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Introduction

These notes, meant as an introduction to the theory of L-functions, form a report from the
author’s Undergraduate Research Opportunities project at Imperial College London under
the supervision of Professor David Helm.

The theory of L-functions provides a way to study arithmetic properties of integers (and,
more generally, integers of number fields) by first, translating them to analytic properties of
certain functions, and then, using the tools and methods of analysis, to study them in this
setting.

The first indication that the properties of primes could be studied analytically came from
Euler, who noticed the factorization (for a real number s > 1):

∞∑
n=1

1

ns
=
∏

p prime

1

1− p−s
.

This was later formalized by Riemann, who defined the ζ-function by

ζ(s) =
∞∑
n=1

1

ns

for a complex number s with Re(s) > 1 and proved that it admits an analytic continuation
by means of a functional equation. Riemann established a connection between its zeroes and
the distribution of prime numbers, and it was also proven that the Prime Number Theorem
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2 ALEKSANDER HORAWA

is equivalent to the fact that no zeroes of ζ lie on the line Re(s) = 1. Innocuous as it may
seem, this function is very difficult to study (the Riemann Hypothesis, asserting that the
non-trivial zeroes of ζ lie on the line Re(s) = 1

2
, still remains one of the biggest open problems

in mathematics).

The ζ-function was extended further by Dirichlet, who proved that for coprime integers
a,m ∈ Z, there are infinitely many primes in the arithmetic progression (a + dm)d∈Z. This
theorem is clearly difficult to approach algebraically and Dirichlet’s idea was to restate it in
analytic terms. He considered a function that is defined just like ζ, but contains coefficients:
for any function χ : Z→ C, the Dirichlet L-function is defined by:

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

To ensure that the Euler factorization
∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)
ps

holds, we assume that the function χ is multiplicative, i.e. χ(mn) = χ(m)χ(n) for (m,n) = 1.
The way Dirichlet proved the theorem is by showing that∏

χ

L(s, χ),

where χ varies over multiplicative functions with period m, i.e. χ(a+m) = χ(a), has a pole
at s = 1. One can show that this statement implies that the series∑

p≡a mod m

1

p

(where the sum is over primes p such that p ≡ 1 mod m) diverges, so there must be infinitely
many primes in the progression (a + dm)d∈Z. In fact, it gives a stronger result about the
density of primes in the arithmetic progression (Dirichlet’s Density Theorem). For the proofs
of these theorems, see [Ser73, Chap. VI].

The aim of this exposition is to generalize Dirichlet L-functions further to encapture not
only primes in Q, but also primes in finite algebraic extensions of Q, so-called number fields.
In Section 1, we provide the necessary background on algebraic number theory. The reader
already familiar with [Ser79, Chap. I–III] or [Lan94, Chap. I–III] can skip ahead to Section 2.
In Sections 2 and 3, we define the analog of Dirichlet L-functions for an abelian extension—
Hecke L-functions—and, following Tate’s thesis [CF86, Chap. XV], use Fourier analysis in
number fields to obtain a functional equation. In Sections 4 and 5, we use class field theory
to define L-functions for non-abelian extensions—Artin L-functions—that agree with the
Hecke L-functions in the abelian case, and use representation theory to obtain a function
equation. Our presentation largely follows [Sny02].

Acknowledgements. These notes were prepared as part of a UROP project. I would like
to thank my supervisor, Professor David Helm, for suggesting the topic, providing me with
many explanations and resources, and hours of helpful discussions. I am also grateful to the
Department of Mathematics at Imperial College London for the financial support.
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1. Algebraic Number Theory

We have seen that we can use the Dirichlet L-functions to study rational primes (primes
of Z). We would like to generalize the ideas to study primes in other rings. We start by
providing a background on algebraic number theory. Throughout most of this section, we
will follow [Ser79, Chap. I–III] and [Lan94, Chap. I–III]—we will refer to particular sections
where applicable.

1.1. Factoring Primes in Extensions. In this section, we follow [Ser79, Chap. I§5] [Lan94,
Chap. I§5,7].

Suppose A is a Dedekind domain (a Noetherian integrally closed domain such that for every
prime ideal p 6= 0 of A, Ap is a discrete valuation ring) and K is its field of fractions.
Moreover, suppose L is a separable extension of K of degree n, and let B be the integral
closure of A in L. Then B is also a Dedekind domain.

We will denote by IK the set of fractional ideals of K. Recall that for any a ∈ IK we have a
unique factorization into primes

a =
∏
p

pvp(a),

where we denote by vp the valuation at a prime ideal p of A (if a is an ideal of A, then vp(a)
is the highest power of p dividing a, and we extend this to any a ∈ IK).

Definition 1.1. If P is a non-zero prime ideal of B and p = P ∩ A, then we say that P
divides p or that P lies above p, and we write P|p.

Definition 1.2. Suppose P divides p in the extension L/K. The ramification index eP of P
over p in the extension L/K is the exponent of P in the factorization of p into prime ideals
of B. In other words:

p =
∏
P|p

PeP .

The residue degree fP of P over p in the extension L/K is the degree of the extension of
residues fields, B/P of A/p; symbolically

fP = [B/P : A/p].

We may sometimes write eP/p and fP/p when the extension L/K is not implicitly clear.

Proposition 1.3. Both the ramification index and the residue degree are multiplicative in
towers: if P|q|p in the tower of extensions L/M/K, then

eP/p = eP/qeq/p,

fP/p = fP/qfq/p.

Proof. The proof is clear: one simply writes down the factorizations in the extensions for the
first equality and the tower of extensions of residue fields for the second equality. �
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Definition 1.4. When there is only one prime ideal P dividing p and fP = 1, then L/K is
totally ramified at p. In that case

p = PeP .

When eP = 1 and B/P is separable over A/p, then L/K is unramified at P. If L/K is
unramified at every P lying above p, then L/K is unramified at p. Finally, if eP = fP = 1,
then p splits completely in L and there are exactly [L : K] primes of B above p.

Proposition 1.5. Let p be a non-zero prime ideal of A. Then

[L : K] =
∑
P|p

ePfP.

Proof. We may assume that A is a discrete valuation ring by localizing at p. Then B is a free
A-module of rank n = [L : K], and B/p is an A/p-vector space of dimension n by [Lan94,
Prop. 19, Chapter I]. Moreover,

p =
∏
P|p

PeP ,

and, since p ⊆ PeP , we have homomorphisms

B → B/p→ B/PeP

which together yield

ϕ : B → B/p→
∏
P|p

B/PeP .

Each B/PeP is an A/p-vector space, and hence so is the direct product. We have that

kerϕ = {b ∈ B | b ∈ PeP for each P|p} =
∏
P|p

PeP = p.

The Chinese reminder theorem shows that ϕ is surjective. Therefore

B/p ∼=
∏
P|p

B/PeP

as an A/p-vector space. To prove the proposition, it is enough to show that the dimension of
B/PeP over A/p is ePfP. Let π be a generator of P in B and j ≥ 1 be an integer. Note that
Pj/Pj+1 ⊆ Pj/pPj, since Pj+1 ⊇ pPj, so we can view Pj/Pj+1 as an A/p-vector space. In
fact, the map

B/P→ Pj/Pj+1

given by b 7→ πjb is an A/p-isomorphism. Therefore, we have a decomposition series

1 ⊆ PeP−1/PeP ⊆ PeP−2/PeP ⊆ . . . ⊆ P/PeP ⊆ B/PeP

with each quotient isomorphic to B/P. Hence:

[B/PeP : A/p] =

eP−1∑
i=0

[B/P : A/P] = ePfP,

as requested. �
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Definition 1.6. Let M be the Galois closure of L, and let G = Gal(M/K) and H =
Gal(M/L), so that G/H can be identified with the embeddings L ↪→ M which preserve K.
We define the (relative) norm NL/K : IL → IK to be the multiplicative function

NL/Ka =
∏

σ∈G/H

σa.

Note that the norm sends a principal ideal αB to the principal ideal ∏
σ∈G/H

σα

A,

so can also define a map NL/K : L→ K by

NL/Kα =
∏

σ∈G/H

σα.

1.2. Primes in Galois Extensions. We keep the assumptions from the previous section
but assume further that L/K is Galois.

Proposition 1.7. Fix a prime p of K. The Galois group Gal(L/K) acts transitively on the
primes P above p in L/K.

Proof. Let P|p and suppose that there exists a prime ideal P′|p such that P′ 6= σP for all
σ ∈ Gal(L/K). Then by the Chinese remainder theorem, there exists α ∈ B such that

α ≡ 0 mod P′

and for any σ ∈ Gal(L/K)

α ≡ 1 mod σP.

The norm

NL/Kα =
∏

σ∈Gal(L/K)

σα ∈ P′ ∩ A = p

since it is in A and α is in P′ above p. However, α 6∈ σP, so σα 6∈ P for all σ ∈ Gal(L/K),
so their product NL/Kα 6∈ P, which contradicts the fact that NL/Kα ∈ p = P ∩ A. �

Corollary 1.8. Let p be a non-zero prime ideal of A. For any P, P′ above p, we have

eP = eP′ and fP = fP′ ,

so the integers eP and fP are independent on the choice of P above p. We can hence denote
them by ep and fp, and if gp is the number of primes ideals P dividing p, then

[L : K] = epfpgp.

Proof. The first part follows from proposition 1.7, the second part from Proposition 1.5. �

Definition 1.9. The decomposition group of a prime P in L/K is the subgroup of Gal(L/K)
fixing P:

DP = DP(L/K) = {σ ∈ Gal(L/K) | σP = P}
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We can define a homomorphism

ε : DP → Gal
(
(B/P)

/
(A/p)

)
by reducing an element σ ∈ DP ⊆ Gal(L/K) to an automorphism of B/P fixing A/p, since
p = P ∩ A.

Definition 1.10. The inertia group of a prime P in L/K is

IP = ker ε ⊆ DP.

Proposition 1.11. The residue extension B/P over A/p is normal∗ and the homomorphism

ε : DP → Gal
(
(B/P)

/
(A/p)

)
is surjective. In particular,

DP/IP ∼= Gal
(
(B/P)

/
(A/p)

)
.

Proof. To simplify notation, let B = B/P and A = A/p. To show B/A is normal, take any
irreducible polynomial f with at least one root b in B. We will show that it splits completely
in B. By definition, f is the minimal polynomial of b. Take any b ∈ B that reduces to b
in B, and let g be the minimal polynomial of b in L/K. Since b is integral, we know that
g ∈ B[X], so we have the reduction g ∈ B[X]. Since L/K is separable, the polynomial g
splits completely, and hence g splits completely in B. Therefore, f |g splits completely in B.

Now, we turn to surjectivity of ε. Let G = Gal(L/K). Choose a to be a generator of the
largest separable extension Bsep of A within B. By Chinese remainder theorem, there is a
representative a of a which belongs to all the prime ideals σP for σ ∈ G \DP. Consider the
minimal polynomial of a

f(X) =
∏
σ∈G

(X − σ(a))

which reduces to

f(X) =
∏
σ∈G

(
X − σ(a)

)
.

The non-zero roots of f(X) are of the form σ(a) for σ ∈ DP: for σ 6∈ DP we know that

σ(a) = 0, since σ(a) ∈ P. But we know that f(a) = 0, so the minimal polynomial

m(X) =
∏

τ∈Gal(Bsep/A)

(X − τ(a))

for a divides f(X). In particular, any conjugate τ(a) is equal to σ(a) for some σ ∈ Gal(L/K).
This proves surjectivity of ε. �

Corollary 1.12. The number of elements of IP is the ramification index eP/p

Proof. By Proposition 1.11:

#DP/#IP = fP/p

∗Since B/P over A/p may in general not be separable, the group Gal
(
(B/P)

/
(A/p)

)
is in fact the group

Gal
(
(B/P)sep

/
(A/p)

)
, the Galois group of the largest separable subextension of B/P over A/p.
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and since Gal(L/K) acts transitively on the primes of P above p, by Corollary 1.8 we have
that

#DP = eP/pfP/p,

which shows that #IP = eP/p �

This hints that the inertia group of a prime P measures the ramification at P. In fact, much
more is true.

Proposition 1.13. Let Kp and LP be the completions of K and L under the valuations
associated to the primes p and P respectively. Then largest unramified subextension of LP

over Kp is L
IP
P .

Proof. Let K and L be fields complete under valuations vK and vL with maximal ideals p
and P, respectively. We then write G = Gal(L/K), I = IP, and claim that L/LI is totally
ramified and LI/K is unramified. We will denote by C the valuation ring of LI , and by q
the prime of LI over p; altogether:

K

LI

L

p

q

P

A

C

B

A/p

C/q

B/P

First, take any σ ∈ I. Then ε(σ) = 1 ∈ Gal
(
(B/P)

/
(A/p)

)
by definition of I. Therefore

any σ ∈ I = Gal(LI/L) induces the identity on B/P, which shows that B/P = C/q. Hence
fP/q = 1 and L/LI is totally ramified.

We have a surjective homomorphismsG→ Gal
(
(B/P)

/
(A/p)

)
with kernel I and Gal(LI/K)→

Gal
(
(C/q)

/
(A/p)

)
with kernel Iq/p, which together yield

G/I ∼= Gal
(
(B/P)

/
(A/p)

)
= Gal

(
(C/q)

/
(A/p)

) ∼= (G/I)/Iq/p.

Thus eq/p = #Iq/p = 1 by Corollary 1.12, showing that LI/K is unramified. �

1.3. Frobenius Elements and the Artin Map. Assume furthermore that the residue
field A/p is finite, so it is isomorphic to Fq for some q. Fix a prime P above p. Then we
know that B/P is a degree f = fP extension of a finite field A/p ∼= Fq, so B/P ∼= Fqf .
Furthermore, the Galois group Gal

(
(B/P)

/
(A/p)

)
is cyclic, generated by the Frobenius

automorphism
x 7→ xq.

By Proposition 1.11, we know that

DP/IP ∼= Gal
(
(B/P)

/
(A/p)

)
,

so DP/IP is cyclic generated by an element that maps to the Frobenius automorphism
x 7→ xq.
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Definition 1.14. The element of DP/IP that maps to the Frobenius automorphism x 7→ xq

in Gal
(
(B/P)

/
(A/p)

)
is called the Frobenius element or Frobenius substitution for P and

we denote it by FrobP/p or simply FrobP.

Proposition 1.15. If P′ and P are primes above p in L/K and σ ∈ Gal(L/K) satisfies
σP′ = P, then

DP′ = σ−1DPσ,

IP′ = σ−1IPσ,

FrobP′ = σ−1FrobPσ.

Proof. This is immediate. �

Sometimes, we will only be interested in the decomposition group, the inertia group, and
the Frobenius element up to conjugation. In that case, we will use the notation Dp = DP,
Ip = IP, Frobp = FrobP for some chosen prime P above p.

Proposition 1.16. If P|q|p in a tower of extensions K ⊆ M ⊆ L, then we can choose
representatives ϕP/p ∈ FrobP/p, ϕP/q ∈ FrobP/q, ϕq/p ∈ Frobq/p, so that

ϕP/q = ϕ
fq/p
P/p

and if E/K is Galois, then the image of ϕP/p in Gal(E/K) is ϕq/p.

Proof. This is immediate. �

Suppose a prime p is unramified, i.e. ep = 1 and IP = {1}. Then Frobp is an element of
DP ⊆ Gal(L/K), so we can define the following map for L/K abelian.

Definition 1.17. Suppose L/K is abelian, and let m be a product of primes of K divisible
by all the primes in p that ramify. Let ImK be the fractional ideals of K that are coprime
to m. The Artin map

Frob: ImK → Gal(L/K)

is defined by Frob(p) = Frobp for any prime p coprime to m, and extended multiplicatively
to all of ImK .

This map will be the starting point of Section 4 on Class Field Theory and it will enable us
to define L-functions on characters of abelian Galois extensions.

1.4. Discriminant and Different. We review two invariants associated to a separable
extension L of a field K, the discriminant and the different. We follow [Ser79, Chap. III] but
omit the proofs in this section.

We keep the assumptions of the previous sections. Moreover, we assume (for notation pur-
poses) that the ring A ⊆ K is implicitly clear (the important example for our sake will be
K and A = OK , the ring of integers; see Section 1.5). Note that this also fixes the choice of
the rings B ⊆ L and C ⊆M , where K ⊆ L ⊆M is a tower of extensions.

Similarly to defining the norm as the product of Galois conjugates of elements of L, we
can consider their sum. We let M be the Galois closure of L, and G = Gal(M/K), H =
Gal(M/L), so that G/H can be identified with embeddings L ↪→M which preserve K.
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Definition 1.18. The trace is a function Tr: L→ K given by

Tr(x) =
∑

σ∈G/H

σ(x).

The trace is a surjective and the bilinear form Tr(xy) is non-degenerate.

Definition 1.19. Let {ei} be a basis of B over A as a free A-module. The discriminant of
L/K is

∆L/K = ∆B/A = det(Tr(eiej)).

There is also an alternative description of the discriminant given in [Bou03, Prop. 12,
Chap. V§10]:

∆L/K = (det(σei))
2

where σ runs over cosets G/H.

Definition 1.20. The codifferent of L over K is the fractional ideal

d−1
L/K = {y ∈ L | Tr(xy) ∈ A for all x ∈ B}.

Its inverse dL/K is called the different of L over K.

Proposition 1.21 ([Ser79, Prop. 6, Chap. III]). We have that ∆L/K = NL/KdL/K.

Corollary 1.22. The discriminant ∆L/K is contained in A.

Proposition 1.23 (Discriminant and different in towers, [Ser79, Prop. 8, Chap. III]). Sup-
pose M/L is a separable extension of finite degree n. Then

dM/K = dM/LdL/K and ∆M/K = (∆M/L)n ·NL/K(∆M/L).

Finally, we state a proposition that allows us to easily compute the different.

Proposition 1.24 ([Ser79, Cor. 2, Prop. 11, Chap. III]). Suppose x is an A-generator of B
and f is the minimal ideal of x. If f ′ is the derivative of f , then:

dL/K = (f ′(x)).

1.5. Number Fields. In this paper, we will focus mostly on a particular example of the
fields considered before, namely number fields.

Definition 1.25. A number field K is a finite algebraic extension of Q.

Definition 1.26. We say that a ∈ K is an integer of K (or integral over K) if it is a root
of a monic polynomial with coefficients in Z. The set of all integers of K forms the ring of
integers OK of K.

The following proposition ensures that number fields satisfy the assumptions of the preceding
parts of the section.

Proposition 1.27. Let K be a number field. Then OK is a Dedekind domain, with the
valuations vK = ordp where p is a prime ideal, and K is its fields of fractions. Moreover, if
L is a finite separable extension of K, then the integral closure of OK in L is OL.
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Proof. The only part of the proposition that is not immediate is that OK is a Dedekind
domain. By [Lan94, Chap. I, Th. 2], it is enough to check that OK is Noetherain, integrally
closed, and such that every non-zero prime ideal is maximal. The first two assertions are
clear, so we will only show that every non-zero prime is maximal.

First, note that for 0 6= a ∈ OK , the map ·a : OK → OK given by x 7→ xa is injective.
Therefore, the cokernel of the map is finite, and hence (a) is a submodule of OK of the same
rank, which means that OK/(a) is finite. Now, take any non-zero prime ideal of p of OK
with a ∈ p. Then p reduces to an ideal p in A/(a), and

A/p ∼= (A/(a))/(p).

Since p is prime, A/p is a domain, so (A/(a))/(p) is a finite domain, so it is a field. Hence
A/p is also a field, and p is maximal. �

We will be interested in the different absolute values on a number field K. We list a few
notions that will be useful later, but for a broader discussion of absolute values and com-
pletions, see [Lan94, Chap. 2]. By Ostrowski’s Theorem for number fields (see: [Con]), we
know there are two possible absolute values:

• For any prime p of OK , we have the p-adic absolute value:

|a|p =

{
Np−ordp(a) if a 6= 0,
0 if a = 0.

• For any embedding v : K ↪→ C, we have an absolute value induced by the embedding.

This motivates the following definition.

Definition 1.28. Let K be a number field. A finite prime of K is a prime of OK . An
infinite prime of K is an embedding v : K ↪→ C. Moreover, if the image of v lies in R, it is a
real infinite prime, and if the image of v contains an element of C\R, it is a complex infinite
prime.

Now suppose L/K is an extension of number fields. An infinite prime w of L lies above an
infinite prime v of K if w agrees with v on K.

Instead of finite and infinite primes, these are sometimes called finite and infinite places.

Definition 1.29. The absolute value associated to a real prime v : K ↪→ R is the standard
absolute value. The absolute value associated to a complex prime v : K ↪→ C is the square
of the standard absolute value.

We will sometimes identify the infinite primes with the absolute values defined above, without
explicitly stating that they come from a complex embedding.

2. Hecke L-functions

We now have enough background to generalize the ζ-functions and L-functions to any number
field K.
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Definition 2.1. The Dedekind ζ-function for a number field K is defined as the series

ζK(s) =
∑
a

Na−s =
∏
p

1

1−Np−s

for all Re(s) > 1, where the sum varies over all ideals of OK , and the product varies over all
primes ideals of OK .

As with the Riemann ζ-function, we are interested in describing an analytic continuation of
the Dedekind ζ-function by means of a functional equation. Of course, this could be done
directly, but we will do it by defining the more general Hecke L-functions (which will be equal
to the Dirichlet ζ-functions for the trivial character), and exhibiting a functional equation
for them.

We would like to generalize the ζ-function by adding coefficients given by values of a
character—just as the Dirichlet L-function is a generalization of the Riemann ζ-function.

Definition 2.2. A character of a group G is a group homomorphism χ : G→ C×.

Note that in the introduction we introduced Dirichlet L-functions for multiplicative function
with period m. This corresponds exactly to a character χ : (Z/mZ)× → Z which is extended
to any n not coprime to m by setting χ(n) = 0. We call such a character a Dirichlet character
modulo m.

Our aim is to try to redefine a character in a similar way for a general number field K.

