n− 1

k − 1

)
tk(G)hn−k(G).

Finally:

hn(G) =
n∑
k=1

hn,k(G) =
n∑
k=1

(
n− 1

k − 1

)
tk(G)hn−k(G),

which completes the proof. �

This lemma immediately yields Hall’s formula 5.2.
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Alternative proof of Theorem 5.2. First, we can rearrange the formula in Lemma 5.6 to get:

(6) tn(G) = hn(G)−
n−1∑
k=1

(
n− 1

k − 1

)
tk(G)hn−k(G)

Moreover, note that for G = Fr, we can map the generators to any elements of a symmetric
group, so

(7) hn−k(Fr) = [(n− k)!]r.

Altogether:

an(Fr) = tn(Fr)/(n− 1)! (by equation (5))

= hn(Fr)
(n−1)! −

n−1∑
k=1

1
(n−k)!(k−1)!tk(Fr)hn−k(Fr) (by equation (6))

= n(n!)r −
n−1∑
k=1

[(n− k)!]r−1ak(Fr) (by equations (5) and (7))

which completes the proof. �

Even though the proof might seem very different from the one given before, it relies on the
same idea. In the proof of Lemma 5.6, we fix k and use the numbers ak(G) to calculate
the number of actions such that the orbit of 1 has k elements. In the previous proof, this
corresponds exactly to choosing the connected component of the covering graph on k vertices
that contains the base point.

By adjusting the arguments above, one can generalize Hall’s formula 5.2 to any product of
free groups. As before, we use the notation

hn(G) = #Hom(G, Sym(n)).

Theorem 5.7 ([Dey65, Theorem 6.10]). Let G = H1 ∗H2 be the free product of the groups
H1 and H2. Then

an(G) =
1

(n− 1)!
hn(H1)hn(H2)−

n−1∑
k=1

1

(n− 1)!
hn−k(H1)hn−k(H2)ak(G).

The formula can also be easily generalized to the free product of any finite number of groups.
One can hence obtain Hall’s formula 5.2 as a corollary by applying the theorem to Fr ∼=
Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸

r times

.

However, we can also apply this theorem to other groups that arise as free products. We have
already seen an example of such a group, the modular group PSL(2,Z) which is isomorphic
to C2 ∗ C3 by Proposition 3.3.

Corollary 5.8. Let PSL(2,Z) be the modular group. Then

an(PSL(2,Z)) =
1

(n− 1)!
hn(C2)hn(C3)−

n−1∑
k=1

1

(n− 1)!
hn−k(C2)hn−k(C3)ak(G),

where for l = 1, 2, . . . , n:

hl(C2) =
∑

0≤r≤l/2

l!

r!(l − 2r)!2r
, hl(C3) =

∑
0≤r≤l/3

l!

r!(l − 3r)!3r
.
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Proof. We apply Theorem 5.7 to PSL(2,Z) ∼= C2 ∗ C3 and obtain the numbers hl(C2) and
hl(C3) using [New76, Equation (10)]. �

5.3. Subgroup growth. This subsection presents basic results about subgroup growth,
following [LS03, Chapter 2] and [New76].

We first use Hall’s formula 5.2 to study the growth of subgroups of index n in Fr.

Theorem 5.9 ([LS03, Theorem 2.1]). Let r ≥ 2. As n→∞, we have:

an(Fr) ∼ n · (n!)r−1.

Proof. Let us first show that tn(Fr)
hn(Fr)

→ 1 as n→∞. This will essentially mean that most of

the r-tuples of permutations generate transitive subgroups. Let us hence bound the number
of the intransitive actions:

hn(Fr)− tn(Fr) =
n−1∑
k=1

(
n−1
k−1

)
tk(Fr)hn−k(Fr) (by equation (6))

≤
n−1∑
k=1

(
n−1
k−1

)
hk(Fr)hn−k(Fr) (by tk(Fr) ≤ hk(Fr))

≤
n−1∑
k=1

(
n−1
k−1

)
(k!)r(n− k)!r (by equation (7))

= (n!)r
n−1∑
k=1

(
n
k

)−r−1 k
n

≤ (n!)r
[n/2]∑
k=1

(
n
k

)−r−1
(by

(
n
k

)
=
(

n
n−k

)
)

Now, we just have to bound
(
n
k

)
for 1 ≤ k ≤ n/2. We have:(

n

k

)
= (n− k − 1) · n− k + 2

k − k + 2
· n− k + 3

k − k + 3
· · · · · n

k
≥ (n− k + 1)

(n
k

)k−1
≥ 2k−2n.

Since r ≥ 2, this yields:

hn(Fr)− tn(Fr) ≤ (n!)r
[n/2]∑
k=1

2−k+2 1

n
<

4

n
(n!)r =

4

n
hn(Fr).