Definition 2.3. A formal product m of finite and real primes, where the finite primes
appear with non-negative multiplicity and the real primes appear with multiplicity 0 or 1, is
a modulus. For such an m, we define:

ImK = {a ∈ IK | a coprime to m}
and

Pm
K = {aOK | a ≡ 1 mod m and for any real infinite prime v|m we have v(a) > 0} .

Then the ray class group of K is the quotient ImK/P
m
K .

Proposition 2.4. The ray class group is finite.

The reader can refer to [Lan94, Th. 7, Chap. VI] for the proof.

We will define the generalized character on the ray class group. To justify this is indeed a
generalization of the above, we analyze the case K = Q in detail.

Example 2.5 (K = Q). The finite primes of K are just rational primes and there is one
infinite prime of K, the subset embedding ∞ : Q ↪→ C. Fix m ∈ Z (which is a product of

finite primes ofK) and let us work backwords to find a modulus m such that ImK/P
m
K
∼=
( Z
mZ

)×
.

Note that ImK only depends on the finite primes dividing m; if m′ is the finite part of m, then

ImK = {aZ | (a,m′) = 1} .
Therefore, the natural choice for m′ is m. We are left with two choices for m: m and m∞.

Suppose m = m∞. We can then define a surjective homomorphism ϕ : ImK →
( Z
mZ

)×
by
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setting
ϕ(aZ) = a+mZ

for any a ∈ Z with (a,m) = 1 and a > 0. Note that

kerϕ = {aZ | (a,m) = 1, a > 0, and a+mZ = 1+mZ} = {aZ | a ≡ 1 mod m and a > 0} = Pm∞
K .

Therefore, if we let m = m∞, we obtain

Im∞K
Pm∞
K

∼=
(

Z
mZ

)×
.

This shows that it is crucial to allow the modulus m to have infinite factors. Indeed, if
m = m, then the homomorphism ϕ would not be well-defined (indeed, aZ = (−a)Z but
a+mZ 6= −a+mZ). Instead, we could adjust the above argument to show

ImK
Pm
K

∼=
(

Z
mZ

)× /
{±1},

so the characters could only be defined up to a sign.

Definition 2.6. A generalized Dirichlet character modulo a modulus m for a number field
K is a character χ of the ray class group ImK/P

m
K . Such a character χ is primitive if kerχ is

trivial.

Any generalized Dirichlet character extends to a multiplicative, complex-valued function on
ImK (and on IK by setting χ(a) = 0 for a not coprime to m).

We wish to generalize this notion further to account for infinite primes of K. So first, let

K∞ =
∏
v

Kv

be the product over all infinite primes v of completions of K with respect to v. So if r1 is the
number of real embeddings (real primes) and r2 is the number of pairs of complex conjugate
embeddings (complex primes), then the dimension of K∞ as an R-vector space is r1 + 2r2.
Then we can define an embedding K× ↪→ K∞.

Definition 2.7. Suppose IK/PK = {a1, . . . , an}. A function χ : ImK → C× is a Hecke
Grossencharacter modulo m if it can be written of the form

χ(ai(a)) = χcl(ai)χf (a)χ∞(a)

where χcl is a character of IK/PK , χf is a character of (OK/m)×, and χ∞ is a character
of K∞.

We will see in Section 3 that this definition can be restated using the ideles.

We can finally define the Hecke L-function.

Definition 2.8. For a Hecke Grossencharacter χ : IK → C×, we define the Hecke L-function
of χ by

L(s, χ) =
∑
a∈IK

χ(a)Na−s =
∏
p

1

1− χ(p)Np−s

for Re(s) > 1.
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Definition 2.9. If χ is a Hecke Grossencharacter modulo some modulus m for some number
field K, then its conductor f = f(χ) is the smallest modulus such that χ factors through

I fK/P
f
K . We denote the finite part of f by f0.

In order to establish the functional equation for the Hecke L-functions, we have intoduce
local factors at the infinite primes.

Definition 2.10. Suppose χ is a Hecke Grossencharacter with conductor f and v is an infinite
prime of the number field K. Then we define the local factor of the L-series at v as follows:

Lv(s, χ) =


ΓR(s) = π−

s
2 Γ( s

2
) if v is a real prime not dividing f,

ΓR(s+ 1) = π−
s+1
2 Γ( s+1

2
) if v is a real prime dividing f,

ΓC(s) = 2(2π)−sΓ(s) if v is a complex prime.

Theorem 2.11 (Hecke). If χ is a Hecke Grossencharacter modulo m for a number field K,
then the completed abelian L-function

Λ(χ, s) = (|∆K/Q|N f(χ)0)s/2
∏
v

Lv(s, χ)
∏
p6 | f

1

1− χ(p)Np−s

(where v ranges over all infinite primes) can be analytically continued to a holomorphic
function (unless χ is trivial in which case it is meromorphic with poles at 0 and 1) with the
functional equation

Λ(χ, s) = ε(χ)Λ(χ, 1− s)
for some ε(χ) with |ε(χ)| = 1.

Instead of proving the theorem using the classic approach taken by Hecke (for the original
proof, see [Hec83, pp. 178–197]), we will follow Tate’s thesis [CF86, Chap. XV] and develop
the theory of Fourier analysis in number fields.

3. Tate’s Thesis: Fourier Analysis in Number Fields and Hecke’s Zeta
Functions

We follow the reprint of Tate’s thesis in [CF86, Chap. XV] and the notes [Buz09]. An
alternative approach can be found in [RV99].

3.1. Haar Measure and Abstract Fourier Analysis. In this section, we review the
theory of Fourier analysis on a locally compact Hausdorff topological group G. The reader
familiar with this material can skip ahead to Section 3.2. We follow the presentation in
[Buz09, Chap. 2], but more details (and proofs) can be found in [RV99, Chap. 1, 3]. Given

a function f : G → C, we will define a function f̂ : Ĝ → C on the group Ĝ of characters of

G. By identifying the groups
̂̂
G with G, we will exhibit an Inversion Formula that will send

f̂ back to f . We start by recalling two examples.

Example 3.1 (G = R). If G = R, then clearly Ĝ = R: any character is an exponential
function and we can associate to x ∈ R the character ξ 7→ e2πixξ. In this case, we follow the
standard definition of a Fourier transform: for f : R→ C, we define f̂ : R→ C by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx.
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We then have the Inversion Formula

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ.

Example 3.2 (G is a finite abelian group). For f : G→ C, define f̂ : Ĝ→ C by

f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g).

In order to obtain an Inversion Formula, we need an identification of the groups G and
̂̂
G:

we identify g ∈ G with the function Ĝ→ C given by

χ 7→ χ(g−1).

Clearly, this yields an isomorphism of the two groups. Moreover:

ˆ̂
f(g) = 1

|Ĝ|

∑
χ∈Ĝ

f̂(χ)χ(g−1)

= 1
|G|
∑
χ∈Ĝ

(
1
|G|
∑
h∈G

f(h)χ(h)

)
χ(g) by definition

= 1
|G|
∑
h∈G

(
1
|G|
∑
χ∈Ĝ

χ(g)χ(h)

)
f(h)

= 1
|G|f(g) by orthonormality of characters

which yields the required Inversion Formula.

In order to generalize these examples to a wider variety of groups, we will need to generalize
the notion of integration (which corresponded to summation in the finite case). We first
recall the definition of a locally compact Hausdorff topological group.

Definition 3.3. A topological group G is a group endowed with a topology such that the
multiplication map (g, g′) 7→ gg′ and the inversion map g 7→ g−1 are continuous.

Definition 3.4. A topological space X is Hausdorff if for any distinct points x, y ∈ X, there
exist disjoint open neighborhoods U of x and V of y.

Definition 3.5. A topological space X is locally compact if every x ∈ X has a compact
neighborhood.

For the rest of the section, we let G be a locally compact Hausdorff topological group and

K(G) = {f : G→ R | f is continous and has compact support}.
In order to exhibit that K(G) is a wide class of functions, we apply Urysohn’s Lemma from
point-set topology to obtain that K(G) seperates points: for any distinct g, h ∈ G, there
exists a function f ∈ K(G) such that f(g) 6= f(h).

Definition 3.6. A Haar integral (measure) on G is a non-zero linear map µ : K(G) → R
such that

(1) µ(f) ≥ 0 for any f ∈ K(G) such that f(x) ≥ 0 for all x ∈ G and f(x) > 0 for some
x ∈ G.
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(2) µ(f) = µ(fx) for any x ∈ G, where fx(g) = f(gx−1).

(Note that this definition makes sense because f ∈ K(G) implies that fx ∈ K(G).)

Theorem 3.7. If G is a locally compact Hausdorff topological group, then a Haar integral
exists on G, and if µ1, µ2 are Haar integrals, then for some c > 0 we have cµ1 = µ2.

If µ is a Haar integral on G, we will write

µ(f) =

∫
G

f(x)dµ(x).

Theorem 3.8 (Fubini’s Theorem). If G,H are locally compact Hausdorff topological groups
with Haar integrals µ, ν, respectively, and f ∈ K(G×H), then∫

G

(∫
H

f(x, y)dν(y)

)
dµ(x),

∫
H

(∫
G

f(x, y)dµ(x)

)
dν(y)

exist, are equal, and are both Haar measures on G×H.

We will want to extend the range of integral functions to a wider class that K(G). For that
sake, define

U = {f : G→ R ∪ {∞} | f is a pointwise limit of a sequence f1 ≤ f2 ≤ · · · of fi ∈ K(G)}
If f ∈ U , then µ(f) = limn µ(fn) is well-defined and independent of the choice of fn. Set
−U = {−f | f ∈ U} and µ(−f) = −µ(f) for −f ∈ −U .

Definition 3.9. A function f : G→ R∪{±∞} is summable if there exist g ∈ −U and h ∈ U
with g ≤ f ≤ h and

sup{µ(g) | g ≤ f and g ∈ −U} = inf{µ(h) | h ≥ f and h ∈ U}.
The common value is defined to be µ(f) ∈ R.

Definition 3.10. We let

L1(G) = {f : G→ R | f is summable}
with the norm given by ||f || = µ(|f |). A function f ∈ L1(G) is null if ||f || = 0 and we define

L1(G) =
L1(G)

{f | ||f || = 0}
.

Furthermore, we can define Lp(G) as the set of functions such that |f |p is summable with
the norm ||f ||p = µ(|f |p)1/p, and similarly for Lp(G).

The Haar measure also defines a measure on G: A ⊆ G is measurable if χA, the characteristic
function of A, is summable, and in that case we the define µ(A) = µ(χA).

Suppose, moreover, that G is abelian. In order to define a Fourier transform that satisfies
an Inversion Formula, we must first introduce a topology on

Ĝ = {χ : G→ S1 | χ continuous group homomorphism}.
Suppose C ⊆ G is compact, V is a neighborhood of the identity in S1. Then define

W (C, V ) = {χ ∈ Ĝ | χ(C) ⊆ V }.
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We let {W (C, V )} be a base of neighborhoods of the identity in Ĝ; explicitly, U ⊆ Ĝ is open
if and only if for all ψ ∈ U there exist C, V such that

W (C, V )ψ ⊆ U.

Lemma 3.11. If G is an abelian topological group, then the above construction makes Ĝ
into an abelian topological group.

Proof. The proof is clear: one simply checks that W (C, V ) forms a neighborhood basis. �

Proposition 3.12. Let G be an abelian topological group. Then

(1) If G is discrete, then Ĝ is compact.

(2) If G is compact, then Ĝ is discrete.

Theorem 3.13. If G is an abelian locally compact Hausdorff topological group, then so is Ĝ.

Definition 3.14. Fix an abelian locally compact Hausdorff topological group G and a Haar

measure on G. If f ∈ L1(G), then define the Fourier transform f̂ ∈ Ĝ of f by

f̂(χ) =

∫
G

f(x)χ(x)dx.

Note that this definition actually makes sense: since f ∈ L1(G) and |f(x)χ(x)| = |f(x)|, it
is easy to check that the integrand is also in L1(G).

Example 3.15 (G = R). Any character χ : R → S1 is given by χ(x) = e2πixξ for some
ξ ∈ R. We then have

f̂(χ) =

∫
R
f(x)χ(x)dx =

∫ ∞
−∞

f(x)e−2πixξdx,

which is consistent with the regular definition of the Fourier transform (see: Example 3.1) by
identifying χ with ξ. Note that the definitons of the Fourier transform in this case vary and
all of them are captured within this general theory: multiplying the integral by a constant
corresponds to choosing a different Haar measure and using eixξ instead of e2πixξ corresponds

to a different identification of R̂ with R.

Example 3.16 (G is a finite abelian group). A Haar measure on G is given by the average

µ(f) =
1

|G|
∑
g∈G

f(g),

indeed

µ(fx) =
1

|G|
∑
g∈G

f(gx−1) =
1

|G|
∑
g′∈G

f(g′) = µ(f).

Therefore

f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g),

as expected from Example 3.2.
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We might have also introduced the topology on Ĝ differently: it is the weakest topology that

makes every f̂ continuous, the transform topology.

Theorem 3.17 (Plancharet Theorem). For an abelian locally compact Hausdorff topological
group G, one can extend the Fourier transform uniquely to an isometric isomorphism

·̂ : L2(G)→ L2(G),

i.e. for any f ∈ L2(G) we have that∫
G

|f(x)|2dµ(x) =

∫
Ĝ

|f̂(χ)|2dµ̂(χ).

Theorem 3.18 (Pontrjagin duality). If G is an abelian locally compact Hausdorff topological

group G, then the obvious map G→ ̂̂
G is a homeomorphism and group isomorphism.

Definition 3.19. We define

B1(G) = {f ∈ L1(G) | f̂ ∈ L1(Ĝ) and f, f̂ are continuous}.
with the absolute value given above.

Theorem 3.20 (Fourier Inversion Formula). Fix Haar measures on G and Ĝ. Then there

exists c > 0 such that if f ∈ B1(G), and we identify G with
̂̂
G, then

ˆ̂
f(x) = cf(x−1)

for any x ∈ G. In particular, for any choice of Haar measure on G, there is a unique choice

of Haar measure on Ĝ for which c = 1.

Definition 3.21. Fix a measure on G. The measure on Ĝ for which c = 1 in the Fourier
Inversion Formula 3.20 is the dual measure.

3.2. The Local Theory. We start by developing the theory in the local setting. Let K be
the completion of an algebraic number field at a prime v. Thus K is either R or C if v is
infinite, or K is p-adic if v = p is finite.

In the latter case, the ring of integers O of K has a single prime ideal, p, with a residue class
field O/p of Np elements.

We introduce the following valuation on K:

|α| =

 ordinary absolute value if K is real,
square of ordinary absolute value if K is complex,
(Np)−ordp(α) if K is p-adic.

Note that K is locally compact and in fact a subset B ⊆ K is relatively compact if and only
if it is bounded in absolute value.

3.2.1. Additive Characters and Measure. In this section, we investigate the additive subgroup
K+ of K.

Lemma 3.22. If χ : K+ → C is a non-trivial character of K+, then for any η ∈ K+, the
function ξ 7→ χ(ηξ) is also a character. Moreover, η 7→ χ(η−) is an isomorphism, both
topological and algebraic, of K+ with its character group.
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Proof. We prove this lemma in several steps.

(1) For fixed η ∈ K+, χ(η−) is a character of K+:

χ(η(ξ1 + ξ2)) = χ(ηξ1 + ηξ2) = χ(ηξ1)χ(ηξ2).

(2) The map η 7→ χ(η−) is an algebraic homomorphism:

χ((η1 + η2)ξ) = χ(η1ξ + η2ξ) = χ(η1ξ)χ(η2ξ)

(3) The map is a monomorphism: if χ(ηξ) = 1 for all ξ, then ηK+ 6= K+, so η = 0.
(4) The characters of the form χ(η−) are everywhere dense in the character group: if

χ(ηξ) = 1 for all η, then K+ξ ⊆ K+, so ξ = 0.
(5) The map η 7→ χ(η−) is continuous and open. It is enough to show these properties

at the identity elements. We denote by Br the ball of radius r at 0 in K+.
To show that the map is continuous, fix any basis neighborhood of the identity, i.e.

W (C, V ) for a compact set C in K+ and an open neighborhood V of 1 in C. Since
C is bounded, C ⊆ BM for some M . By continuity of χ, there exists ε > 0 such that

χ(Bε) ⊆ V.

Then for any η ∈ Bε/M , we have that

ηC ⊆ Bε

and hence χ(ηC) ⊆ V , or equivalently χ(η−) ∈ W (C, V ), showing continuity.
To show that the map is open, fix ε > 0. We will show that there exist C, V

such that χ(η−) ∈ W (C, V ) for any η ∈ Bε, or in other words χ(ηC) ⊆ V . Take
any neighborhood V of 1 in C. Since χ is continuous, there exists δ > 0 such that
χ(Bδ) ⊆ V . Therefore, letting C = {ξ ∈ K+ | |ξ| ≤ ε/δ}, we obtain that χ(ηC) ⊆ V
for any η ∈ Bε, which is the required property.

(6) Characters of the form χ(η−) comprise a locally compact subgroup of the charac-
ter group. However, from general topology, we know that locally compact implies
complete which implies closed. Together with (4), this shows that the mapping is
onto.

This completes the proof. �

To fix the identificaion of K+ with K̂+ given by the lemma, we need to choose special
character.

If v is infinite, let R = R. We then define λ : R→ R/Z by

λ(x) = −x mod Z.
If v = p is finite, then let p be a rational prime dividing p, and R = Qp, the completion
of Q at p. For x ∈ R, let n be such that pnx is integral, and choose m ∈ Z such that
m ≡ pnx mod pn. We then define λ : R→ R/Z by

λ(x) = m/pn.

Note that λ has the property that λ(x)− x is a p-adic integer:

λ(x)− x = m/pn − x = (m− xpn)/pn

and m ≡ pnx mod pn.
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Lemma 3.23. The map λ is non-trivial, continuous, and additive.

Proof. The infinite case is trivial. For the finite case, it is clear that λ is non-trivial and
continuous. To show that it is additive, take x, x′ ∈ R and suppose pnx and pn

′
x′ are

integral and m ≡ pnx mod pn, m′ ≡ pn
′
x′ mod pn

′
. Without loss of generality, suppose

n′ ≥ n. Then pn
′
(x+ x′) is integral and

mpn
′−n +m′ ≡ pn

′
(x+ x′) mod pn

′
.

Hence

λ(x) + λ(x′) =
m

pn
+
m′

pn′
=
mpn

′−n +m′

pn′
= λ(x+ x′),

as requested. �

Definition 3.24. We define the map Λ: K+ → R/Z by

Λ(ξ) = λ(TrK/Rξ),

where TrK/R : K → R is the trace map.

Finally, we fix an identification of K+ with its character group.

Theorem 3.25. The map χ : K+ → S1 given by χ(ξ) = e2πiΛ(ξ) is a non-trivial character of
K+. Then K+ is naturally its own character group by identifying η ∈ K+ with χ(η−), i.e.
the character given by

ξ 7→ e2πiΛ(ηξ).

Proof. This follows from Lemmas 3.22 and 3.23, and the fact that the trace map is additive
and continuous. �

Lemma 3.26. Suppose v = p is finite. Then the character e2πiΛ(η−) is trivial on OK if and
only if η ∈ d−1, where d = dK/R is the different of K over R.

Proof. Recall that by definition

d−1 = {x ∈ K | TrK/R(xy) ∈ OK for all x ∈ OR}.
Therefore, the character is trivial on OK if and only if λ(TrK/R(ηOR)) = Λ(ηOR) = 0, which
is equivalent to Tr(ηOR) ⊆ OK , i.e. η ∈ d−1. �

Now let µ be a Haar measure on K+. The measure is invariant under addition and we wish
to investigate its behavior under multiplication.

Lemma 3.27. If we define µ1(M) = µ(αM) for α 6= 0, α ∈ K and M a measurable set in
K+, then µ1 is a Haar measure, and there exists a number ϕ(α) > 0 such that µ1 = ϕ(α)µ.

Proof. Since ξ 7→ αξ is an automorphism of K+, both algebraic and toplogical, and since
the Haar measure is uniquely determined by the structure up to a constant, µ1 = ϕ(α)µ for
some ϕ(α). �

Lemma 3.28. We have that ϕ(α) = |α|, i.e. µ(αM) = |α|µ(M).
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Proof. If K = R, this is clear. If K = C, this is true, since we have chosen |α| to be the
square of the regular absolute value.

If K is p-adic, OK is both compact and open, so 0 < µ(OK) < ∞. Therefore, it suffices
to compare µ(OK) and µ(αOK). For α integral, there are N(αOK) cosets of α in OK , and
hence

µ(αOK) = N(αOK)−1µ(OK) = |α|µ(OK).

For α non-integral, we can factorize αOK into primes and apply the same method. �

For the integral, this yields: ∫
f(ξ)dµ(ξ) = |α|

∫
f(αξ)dµ(ξ).

We will now fix a particular Haar measure on K+ that will be used throughout the rest of
the section. We can do it in a way that makes the constant in the Fourier inversion equal
to 1. Explicitly:

dξ =

 the ordinary Lebesgue measure on the real line if K = R,
twice the ordinary Lebesgue measure on the complex plane if K = C,
the measure for which OK has measure ∆−1/2 if K is p-adic.

Theorem 3.29 (Inversion Formula for number fields). If we define the Fourier transform f̂
of a function f ∈ L1(K+) by

f̂(η) =

∫
f(ξ)e−2πiΛ(ηξ)dξ

then with the above choice of the measure, the Inversion Formula

f(ξ) =

∫
f̂(η)e2πiΛ(ξη)dη =

ˆ̂
f(−ξ)

holds for any f ∈ B1(K+).

Proof. By the general Fourier Inversion Formula 3.20, we know that f(ξ) = c
ˆ̂
f(−ξ) for some

c > 0. We only need to check that c = 1. This is achieved by considering a particular
function:

f(ξ) =

 e−π|ξ|
2

for K = R,
e−π|ξ| for K = C,
χOK , the characteristic function of OK for K p-adic.

The necessary calculations, showing that c = 1, can be found in Section 3.2.4. �

3.2.2. Multiplicative Characters and Measure. In this section, we investigate the multiplica-
tive subgroup K× of K.

Let U = {α ∈ K× | |α| = 1}, the compact set of units in K×. Note that U is also open if K
is p-adic.

Definition 3.30. A quasi-character is any continuous multiplicative map c : K× → C×,
bounded or unbounded. A quasi-character c is unramified if c is trivial on U . A quasi-
character is a character if |c(α)| = 1 for any α ∈ K×.
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Lemma 3.31. The unramified quasi-characters c : K× → C× are of the form c(α) = |α|s :=
es log |α|, where s is a complex number which is

(1) determined uniquely by c, if v is infinite,
(2) determined uniquely by c up to an integer multiple of 2πi/ logNp, if v = p is finite.

Proof. Clearly, for any s, |−|s is an unramified quasi-character. Conversely, if c is an unram-
ified quasi-character, then for α, α′ ∈ K× with |α| = |α′|, we have that c(α/α′) = 1 since
α/α′ ∈ U , so c(α) = c(α′). Thus c is only dependent on |α|.

We now treat the finite and the infinite case seperately. For v infinite, c is a multiplicative
function R≥0 → C and we know that these are indeed the exponential functions, determined
uniquely by s.

For v = p finite, the image of the valuation are powers of Np, i.e. {(Np)n | n ∈ Z} ∼= Z, so
we are looking for additive characters on Z. However, any additive function on Z is given by
multiplication by elements of Z, which corresponds to exponentiation of Np, as requested.
Finally, s is clearly only determined by c up to a multiple of 2πi/ logNp. �

For v infinite, we can write any α ∈ K× uniquely as α = α̃% with α̃ = α/|α| ∈ U and
% = |α| > 0. For v = p finite, we fix an element π with ordpπ = 1 (a uniformizer), and we
can then write any α ∈ K× uniquely as α = α̃% with α̃ = απ−ordpα ∈ U and % = πordpα. In
either case, we have a continuous projection K× � U given by α 7→ α̃, i.e. a function onto
U which is constant on U .

Theorem 3.32. The quasi-characters of K× are the maps c : K× → C× given by c(α) =
c̃(α̃)|α|s, where c̃ is any character of U , uniquely determined by c, and s is determined by c
as in Lemma 3.31.

Proof. A map of the given type is indeed a quasi-character. Conversely, given a quasi-
character c, we define c̃ = c|U , the restriction of C to U . Then c̃ is a quasi-character of U ,
and therefore a character of U , since U is compact. But now

α 7→ c(α)

c̃(α̃)

is an unramified character of K×, and hence Lemma 3.31 completes the proof. �

Therefore, we have reduced the problem of classifying the quasi-characters of K× to finding
the characters of U .

• If K = R, then U = {1,−1}, and the characters are given by α 7→ αn for n ∈ {0, 1}.
• If K = C, then U = S1 and the characters are given by α 7→ αn for n ∈ Z.
• If K is p-adic, then the subgroups 1 + pn for n > 0 of U form a fundamental system

of neighborhoods of 1 in U . Therefore, we must have c̃(1 + pn) = 1 for sufficiently
large n. Selecting n to be minimal with this property (n = 0 if c̃ = 1), we call the
ideal f = pn is the conductor of c̃. Then c̃ is a character of the finite group U/(1 + f)
and hence is determined by a finite character table.

Definition 3.33. If c(α) = c̃(α̃)|α|s, then σ = σ(c) = Re(s) is the exponent of c.
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Note that a quasi-character is a character if and only if its exponent is 0.

We will select a multiplicative Haar measure dα on K× by relating it to the chosen additive
Haar measure dξ on K+.

If g ∈ L1(K×), then the function given by α 7→ g(α)|α|−1 is also in L1(K×). Thus we may
define on L1(K×) a functional

Φ(g) =

∫
K+\{0}

g(ξ)|ξ|−1dξ.

For any β ∈ K×, we have that

Φ(βg) =

∫
K+\{0}

g(βξ)|ξ|−1dξ = Φ(g),

using the substitution ξ 7→ β−1ξ and the fact that d(β−1ξ) = |β|−1dξ by Lemma 3.28. Thus
Φ is a non-trivial, positive, and invariant under translation, so it is a Haar measure on K×,
which we will denote by d1α:∫

g(α)d1α =

∫
K+\{0}

g(ξ)|ξ|−1dξ.

Lemma 3.34. A function g is in L1(K×) if and only if the function given by ξ 7→ g(ξ)|ξ|−1

is in L1(K+ \ {0}), and for these functions:∫
K×

g(α)d1α =

∫
K+\{0}

g(ξ)|ξ|−1dξ.

Proof. This is clear from the definition of d1. �

We also define a multiplicative measure that gives the subgroup U measure 1 in the infinite
case and measure ∆−1/2 in the finite case:

dα =

{
d1α = dα

|α| if v is infinite,
Np
Np−1

d1α = Np
Np−1

dα
|α| if v = p is finite.

Lemma 3.35. If v = p is finite, then ∫
U

dα = ∆−1/2.

Proof. Note that we can write U as the disjoint union of Np−1 additive cosets of pOK in U :

U =
∐
α 6=1

(α + pOK),

which yields for the additive measure µ:

µ(U) = (Np− 1)µ(pOK) =
Np− 1

Np
µ(OK) =

Np− 1

Np
∆−1/2

by Lemma 3.28 and our selection of the additive measure. Therefore:∫
U

d1α =

∫
U

|ξ|−1dξ =

∫
U

dξ = µ(U) =
Np− 1

Np
∆−1/2,

as requested. �



L-FUNCTIONS 23

3.2.3. Local ζ-functions. We define the class of functions Z to be

Z = {f ∈ B1(K+) | f(α)|α|σ, f̂(α)|α|σ ∈ L1(K×) for σ > 0}.

Definition 3.36. The ζ-function of K corresponding to f ∈ Z is a function of quasi-
characters of K×, defined for all quasi-characters c with σ(c) > 0 by

ζ(f, c) =

∫
f(α)c(α)dα.

We say that two quasi-characters c1, c2 are equivalent if c1/c2 is unramified. By Lemma 3.31,
we know that an equivalence class of quasi-characters consists of characters of the form

c(α) = c0(α)|α|s,
where c0 is a fixed representative and s is a complex variable. We may view such an equiva-
lence class as a Riemann surface (with variable s). If v is an infinite prime, then the surface
is the whole complex plane. If v = p is finite, then s is determined up to an integer multiple
of 2πi/ logNp, so the Riemann surface is C modulo (2πi/ logNp)Z.

Therefore, we can view the set of all quasi-characters as a collection of Riemann surfaces and
hence talk about the holomorphy of a function defined on the space of all quasi-characters
of exponent greater than 0.

Lemma 3.37. A ζ-function is holomorphic in the domain of all quasi-characters of exponent
greater than 0.

Proof. We want to show that for each c with σ(c) > 0:

s 7→
∫
f(α)c(α)|α|sdα

is a holomorphic function of s for s near 0. This is clear: the integral is absolutely convergent
for s near 0, and has a derivative for s near 0. �

We will show that ζ-functions have a single-valued meromorphic analytic continuation to
the domain of all quasi-characters by means of a functional equation. To this effect, we first
prove a crucial lemma.

Lemma 3.38. For c in the domain 0 < σ(c) < 1 and ĉ(α) = |α|c−1(α) we have

ζ(f, c)ζ(ĝ, ĉ) = ζ(f̂ , ĉ)ζ(g, c)

for any functions f, g ∈ Z.

Proof. We have

ζ(f, c)ζ(ĝ, ĉ) =

∫
f(α)c(α)dα ·

∫
ĝ(β)c−1(β)|β|dβ

with both integrals converging absolutely for c with 0 < σ(c) < 1. We can hence rewrite it
as a double integral over the product K× ×K×:∫ ∫

f(α)ĝ(β)c(αβ−1)|β|d(α, β)
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and the change variables (α, β) 7→ (α, αβ), under which d(α, β) is invariant, gives∫ ∫
f(α)ĝ(αβ)c(β−1)|αβ|d(α, β).

Then Fubini’s Theorem 3.8 shows that

ζ(f, c)ζ(ĝ, ĉ) =

∫ (∫
f(α)ĝ(αβ)|α|dα

)
c(β−1)|β|dβ.

Since we can transform the right hand side of the equation, ζ(f̂ , ĉ)ζ(g, c), in the same manner
by replacing f with g, we only have to show that the inner integral∫

f(α)ĝ(αβ)|α|dα

is symmetric in f and g. Note that∫
f(α)ĝ(αβ)|α|d1α =

∫
f(ξ)ĝ(ξβ)dξ by definition

=
∫
f(ξ)

(∫
g(η)e−2πiΛ(ξβη)dη

)
dξ by definition

=
∫ ∫

f(ξ)g(η)e−2πiΛ(ξβη)d(ξ, η) by Fubini’s Theorem 3.8

and since the last integral is obviously symmetric in f and g, so is∫
f(α)ĝ(αβ)|α|dα = (constant) ·

∫
f(α)ĝ(αβ)|α|d1α,

which completes the proof. �

Theorem 3.39. A ζ-function has an analytic continuation in the domain of all quasi-
characters given by a functional equation of the type

ζ(f, c) = %(c)ζ(f̂ , ĉ).

The factor %(c), which is independent of f , is a meromorphic function of all quasi-characters
defined in the domain 0 < σ(c) < 1 by the functional equation itself, and for all quasi-
characters by analytic continuation. (Note that σ(ĉ) = σ(c)− 1.)

Proof. In Section 3.2.4, for each equivalence class C of quasi-characters, we will exhibit an
explicit fC ∈ Z such that

%(c) =
ζ(fC , c)

ζ(f̂C , ĉ)

is well-defined (denominator is not identically 0) for c in the strip 0 < σ(c) < 1. The
function % defined this way will be a meromorphic function described on C with an analytic
continuation given by a functional equation.

This will complete the proof of the theorem. Since C is any equivalence class of quasi-
characters, % : C → C is defined for all quasi-characters. Finally, for any f ∈ Z, c ∈ C with
0 < σ(c) < 1, we have that

ζ(f, c) = ζ(f, c)ζ(f̂C , ĉ)/ζ(f̂C , ĉ)

= ζ(f̂ , ĉ)ζ(fC , c)/ζ(f̂C , ĉ) by Lemma 3.38

= ζ(f̂ , ĉ)%(c)

as requested. �
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Before going on to the promised computations of special ζ-functions, we note some properties
of % that follow directly from the functional equation.

Corollary 3.40. For any quasi-character c with exponent 0 < σ(c) < 1:

(1) %(ĉ) = c(−1)
%(c)

,

(2) %(c) = c(−1)%(c).
(3) |%(c)| = 1 if σ(c) = 1/2.

Proof. For (1), we have that:

ζ(f, c) = %(c)ζ(f̂ , ĉ) by Theorem 3.39

= %(c)%(ĉ)ζ(
ˆ̂
f, ˆ̂c) by Theorem 3.39

= %(c)%(ĉ)
∫
f(−α)c(α)dα by the Inversion Formula 3.29

= %(c)%(ĉ)
∫
f(α)c(−α)dα substituting α 7→ −α

= c(−1)%(c)%(ĉ)ζ(f, c)

which yields the result.

For (2), we have that

%(c)ζ(f̂ , ĉ) = ζ(f, c) by Theorem 3.39

= ζ(f̂ , ĉ)

= %(ĉ)ζ(f̂ , ĉ) by Theorem 3.39

= %(ĉ)c(−1)ζ(f̂ , ĉ) since f̂(α) = f̂(−α) and ĉ(α) = ĉ(α)

= %(c)c(−1)ζ(f̂ , ĉ)

which yields the result.

Finally, (3) follows from combining (1) and (2). First, note that if σ(c) = 1/2, then

c(α)c(α) = |c(α)|2 = |α| = c(α)ĉ(α)

and hence c(α) = ĉ(α). Therefore

|%(c)|2 = %(c)%(c) = c(−1)%(c) · %(c)/c(−1) = %(c)/%(ĉ) = 1,

so |%(c)| = 1. �

3.2.4. Calculations for Special ζ-functions. We finally exhibit the special ζ-functions for
each equivalence class of quasi-characters. We treat the cases K = R, K = C, and K p-adic
seperately.

Case 1: K = R.

ξ real variable α non-zero real variable
Λ(ξ) = −ξ |α| ordinary absolute value
dξ ordinary Lebesgue integral dα = dα

|α|

In this case, we have two equivalence classes of characters
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class of quasi-characters special function Fourier transform

|−|s f(ξ) = e−πξ
2

f̂(ξ) = f(ξ)

sign(−)|−|s f±(ξ) = ξe−πξ
2

f̂±(ξ) = if±(ξ)

We compute the ζ-functions associated to the two special functions:

ζ(f, |−|) =

∫
f(α)|α|s dα

|α|
=

∫ ∞
−∞

e−πα
2 |α|s−1dα = 2

∫ ∞
0

e−πα
2

αs−1dα = π−s/2Γ(s/2),

ζ(f±,±|−|) =

∫
f±(α)sign(α)|α|s dα

|α|
= 2

∫ ∞
0

e−πα
2

αsdα = π−(s+1)/2Γ((s+ 1)/2)

and to their Fourier transforms:

ζ(f̂ , ˆ|−|s) = ζ(f, |−|−1) = π−(1−s)/2Γ((1− s)/2)

ζ(f̂±, ˆ±|−|s) = ζ(if±,±|−|1−s) = iπ−(2−s)/2Γ((2− s)/2).

Therefore, we can express the function % explicitly

%(|−|s) =
π−s/2Γ(s/2)

π−(1−s)/2Γ((1− s)/2)
= 21−sπ−s cos(πs/2)Γ(s),

%(±|−|s) =
π−(s+1)/2Γ((s+ 1)/2)

iπ−(2−s)/2Γ((2− s)/2)
= −i21−sπ−s sin(πs/2)Γ(s).

Note that they are both meromorphic functions with an analytic continuation, as requested.

Case 2: K = C.

ξ = x+ iy complex variable α = reiθ non-zero complex variable
Λ(ξ) = −2Re(ξ) = −2x |α| = r2

dξ = 2|dxdy| dα = dα
|α| = 2

r
|drdθ|

In this case, we have an equivalence class of quasi-characters for every n ∈ Z

representative of the nth class special function Fourier transform

cn(α) = cn(reiθ) = einθ fn(α) = fn(reiθ) = r|n|e−inθe−2πr2 f̂n(α) = i|n|f−n(α)

where the formula for the Fourier transform is proved by induction—we omit the proof here.

We compute the ζ-functions associated to the nth special function fn:

ζ(fn, cn|−|s) =
∫
fn(α)cn(α)|α|sdα

=
∞∫
0

2π∫
0

r2(s−1)+|n|e−2πr22rdrdθ

= 2π
∞∫
0

(r2)s−1+|n|/2e−2πr2d(r2)

= (2π)1−s+|n|/2Γ(s+ |n|/2),

and to its Fourier transform f̂n:

ζ(f̂n, ˆcn|−|) = ζ(i|n|f−n, c−n|−|1−s) = i|n|(2π)s+|n|/2Γ(1− s+ |n|/2).
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Therefore, we can express the function % explicitely:

%(cn|−|s) = (−i)|n| (2π)1−sΓ(s+ |n|/2)

(2π)sΓ(1− s+ |n|/2)
.

Case 3: K is p-adic.

ξ a p-adic variable α = α̃πn, non-zero p-adic variable, π fixed uniformizer
Λ(ξ) = λ(Tr(ξ)) |α| = (Np)−n

dξ so that OK has measure ∆−1/2 dα = Np
Np−1

dα
|α| so that U has measure ∆−1/2

In this case, we have an equivalence class of quasi-characters for every n ∈ Z

representative of the nth class special function

cn(α) a character with
conductor pn such that cn(π) = 1

fn(ξ) =

{
e2πiΛ(ξ) for ξ ∈ d−1p−n

0 otherwise

Moreover, the Fourier transform of fn is:

f̂n(ξ) =

{
∆1/2(Np)n for ξ ≡ 1 mod pn,
0 otherwise.

Indeed:

f̂n(ξ) =

∫
fn(η)e−2πiΛ(ξη)dη =

∫
d−1p−n

e−2πiΛ((ξ−1)n)dη

and e−2πiΛ((ξ−1)n) is a character which is trivial if and only if ξ ≡ 1 mod pn. Moreover, the
measure of the compact subgroup d−1p−n is (Nd)1/2(Np)n = ∆1/2(Np)n.

To calculate the ζ-functions, we deal with the unramified and ramified cases reperately. Let
Am be the annulus of elements of order m and d = pd.

For n = 0, the only character of type c0 is the trivial one, and f0 is the characteristic function
of d−1. We will show that

ζ(f0, |−|s) =

∫
d−1

|α|sdα =
∆s−1/2

1−Np−s
.

Note that pm+1 = pAm and hence

(Np)−(m+1)∆−1/2 = µ(pm+1) = µ(pAM) = (Np)−1µ(Am)

which shows that µ(Am) = (Np)−m∆−1/2. We can decompose

d−1 = p−d =
∞∐

m=−d

Am
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and hence

ζ(f0, |−|s) =
∞∑

m=−d

∫
Am

|α|sdα

=
∞∑

m=−d

∫
Am

|α|s−1dα

=
∞∑

m=−d
(Np)−m(s−1)µ(Am)

=
∞∑

m=−d
(Np)−m(s−1)(Np)−m∆−1/2

=
∞∑

m=−d
(Np)−ms∆−1/2

= Npds

1−Np−s
∆−1/2

= ∆s−1/2

1−Np−s

Since f̂0 = ∆1/2 · χOK , we similarly obtain

ζ(f̂0, ˆ|−|s) = ζ(f̂0, |−|1−s) = ∆1/2

∫
OK

|α|1−sdα =
1

1−Nps−1
.

Now suppose cn is ramified, i.e. n > 0. We have that

ζ(fn, cn|−|s) =

∫
d−1p−n

e2πiΛ(α)cn(α)|α|sdα =
∞∑

m=−d−n

Np−ms
∫
Am

e2πiΛ(α)cn(α)dα.

We claim that for m > −d− n: ∫
Am

e2πiΛ(α)cn(α)dα = 0.

First, if m ≥ −d, then Am ⊆ d−1, so e2πiΛ(α) = 1 on Am and the integral becomes∫
Am

cn(α)dα =

∫
U

cn(απv)dα =

∫
U

cn(α)dα = 0,

since cn is ramified and hence non-trivial on U .

The case −d > m > −d − n takes some more work. We break up Am into additive cosets
Am/d

−1, disjoint sets of the type

α0 + d−1 = α0 + p−d = α(1 + p−d−m).

On each such set Λ = Λ(α0) is constant and∫
α0+d−1

e2πiΛ(α)cn(α)dα = e2πΛ(α0)

∫
α0+d−1

cn(α)dα.
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We only have to show that the last integral is 0. We have∫
α0+d−1

cn(α)dα =

∫
α0(1+p−d−m)

cn(α)dα =

∫
1+p−d−m

cn(αα0)dα = cn(α0)

∫
1+p−d−m

cn(α)dα.

The last integral is the integral of a character cn over a multiplicative subgroup 1 + p−d−m.
We only have to show that the character is non-trivial. Indeed, −d > m implies p|p−d−m
and hence 1 + p−d−m is a multiplicative subgroup of K×. Finally, m > −d− n implies that
the conductor pn does not divide p−d−m, so cn is non-trivial on 1 + p−d−m.

Therefore, we have shown that

ζ(fn, cn|−|s) = Np(d+n)s

∫
A−d−n

e2πiΛ(α)cn(α)dα.

To rewrite this, let {ε} be a set of representatives of the quotient u/(1 + pn) so that

U =
∐
ε

ε(1 + pn).

Then:

A−d−n = Uπ−d−n =
∐
ε

επ−d−n(1 + pn) =
∐
ε

(επ−d−n + d−1).

On each of these sets, cn = cn(ε) is constant, and Λ = Λ(επ−d−n) is constant. Therefore:

ζ(fn, cn|−|s) = Np(d+n)s

(∑
ε

cn(ε)e2πiΛ(επ−d−n)

) ∫
1+pn

dα.

Finally:

ζ(f̂n, ˆcn|−|s) = ζ(f̂n, c
−1
n |−|1−s)

and f̂n = ∆1/2Npn · χ1+pn . Since cn(α)−1|α|1−s = 1 on 1 + pn, we have that

ζ(f̂n, ˆcn|−|s) = ∆1/2Npn
∫

1+pn

dα,

which is a constant.

We can express the function % explicitely. First,

%(|−|s) = ∆s−1/2 1−Nps−1

1−Np−s
.

Moreover, if c is ramified with conductor f such that c(π) = 1, then

%(c|−|s) = N(df)s−1/2%0(c),

where

%0(c) = N f−1/2
∑
ε

c(ε) exp
{

2πiΛ
(
επ−ordp(df)

)}
is the root number and has absolute value 1.
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3.3. Abstract Restricted Direct Product. In this section, we develop the abstract the-
ory of restricted direct products. This theory will allow us to recover a global field K as a
(discrete) subgroup of a product of its completions at finite and infinite primes v. This will
yield the required globalization of the previous section.

We follow Tate’s Thesis [CF86, Chap. XV], but the reader can refer to [Lan94, Chap. VII]
for an alternative treatment of the abstract restricted direct product, the ideles, and the
adeles.

Let {v} be a set of indices and suppose for each v, we are given a Hausdorff locally compact
abelian group Gv, and for almost all† v, a fixed subgroup Hv ≤ Gv, which is open and
compact. We form a new abstract group

G = {a = (. . . , av, . . .) | av ∈ Gv with av ∈ Hv for almost all v} ⊆
∏
v

Gv

under component-wise multiplication. We will define a topology on G. Let S be any finite
set of indices v, including at least the indices for which Hv is not defined. Then define

GS = {a ∈ G | av ∈ Hv for p 6∈ S} ≤ G

and in fact

GS =
∏
v∈S

Gv ×
∏
v 6∈S

Hv,

a product of locally compact groups, almost all of which are compact. Then GS is a locally
compact group in the product topology. We define a fundamental system of neighborhoods of
1 in G to be the set of neighbourhoods of 1 in GS. Then the resulting topology is independent
of S.