Rearranging, we obtain

1 ≥ tn(Fr)

hn(Fr)
≥ 1− 4

n
,

so taking the limit as n→∞, we have shown that

tn(Fr)

hn(Fr)
→ 1.

Therefore by equation (5):

an(Fr) =
tn(Fr)

(n− 1)!
∼ hn(Fr)

(n− 1)!
= n · (n!)r−1,

which completes the proof. �

A similar analysis yields a stronger result about the number mn(G) of maximal subgroups of
index n of G = Fr. In this case, maximal subgroups will correspond to primitive actions (i.e.
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actions that do not preserve any non-trivial partitions). As before, if pn(G) is the number
of primitive permutation representations of G, then

(8) mn(G) = pn(G)/(n− 1)!

Surprisingly, the asymptotic growth of the maximal subgroups of index n of Fr is the same
as the growth of all the subgroups of index n.

Theorem 5.10 ([LS03, Theorem 2.1]). Let r ≥ 2. As n→∞, we have:

mn(Fr) ∼ n · (n!)r−1.

Proof. The proof is similar to the proof of Theorem 5.9. We will show that pn(Fr)
hn(Fr)

→ 1. To

count the number of the inprimitive actions of Fr on {1, 2, . . . , n}, let us count the number
of actions that preserve a nontrivial partition into equal parts, each of size a = n/b. For
any of the b parts, we have a! permutations, and we have b! permutations of the parts, so
there are (a!)bb! such permutations. For each of the generators of Fr, we choose one of the
elements it is mapped to under the homomorphism, giving a total of

((a!)bb!)r

such actions of Fr. (In fact, any such action is a homomorphism Fr → Sym(a) o Sym(b).)
Moreover, the number of partitions into equal parts of size a is

1

b!

(
ab

a

)(
a(b− 1)

a

)
· · ·
(

2a

a

)(
a

a

)
=

n!

(a!)bb!
.

Thus, if we denote the number of divisors of n by d(n), the number of imprimitive actions
of Fr on {1, 2, . . . , n} is:

tn(Fr)− pn(Fr) ≤
∑
a·b=n

n!
(a!)bb!

· ((a!)bb!)r

< d(n) · n! · ((a!)bb!)r−1

We now use the upper bound (a!)bb! < (ab − 1)! for a ≥ 3, b ≥ 2. (Since we are only
interested in the limit as n→∞ and ab = n, we may assume that a ≥ 3, b ≥ 2.) We prove
it by induction on b ≥ 2. For b = 2, we simply note that for a ≥ 3:

2 · a! < (a− 1 + 2) · (a− 1 + 3) · · · · · · · (a− 1 + a) = (a+ 1) · (a+ 2) · · · · · (2a− 1)

which immediately implies that 2 · (a!)2 < (2a− 1)!. For the induction step, note that:

(a(b+ 1)− 1)! = (ab+ a− 1)!
= (ab− 1)! · (ab)(ab+ 1) . . . (ab+ a− 1)
> (a!)bb! · (ab)(ab+ 1) . . . (ab+ a− 1)︸ ︷︷ ︸

>a!·(b+1)

> (a!)b+1(b+ 1)!

so we are done. Therefore:

0 ≤ tn(Fr)− pn(Fr)

hn(Fr)
< d(n) · n! · ((n− 1)!)r−1/(n!)r = d(n)n−(r−1) → 0

as n→∞, since r ≥ 2 and d(n) = o(n) (see [Apo76, p. 296]). Hence

lim
n→∞

pn(Fr)

hn(Fr)
= lim

n→∞

tn(Fr)

hn(Fr)

and the theorem follows from Theorem 5.9. �

Finally, we state a theorem about the subgroup growth of PSL(2,Z) = C2 ∗ C3.
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Theorem 5.11 ([New76, Theorem 4]). Let PSL(2,Z) be the modular group. Then

an(PSL(2,Z)) ∼ an(C2)an(C3)

(n− 1)!
∼ 1√

12πe1/2
exp

(
n

6
log n− n

6
+ n1/2 + n1/3 +

1

2
log n

)
The proof relies on Theorem 5.7 and Corollary 5.8, but it is more involved, so we omit it
here.

Appendix A. Group Actions

In this appendix, we review the necessary notions from group actions.

Definition A.1. An automorphism is an isomorphism from a group to itself, (or equally a
graph to itself). We write Aut (X) for the set of all automorphisms of X.

Proposition A.2. The set Aut (X) forms a group under composition of automorphisms.
Here X can either denote a group, G, or a graph (V,E).

Proof.

(1) Closure: Take f1, f2 ∈ Aut (X) then f1 ◦ f2 is a composition of isomorphisms, so is
clearly an isomorphism.