Lemma 3.41. The set of parallelotopes N =
∏

vNv, where Nv is a neighborhood of 1 in Gv

and Nv = Hv for almost all v is a fundamental system of neighborhoods in G.

Proof. By definition of the product topology, a neighborhood of 1 in GS contains a paralel-
lotope of that type. Conversely, since Nv = Hv for almost all v, the intersection(∏

v

Nv

)
∩GS =

∏
v∈S

Nv ×
∏
v 6∈S

(Nv ∩Hv)

is a neighborhood of 1 in GS. �

Note that any GS is open in G and the subspace topology of is indeed the product topology.
Moreover, any compact neighborhood of 1 in GS is a compact neighborhood of 1 in G, so G
is locally compact.

Definition 3.42. We call G the restricted direct product of the groups Gv relative to the
subgroups Hv.

We have the natural embedding of Gv as a subgroup of G:

av 7→ (1, 1, . . . , 1, av, 1, . . .).

†In this chapter, by almost all we always mean all but finitely many.
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Moreover, since the components av of any a ∈ G are in Hv for almost all v, G is the union of
subgroups of the type GS. This reduces the investigation of G to just studying groups GS.

We do this by introducing compact subgroups GS of GS:

GS = {a ∈ G | av = 1 for v ∈ S, av ∈ Hv for v 6∈ S} ∼=
∏
v 6∈S

Hv.

The we can interpret GS as

GS =

(∏
v∈S

Gv

)
×GS,

the first product being finite.

Lemma 3.43. A subset C ⊆ G has a compact closure if and only if it is contained in some∏
v Bv for Bv ⊆ Gv compact for all v, with Bv = Hv for almost all v.

Proof. The prescribed sets are clearly compact. Conversely, note that any compact subset
of G is contained in some GS, since {GS} is an open cover for G, and the union of finitely
many sets of the form GS is again of the form GS. Now, any compact subset of GS is
contained in the product of the projections onto Gv, so it is of the required form. �

3.3.1. Characters. We want to study quasi-characters c : G → C× of abstract restricted
direct products G. We denote by cv the restriction of c to Gv, a quasi-character of Gv.

Lemma 3.44. The quasi-character cv is trivial on Hv for almost all v, and for any a ∈ G

c(a) =
∏
v

cv(av).

Note that the product is a priori infinite but since cv is trivial on Hv for almost all v, almost
all the factors are 1, so it is in fact a finite product. As we will see, this phenomenon will
occur numerous times in this chapter, so we will usually omit this discussion in the future.

Proof. Let U be a neighborhood of 1 in C, containing no multiplicative subgroup except {1}
and N =

∏
vNv be a neighborhood of 1 in G such that C(N) ⊆ U . Select S containing all v

for which Nv 6= Hv. Then GS ⊆ N , so c(GS) ⊆ U is a multiplicative subgroup, and hence
c(GS) = {1}. But this shows that c(Hv) = {1} for v 6∈ S.

Now, fix a ∈ G and impose on S that a ∈ GS, so that we can write

a =

(∏
v∈S

av

)
aS

with aS ∈ GS. We then have

c(a) =
∏
v∈S

c(av) · c(aS) =
∏
v∈S

cv(av) =
∏
v

cv(av),

since cv(av) = 1 for v 6∈ S. �

In fact, the converse also holds: any suitable family of quasi-characters of Gv will yield a
quasi-character of G.



32 ALEKSANDER HORAWA

Lemma 3.45. Let cv be a given quasi-character of Gv for each v, with cv trivial for almost
all v. Then

c(a) =
∏
v

cv(av)

is a quasi-character of G.

Once again, note that the product is finite.

Proof. Note that c is clearly multiplicative.

To see it is continuous, take S ⊇ {v | cv(Hv) 6= {1}} and let s = #S. Fix a neighborhood U
of 1 in C and choose a (smaller) neighborhood V such that V s ⊆ U . By continuity of cv, we
can choose a neighborhood Nv of 1 in Gv such that cv(Nv) ⊆ V for v ∈ S. Moreover, we let
Nv = Hv for v 6∈ S. Then clearly:

c

(∏
v

Nv

)
⊆ c

(∏
v∈S

Nv

)
⊆ V s ⊆ U,

showing continuity of c. �

Now, we restrict our consideration to characters. We will show how to express Ĝ, the

character group of G, as a restricted direct product of character groups Ĝv of Gv.

Note that c given by c(a) =
∏

v cv(av) is a character if and only if each cv is a character.

For v where Hv is defined, let H∗v ⊆ Ĝv be the subgroup characters trivial on Hv:

H∗v = {cv ∈ Ĝv | cv(Hv) = {1}}.

Note that if Hv is compact, then Ĥv
∼= Ĝv/H

∗
v is discrete, so H∗v is open. Moreover, if Hv is

open, then Gv/Hv is discrete, so Ĝv/Hv
∼= H∗v is compact.

Theorem 3.46. The restricted direct product of Ĝv relative to H∗v is naturally isomorphic

(algebraically and topologically) to the character group Ĝ of G.

Proof. We may identify c = (. . . , cv, . . .) with the character

c(a) =
∏
v

cv(av),

and hence Lemmas 3.44 and 3.45 provide an algberaic isomorphism between the restriced

direct product and Ĝ. We only have to check that the topology on the character group
Ĝ introduced in Section 3.1 (particularly, Lemma 3.11) agrees with the topology on the
restricted direct product. Indeed, the following statements are equivalent

(1) c = (. . . , cv, . . .) is in a neighborhood of 1 as a character of G,
(2) for some C ⊆ G compact (i.e. by Lemma 3.43, C =

∏
v Bv for Bv ⊆ Gv compact for

all v with Bv = Hv for almost all v), and U ⊆ S1 neighborhood of 1,

c

(∏
v

Bv

)
= c(C) ⊆ U
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(3) cv(Bv) ⊆ Uv for some neighborhood Uv of 1 in S1 whenever Hv 6= Bv ⊆ Gv is compact,
and cv(Bv) = {1} everywhere else,

(4) the character cv is in a neighborhood of 1 in Ĝv for a finite number of v, and cv ∈ H∗v
for the other v,

(5) the character c = (. . . , cv, . . .) is in a neighborhood of 1 in the restricted direct product

of Ĝv with respect to H∗v .

Thus the defining systems of neighborhood agree in the two topologies, and hence the topolo-
gies agree. �

3.3.2. Measure. We will introduce a measure on the restricted direct product. Choose a
Haar measure dav on each Gv such that∫

Hv

dav = 1 for almost all v.

We wish to define a Haar measure da on G for which, in a sense, da =
∏

v dav. To do this,
select a finite S as before, and consider

GS =

(∏
v∈S

Gv

)
×GS.

Then we can define a measure on GS

daS =

(∏
v∈S

dav

)
· daS,

where daS is the measure on the compact subgroup GS for which∫
GS
daS =

∏
v 6∈S

∫
Hv

dav.

(As always, this is actually a finite product.) Since GS is an open subgroup of G, a Haar
measure on G is determined by the requirement da = daS on GS.

To see that da is independent on the choice of S, let T ⊇ S be a larger set of indices.
Then GS ⊆ GT and we want to show that daT and daS coincide on GS. We can use the
decomposition

GS =

 ∏
v∈T\S

Hv

×GT

to conclude that

daS =
∏
v∈T\S

dav · daT .

(Indeed, they both give GS the same measure.) Thus:

daS =
∏
v∈S

dav · daS =
∏
v∈S

dav ·
∏
v∈T\S

dav · daT = daT .
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We have hence determined a unique Haar measure on G, denoted symbolically by

da =
∏
v

dav.

Lemma 3.47. If f is a function on G, then∫
f(a)da = lim

S

∫
GS

f(a)daS

(where the limit is over all finite S) if one of the following holds:

(1) f is measurable and non-negative, in which case +∞ is allowed as the value of the
integral,

(2) f ∈ L1(G), in which case the values of the integrals are complex numbers.

Proof. In either case,
∫
f(a)da is the limit of

∫
B
f(a)da for compact sets B ⊆ G and each

such compact set is contained in some GS by Lemma 3.43. �

Lemma 3.48. For each v, let fv ∈ L1(Gv) be a continuous function such that fv is trivial
on Hv for almost all v. If we define f : G→ C by

f(a) =
∏
v

fv(av),

then

(1) f is continuous on G,
(2) for any set S containing at least those v for which fv(Hv) 6= {1} or

∫
Hv
dav 6= 1, we

have ∫
GS

f(a)da =
∏
v∈S

(∫
Gv

fv(av)dav

)
.

Proof. For (1), note that the function f is continuous on any GS, and hence also on G.

For (2), note that for any a ∈ GS we have f(a) =
∏
v∈S

fv(av). Then∫
GS

f(a)da =
∫
GS

f(a)daS

=
∫
GS

(∏
v∈S

fv(av)

) ∏
v∈S

dav · daS

=
∏
v∈S

(∫
Gv

fv(av)dav

)
·
∫
GS
daS

=
∏
v∈S

(∫
Gv

fv(av)dav

)
where the last equality follows from∫

GS
daS =

∏
v 6∈S

(∫
Hv

dav

)
= 1

by our choice of dav on Gv. �
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Theorem 3.49. If fv and f satisfy the assumption of the preceeding lemma (Lemma 3.48),
and moreover ∏

v

(∫
|fv(av)|dav

)
<∞,

then f ∈ L1(G) and ∫
f(a)da =

∏
v

(∫
fv(av)dav

)
.

Proof. We combine the two preceeding lemmas (Lemmas 3.47 and 3.48): first for the function
|f | to see that f ∈ L1(G), then for the function f to evaluate

∫
f(a)da. �

Finally, we apply the results to Fourier transforms. Let dcv be the measure on Ĝv dual to
the measure dav on Gv. If χHv is the characteristic function of Hv, χH∗v the characteristic
function of H∗v , then

ˆχHv(cv) =

∫
χHv(av)cv(av)dav =

∫
Hv

dav · χH∗v .

In particular, using the Fourier Inversion Formula 3.20∫
H∗v

dcv =

∫
Hv

dav ·
∫
H∗v

dcv = 1

for almost all v, and we may define dc =
∏

v dcv on Ĝ.

Lemma 3.50. If fv ∈ B1(Gv) for all v, with fv = χHv for almost all v, then f given by
f(a) =

∏
v fv(av) has Fourier transform

f̂(c) =
∏
v

f̂v(cv)

and f ∈ B1(G).

Proof. Apply Theorem 3.49 to f(a)c(a) =
∏

v fv(av)cv(av) to see that

f̂(c) =

∫
f(a)c(a)da =

∏
v

(∫
fv(av)cv(av)dav

)
=
∏
v

f̂(c).

Since fv ∈ B1(Gv), f̂v ∈ L1(Ĝv) for all v. For almost all v, f̂v = χH∗v , so f̂ ∈ L1(Ĝ), and
hence f ∈ B1(G). �

Corollary 3.51. The measure dc =
∏

v cv is dual to da =
∏

v dav.

Proof. Using the lemma, we obtain the Inversion Formula using the component-wise Inversion
Formulas. �
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3.4. Adeles and Ideles. In this chapter, let K be a number field and v a generic prime
of K. We let Kv be the completion of K at v, and index the notation of Section 3.2 with v
for the local field Kv. So we also write Op for the ring of integers of Kp, Λv for the function
Λ for Kv, and similarly dv, ∆v, |−|v, cv, . . ..

Definition 3.52. The additive group AK of adeles of K is the restricted direct product
of K+

v relative to the subgroups Op, defined for finite primes v = p. The group AK with
component-wise multiplcation is the ring of adeles.

We also write AK = AfK ×K∞, where

• AfK are the finite adeles: the restricted direct product over the finite primes,
• K∞ are the infinite adeles:

∏
vKv, a finite product of the completions of K at v.

Crucially, we will be able to recover K as a discrete subgroup of AK , which we will see later.

Definition 3.53. The units A×K of the ring of adeles AK are ideles.

Lemma 3.54. The ideles are the restricted direct product of K×v with respect to the sub-
groups O×v .

Proof. Clearly, any element of the restricted direct product is an idele. Conversely, if x ∈ AK
has an inverse, then all the xv are non-zero and the inverse is (. . . , x−1

v , . . .). Since both
(. . . , xv, . . .) and (. . . , x−1

v , . . .) are in AK , xv ∈ Ok for almost all v and x−1
v ∈ Ok for almost

all v. Therefore, xv ∈ O×v for almost all v, and hence (. . . , x−1
v , . . .) is in the restricted direct

product. �

The topology we give to A×K is the one coming from the restricted direct product construction.
In particular, A×K ⊆ AK , but the topology on A×K is stronger than the subset topology.

3.4.1. Additive theory. From Theorems 3.25, 3.46, and Lemma 3.26, we see that the character
group of AK is naturally the restricted direct product of K+

v relative to the subgroups d−1
v .

Since d−1
p = Op for almost all p, this product is AK again. An element η = (. . . , ηv, . . .) ∈ V

is identified with the character

x = (. . . , xv, . . .) 7→
∏
v

exp(2πiΛv(ηvxv)) = exp

(
2πi
∑
v

Λv(ηvxv)

)
.

Therefore, we define Λ(x) =
∑

v Λv(xv) to get the following theorem.

Theorem 3.55. The ring of adeles AK is naturally its own (additive) character group under
the identification

η ∈ AK ←→ x 7→ e2πiΛ(ηx).

Moreover, we introduce the measure dx =
∏

v dxv on AK described in the previous section,
where dxv are the local, self-dual measures on Kv. It is self-dual by Corollary 3.51. Therefore,
the Fourier Inversion Formula 3.20 becomes:
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Theorem 3.56. If for a function f ∈ L1(AK) we define the Fourier transform

f̂(η) =

∫
f(x)e−2πiΛ(ηx)dx,

then for f ∈ B1(AK) the Inversion Formula

f(x) =

∫
f̂(η)e2πiΛ(xη)dη

holds.

Recall that locally d(αvξv) = |αv|vdξv for αv ∈ K×v by Lemma 3.27. In order to generalize
this to the global case of adeles, note that x 7→ ax is an automorphism of AK if and only if
a ∈ A×K is an idele.

Lemma 3.57. For an idele a we have d(ax) = |a|dx, where |a| =
∏

v |av|v.

Proof. If N =
∏

vNv is a compact neighborhood of 0 in AK , then by Theorem 3.49 applied
to characteristic functions we have that∫

N

dx =
∏
v

dxv,∫
aN

dx =
∏
v

∫
avNv

dxv.

We can use d(avxv) = |av|vdxv (Lemma 3.27) to obtain∫
aN

dx =
∏
v

∫
avNv

dxv =
∏
v

|av|v
∫
Nv

dxv =
∏
v

|av|v
∫
n

dx = |a|
∫
N

dx,

as requested. �

We now wish to recover our original global field K as a subring of AK . We can embed K
in AK diagonally:

K 3 ξ 7→ ξ = (ξ, . . . , ξ, . . .) ∈ AK .
We will work towards proving the following theorem, which characterizes K as a subset
of AK .

Theorem 3.58. The subspace topology on K coming from the diagonal embedding K ↪→ AK
is the discrete topology, and the quotient AK/K is compact.

In order to prove the theorem, we will construct a fundamental domain for K in AK .

Let S∞ be the set of infinite primes of K.

Lemma 3.59. We have that K ∩ (AK)S∞ = OK.

Proof. Recall that

(AK)S∞
∼=

( ∏
v∈S∞

K+
v

)
×
∏
p6∈S∞

Op.
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We have to show that ξ ∈ K is in OK if and only if ξ ∈ Op for any finite prime p. Indeed,
take any 0 6= ξ ∈ K and write the fractional ideal (ξ) as

∏
p p

ap . Then it is clear that ξ ∈ OK
if and only if ap ≥ 0 for all p, which in turn is equivalent to ξ ∈ Op for any p finite. �

Recall that we write K∞ for the infinite part of AK , i.e. the product
∏

v∈S∞
Kv of r1 real

lines and r2 complex planes, where r1 is the number of real primes, and r2 is the number
of complex primes. It is naturally a vector space over R of dimension n = r1 + 2r2, the
degree [K : Q]. For x ∈ AK , we let x∞ be the projection of x onto K∞.

Lemma 3.60. The image of OK in K∞ is a lattice and (with respect to our choice of

measure) the measure of the fundamental domain in this lattice is
√
|∆|.

Remark 3.61. A fundamental domain for a lattice L ⊆ Rn is a connected set S with non-
empty interior such that: for all x ∈ Rn there exists a unique λ ∈ Λ, s ∈ S such that
λ+s = x. One popular choice of a fundamental domain is to write down a basis {e1, . . . , en}
for L and let S = {λiei | 0 ≤ λi < 1}, a fundamental parallelogram for L. Our choice of
fundamental domain for OK will parallel this setting.

Proof of Lemma 3.60. The fact that OK is a lattice in K∞ is clear: we can simply choose a
Z-basis {e1, . . . , en} for OK over Z, and project it to get a basis {e∞1 , . . . , e∞n } for the image
of OK in K∞.

If K is totally real (i.e. r2 = 0, all the primes are real), this is immediate: the volume of the
fundamental domain of a lattice in Rn is the absolute value of the determinant of the matrix
whose form a basis of the lattice:

| det(σiej)| =
√
|∆|

where σi ranges over the field maps K → C.

If K is complex, σ(x+ iy) and in the usual discriminant calculation that gives the volume of
the lattice we will see a contribution from both σ and σ, the complex conjugate. Therefore,
choosing coordinates x, y of R2 ∼= C, we see that(

x+ iy

x− iy

)
=

(
1 i
1 −i

)(
x

y

)
and the absolute value of the determinant of the matrix is 2. Therefore, in the ordinary
Lebesgue measure, the volume of the fundamental domain will be

√
|∆|2−r2 . However, for

any complex prime v, we have chosen the measure on Kv = C to be twice the ordinary
Lebesgue measure, and hence the contribution of 2−r2 cancels, yielding the result. �

Fix a Z-basis {e1, . . . , en} for OK and consider the projections {e∞1 , . . . , e∞n } which give a
basis for the lattice OK in K∞. We define

D∞ =

{
n∑
j=1

λje
∞
j | 0 ≤ λj < 1

}
.

Definition 3.62. The additive fundamental domain D ⊆ AK is the set

D = {x ∈ (AK)S∞ | x∞ ∈ D∞} = Df ×D∞

with Df =
∏

pOp.
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Note that Df is open and hence closed, and thus

D = Df ×D∞,

D̊ = Df × D̊∞,
so D is compact and D̊ is non-empty.

The following proposition justifies the name additive fundamental domain.

Proposition 3.63.

(1) Any x ∈ AK is congruent to a unique element of D modulo the field K; symbolically:

V =
∐
ξ∈K

(ξ +D).

(2) The set D has measure 1.

Proof. For (1), fix x ∈ AK . We deal with the finite primes p first. By definition, xp ∈ Op

for almost all finite primes p. Choose some 0 6= ξ1 ∈ O such that (ξ1)pxp ∈ Op for all finite
places: we simply ensure that ξ1 is divisible for a sufficiently large power of p for the finitely
many places p where xp 6∈ Op.

Now, for each p|(ξ1), suppose pap divides (ξ1) exactly and consider the system of congruences

ξ2 ≡ ξ1xp mod pap .

The Chinese Remainder Theorem guarantees the existence of a solution ξ2 ∈ OK . Then
setting ξ = ξ2

ξ1
∈ K, we obtain that

xp − ξ ∈ Op

for all p|(b). But xp and ξ are integral at all finite places p 6 |(b), so x− ξ ∈ Df .

Finally, we can adjust the infinite components of ξ to ensure they lie in D∞ (since D∞ is a
fundamental domain for O over K∞.)

For uniqueness, take x ∈ AK and d1, d2 ∈ D, ξ1, ξ2 ∈ K such that

x = d1 + ξ1 = d2 + ξ2.

Let

t = d1 − d2 = ξ2 − ξ1 ∈ (D −D) ∩K
Looking at the finite primes, we see t ∈ K is in Df − Df = Df , so it is integral at all the
finite primes: t ∈

∑n
i=1 Zei. Looking at infinite places, we see that t ∈ D∞ −D∞, so

t =
n∑
i=1

λiei for λi ∈ (−1, 1).

Since t ∈
∑n

i=1 Zei, this yields λi = 0 for all i, and thus t = 0.

For (2), we compute the measure of D, noting that D = D∞ × VS∞ . We have∫
D

dx =

∫
D

dxS∞ =

∫
D∞×VS∞

dx∞dxS∞ =

∫
D∞

dx∞ ·
∫
V S∞

dxS∞ =
√

∆
∏
p6∈S∞

(∆p)
−1/2
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by Lemma 3.60. Finally, we note that the absolute discriminant ∆ = ∆K/Q is the product
of local discriminants ∆p = ∆Kp/Qp (see: [Ser79, Cor. to Prop. 10, Chap. III]), which gives
the required equality. �

This immediately yields Theorem 3.58, which said that K is discrete in AK and AK/K is
compact.

Proof of Theorem 3.58. We know thatD has a non-empty interior D̊ and by Proposition 3.63:

AK =
∐
ξ∈K

(ξ +D).

To show discreteness ofK, we show that there is a neighborhood of 0 in AK whose intersection
withK is {0}. Fix an adele d ∈ D̊ and consider D̊−d. This is an open set in AK , containing 0.

Conversely, if ξ ∈ K is in D̊ − d, then d′ − d = ξ for some d′ ∈ D̊, whence d′ = d + ξ, so
ξ = 0 by uniqueness.

The compactness of the quotient follows from the fact that AK/K is a continuous image of
the compact set D, the map being surjective by Proposition 3.63. �

Proposition 3.64. The identification of AK with ÂK given by Theorem 3.56 sends the closed

subgroup K isomorphically onto the closed subgroup K∗ of characters of ÂK which are trivial
on K.

Proof. We need to check that:

(1) If ξ ∈ K, then Λ(ξ) = 0.
(2) If ξ ∈ AK , Λ(αξ) = 0 for all α ∈ K, then ξ ∈ K.

We can easily reduce (1) to the rational case:

Λ(ξ) =
∑
v

Λv(ξ) =
∑
v

λv(Tr(ξ)) =
∑
w

λw

∑
v|w

Trv(ξ)

 =
∑
w

λw(Tr(ξ))

(where v runs over all primes of K and w runs over all primes of Q), because the trace is
the sum of local traces. Since Tr(ξ) ∈ Q, we only have to show that

λ(x) =
∑
w

λp(x) = 0

for x ∈ Q. Clearly, Λ(n) = 0 for n ∈ Z and by additivity of λ (Lemma 3.23), we only have
to show that λ(1/pe) = 0 for p ∈ Q prime, e ≥ 1. We have that

λq(1/p
e) = 0 for q 6= p rational prime,

λp(1/p
e) = 1/pe,

λ∞(1/pe) = −1/pe,

which shows the desired equality.

To prove (2), note first that if we identify ÂK with AK via the isomorphism from Theorem
3.56, we obtain K ⊆ K∗ by (1). Any character in K∗ factors through AK/K, so K∗ is the
character group of AK/K. Since AK/K is compact by Theorem 3.58, K∗ is discrete; indeed:
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W (AK/K,U) consists only of the trivial character for U small enough. Therefore, K∗ is
a discrete, closed subgroup of AK . Hence K∗/K is discrete in AK/K, and since it is also
compact, it is finite. But K∗ is a vector space over K, and since K is not a finite field, we
must have (K∗ : K) = 1, so K∗ = K. �

Finally, we want to study functions on AK/K and their integrals.

Definition 3.65. A function ϕ : AK → C is periodic if ϕ(x + ξ) = ϕ(x) for any x ∈ AK ,
ξ ∈ k.

Any periodic function represents a unique function on the compact space AK/K. We will
abuse the notation and write ϕ both for the periodic function on AK and the function on
AK/K. We can define a natural Haar measure on AK/K by letting

∫
AK/K

ϕ(x)dx =

∫
D

ϕ(x)dx,

where D is the fundamental domain discussed before.

Recall from the proof of Proposition 3.64 that K is naturally the character group of AK/K.
The Fourier transform of ϕ ∈ L(AK/K) can hence be written explicitly as

ϕ̂(ξ) =

∫
D

ϕ(x)e−2πiΛ(ξx)dx

for ξ ∈ K.

Lemma 3.66. If ϕ is continuous, periodic, and
∑
ξ∈K
|ϕ̂(ξ)| <∞, then

ϕ(ξ) =
∑
η∈K

ϕ̂(η)e2πiΛ(ξη)

for any ξ ∈ K.

Proof. This is just the Fourier Inversion Formula 3.20, recalling that K is discrete by Theo-
rem 3.58, so the Haar measure on K is given by the sum over elements of K. �

Lemma 3.67. If f ∈ L1(AK) is continuous and
∑
η∈K

f(x + η) is uniformly convergent for

x ∈ D, then for ϕ given by ϕ(x) =
∑
η∈K

f(x+ η) we have ϕ̂(ξ) = f̂(ξ) for any ξ ∈ K.
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Proof. We have that

ϕ̂(ξ) =
∫
D

ϕ(x)e−2πiΛ(ξx)dx

=
∫
D

(∑
η∈K

f(x+ η)e−2πiΛ(xξ)

)
dx

=
∑
η∈K

∫
D

f(x+ η)e−2πiΛ(xξ)dx since D is compact and convergence is uniform

=
∑
η∈K

∫
η+D

f(x)e−2πiΛ(xξ−ηξ)dx substituting x 7→ x− η

=
∑
η∈K

∫
η+D

f(x)e−2πiΛ(xξ)dx by Proposition 3.64

=
∫
K

f(x)e−2πiΛ(xξ)dx by Proposition 3.63

= f̂(ξ)

for any ξ ∈ K. �

Combining the two previous lemmas, we obtain the Poisson summation formula, which the
reader may be familiar with from standard Fourier analysis.

Theorem 3.68 (Poisson summation formula). If f : AK → C satisfies:

(1) f ∈ L1(AK) is continuous,
(2)

∑
ξ∈K f(x+ ξ) is uniformly convergent for x ∈ D,

(3)
∑

ξ∈K |f̂(ξ)| is convergent,

then ∑
ξ∈K

f̂(ξ) =
∑
ξ∈K

f(ξ).

If we consider the function x 7→ f(ax) for an idele a ∈ A×K , we obtain a stronger version of
the formula, which looks like a number-theoretic analogue of the Riemann-Roch Theorem.

Theorem 3.69 (Riemann-Roch). If f : AK → C satisfies:

(1) f ∈ L1(AK) is continuous,
(2)

∑
ξ∈K f(a(x + ξ)) is convergent for all a ∈ A×K, x ∈ AK, and the convergence is

uniform on D,
(3)

∑
ξ∈K |f̂(aξ)| is convergent for all ideles a ∈ A×K,

then
1

|a|
∑
ξ∈K

f̂(ξ/a) =
∑
ξ∈K

f(aξ).

Proof. We only have to show that, for an idele a ∈ A×K , the function given by g(x) = f(ax)
satisfies the conditions of the Poisson summation formula 3.68. Indeed, conditions (1) and (2)
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are clear. Moreover,

ĝ(x) =
∫
f(aη)e−2πiΛ(xη)dη

= 1
|a|

∫
f(η)e−2πiΛ(xη/a)dη substituting η 7→ η/a

= 1
|a| f̂(x/a)

so condition (3) holds. �

3.4.2. Multiplicative theory. In this section, we restrict our attention to the multiplicative
group A×K of ideles and develop similar results to the previous section. In doing so, we will
achieve a globalization of the results on the local multiplicative characters and measure in
Section 3.2.2.

As before, the quasi-characters of A×K are c : A×K → C given by

c(a) =
∏
v

cv(av)

where cv are local quasi-characters which are unramified at almost all v. For a measure da
on A×K , we take

da =
∏
v

dav,

where dav is the local multiplicative measure. Finally, we embed K× ↪→ A×K diagonally.

Theorem 3.70 (Product formula). We have that |α| =
∏

v |αv|v = 1 for α ∈ K×.

Proof. If µ is the additive measure on AK , for any α ∈ A×K , we have that

µ(αD) = |α|µ(D)

by Lemma 3.57.

Since αK+ = K+, αD is also an additive fundamental domain for K in AK . Now, note that

D =
∐
ξ∈K

D ∩ (ξ + αD) and αD =
∐
ξ∈K

(−ξ +D) ∩ αD

and the elements d = ξ + αd′ ∈ D correspond to the elements αd′ ∈ −ξ +D, so

µ(D ∩ (ξ + αD)) = µ((−xi+D) ∩ αD),

and hence

µ(D) = µ(αD) = |α|µ(D).

Hence |α| = 1, since µ(D) 6= 0. �

Remark 3.71. We already proved that µ(D) = 1 in Proposition 3.63. In hindsight, this was
in fact unnecessary—we could have proceeded up until now without knowing the measure of
D and the theorem we just prove would guarantee that µ(D) = 1.

We have a continuous, surjective, multiplicative homomorphismA×K → R×>0 given by α 7→ |α|.
Therefore, we cannot hope that A×K/K

× is compact, because is has R>0 as a continuous
image. However, we instead consider the kernel J = {a | |a| = 1}, a closed subgroup of A×K .
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Recall that in the local case Kv, we could write any α ∈ K×v uniquely as

α =

{
α̃% for |α̃|v = 1 and % > 0 if v infinite,
α̃π−ordp(α) for |α̃|p = 1 and π uniformizer if v = p finite.

Similarly, we would like to represent any idele a ∈ A×K as a multiple of an element of J . In
other words, we will select an arbitrary subgroup T of A×K such that

I = T × J.

To this effect, choose an infinite prime v0 of K and let

T = {a ∈ A×K | av0 > 0 and av = 1 for v 6= v0}.

Any a ∈ T is determined uniquely by |a|, which gives an isomorphism of T with R>0. We
will identify any element t ∈ T with a number t > 0; explicitly, if we write the v0-component
of t first, then t > 0 stands for

(t, 1, 1, 1, . . .) for v0 real,
(
√
t, 1, 1, 1, . . .) for v0 complex.

Now, we can write any idele a ∈ A×K uniquely as

a = |a| · b with |a| ∈ T and b = a|a|−1 ∈ J,

and it is clear that A×K = T × J .

In order to select a measure db on J , we take the measure dt = dt
t

on T and require that
da = dt · db in the sense of Fubini’s Theorem, i.e. for f ∈ L1(A×K), we have that:∫

A×K

f(a)da =

∫ ∞
0

(∫
J

f(tb)db

)
dt

t
=

∫
J

(∫ ∞
0

f(tb)
dt

t

)
db.

The Product formula 3.70 shows that K∗ ⊆ J and, as in the additive case, one can show
that J/K∗ is compact, using a multiplicative fundamental domain.

Proposition 3.72. There exists a fundamental domain E for J/K×, i.e.

J =
∐
α∈K×

αE,

with measure
2r1(2π)r2hR√
|∆|w

,

where h = #IK/PK, R is the regulator of K, w the number of roots of unity in K.

We omit the proof here, but it can be found in [CF86, Theorem 4.3.2, Chap. XV]. It relies
on some results from class field theory and some theorems from classical algebraic number
theory (such as Dirichlet’s Unit Theorem).

Corollary 3.73. The subgroup K× ⊆ J is discrete in J (and thus in A×K), and the quotient
group J/K× is compact.
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This is the multiplicative analog of Theorem 3.58 we were looking for.

We are not actually interested in all quasi-characters of A×K but only those that are trivial
on K×. We will use the word quasi-characters to refer to those. A quasi-character on J is
hence a quasi-character on the quotient J/K×, which is compact by Corollary 3.73. Hence,
a quasi-character on J is a character. Furthermore, if a character is trivial on J , then it is
in fact a character of T , so it is of the form |−|s for some complex s.

Once again, for each quasi-character c, there is a unique real number σ = σ(c) such that
|c(a)| = |a|σ for any a ∈ A×K . We call it the exponent of c. A quasi-character is a character
if and only if its exponent is 0.

3.5. Main Results. We are finally able to globalize the results of Section 3.2. We first
define a class of functions for which we will define ζ-functions.

Let Z denote the set of all functions f : AK → C that satisfy

(Z1) Both f and f̂ are continuous functions in L1(AK), i.e. f ∈ B1(V ).
(Z2) The series ∑

ζ∈K

f(a(x+ ξ)) and
∑
ζ∈K

f̂(a(x+ ξ))

are both convergent for any idele a ∈ A×K and adele x ∈ AK , the convergence being
uniform in the pair (a, x) for x ranging over D and a ranging over any fixed compact
subset of A×K .

(Z3) Both A×K 3 a 7→ f(a)|a|σ and A×K 3 a 7→ f̂(a)|a|σ are in L1(A×K) for σ > 1.

Note that if f continuous on AK , then f is continuous on A×K , because the topology on A×K
is stronger than the subspace topology.

In view of (Z1) and (Z2), the Riemann-Roch Theorem 3.69 is valid for functions in Z. The
purpose of (Z3) is defining the ζ-functions.

Definition 3.74. The ζ-function of K corresponding to f ∈ Z is a function of quasi-
characters, defined for all quasi-characters with σ(c) > 1 by

ζ(f, c) =

∫
f(a)c(a)da.

We will call two quasi-characters that coincide on J equivalent. An equivalence class of
quasi-characters consists of all quasi-characters c of the form c(a) = c0(a)|a|s for a fixed
representative c0, s ∈ C determined uniquely by c. As in the local theory, we can now view
an equivalence class of quasi-characters as a Riemann surface (with the variable s).

It is obvious that for quasi-characters of exponent greater than 1, the ζ-functions are holo-
morphic. Moreover, once again, we have an analytic continuation to the entire space of
quasi-characters.

Theorem 3.75 (Analytic Continuation and Functional Equation of the ζ-Functions). By
analytic continuation, we may extend the definition of any ζ-function, ζ(f, c), to the domain
of all quasi-characters. The extended function is single valued and holomorphic, expect at
c(a) = 1 and c(a) = |a| where it has simple poles with residues −κf(0) and +κf(0) (where
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κ is the volume of the multiplicative fundamental domain). Moreover, ζ(f, c) satisfies the
functional equation

ζ(f, c) = ζ(f̂ , ĉ),

where ĉ(a) = |a|c−1(a), as in the local theory.

To prove the theorem, first note that for c with σ(c) > 1, we have that

ζ(f, c) =

∫
A×K

f(a)c(a)da =

∫ ∞
0

(∫
J

f(tb)c(tb)db

)
dt

t
,

since A×K = T × J , as was established before. Let us hence define

ζt(f, c) =

∫
J

f(tb)c(tb)db.

First, note that since ζ(f, c) converges for σ(c) > 1, so the integral ζt(f, c) will converge (at
least for almost all t). Moreover, for b ∈ J , |b| = 1 by definition, so |c(tb)| = tσ is constant
on J . Therefore, if ζt(f, c) converges for one quasi-character c, then it converges for all of
them.

The first step in the proof of the theorem will be to establish a functional equation for ζt(f, c).

Lemma 3.76. For all quasi-characters c, we have:

ζt(f, c) + f(0)

∫
E

c(tb)db = ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ((1/t)b)db.

Proof. We first claim that

(1) ζt(f, c) + f(0)

∫
E

c(tb)db =

∫
E

(∑
ξ∈K

f(ξtb)

)
c(tb)db.

Indeed:

ζt(f, c) + f(0)
∫
E

c(tb)db =
∑

α∈K×

(∫
αE

f(tb)c(tb)db

)
+ f(0)

∫
E

c(tb)db by Proposition 3.72

=
∑

α∈K×

(∫
E

f(αtb)c(tb)db

)
+ f(0)

∫
E

c(tb)db db multiplicative

=
∫
E

( ∑
α∈K×

f(αtb)

)
c(tb)db+ f(0)

∫
E

c(tb)db sum unif. convergent

=
∫
E

(∑
ξ∈K

f(ξtb)

)
c(tb)db.

By following the same steps for 1/t, f̂ , ĉ instead, we obtain also that

(2) ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ((1/t)b)db =

∫
E

(∑
ξ∈K

f̂(ξ(1/t)b)

)
ĉ((1/t)b)db
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We only have to transform the right hand side of equation (1) to the right hand side of (2).
Fortunately, we are in the right setting to use the Riemann-Roch Theorem 3.69:∫
E

(∑
ξ∈K

f(ξtb)

)
c(tb)db =

∫
E

(∑
ξ∈K

f̂(ξ/(tb))

)
c(tb)/|tb|db Riemann-Roch Theorem 3.69

=
∫
E

(∑
ξ∈K

f̂(ξ(1/t)b)

)
ĉ((1/t)b)db substituting b 7→ 1/b

This yields the desired result. �

Finally, we establish the integral
∫
E
c(tb)db that appears in the above lemma.

Lemma 3.77. For all quasi-characters c, we have that∫
E

c(tb)db =

{
κts if c(a) = |a|s
0 otherwise (i.e. c is non-trivial on J)

Proof. Note that
∫
E
c(tb)db = c(t)

∫
E
c(b)db and the latter integral is the integral over J/K×

of the character represented by c. Accordingly, if c is non-trivial on J , then the integral is 0.

If c is trivial on J , then c(a) = |a|s for some s, and recalling that |b| = 1 for b ∈ J , we have
that the value of integral is κts, where κ is the measure of E. �

Proof of Theorem 3.75. For c of exponent greater than 1, we write

(3) ζ(f, c) =

∫ ∞
0

ζt(f, c)
dt

t
=

∫ 1

0

ζt(f, c)
dt

t
+

∫ ∞
1

ζt(f, c)
dt

t

and deal with the two integrals in the sum separately.

Note that: ∫ ∞
1

ζt(f, c)
dt

t
=

∫
|a|≥1

f(a)c(a)da,

so it converges quicker for smaller exponents of c. Since it converges for c with σ(c) > 1 by
assumption, it converges for all c.

Therefore, we are left with the integral
∫ 1

0
ζt(f, c)

dt
t
. The idea is to use Lemma 3.76 to

transform it into an integral over the range 1 to∞, thereby obtaining the functional equation
for ζ(f, c).

We need to distinguish between the case when c is trivial on J and when it is not trivial
on J . However, in both of them we will proceed in the same way. Let us hence define

δ =

{
1 if c trivial on J
0 otherwise

and use it to make the distinction. We then have∫ 1

0

ζt(f, c)
dt

t
=

∫ 1

0

ζ1/t(f̂ , ĉ)
dt

t
+ δ

(∫ 1

0

κf̂(0)(1/t)1−sdt

t
−
∫ 1

0

κf(0)ts
dt

t

)
by Lemmas 3.76 and 3.77.
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Note that if c is trivial on J , then c(a) = |a|s, and Re(s) = σ(c) > 1. This is necessary for
the expression in the bracket to make sense. Evaluating the two integrals in the bracket, we
get ∫ 1

0

κf̂(0)(1/t)1−sdt

t
=
κf̂(0)

s− 1
and

∫ 1

0

κf(0)ts
dt

t
=
κf(0)

s
.

Thus, substituting t 7→ 1
t
, we get that∫ 1

0

ζt(f, c) =

∫ ∞
1

ζt(f̂ , ĉ)
dt

t
+ δ

(
κf̂(0)

s− 1
− κf(0)

s

)
.

In light of the above, equation (3) becomes

ζ(f, c) =

∫ ∞
1

ζt(f, c)
dt

t
+

∫ ∞
1

ζt(f̂ , ĉ)
dt

t
+ δ

(
κf̂(0)

s− 1
− κf(0)

s

)
and the two integrals are homogeneous for all c. This expression therefore gives the desired
analytic continuation of ζ(f, c) to the domain of all quasi-characters. We can read off the
poles from it directly. Moreover, for c(a) = |α|s, ĉ(a) = |a|1−s, we see that even the form of
the equation is unchanged under

(f, c) 7→ (f̂ , ĉ),

so we obtained the desired functional equation ζ(f, c) = ζ(f̂ , ĉ). �

3.6. Functional equation for Hecke L-functions. We can finally apply the theory de-
veloped in this section to obtain a functional equation for the Hecke L-functions. To do
this, we will exhibit for each equivalence class of quasi-characters C, an explicit function in
f ∈ Z such that ζ(f, c) is the (completed) Hecke L-function, and Theorem 3.75 will yield
the analytic continuation and functional equation, i.e. Theorem 2.11. Note that this section
is necessary for another purpose—it will show that our theory is non-empty: i.e. there are
elements f ∈ Z such that ζ(f, c) is non-trivial.

The approach we will take is to build up function f ∈ Z from the local functions we have
seen in Section 3.2.4. We parallel the layout of that section, but now, with adeles at our
disposition, we do not have to split into cases, as before.

The Equivalence Classes of Quasi-characters. We can represent each class by a character.
We will first classify all the characters.

We fix an arbitrary finite set S, containing the set S∞ of infinite primes, and restrict our
attention to characters unramified outside S. A character c of this type is given by

c(a) =
∏
v

cv(av)

for local characters cv satisfying:

(1) cv is unramified for v 6∈ S,
(2)

∏
v cv(α) = 1 for α ∈ K× (by the Product formula 3.70).
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To construct such characters concretely, we write for v ∈ S:

cv(av) = c̃v(ãv)|av|itvv ,

where c̃v is a character of Uv, and tv is a real number.

For v ∈ S, we define

c∗(a) =
∏
v 6∈S

cv(av)

and interpret c∗ as coming from an ideal character. Namely, we have a map ϕS : A∗K → ISK
(where ISK are the ideals prime to S) given by

ϕS(a) =
∏
v 6∈S

pordp(a).

Its kernel is (A∗K)S and c∗ is trivial on (A∗K)S, so

c∗(a) = χ(ϕS(a)),

where χ is some character of (A∗K)S.

Therefore, we have now written our character c as

c(a) =
∏
v∈S

c̃v(ãv) ·
∏
v∈S

|av|itvv · χ(ϕS(a)).

We wish to construct such characters by selecting c̃v, tv, and χ, in a way that guarantees
c(α) = 1 for α ∈ K×.

First, we look at S-units of K, i.e. ε ∈ K× ∩ IS such that ϕS(ε) = OK . Assume #S = m+ 1
and ε0 is a primitive root of unity in K. Dirichlet’s unit theorem says that the groups of
S-units modulo the roots of unity is a free abelian group on m generators, so let {ε1, . . . , εm}
be a basis for this quotient. Now, c is trivial on S-units if and only if c(εj) = 1 for 0 ≤ j ≤ m.

The requirement c(ε0) = 1 is a simple condition on the c̃v:

(4)
∏
v∈S

c̃v(ε0) = 1

Hence, we first select a set c̃v of characters for v ∈ S which satisfies equation (4).

The requirements c(εj) = 1 for 1 ≤ j ≤ m, give conditions on the tv:∏
v∈S

|εj|itvv =
∏
v∈S

c̃v
−1((ε̃j)v)

which is satisfied if and only if tv solve the system of real linear equations

(5)
∑
v∈S

tv log |εj|v = i log

(∏
v∈S

c̃v((ε̃j)v)

)
for 1 ≤ j ≤ m

for some value of the logarithms on the right hand side. (A solutions always exists because
the rank of the matrix (log |εj|v) is m.)

We now select a set of values for those logarithms and a set of numbers t′v satisfying the
system of equations (5).



50 ALEKSANDER HORAWA

Since
∑
v∈S

log |εj|v = 0 for all j, the most general solution is then tv = t′v + t for any t ∈ R.