(2) Associativity: Composition of functions is associative, so clearly this holds.
(3) Identity: The trivial isomorphism, the identity map IdX : X → X such that IdX(x) =

x is our identity.
(4) Inverses: Take f ∈ Aut (X) then since f is an isomorphism f−1 also is, so f−1 ∈

Aut (X) and f−1 ◦ f = f ◦ f−1 = IdX

�

Definition A.3. Let G be a group, and let X be a graph. An action of G on X is a group
homomorphism ϕ : G→ Aut(X). In other words, for each g ∈ G, there is an automorphism
ϕ(g) = fg : X → X such that:

fg ◦ fh = fg·h
for any g, h ∈ G.

Definition A.4. Let G be a group, let (V,E) be a graph. An action ϕ : G→ Aut (V,E) is
free if for all g ∈ G \ {e} we have:

ϕ(g)(v) 6= v,

ϕ(g) ({v, v′}) 6= {v, v′},
for any v ∈ V , {v, v′} ∈ E.

Example A.5. Let G be a group, so G = (X, ·). The left translation action is:

G→ Aut (X)

g 7→ fg, where fg(h) = g · h

Definition A.6 (Orbits). Let G be a group acting on X. We define the orbit of x ∈ X to
be the set

G(x) = {g · x | g ∈ G} .

Proposition A.7. Suppose G acts on X, then for any x1, x2 in X we write x1 ∼ x2 if and
only if x1 is in G(x2). This is an equivalence relation.
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Proof.

(1) Reflexivity Clearly x1 ∼ x1 since e ∈ G, and hence x1 = e · x1 ∈ G(x1)
(2) Symmetry Suppose x1 ∼ x2, then there is a g ∈ G such that g · x2 = x1. Then

clearly g−1 ∈ G and g−1 · x1 = x2, so x2 ∈ G · x1 and x2 ∼ x1
(3) Transitivity Suppose x1 ∼ x2 and x2 ∼ x3. Then there exists g, h ∈ G such that

g · x2 = x1 and h · x3 = x2. Then clearly h−1g−1 · x2 = x3, so x3 ∈ G(x1) and hence
x3 ∼ x1.

�

Appendix B. Covering space theory

In this appendix, we review the necessary covering space theory following [Hat02, Section
1.3].

Definition B.1. Let (X, x0) be a pointed topological space. A pointed covering space of
(X, x0) is a space (X̃, x̃0) together with a map p : X̃ → X such that:

(1) each point x ∈ X has a neighbourhood U ⊆ X such that p−1(U) is a union of disjoint
open sets in X̃ (we refer to these open sets as sheets),

(2) p(x̃0) = x0.

We may sometimes drop the base points x0, x̃0 (and condition (2)) and refer to X̃ as a
covering space for X.

If the number of sheets is finite, say n, then X̃ is an n-sheeted covering space for X.

Finally, we denote by p∗ : π1(X̃, x̃0) → π1(X, x0) the homomorphism induced by the map
p : : X̃ → X.

A standard example is a 3-sheeted covering of the circle. Source of diagram: [Hat02, p. 56].

The reason that covering theory plays an important tool in geometric group theory is that
there is a one-to-one correspondence between subgroups of a group and coverings of spaces.
As we can see in Section 5, this can turn algebraic problems into purely combinatorial
exercises.
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Theorem B.2 ([Hat02, Theorem 1.38]). Suppose (X, x) is a pointed topological space satis-
fying sufficient connectedness conditions∗. Then the following mappings are bijections:{

pointed coverings of (X, x0) up to
base-point preserving isomorphism

} {
subgroups

H ≤ π1(X, x0)

}
p : (X̃, x̃0)→ (X, x0) p∗(π1(X̃, x̃0)){

coverings of X up to
isomorphism

} {
conjugacy classes of

subgroups H ≤ π1(X, x0)

}
p : X̃ → X [p∗(π1(X̃, x̃0))]

In the second bijection, x0 ∈ X and x̃0 ∈ X̃ are any points, and we denote the conjugacy
class of a subgroup H by [H].

Moreover, the index of the subgroups correspond to the number of sheets of the covering.

Theorem B.3 ([Hat02, Prop. 1.32]). Suppose p : (X̃, x̃0)→ (X, x0) is a covering, where X
and X̃ are path-connected. Then the number of sheets of the covering is equal to the index
of p∗(π1(X̃, x̃0)) in π1(X, x0).

Finally, if G is a group acting (suitably) on a space X, then X is a covering space for the
orbit space X/G.

Theorem B.4 ([Hat02, Prop. 1.40]). Suppose an action of G on a path-connected and
locally path-connected topological space X satisfies the following property: each x ∈ X has
a neighbourhood U such that g1(U) ∩ g2(U) 6= ∅ implies g1 = g2 for any g1, g2. Then the
quotient map p : X → X/G is a covering space and

G ∼=
π1(X/G)

p∗(π1(X))
.
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