Having selected c̃v and tv, what are the possible choices for the ideal character χ? Require-
ment (2), the product formula, means that χ must satisfy

(6) χ(ϕS(α)) =
∏
v∈S

c̃−1(α̃v)|α|−itvv

for all α ∈ K×. What are the ideals ϕS(α) for α ∈ K×? They are obtained from principal
ideals by cancelling all the prime from S in the factorization. They form a subgroup HS of
index hS ≤ h in ISK , where h is the class number of K, and hS = 1 for large enough S. Thus,
selecting the character χ amounts to selecting a character on HS—we select χ from one of
the finite number hS of extensions on the chosen character on HS to the whole of ISK .

Any character χ is, in fact, a Hecke Grossencharacter, and conversely, any Hecke Grossen-
character is a character χ. We are hence on the right track to proving Hecke’s Theorem 2.11.

The Corresponding Functions. Suppose we have selected a character c of the form

c(a) =
∏
v

cv(av) =
∏
v∈S

c̃v(ãv)|av|itv · χ(ϕs(a)),

unramified outside S ⊇ S∞. We will find a function f ∈ Z such that ζ(f, c) is non-trivial on
the equivalence class C = {c(−)|−|s | s ∈ C} (and is in fact the completed Hecke L-function).

To this effect, we use the local ζ-function from Section 3.2.4. Let Zv be the class of functions
Z defined in Section 3.2.4 for the field Zv. For v ∈ S, let fv ∈ Zv be the function fv exhibited
in Section 3.2.4 for the surface containing cv. For p 6∈ S, let fp be the characteristic function
of the set Op. Then define the function f by

f(x) =
∏
v

fv(xv)

for any x ∈ AK . (As always, this is actually a finite product for any x ∈ AK .)

We need to show that f ∈ Z, and we will accomplish this in the course of the computations
of the Fourier transforms and ζ-functions.

Their Fourier Transforms. By Lemma 3.50, we have that f ∈ B1(AK) (so f satisfies ax-
iom (Z1)), and

f̂(x) =
∏
v

f̂v(xv).

Importantly, this shows that f̂ is a function of the same type as f : for v ∈ S, the local
factor is f̂v; the difference appears at those v 6∈ S where dv 6= 1, whence f̂v(xv) equals to
∆−1/2 · χd−1

v
.

The ζ-functions. As promised, we will first ensure that f ∈ Z, i.e. axioms (Z2) and (Z3)

hold. We check both of them only for f , not for f̂ , as we have already established that f
and f̂ are of the same type, and hence it is easy to adjust the argument for f to f̂ .

Axiom (Z2). This follows easily after unraveling the definition of f . Indeed:
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• For p 6∈ S: fp = χOp vanishes outside a compact set Op (for f̂ , this compact set is
d−1
p ),

• For p ∈ S finite: fp(ξ) = e2πiΛ(ξ) · χd−1
p f−1 , where f is the conductor of cp, vanishes

outside a compact set d−1f−1 (for f̂ , this compact set is 1 + f).
• For v 6∈ S infinite, fv decays exponentially to 0 as xv goes to infinity.

Then convergence and uniform convergence is clear (for a longer discussion, refer to [CF86,
pp. 345–346]).

Axiom (Z3). We will show that |f(a)||a|σ is summable for σ > 1 on A×K , and hence |f̂(a)||a|σ
will be summable as well, since it is of the same form. We will use Theorem 3.49 for the
product

|f(a)||a|σ =
∏
v

|fv(av)||a|σv ,

almost all of which are 1 on Uv.

For p 6∈ S, we will show that∫
K×p

|fp(ap)|p|ap|σpdap =
∆
−1/2
p

1− (Np)−σ
.

Indeed, recall that fp is the characteristic function of Op by definition. We split Op \ {0}
according to the values of |ap|p, i.e.

Op \ {0} =
∞∐
m=0

pm · Up

to obtain∫
K×p

|fp(ap)|p|ap|σpdap =
∞∑
m=0

∫
pmUp

|ap|σpdap =
∞∑
m=0

∫
pmUp

(Np)−σmdap =
∆
−1/2
p

1− (Np)−σ
,

since the multiplicative measure of Up is ∆
−1/2
p by Lemma 3.35. The summability now follows:

the product ∏
p6∈S

1

1−Np−σ

is known to converge for σ > 1, and the rest is a finite product.

Therefore, we have finally checked that f ∈ Z.

Having established summability, we use Theorem 3.49 to express ζ(f, c) as a product of local
ζ-functions

ζ(f, c) =
∏
v

ζv(fv, cv)

for any quasi-character c =
∏

v cv of exponent σ > 1. If c now denotes the character we have
previously selected, we have

c(a) =
∏
v

cv(av) =
∏
v∈S

cv(av) · χ(ϕS(a)).
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We can compute explitiely the local factors for v 6∈ S:

ζp(fp, cp|−|sp) =

∫
Op

cp(ap)|ap|spdap =
∞∑
m=0

χ(pm)Np−ms∆
−1/2
p =

∆
−1/2
p

1− χ(p)Np−s
,

because for p ∈ S, cp(ap) = χ(ϕS(ap)) = χ(pordpap).

Now, recall that the Hecke L-function for the Grossencharacter χ was:

L(s, χ) =
∏
p6∈S

1

1− χ(p)Np−s
.

Moreover, the ζ-function can be written as:

ζ(f, c|−|s) =
∏
v∈S

ζv(fv, cv|−|sv) ·
∏
p6∈S

∆
−1/2
p L(s, χ).

Once again, we do a similar computation to obtain:

ζ(f̂ , ˆc|−|s) =
∏
v∈S∞

ζv(f̂v, ˆcv|−|sv)
∏
p6∈S

χ(dp)∆
−s
p · L(1− s, χ)

Finally, the functional equations:

ζ(f̂ , ĉ) = ζ(f, c) and ζv(fv, cv) = %v(cv)ζv(f̂v, ĉv)

yield for L(s, χ) the functional equation

L(1− s, χ) =
∏
v∈S

%v(c̃v|−|s+itvv ) ·
∏
v 6∈S

∆
s−1/2
p χ(dp)L(s, χ).

It is not hard to see that this yields that completed Hecke L-functions and the functional
equation for them, as in the statement of Hecke’s Theorem 2.11.

We end this section by remarking that we could have selected a different (easier) function
f ∈ Z, which would yield a functional equation for the Dirichlet L-series or the Dedekind
ζ-function directly.

4. Class Field Theory

We initially defined the generalized Dirichlet character on the ray class group. It turns out
that it is in fact a character of a Galois group of an abelian Galois extension. This subtle
connection is exhibited using class field theory. We only state a few necessary definitions
and theorems—for a formal introduction to class field theory, see [Lan94, Part Two].

We first note that a character χ : Imk /P
m
K → C× might have a non-trivial kernel H, in which

case it is in fact a character of the quotient group Imk /P
m
KH. Hence this is the group that we

are in fact interested in.

Definition 4.1. Let H be a subgroup of the ray class group. The quotient Imk /P
m
KH is called

a class group. A field extension L of K is a class field for this class group if Gal(L/K) ∼=
ImK/P

m
KH.

Theorem 4.2. For any class group, there exists a unique class field.
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For the proof, see [Lan94, Chap. XI].

In general, if L/K is an abelian extension and m is a modulus divisible by all primes of K
that ramify in L, then we defined the Artin map (Definition 1.17) by

Frob: ImL → Gal(L/K),

p 7→ Frobp.

Theorem 4.3 (Artin Reciprocity). The Artin map Frob is surjective. Moreover, for some m,
divisible by all ramified primes of K, we have that Pm

K ⊆ ker(Frob) . In particular, for some
subgroup H ⊆ ImK/P

m
K , we have

Gal(L/K) ∼= ImK/P
m
KH,

i.e. L is a class field for the class group ImK/P
m
KH.

For the proof, see [Lan94, Theorems 1–3, Chap. X§2].

We can now restate the definitions of a generalized Dirichlet character and a conductor in
this terminology.

Proposition 4.4. Suppose L/K is a class field associated to m and H. A generalized Dirich-
let character is a character of the Galois group Gal(L/K) ∼= ImK/P

m
KH and the conductor is

f is the minimal modulus m divisible by all ramified primes such that Pm
K is contained in the

kernel of the Artin map.

Proof. This is simply a restatement of the previous definitions in terms of class field theory,
so the proof is a straightforward application of the preceding theorems. �

This gives another statement of Hecke’s theorem 2.11 in the special case of a generalized
Dirichlet character. In fact, by Artin Reciprocity 4.3, we know that the Hecke L-function
can be defined and has a holomorphic analytic continuation for any non-trivial character of
the Galois group of an abelian extension.

Suppose we are given an abelian extension of number fields L/K. Recall that we have defined
(Definition 2.1) the Dedekind ζ-function of the number field K to be

ζK(s) =
∏
p

1

1−Np−s
.

We also know that L is a class field of some class group G = ImK/P
m
KH, and for any character χ

of G we have defined the Hecke L-function L(s, χ). There is a nice relation between the two
functions.

Theorem 4.5 (Weber). Let L/K be an abelian extension of number fields and Ĝ denote the
group of characters of the class group G. Then

ζL(s) =
∏
χ∈Ĝ

L(s, χ).
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Proof. We want to show that∏
P

1

1−NP−s
=
∏
χ

∏
p

1

1− χ(p)Np−s

by verifying it locally, prime by prime. So fix an unramified prime p. If there are g primes P
above p and f = fP/p, then NP = Npf and by Corollary 1.8 we have [L : K] = gf . We will
show that ∏

P|p

1

1−NP−s
=
∏
χ

1

1− χ(p)Np−s
.

First, note that ∏
P|p

1

1−NP−s
=

(
1

1− (Np−s)f

)g
=

∏
ζf

1

1− ζfNp−s

g

,

where the product is over fth roots of unity ζf .

Now, recall that the class group G isomorphic to the Galois group Gal(L/K) via the Artin
map Frob. Since the order of Frobp in Gal(L/K) is f , the order of p in G is f as well.
Therefore for any character χ of G we have that

χ(p)f = 1,

or, in other words, χ(p) = ζf , some fth root of unity. Finally, by decomposing G as a product
of cyclic groups, one can show that each of the roots of unity appears as χ(p) equally often.
Since #G = [L : K] = gf , we obtain that∏

χ

1

1− χ(p)Np−s
=

∏
ζf

1

1− ζfNp−s

g

,

which shows the equality for unramified primes.

Finally, we show that the ramified case reduces to the unramified case. Suppose p is a
ramified prime. We have to show that∏

P|p

1

1−NP−s
=
∏
χ

1

1− χ(p)Np−s
,

where χ runs over all the characters of the group G′ = Im
′

K /P
m′
K H for m′, the part of m that

is relatively prime to p. However, we know that G′ is the class group of some class field M
sitting between K and L. Therefore, we have reduced the problem to showing the equality
for the extension M/K. Since M/K is unramified, we are done. �

Corollary 4.6. We have
ζL(s)

ζK(s)
=

∏
χ∈Ĝ\{χ0}

L(s, χ)

where χ0 is the trivial character, the function is holomorphic on the entire complex plane.

Proof. The equality follows from L(s, χ0) = ζK(s) for the trivial character χ0 and the holo-
morphy of the function follows from the holomorphy of each component L(s, χ) for χ 6= χ0

by Theorem 2.11. �
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Moreover, Hecke proved that the equality in Theorem 4.5 holds for the completed L-functions,
Λ(s, χ), from Theorem 2.11.

Theorem 4.7 (Hecke). Let L/K be an abelian extension of number fields and Ĝ denote the
group of characters of G. Then for the completed abelian L-functions Λ(s, χ) we have

ζL(s) =
∏
χ∈Ĝ

Λ(s, χ).

By Weber’s Theorem 4.5, only only has to check the equality for infinite primes and for the
exponential factor. This is done, for example, in [Sny02, Theorem 2.1.2]

5. Artin L-functions

In this section, we follow [Sny02, Chap. 2]. We will make free use of basic results from
representation theory, although we will state some of the necessary definitions and theorems.
The background can be found in [FH91, Part I] and [Ser77].

We wish to generalize L-functions to characters of any Galois group of an extension of number
fields L/K by exploiting the Artin Reciprocity 4.3. Recall that by surjectivity of the Artin
map, any element of the Galois group Gal(L/K) is a product of Frobenius elements for
primes p of K. We wish to restate the definition of the local factors in the product defining
the L-function.

We want to first define the local factor at an unramified prime p, i.e. at the element Frobp ∈
Gal(L/K). Suppose we are given an irreducible representation ρ : Gal(L/K)→ GL(V ) for a
complex vector space V with character χ : Gal(L/K)→ C. If Gal(L/K) is abelian as before,
then the representation is 1-dimensional, and so

det(1−Np−sρ(Frobp))
−1 = (1−Np−sρ(Frobp))

−1 = (1−Np−sχ(Frobp))
−1

is the local factor at p of the abelian L-function. Now, regardless of whether Gal(L/K) is
abelian or not, we may define the local factor at an unramified prime p to be

Lp(s, χ) = det(1−Np−sFrobp)
−1.

Now, suppose the prime p ramifies in L/K and P lies above p. Then the Frobenius element
FrobP/p does not determine a unique element of Gal(L/K); indeed

FrobP/p ∈ DP/IP,

where DP is the decomposition group and IP is the inertia group. While FrobP/p does not
determine an action on V , we can consider the subspace V IP of V invariant under the action
of IP. The action of ρ of G on V IP factors through the action ρIP of DP/IP on V IP , so the
element FrobP/p ∈ DP/IP acts on V IP . Altogether, this motivates the following definition.

Definition 5.1. Let L/K be a Galois extension of number fields and ρ : Gal(L/K)→ GL(V )
be a representation of the Galois group of L/K. Then the local factor of the Artin L-function
associated to V at a finite prime p of K is

Lp(s, V ;L/K) =
1

det(1−Np−sρIp(Frobp))
.
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Note that this definition actually makes sense. The Frobenius Frobp was defined as FrobP/p by
selecting any prime P over p; selecting a different prime P′ over p conjugates the Frobenius
by an element of the Galois group according to Proposition 1.15, and the determinant is
invariant under conjugation.

We will sometimes simplify the notation. We will write Lp(s, V ) for Lp(s, V ;L/K) when
the extension is implicitly clear. Moreover, if χ is the character of the representation V ,
then we will sometimes write Lp(s, χ) for Lp(s, V ). Finally, if we have fixed a representation
ρ : Gal(L/K) → GL(V ), then we will write Frobp for the element ρIp(Frobp) ∈ GL(V Ip). In
that case, we will make the vector space V Ip in the determinant explicit by writing the local
factor as

1

det(1−Np−sFrobp;V Ip)
.

We still have to verify that the local factors of the Artin L-functions agree with the local
factors of the abelian L-functions.

Proposition 5.2. If Gal(L/K) is abelian and ρ is an representation with character χ, then

Lp(s, χ) =
1

1−Np−sχ(p)
,

so the local factors of the Artin L-functions coincide with the local factors of the Hecke
L-functions.

We first prove a lemma.

Lemma 5.3. If H is a normal subgroup of G = Gal(L/K) and χ is a character of G/H,
then

Lp(s, χ;LH/K) = Lp(s, χ;L/K).

Proof. Fix a prime q above p in LH/K and a prime P above q in L/LH . We then know
that FrobP/p restricted to LH is FrobP/q by Proposition 1.16. Moreover, IP = IqH. But this
means that

ρIP(FrobP/p) = ρIq(Frobq/p),

so

Lp(s, χ;LH/K) =
1

det(1−Np−sρIq(Frobq/p))
=

1

det(1−Np−sρIP(FrobP/p))
= Lp(s, χ;L/K)

as requested. �

Proof of Proposition 5.2. This follows clearly from the preceeding lemma. Let N = kerχ, so
that χ is an irreducible (and hence 1-dimensional) character of G/H. Then we know that

Lp(s, χ;L/K) = Lp(s, χ;LH/K) by Lemma 5.3
= (det(1−Np−sFrobp;V

Ip))−1 by definition
= (1−Np−sχ(Frobp))

−1 since ρ is 1-dimensional
= (1−Np−sχ(p))−1 by Artin Reciprocity 4.3

where we abuse the notation and denote the character of both the ideal group and the
isomorphic Galois group by χ (the isomorphism given by Artin Reciprocity 4.3). �



L-FUNCTIONS 57

Definition 5.4. Let L/K be a Galois extension of number fields and V a representation of
Gal(L/K). The Artin L-function of V is defined for Re(s) > 1 by the Euler product

L(s, V ) =
∏
p

Lp(s, V )

where Lp(s, V ) is the local factor corresponding to the finite prime p.

As in the case of the Hecke L-functions, we will be interested in extending the function mero-
morphically to the entire complex plane. It will turn out, all the necessary information about
the group is encoded by 1-dimensional representations (which are in fact representations of
abelian subgroups of Gal(L/K)) and can be recovered using additivity and induction. Since
the Artin L-functions coincide with Hecke L-functions in the abelian case, we will be able to
use these methods to extend Hecke’s Theorems 2.11 and 4.7 to Artin L-functions.

5.1. Additivity. First of all, we will ensure that the Artin L-function is additive in the
sense that

Lp(s, χ1 + χ2) = Lp(s, χ1)Lp(s, χ2)

for characters χ1, χ2 of Gal(L/K).

We will restate the definition of a local factor in a way that will make this explicit.

Proposition 5.5 (Artin). For a character χ or Gal(L/K) we have

Lp(s, χ) = exp

(
−
∞∑
j=1

χ(Frobjp)

j
Np−sj

)
.

Proof. Recall that

Lp(s, χ) = (det(1−Np−sFrobp;V
Ip))−1.

First, note that ρIp(Frobp) is diagonalizable: its minimal polynomial divides the polynomial
X#(GP/IP) − 1, so its roots are distinct. So if λ1, . . . , λn are its eigenvalues, then

det(1−Np−sFrobp;V
Ip) =

n∏
i=1

(1−Np−sλi).

Therefore:

logLp(s, χ) = −
n∑
i=1

log(1−Np−sλi) = −
n∑
i=1

∞∑
j=1

λji
j
Np−sj = −

∞∑
j=1

χ(Frobjp)

j
Np−sj,

as requested. �

Corollary 5.6 (Artin). For characters χ1, χ2 of Gal(L/K) we have

Lp(s, χ1 + χ2) = Lp(s, χ1)Lp(s, χ2)

and hence

L(s, χ1 + χ2) = L(s, χ1)L(s, χ2).

Proof. The equation is clear for the reformulation of the local factor in Proposition 5.5. �
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Note that we could have taken the equation in Proposition 5.5 as the definition of the local
factor of the Artin L-function; however, the approach we have taken is easier to work with
later on.

In particular, given any class function ψ, we can write it as a linear combination of irreducible
characters χ =

∑
χ

rχχ, and we could define

L(s, ψ) =
∏
χ

L(s, χ)rχ .

5.2. Induction. In this subsection, we will describe induction, a method for obtaining a
representation of an entire group G from a representation of its subgroup H, and apply it to
L-functions.

Note that given a representation V of G, we can clearly restrict it to a representation of a
subgroup H. We will denote it by ResGHV , or simply ResHV . Similarly, any representation
of H induces a representation of G.

Definition 5.7. Suppose that H is a subgroup of G and W is a representation of H. The
induced representation from H to G is the vector space

IndGHW = {f : G→ W | f(hg) = hf(g) for all h ∈ H, g ∈ G}.
with the action of G given by

(gf)(g′) = f(gg′).

If χ is the character of W , then we will write IndGHχ for the character of the induced repre-
sentation IndGHW .

Remark 5.8. There is also a more explicit description of the induced representation. For a
coset σ ∈ G/H with representative gσ ∈ G, we write

σW = {gσw | w ∈ W}
(this makes sense, since for any h ∈ H, we have hW = W .) Then we define

IndGHW =
⊕

σ∈G/H

σW.

To define an action, we note that for any g ∈ G we have g · gσ = gτ · h for some τ ∈ G/H
and h ∈ H, and for any gσw ∈ σW we let

g (gσw) = gτ (hw).

Intuitively, since any element of G is in a coset of G/H, we let the coset act by permuting
the components in the direct product of σW and the particular representative from H act
on a component according to the action of H on W .

One way to work out the character of the induced representation is to relate it to other
characters using the following reciprocity law.

Theorem 5.9 (Frobenius Reciprocity, [FH91, Cor. 3.20]). Suppose ϕ is a character of a
group G and ψ is a character of a subgroup H of G. Then

(ϕ, IndGHψ) = (ResGHϕ, ψ).
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The crucial fact is that Artin L-functions are well-behaved under induction.

Theorem 5.10 (Artin). Let K ⊆ M ⊆ L be a tower of extensions of number fields with
Gal(L/K) = G and Gal(L/M) = H. If χ is a character H, then

L(s, χ;L/M) = L(s, IndGHχ;L/K).

The main tool in the proof will be Mackey’s theorem, which describes explicitly the compo-
sition of restriction with induction.

Theorem 5.11 (Mackey’s Theorem). If H and G′ are subgroups of G, W is a representation
of H, then for any representatives {τ} of the double cosets G′\G/H, we have that

ResG′IndGHW
∼=
⊕
τ

IndG
′

G′∩τHτ−1W τ

where W τ is a representation of τHτ−1 given by ρτ (x) = ρ(τ−1xτ).

For the proof of the Theorem, see [Ser77, Chap. 7].

To prove Theorem 5.10, we prove it for local factors of the Artin L-function.

Lemma 5.12. Let K ⊆M ⊆ L be a tower of extensions of number fields with Gal(L/K) = G
and Gal(L/M) = H. Fix a prime p of K. If χ is a character H, then∏

q|p

Lq(s, χ;L/M) = Lp(s, IndGHχ;L/K),

where the product is over finite primes q of M above p.

Proof. Let us introduce some notation. Suppose χ is a character of a representation W of H
and V = IndGHW . Moreover, suppose the primes above p in M/K are q1, . . . , qg and choose
a prime Pi above qi in L/M for each i. Moreover, we let Di = DPi/p, the decomposition
group, and Ii = IPi/p, the inertia group.

Since FrobP1 ∈ D1/I1, we have that

Lp(s, V ;L/K) = det(1− FrobP1Np−s;V I1)−1 = det(1− FrobP1Np−s; (ResD1V )I1)−1.

We are now in a position to apply Mackey’s Theorem 5.11 to ResD1V = ResD1IndGHW .

For that sake, we will choose representatives for the double cosets D1\G/H. Fix any repre-
sentatives {σi} of D1\G. They are determined by their value on P1; indeed, if σiP1 = σjP1,
then σiσ

−1
j P1 = P1 and hence σiσ

−1
j ∈ D1. Moreover, G acts transitively on the primes P

above p in L/K, and hence {σi} does as well. To choose representatives of D1\G/H, we
have to choose representatives {τj} of {σiH}. Since σi determines σiP1, a unique prime
above p in L/K, it also determines a unique prime σiq1 above p in M/K. However, H
acts transitively on the primes P above q in L/M , so each representative τj is determined
uniquely by its value on q1. Therefore, we have g representatives {τi}gi=1 of the double cosets
and we may assume that τiqi = q1. Since Pi above qi were chosen arbitrarily, we choose
them in a way that ensures τiPi = P1 as well.
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Therefore, Mackey’s Theorem 5.11 yields

ResD1IndGHW =

g⊕
i=1

IndD1

D1∩τiHτ−1
i

W τi ,

and hence

Lp(s, V ;L/K) =
g∏
i=1

det

(
1− FrobP1Np−s;

(
IndD1

D1∩τiHτ−1
i

W τi

)I1)−1

=
g∏
i=1

det

(
1− τ−1

i FrobP1τiNp−s;
(

Ind
τ−1
i D1τi

τ−1
i D1τi∩H

W
)τ−1

i I1τi
)−1 ,

by conjugating each term by τ−1
i . We now recall that Proposition 1.15 shows that τ−1

i D1τi =
Di, τ

−1
i I1τi = Ii, and τ−1

i FrobP1τi = FrobPi . Hence:

Lp(s, V ;L/K) =

g∏
i=1

det
(

1− FrobPiNp−s;
(
IndDiDi∩HW

)Ii)−1

Finally, note that Di ∩ H = Hi and Ii ∩ H = I ′i are respectively the decomposition and
inertia groups of Pi/qi in the extension L/M . Therefore:

g∏
i=1

Lqi(s,W ;L/M) =

g∏
i=1

det
(

1− FrobPi/qiNq−si ;W I′i

)−1

.

We have thus reduced the theorem to the case g = 1, i.e. the tower of extensions LDi ⊆
LHi ⊆ L. Explicitly, it is enough to show that

(7) det
(
1− FrobPiNp−s; (IndDiHiW )Ii

)
= det

(
1− FrobfiPiNq−si ;W I′i

)
where fi = fqi/p, since FrobfiPi ⊆ FrobPi/qi by Proposition 1.16 and hence the two sets
determine the same action.

The rest of the proof is a straightforward determinant calculation. The group Di/Ii is cyclic

generated by FrobPi and the group Hi/I
′
i is cyclic generated by FrobfiPi . Therefore, the

quotient can be written as

(Di/Ii)
/

(Hi/I
′
i) = {1,FrobPi , . . . ,Frobfi−1

Pi
}.

Then, following Remark 5.8, we can write

(
IndDiHiW

)Ii
=

fi−1⊕
j=0

FrobjPiW
I′i

with the action of FrobPi ∈ Di/Ii given by

FrobPi(w1, w2, . . . , wfi) =
(
FrobjPiwfi , w1, w2, . . . , wfi−1

)
.

Choose a basis for W and let A be the matrix representing FrobjPi ∈ Hi/I
′
i acting on W I′i .

Then, by the discussion above, the matrix representing FrobPi acting on
(
IndDiHiW

)Ii
is given
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by 
0 I 0 · · · 0
0 0 I · · · 0
...

...
... · · · ...

0 0 0 · · · I
A 0 0 · · · 0


Therefore:

det
(
1− FrobPiNp−s; (IndDiHiW )Ii

)
= det


I −Np−s 0 · · · 0
0 I −Np−s · · · 0
...

...
... · · · ...

0 0 0 · · · −Np−s

−ANp−s 0 0 · · · I

 .

We calculate the determinant by adding Np−s times the second row to the first row, then
adding Np−2s times the second row to the first row, and continuing this way until we obtain

det
(
1− FrobPiNp−s; (IndDiHiW )Ii

)
= det


I − ANp−fis 0 0 · · · 0

0 I −Np−s · · · 0
...

...
... · · · ...

0 0 0 · · · −Np−s

−ANp−s 0 0 · · · I

 .

Then we expand by the first row of the matrix to get

det
(
1− FrobPiNp−s; (IndDiHiW )Ii

)
= det(I − ANp−sfi) = det(1− FrobfiPiNq−si ;W I′i),

where the last equality follows from Nqi = Npfi . This shows equation (7) holds and hence
completes the proof. �

Proof of Theorem 5.10. We apply Lemma 5.12 to obtain

L(s, IndGHχ;L/K) =
∏
p

Lp(s, IndGHχ;L/K) =
∏
p

∏
q|p

Lq(s, χ;L/M) = L(s, χ;L/M),

where p are primes of K and q are primes of M . �

5.3. Brauer’s Theorem and extending abelian L-functions. We will now use Brauer’s
Theorem to show that we can use additivity and induction to express an Artin L-function as
a product of abelian L-functions. Moreover, we will show that this factorization is unique.

Theorem 5.13 (Brauer’s Theorem). Each character of G is a linear combination with
integer coefficients of characters induced from 1-dimensional characters.

For the proof of this theorem, see [Ser77, Chap. 10].

Remark 5.14. Artin himself was only able to prove the weaker statement that any character
is a linear combination with rational coefficients of characters induced from 1-dimensional
characters, know sometimes as the Artin Theorem.

Theorem 5.15. An Artin L-function is a product of abelian L-functions.
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Proof. Suppose χ is a character of a representation of Gal(L/K), and let χ1, . . . , χn be
the 1-dimensional representations of G. Since χi are 1-dimensional representations, they
are representations of abelian subgroups Hi of G. Then by Brauer’s Theorem 5.13 we can
express χ as a linear combination

χ =
n∑
i=1

riIndGHiχi

with ri non-negative integers. Then by Corollary 5.6 and Theorem 5.10, we have

L(s, χ) = L

(
s,

n∑
i=1

riIndGHiχi

)
=

n∏
i=1

L(s, IndGHiχi)
ri =

n∏
i=1

L(s, χi)
ri

and we have expressed L(s, χ) as a product of abelian L-functions. �

Note that this already yields a meromorphic continuation and functional equation for the
Artin L-function; however, it does not give an explicit formulation. One thing we still have
to ensure is that expressing χ as another linear combination does not change the product of
abelian L-functions.

For a group G we will denote its group of characters by Ĝ, the vector space of all class
functions on G by FunC[G], and the subgroup generated by σ ∈ G by Hσ.

Suppose we are given a collection fσ : Ĥσ → C for σ ∈ G of additive functions. We want to
find out when they determine a unique additive C-linear function

f : FunC[G]→ C

such that for any σ ∈ G and any character χ : Hσ → C we have

f(IndGHσχ) = fg(χ).

First, recall that we have an inner product on FunC[H] for a finite group H given by

(ϕ, ψ) =
1

|H|
∑
τ∈H

ϕ(τ)ψ(τ)

and the irreducible characters of H form an orthonormal basis for FunC[H] with respect to
this inner product.

Lemma 5.16. For a finite group H, the map F : FunC[H] → FunC[H]∗ to the dual space
FunC[H]∗ of FunC[H] given by

F (ψ)(ϕ) = (ϕ, ψ)

is a (semi-linear) isomorphism.

Proof. Clearly, the resulting map F (ψ) is linear:

F (ψ)(λ1ϕ1 + λ2ϕ2) = λ1(ϕ1, ψ) + λ2(ϕ2, ψ)

and F is semi-linear:

F (λ1ψ1 + λ2ψ2)(ϕ) = (ϕ, λ1ψ1) + (ϕ, λ2ψ2) = λ1(ϕ, ψ1) + λ2(ϕ, ψ2).
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To show that F is injective, take any ψ ∈ FunC[H] and suppose F (ψ) = 0. We have that
ψ =

∑
i λiχi for some χi are irreducible characters of H, λi ∈ C. However, for any i, we have

0 = F (ψ)(χi) = (χi, ψ) =

(
χi,
∑
i

λiχi

)
= λi

by orthogonality of characters, and hence ψ = 0.

Finally, the dimensions of FunC[H] and FunC[H]∗ are equal, so the injective semi-linear map
must be an isomorphism. �

Using this lemma, we can restate the above problem in terms of class functions. Indeed, any

function fσ : Ĥσ → C is given by F (ψσ) = (−, ψσ) for some ψσ ∈ FunC[Hσ] and the function
f is given by F (ψ) = (−, ψ) for some ψ ∈ FunC[G]. The following proposition provides a
criterion for extending the collection of ψσ to a class function ψ.

Proposition 5.17. A collection ψσ ∈ FunC[Hσ] for all σ ∈ G induces a unique class function
ψ ∈ FunC[G] such that

ResGHσψ = ψσ

for all g ∈ G exactly when:

(1) ResHσH
σk
ψσ = ψσk for all integers k,

(2) ψσ(σ) = ψτστ−1(τστ−1) for any σ, τ ∈ G.

Proof. First, suppose that a function ψ extends the functions ψσ. Then

ψ(σ) = ResGHσψ(σ) = ψσ(σ).

This proves uniqueness of ψ; we will have to prove that ψ defined by the above equation is a
well-defined class function that extends the functions ψσ. The second condition ensures that
ψ is a class function; indeed for any σ ∈ G and τ ∈ G we have

ψ(τστ−1) = ψτστ−1(τστ−1) = ψσ(σ) = ψ(σ).

Moreover, the first condition shows that ResGHσψ = ψσ, since for any σk ∈ Hσ

ψ(σk) = ψσk(σ
k) = ResHσH

σk
ψσ(σk) = ψσ(σk),

so the function ψ extends the functions ψσ. �

We now know that fσ = (−, ψσ) and f = (−, ψ) for the ψ extending ψσ. We check that this

function f indeed satisfies the desired property: for any σ ∈ G and any character χ ∈ Ĥσ

we have

f(IndGHσχ) = (IndGHσχ, ψ) = (χ,ResGHσψ) = (χ, ψσ) = fσ(χ),

where we use the Frobenius Reciprocity 5.9.

We now turn to the case of Artin L-functions.

Theorem 5.18. The Artin L-function is the unique function that extends the abelian L-
functions for characters χσ of the cyclic subgroups Hσ by additivity and induction.
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The proof of the theorem is technical and notationally difficult, but it is essentially a straight-
forward application of the previous results of this section, particularly, Proposition 5.17.

Proof. First, note that the abelian L-functions are multiplicative, not additive, so for G =

Gal(L/K), σ ∈ G and χ ∈ Ĥσ, we will be considering the additive functions

L̂(s, χ) = logL(s, χ;L/LHσ).

We first claim that for

ψσ(τ) = |Hσ|
∑
p

∑
j s.t. τ∈Frobjp

j−1Np−sj,

where the first sum ranges over primes of LHσ and the second sum ranges over j from 1 to∞
such that τ ∈ Frobjp, we have that

L̂(s, χ) = (χ, ψσ).

Indeed:
(χ, ψσ) = 1

|Hgσ|
∑
τ∈Hσ

χ(τ)ψσ(τ)

=
∑
p

∑
τ∈Hσ

∑
j s.t. τ∈Frobjp

χ(τ)j−1Np−sj

=
∑
p

∞∑
j=1

χ(Frobjp)

j
Np−sj

= L̂(s, χ)

where sums are over primes p of LHg and the last equality follows from Proposition 5.5.
Therefore, we only have to check that ψg satisfies the two assumptions of Proposition 5.17.

Let us first show (1) holds, i.e. for any τ ∈ Hσk we have that

ψσ(τ) = ψσk(τ).

In what follows, we let p range over all primes of LHσ and q range over all primes of LHσk .
Suppose p factors in LHσk/LHσ as

p = q
ep
1 . . . qepn

and recall that Nqi = Npfp , Frobqi = Frob
fp
p . We take τ ∈ Hσk and transform ψσ(τ) to show

it is equal to ψσk(τ).

ψσ(τ) = |Hσ|
∑
p

∑
j s.t. τ∈Frobjp

j−1Np−sj

= |Hσ|
∑
p

gp∑
i=1

e−1
p

∑
j s.t. τ∈Frob

fpj
qi

j−1Np−sj

= |Hσ|
∑
p

σ−1
p e−1

p

∑
m s.t. τ∈Frobmqi

f−1
p m−1Nq−smi substituting m = fpj

= |Hσk |
∑
q

∑
m s.t. τ∈Frobmq

m−1Nq−sm by Corollary 1.8

= ψσk(τ)

which shows (1).
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To finish the proof, we have to show (2), i.e. for any σ, τ ∈ G we have that

ψσ(σ) = ψτστ−1(τστ−1)

Note that Hτστ−1 = τHστ
−1 and hence the primes p of LHσ correspond to the primes τp

of LHτστ−1 . Moreover, the Frobenius satisfies Frobτp = τ−1Frobpτ by Proposition 1.15, so
τ ∈ Frobp if and only if τ−1στ ∈ Frobp, and we are done. �

5.4. Factorization of Artin ζ-function. We have now enough information to generalize
Weber’s Theorem 4.5 about the factorization of the ζ-function in terms of L-functions.

Theorem 5.19 (Artin). If L/K is a Galois extension of number fields, then

ζL(s) =
∏
χ

L(s, χ)χ(1),

the product ranging over all irreducible characters of Gal(L/K).

Proof. Since Artin L-functions extend abelian L-functions (Proposition 5.2), we have that

ζL(s) = L(s, χ0;L/L)

for the trivial character χ0. By the induction formula (Theorem 5.10), we see that

ζL(s) = L(s, IndG{1}χ0, L/K).

Finally, by Frobenius Reciprocity 5.9, for any irreducible character χ, we have that

(χ, IndG{1}χ0)G = (ResG{1}χ, χ0){1} = χ(1),

so

IndG{1}χ0 =
∑
χ

χ(1)χ.

By additivity (Corollary 5.6), we obtain

ζL(s) = L

(
s,
∑
χ

χ(1)χ;L/K

)
=
∏
χ

L(s, χ)χ(1)

which completes the proof. �

First, note that this agrees with the abelian case (Weber’s Theorem 4.5), since χ(1) =
dimχ = 1, if χ is a character of an abelian group.

Moreover, note that this means that the quotient ζL(s)
ζK(s)

is a meromorphic function. However,

we could previously conclude that ζL(s)
ζK(s)

is a holomorphic function, but this is not any more

the case: we only know that L(s, χ) is a meromorphic function. Artin conjectured that
L(s, χ) is a holomorphic function for any χ, and this is still an open problem today.
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5.5. Local Factors at Infinite Primes. We now turn to describing the local factors of the
completed Artin L-function that extend the local factors appearing in the completed abelian
L-function (see Definition 2.10 and Theorem 2.11).

Recall from Definition 2.10 that:

ΓR(s) = π−s/2Γ(s/2),

ΓC(s) = ΓR(s)ΓR(s+ 1) = 2(2π)−sΓ(s).

Suppose v is an infinite prime of K divisible by an infinite prime w of L. By definition Dw, the
decomposition group of w over v, is either trivial (if v and w are both real or both complex) or
complex conjugation (if v is real and w is complex). Therefore, for a 1-dimensional character
χ of Gal(L/K), we can restate the Definition 2.10 as follows:

Lv(s, χ) =

 ΓC(s) if v is complex,
ΓR(s) if v is real and ResDwχ is trivial,
ΓR(s+ 1) if v is real and ResDwχ is non-trivial.

We want to extend this definition to the non-abelian case. So let L/K be a Galois extension,
V be a representation of Gal(L/K) with character χ, and w|v be infinite primes. We are
only interested in the local factor, so the definition should only depend on ResDwV (as in the
abelian case). Since Dw only has two elements, its two irreducible characters are the trivial
one χ0 and the sign one χ−, so we can write

ResDwχ = (dimV Dw)χ0 + (codimV Dw)χ−,

To ensure additivity, it is natural to use the following definition.

Definition 5.20. If v is an infinite prime, then we define the local factor of the Artin L-series
at v to be

Lv(s, V ) =

{
ΓC(s)χ(1) if v is complex,

ΓR(s)dimV DwΓR(s+ 1)codimV Dw if v is real.

We still have to check that these local factors behave well under induction.

Theorem 5.21. Let K ⊆ M ⊆ L be a tower of extensions of number fields with Gal(L/K)
and Gal(L/M) = H. If χ is a character of H and v is an infinite prime of K, then∏

w|v

Lw(s, χ;L/M) = Lv(s, IndGHχ;L/K),

where the product is over infinite primes w of M above v.

Proof. The proof is similar to the proof of the corresponding theorem for finite primes, The-
orem 5.10. Let W be a representation of H and V = IndGHW . Fix some infinite prime v and
suppose it factors in M as w1w2 . . . wg. For each i, choose some ui ∈ L, sitting over wi. Let
Di denote the decomposition group of ui/v. As before, we can take coset representatives {τi}
of D1\G/H such that τiui = u1. Then Di = τ−1

i D1τi and Hi = Di ∩H is the decomposition
group for ui/wi.

We apply Mackey’s Theorem 5.11 to obtain

ResG1V
∼=

g⊕
i=1

(
IndD1

D1∩τiHτ−1
i

W τi
)
.
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The character on the direct sum of spaces is the sum of characters on the components.
Moreover, the dimension of the trivial component is not affected by conjugation by elements
of the Galois group. Thus, whether v is complex or real, we obtain:

Lv(s, V ;L/K) =

g∏
i=1

Lv(s, IndDiHiW ;L/LDi)

and again we have reduced the statement to the case g = 1. We thus omit the indices i in
the next part of the proof.

We have a tower u|w|v of infinite primes. If v, w are both complex or both real, then H = D
and the induction is trivial. Thus we may assume that v is real and w is complex, so u is also
complex. Since H is trivial, χ is some multiple of the trivial character χ0, and consequently
V = IndGHW has character dim(W )IndGHχ0. Therefore, IndGHχ = dim(W )χ0 + dim(W )χ−.
We have that:

Lv(s, IndGHχ;L/K) = ΓR(s)dim(W )ΓR(s+1)dim(W ) = ΓC(s)dim(W ) = ΓC(s)χ(1) = Lw(s, χ;L/M).

This shows the desired equality in the case g = 1, which completes the proof. �

5.6. The Artin Conductor. Recall that in the statement of Theorem 2.11, there was an
exponential factor, namely

(|∆|N f(χ)0)s/2.

In order to extend the theorem to Artin L-functions, we first need to generalize this factor to
the non-abelian case. Therefore, we need a non-abelian equivalent of a conductor, the Artin
conductor. In this section, we follow [Ser79, Chap. VI].

5.6.1. Higher Ramification Groups. Recall that in Section 1 we introduced the decomposition
and the inertia group which provided a way of describing the ramification of a prime in an
extension. We will study ramification further by introducing the so-called higher ramification
groups. Since we are interested in how a prime ramifies, we will temporarily restrict our
attention to the local case and consider the completion of the field under a valuation.

So let K be a field which is complete under the discrete valuation vK and let A = {x ∈
K | vK(x) ≥ 0} be its valuation ring. Then K is a local field, so let p be the unique maximal
ideal of K, and A = A/p be the residue field. Consider a finite Galois extension L of K
which is complete under the discrete valuation vL and let B = {x ∈ L | vL(x) ≥ 0}, P be
its maximal ideal, and B = B/P be the residue field.

Let G = Gal(L/K). Note that G = DP, since P is the only prime of L and G preserves the
set of primes of L above p.

There exists an x ∈ B such that x generates B as an A-algebra.

Lemma 5.22. Let σ ∈ G and i ≥ −1 be an integer. The following are equivalent:

(1) σ acts trivially on B/Pi+1,
(2) vL(σ(b)− b) ≥ i+ 1 for all b ∈ B,
(3) vL(σ(x)− x) ≥ i+ 1.
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Proof. The equivalence of (1) and (2) is clear: σ acts trivially on B/Pi+1 if an only if
σ(b) = b mod Pi+1 for any b ∈ B if and only if σ(b) − b is divisible by Pi+1, or in other
words vL(σ(b)− b) ≥ i+ 1.

To see that (1) and (3) are equivalent, note that the image xi of x in Bi = B/Pi+1 generates
Bi as an A-algebra. Then σ(xi) = xi if and only if σ acts trivially on all of Bi, so we are
done. �

Definition 5.23. For i ≥ −1, the ith ramification group is

Gi = {σ ∈ G | vL(σ(x)− x) ≥ i+ 1}
(or the other equivalent conditions from Lemma 5.22).

We note that these groups indeed agree with the decomposition and interia groups for i = −1
and 0, respectively, and define a filtration of G.

Proposition 5.24. The groups Gi form a decreasing sequence of normal subgroups of G
with G−1 = G, G0 = I, the inertia subgroup of G, and Gi = {1} for sufficiently large i.
Moreover, G/G0

∼= Gal
(
B/A

)
.

Proof. To see that G = I, recall that by Lemma 5.22

G0 =
{
σ ∈ G | σ acts trivially on B

}
and I was defined to be the kernel of the homomorphism

ε : G→ Gal
(
B/A

)
.

This homomorphism is surjective by Proposition 1.11, and hence G/G0
∼= Gal

(
B/A

)
�

We will now define a function which will allow us to restate the definition of a ramification
group.

Definition 5.25. We define the function iG : G→ Z≥0 ∪ {∞} by

iG(σ) = vL(σ(x)− x)

for σ 6= 1 and iG(1) =∞.

Proposition 5.26.

(1) iG(σ) ≥ i+ 1 if and only if σ ∈ Gi,
(2) iG(τστ−1) = iG(σ),
(3) iG(στ) ≥ inf(iG(σ), iG(τ)).

Proof. Properties (1) and (2) are immediate. For (3), note that using (1) we can write

iG(σ) = inf{i+ 1 | σ ∈ Gi}
and hence

iG(στ) = inf{i+ 1 | στ ∈ Gi} ≥ inf{i+ 1 | σ ∈ Gi and τ ∈ Gi} ≥ inf(iG(σ), iG(τ))

as requested. �

Proposition 5.27. Let H be a subgroup of G and M = LH so that Gal(L/M) = H. Then
for any σ ∈ H we have iG(s) = iH(s) or, equivalently, Hi = Gi ∩H.
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Proof. Let C be the valuation ring of M and q be the maximal ideal of M . Recall that
σ ∈ Hi if and only if σ ∈ H and σ acts trivially on C/qi+1 which is equivalent to σ ∈ H and
σ ∈ Gi. �

Corollary 5.28. Let Kr be the largest unramified subextension of L over K and H =
Gal(L/Kr). Then H = G0, the inertia group, and Gi = Hi for i ≥ 0.

Proof. We already proved that H = G0 in Proposition 1.13. To finish the proof, we simply
apply Proposition 5.27. �

Proposition 5.29. Suppose furthermore that H is a normal subgroup of G, i.e. M is a
Galois extension of K. For any σ ∈ G, we have

iG/H(σH) =
1

e′

∑
τ∈H

iG(στ),

where e′ = eP/q, the ramification degree of the extension L/M .

Proof. For σ = 1, both sides of the equation are equal to ∞. So suppose σ 6= 1 and let x be
an A-generator of B, y be an A-generator of C, the valuation ring of M . By definition, we
have that

iG/H(σH) · e′ = vM(σ(y)− y) · e′ = vL(σ(y)− y).

To complete the proof, we will show that the elements

a = σ(y)− y,

b =
∏
τ∈H

(στ(x)− x)

generate the same ideal in B; in that case, we will have proved that

vL(σ(y)− y) =
∑
τ∈H

iG(στ).

First, we will show that a divides b. Let f ∈ C[X] be the minimal polynomial of x over M ,

f(x) =
∏
τ∈H

(X − τ(x)),

and σ(f) ∈ B[X] be the polynomial obtained by transforming the coefficients of f by σ,

σ(f)(X) =
∏
τ∈H

(X − στ(x)).

Since f has coefficients in C, generated by y, and σ(f) has coefficients in σC, generated by
σ(y), the coefficients of σ(f) − f are divisible by a = σ(y) − y. So substituting X = x, we
obtain that a divides σ(f)(x)− f(x) = σ(f(x)) = ±b.

Now, we will now show that b divides a. Write y as a polynomial in x with coefficients in A,
i.e. y = g(x) for g(X) ∈ A[X]. Then g(X)− y has coefficients in C and x as a root, so it is
divisible by the minimal polynomial f of x over C:

g(X)− y = f(X)h(X)

for some h ∈ C[X]. Therefore, since σ(g) = g:

g(X)− σ(y) = σ(g)(X)− σ(y) = σ(f)(X)σ(h)(X)
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and, substituting X = x, we obtain

−a = y − σ(y) = g(x)− σ(y) = σ(f)(x)σ(h)(x) = (±b)σ(h)(x).

Hence b divides a, which completes the proof. �

Corollary 5.30. If furthermore H = Gj for some j ≥ 0, then (G/H)i = Gi/H for i ≤ j
and (G/H)i = {1} for i ≥ j.

We apply a similar method to prove the following proposition, which will be useful later.

Proposition 5.31. If d = dL/K is the different of L/K, then

vL(d) =
∑
σ 6=1

iG(σ).

Proof. Let x be an A-generator of B and f be its minimal polynomial over K. Then by
Proposition 1.24, d is generated by f ′(x). But

f(X) =
∏
σ∈G

(X − σ(x)),

so

f ′(x) =
∏
σ 6=1

(x− σ(x)),

and hence

vL(d) = vL(f ′(x)) =
∑
σ 6=1

iG(σ)

by definition of iG. �

While the way we numbered the ramification group is intuitive to define, it is not always
the most convenient numbering to work with. While it is preserved under taking subgroups
(Proposition 5.27), it does not behave well under quotients. We will introduce a different
way of numbering the ramification groups that will make working with quotients easier.

For u ∈ R, u ≥ −1, we define Gu = Gi where i is the smallest integer larger or equal to u.
In other words, σ ∈ Gu if and only if iG(σ) ≥ u+ 1. For t ≥ −1, we generalize the notion of
the index of a subgroup to

(G0 : Gt) =

 (#G−1/G0)−1 = #G0/#G−1 for t = −1,
1 for − 1 ≤ t ≤ 0,
#G0/Gt for t ≥ 0.

We then set

ϕ(u) =

∫ u

0

dt

(G0 : Gt)

for u ≥ −1. Note that ϕ(u) = u for u ∈ [−1, 0]. Moreover, if we let gi = #Gi, then for
m ≤ u ≤ m+ 1 we can explicitly write

ϕ(u) =
1

g0

(g1 + . . .+ gm + (u−m)gm+1),
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and in particular

ϕ(m) + 1 =
1

g0

m∑
i=0

gi.

Proposition 5.32.

(1) ϕ is continuous, piecewise-linear, increasing, and concave.
(2) ϕ(0) = 0.
(3) If ϕ′l, ϕ

′
r denote the left and right derivatives respectively, then

ϕ′l(u) = ϕ′r(u) =
1

(G0 : Gu)
for u 6∈ Z,

ϕ′l(u) =
1

(G0 : Gu)
, ϕ′r(u) =

1

(G0 : Gu+1)
for u ∈ Z.

Proof. All the assertions are clear from the definition of ϕ. �

In fact, properties (1)–(3) could be used to characterize the function ϕ. Since ϕ is increasing,
it has an inverse function ψ.

Proposition 5.33. Let ψ be the inverse function to ϕ. Then

(1) ψ is continuous, piecewise-linear, increasing, and convex.
(2) ψ(0) = 0.
(3) If v = ϕ(u), then ψ′l(v) = 1

ϕ′l(u)
and ψ′r(v) = 1

ϕ′r(u)
. In particular, they are integers.

(4) If v ∈ Z, then u = ψ(v) ∈ Z.

Proof. The assertion (1)–(3) are clear. For (4), let m ∈ Z be such that m ≤ u ≤ m + 1.
Then

g0v = g1 + g2 + · · ·+ gm + (u−m)gm+1,

so

u =
1

gm+1

(mgm+1 − g1 − · · · − gm + g0v) ∈ Z,

since gm+1 = #Gm+1 divides g0 = #G0, g1 = #G1, . . . , gm = #Gm, gm+1 = #Gm+1. �

Definition 5.34. We define the upper numbering of the ramification groups by

Gv = Gψ(v),

or equivalently
Gϕ(u) = Gu.

We then have the immediate consequences of Proposition 5.24: G−1 = G, G0 = G0 and
Gv = {1} for sufficiently large v.

As we claimed earlier, the upper number behaves well under taking quotients.

Proposition 5.35. Let H be a normal subgroup of G. Then

(G/H)v =
GvH

H
.
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Before the proof of the proposition, we state and prove four lemmas.

Lemma 5.36. For any u ≥ −1:

ϕ(u) =
1

g0

∑
σ∈G

inf(iG(σ), u+ 1)− 1.

Proof. The right hand side of the equation is a continuous, piecewise linear function, whose
value at u = 0 is 0, and its derivative coincides with the derivative of ϕ. �

Lemma 5.37. Let σ ∈ G and set j(σH) = sup{iG(στ) | τ ∈ H}. Then

iG/H(σH)− 1 = ϕL/M(j(σH)− 1),

where ϕL/M is the function ϕ corresponding to the group H = Gal(L/M).

Proof. Set σ ∈ G such that iG(σ) = j(σH), and let m = iG(σ). Take any τ ∈ H. If
τ ∈ Hm−1, then iG(τ) ≥ m, so iG(στ) ≥ m, so iG(στ) = m. If τ 6∈ Hm−1, then iG(τ) < m
and iG(στ) = iG(τ). In either case, iG(στ) = inf(iG(τ),m). Thus Proposition 5.29 yields

iG/H(σH) =
1

e′

∑
τ∈H

inf(iG(τ),m).

But e′ = #H0 by Proposition 5.24 and iG(τ) = iH(τ) by Proposition 5.27. Therefore, by
Lemma 5.36 we have that

iG/H(σH) = 1 + ϕL/M(m− 1),

which completes the proof. �

Lemma 5.38 (Herbrand’s Theorem). If v = ϕL/M(u), then

GuH/H = (G/H)v.

Proof. Take any σ ∈ G. Then σH ∈ GuH/H is equivalent to j(σH) − 1 ≥ u and taking
ϕL/M of both sides, this is equivalent to

ϕL/M(j(σH)− 1) ≥ ϕL/M(u).

We now apply Lemma 5.37 to conclude that this is equivalent to

iG/H(σH)− 1 ≥ ϕL/M(u)

which means that σH ∈ (G/H)v. �

Lemma 5.39. The functions ϕ and ψ satisfy

ϕL/K = ϕM/K ◦ ϕL/M ,

ψL/K = ψL/M ◦ ψM/K .

Proof. Let u > −1, u 6∈ Z, and v = ϕL/M . Then

(ϕM/K ◦ ϕL/M)′(u) = ϕ′M/K(v) · ϕ′L/M(u) =
#(G/H)v
eM/K

· #Hu

eL/M

and the result for ϕ follows from Hebrand’s Theorem 5.38 and eM/K · eL/M = eL/K . The
result for ψ is now clear, since ψ is the inverse of ϕ. �
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We can finally prove the proposition.

Proof of Proposition 5.35. For x = ψM/K(v), by definition,

(G/H)v = (G/H)x

and hence, by Herbrand’s Theorem 5.38,

(G/H)v = (G/H)x = GwH/H

for w = ψL/M(x) = ψL/M(ψM/K(v)) = ψL/K(v) by Lemma 5.39. But Gw = Gv by definition,
so

(G/H)v = GvH/H

for all v. �

Theorem 5.40 (Hasse–Arf). Let G be an abelian group. If v is a jump in the filtration Gv,
then v ∈ Z. In other words, Gi 6= Gi+1 implies that ϕ(i) ∈ Z.

The proof can be found in [Ser79, Chap. V §7].

5.6.2. The Artin Representation. We first state a version of Frobenius Reciprocity 5.9 for
quotients. Let H be a normal subgroup of G. Given any representation of G/H, we can
view it as a representation of G. Given any representation of G with character χ, we can
define a representation of G/H with character χ\ by taking the average of values of χ on the
preimages; explicitely:

χ\(gH) =
1

#H

∑
h∈H

χ(gh).

The Frobenius Reciprocity 5.9 becomes.

Theorem 5.41 (Frobenius Reciprocity for quotients). Let H be a normal subgroup of G. If
ϕ is a class function on G and ψ is a class function on G/H, then

(ϕ, ψ)G = (ϕ\, ψ)G/H

We keep the assumptions and notation from the previous section. Let f = fP/p be the
residue field degree. We define the following function:

aG(σ) =

{
−f · iG(σ) for σ 6= 1
f
∑
σ 6=1

iG(σ) for σ = 1

so that (aG, 1G) = 0.

The rest of this section will be devoted to proving the following theorem.

Theorem 5.42. The function aG is a character of a representation of G.

If we define f(ϕ) = (ϕ, aG) for any class function ϕ and since aG(σ−1) = aG(σ), the theorem
is equivalent to proving that f(χ) is a non-negative integer for any character χ. Before doing
that, we need to explore some properties of aG and f .

Proposition 5.43. For the inertia group G0, we have that

aG = IndGG0
aG0 .
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Proof. Recall that G0 is a normal subgroup of G and

IndGG0
aG0(σ) =

∑
τG0∈G/G0

aG0(τστ
−1)

where we set aG0(τστ
−1) = 0 for τστ−1 6∈ G0. Therefore, for σ 6∈ G0, we have that

IndGG0
aG0(σ) = 0 = −f · iG(σ) = aG(σ).

Moreover, for σ ∈ G0, σ 6= 1, we have that

IndGG0
aG0(σ) =

∑
τG0∈G/G0

aG0(τστ
−1) = −f ·

∑
τG0∈G/G0

iG0(τστ
−1) = −f · iG(s) = aG(s)

Finally:

IndGG0
aG0(1) =

∑
τG0∈G/G0

aG0(τ1τ−1) =
∑

τG0∈G/G0

aG0(1) = #G/G0 ·
∑
σ 6=1

iG0(s) = aG(1),

since #G/G0 = f . �

Proposition 5.44. Let Gi be the ith ramification group and ui be the character of the
augmentation representation of Gi, i.e. ui = 1−rGi, where rGi is the character of the regular
representation (rGi(1) = gi, rGi(σ) = 0 for σ 6= 1). Then

aG =
∞∑
i=0

1

(G0 : Gi)
IndGGiui.

Proof. Let gi = #Gi. Then

IndGGiui(σ) =

{
0 for σ 6∈ Gi

−f · g0
gi

for σ ∈ Gi, σ 6= 1

and
∑
σ∈G

IndGGiui(σ) = 0. Therefore, for σ ∈ Gk \Gk+1 we have

∞∑
i=0

1

(G0 : Gi)
IndGGiui(σ) =

k∑
i=0

1

(G0 : Gi)

(
−f · g0

gi

)
= −(k + 1)f = aG(σ)

and for σ = 1 both sides of the equation are 1G. �

If ϕ is class function on G, set

ϕ(Gi) =
1

gi

∑
σ∈Gi

ϕ(σ),

the average of ϕ on Gi.

Corollary 5.45. If ϕ is a class function on G, then

f(ϕ) =
∞∑
i=0

gi
g0

(ϕ(1)− ϕ(Gi)).
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Proof. We have that

f(ϕ) = (ϕ, aG)

=

(
ϕ,
∞∑
i=0

1
(G0:Gi)

IndGGiui

)
by Proposition 5.44

=
∞∑
i=0

gi
g0

(ϕ, IndGGiui)

=
∞∑
i=0

gi
g0

(ϕ|Gi , ui) by Frobenius Reciprocity 5.9

=
∞∑
i=0

gi
g0

(ϕ(1)− ϕ(Gi))

which completes the proof. �

Corollary 5.46. If χ is a character of a representation V of G, then

f(χ) =
∞∑
i=0

gi
g0

codimV Gi .

Proof. We simply recall that χ(1) = dimV and χ(Gi) = dimV Gi , and apply the previous
corollary. �

Corollary 5.47. If χ is a character of G, then f(χ) is a non-negative rational number.

Proof. The function g0 · aG is a character of a representation, so g0f(χ) is a non-negative
integer. �

Proposition 5.48. Let H be a normal subgroup of G. Then

aG/H = (aG)\.

Proof. This follows from Proposition 5.29. �

Corollary 5.49. If ϕ is a class function on G/H, and ϕ′ is the corresponding class function
on G, then f(ϕ) = f(ϕ′).

Proof. We have that f(ϕ) = (ϕ, a\G) = (ϕ′, aG) = f(ϕ′) by Frobenius Reciprocity for quo-
tients 5.41. �

Proposition 5.50. Let H be a subgroup of G and M/K be the corresponding extension with
discriminant ∆M/K. Then

(aG)|H = λrH + fM/KaH

where λ = vK(∆M/K) and rH the character of the regular representation.

Proof. If σ 6= 1 in H, then

aG(σ) = −fL/KiG(σ), aH(σ) = −fL/M iH(σ), rH(σ) = 0,

and we simply use iG(σ) = iH(σ) by Proposition 5.27 and fL/K = fL/MfM/K to prove the
result.
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For σ = 1, we have that aG(1) = vK(∆L/K) by Proposition 5.31. Recall that by Proposi-
tion 1.23

∆L/K = (∆M/K)[L:M ] ·NM/K(∆L/M),

so taking the valuation of both sides, we obtain

vK(∆L/K) = [L : M ]vK(∆M/K) + fM/KvM(∆L/M)

which completes the proof. �

Corollary 5.51. If χ is a character of H, then

f(IndGHχ) = vK(∆M/K)χ(1) + fM/K(χ).

Proof. We have that

f(IndGHχ) = (IndGHχ, aG)
= (χ, (aG)|H) by Frobenius Reciprocity 5.9
= (χ, rH) + fM/K(χ, aH) by Proposition 5.50
= vK(∆M/K)χ(1) + fM/Kf(χ)

as requested. �

Proposition 5.52. Let χ be the character of a representation of G of dimension 1. Let cχ
be the largest integer for which χ restricted to Gcχ is not trivial. Then

f(χ) = ϕL/K(cχ) + 1.

Proof. If i ≤ cχ, χ(Gi) = 0, so χ(1)− χ(Gi) = 1. If i > cχ, χ(Gi) = 1, so χ(1)− χ(Gi) = 0.
Thus

f(χ) =
∞∑
i=0

gi
g0

(χ(1)− χ(Gi)) by Corollary 5.45

=
cχ∑
i=0

gi
g0

= ϕL/K(cχ) + 1

where the last equality follows from the explicit description of ϕL/K . �

Corollary 5.53. Let H = kerχ and M = LH . Let c′χ be the largest integer for which (G/H)c′χ
is non-trivial. Then f(χ) = ϕM/K(c′χ) + 1 and this number is a non-negative integer.

Proof. By Herbrand’s Theorem 5.38, we have that

(G/H)c′χ = GψL/M (c′χ)H/H

and hence c′χ = ϕL/M(cχ). Finally

ϕM/K(c′χ) = ϕM/K(ϕL/M(cχ)) = ϕL/K(cχ)

by Proposition 5.39. Then we apply Proposition 5.52 to get the desired result. �

We can finally prove the main theorem of this section, i.e. that aG is a character of a
representation.
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Proof of Theorem 5.42. By Corollary 5.47, it is enough to show that f(χ) ∈ Z for any
character χ. By Brauer’s Theorem 5.13 we have that

χ =
∑
i

niIndGHiχi

where ni ∈ Z and χi are characters of degree 1 of Hi. Therefore, we only need to show that
f(IndGHχ) is an integer for a character χ of degree 1. But in this case f(χ) is an integer by
Corollary 5.53, so

f(IndGH(χ)) = vK(∆M/K)χ(1) + fM/Kf(χ) ∈ Z
by Corollary 5.51. �

Definition 5.54. The representation of G with the character aG is the Artin representation
of G attached to L/K.

Definition 5.55. If χ is a character of G, then

f(χ) = pf(χ) = p(χ,aG)

is the Artin conductor of χ.

5.6.3. Globalization. We have defined the Artin conductor in the local case. We will now
globalize it to the general case. Suppose L/K is a finite Galois extension withG = Gal(L/K).
Let A be a Dedekind domain with field of fractions K, B be the integral closure of A in
L. If P is a non-zero prime over p, then BP = B/P is separable over Ap = A/p. Then

the completion B̂P of BP with respect to the valuation associated to P is Galois over the

corresponding completion Âp, and

Gal(B̂P/Âp) ∼= DP.

We then apply the construction from the previous section to B̂P/Âp: the Artin character
for this extension will be denoted aP. (Note that aP is a priori defined on DP but it can be
extended to 0 on G \DP.)

Definition 5.56. The Artin representation of G = Gal(L/K) attached to p is the represen-
tation with the character ap =

∑
P|p
aP.

In fact, for any choice of P|p:

IndGDP
aP(σ) =

∑
τDP∈G/DP

aP(τστ−1) =
∑

τDP∈G/DP

aτP(σ) = ap(σ),

since the Galois group G acts transitively on the primes of L above p. Thus the Artin
representation attached to p is the representation induced from the Artin representation of
any DP for P|p.

Definition 5.57. If χ is a character, let f(χ, p) = (χ, ap). Then the Artin conductor of χ is

f(χ, L/K) = f(χ) =
∏
p

pf(χ,p).

(Since f(χ, p) = 0 for p unramified, this product is actually a finite product.)

The previously discussed local properties are hence globalized to the following.
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Proposition 5.58.

(1) f(χ+ χ′) = f(χ)f(χ′), f(1) = (1).
(2) If M/K is a subextension of L/K corresponding to the subgroup H of G and χ is a

character of H, then

f(IndGHχ, L/K) = ∆
χ(1)
M/KNM/K(f(χ, L/M)).

(3) If M/K is, moreover, Galois, and χ is a character of G/H, then

f(χ, L/K) = f(χ,M/K).

Finally, suppose K is a number field and consider the ideal

c(χ;L/K) = ∆
χ(1)
K/Q ·NK/Q(f(χ;L/K)).

Since this is an ideal of Z, it is generated by a positive integer c(χ;L/K). Then Proposi-
tion 5.58 yields the following.

Proposition 5.59.

(1) c(χ + χ′;L/K) = c(χ;L/K) · c(χ′;L/K), c(1;L/K) = |dK/Q|, where dK/Q gener-
ates ∆K/Q.

(2) c(IndGHχ;L/K) = c(χ;L/M).
(3) c(χ;L/K) = c(χ;M/K).

The function c(χ, L/K)s/2 will hence play the role of the exponential factor in the extended
Artin L-function.

5.7. The Functional Equation for the Artin L-function. We finally come to the main
result.

Definition 5.60. The completed Artin L-function is

Λ(s, χ;L/K) = c(χ;L/K)s/2
∏
v

Lv(s, χ;L/K),

where the product ranges over the finite and infinite primes of K.

Theorem 5.61. The completed Artin L-function has a meromorphic continuation to the
entire complex plane which satisfies the following functional equation

Λ(s, χ;L/K) = ε(χ)Λ(1− s, χ;L/K),

where ε(χ) is a constant with absolute value 1.

Proof. By the results earlier in the chapter, log Λ is additive and preserved by induction.
Moreover, the 1-dimensional case follows from Hecke’s Theorem 2.11. Therefore, Brauer’s
Theorem 5.13 yields the desired result. �
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