Quick Introduction to ggplot2
Andy Grogan-Kaylor
February 05, 2019

Contents
1 ggplot in 3 easy steps (maybe 2 easy steps) 2
 1.1 aesthetic: what you want to graph (e.g. x, y, z) 2
 1.2 geom: how you want to graph it 2
 1.3 options: optional titles, themes, etc. 2

2 Background 2

3 A Simple Quick Example 3

4 Call The Relevant Libraries 4

5 Now We Simulate Some Data 4

6 The Essential Idea Of ggplot2 Is Simple. 5
 6.1 ggplot2 Starts By Calling The Aesthetic. 5
 6.2 We Then Call The geom 5

7 Examples 6
 7.1 One Continuous Variable At A Time 6
 7.1.1 Dotplot 6
 7.1.2 Add Some Options 6
 7.1.3 Different Geoms 7
 7.2 One Categorical Variable at a Time 8
 7.3 A Categorical Variable and A Continuous Variable 9
 7.3.1 Barchart 9
 7.4 Two Continuous Variables At A Time 10
 7.4.1 Basic Scatterplot 10
 7.4.2 Add Some Options 10
 7.4.3 Try A Smoother 11
 7.4.4 Try A Density Plot 11
 7.4.5 Try a Hexagon Geom 13
 7.4.6 Combine Points and Smoother And Add Some Themes 13
 7.5 Two Continuous Variables And A Third Categorical Variable 19
 7.5.1 Modify the aesthetic to include group. 19
 7.5.2 Add facets or “small multiples” by group 19

8 There Is A Lot More That Can Be Done With ggplot2 20
1 ggplot in 3 easy steps (maybe 2 easy steps)

1.1 aesthetic: what you want to graph (e.g. x, y, z).

1.2 geom: how you want to graph it.

1.3 options: optional titles, themes, etc.

2 Background

R has a number of graphing libraries, including base graphics that are installed whenever you install R. ggplot2, is a graphing library in R that makes beautiful graphs. ggplot2 graph syntax can be formidably complex, with a somewhat steep learning curve.

That being said, learning ggplot2 is worth the effort for a couple of reasons. First, the graphs are beautiful. Second, ggplot2’s syntax, though seemingly arcane at times, forces you to think about the nature of your data, and the ideas that you are graphing. Lastly, a little bit of knowledge about ggplot2 can go a long way, and can build a powerful foundation for future learning.
3 A Simple Quick Example

The intent of this tutorial is to build the foundation of this idea that:

> A little bit of ggplot can go a long way

and to give you a simple introduction to the idea that any ggplot graph is composed of:

> an aesthetic + a geom or two + other optional elements like titles and themes.

So, as a quick and simple example...

```r
library(ggplot2)

ggplot(my_demo_data, 
  aes(x = my_outcome)) + 
  geom_histogram(fill = "red", 
  color = "black")
```

And now, with titles...

```r
ggplot(my_demo_data, 
  aes(x = my_outcome)) + 
  geom_histogram(fill = "red", 
  color = "black") + 
  labs(title = "Your Title Here", 
    subtitle = "Your Subtitle Here", 
    caption = "A Caption, If You Want One", 
    x = "my outcome", 
    y = "count")
```

This document is a very brief introduction to the basic ideas of ggplot2. More information about ggplot can be found here. More ggplot2 examples can be found here.
4 Call The Relevant Libraries

You will need a few R libraries to work in ggplot. You may only need `library(ggplot2)`, but some of these other libraries may also be helpful.

```r
library(ggplot2) # beautiful graphs
library(ggthemes) # nice themes for ggplot2
library(ggbeeswarm) # "beeswarm" plots
library(cowplot) # arrange graphs
library(pander) # nice tables
library(psych) # nice table of descriptive statistics
```

5 Now We Simulate Some Data

In this example, we simulate some data. But your own learning of ggplot will progress more quickly if you use data that you have access to, on an issue that you care about.

Here are the first few rows of simulated data:

```r
# simulated data
N <- 500 # set sample size
predictor <- rnorm(n = N, mean = 100, sd = 25) # n, mean, sd
group <- rbinom(n = N, 1, .5) # n, number of trials, probability
outcome <- predictor +
  10 * group +
  rnorm(n=N,
    mean = 0,
    sd = 15) # outcome is a function of predictor + group + error

group <- factor(group)

mydata <- data.frame(predictor, outcome, group) # make data frame

pander(head(mydata, 10)) # nice looking table of first few rows of data
```

<table>
<thead>
<tr>
<th>predictor</th>
<th>outcome</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>133.6</td>
<td>147.8</td>
<td>0</td>
</tr>
<tr>
<td>105.8</td>
<td>127.8</td>
<td>0</td>
</tr>
<tr>
<td>66.69</td>
<td>76.49</td>
<td>0</td>
</tr>
<tr>
<td>61.99</td>
<td>64.72</td>
<td>0</td>
</tr>
</tbody>
</table>
The Essential Idea Of ggplot2 Is Simple.

There are 3 essential elements to any ggplot call:

1. An aesthetic that tells ggplot which variables are being mapped to the x axis, y axis, (and often other attributes of the graph, such as the color fill). Intuitively, the aesthetic can be thought of as what you are graphing.
2. A geom or geometry that tells ggplot about the basic structure of the graph. Intuitively, the geom can be thought of as how you are graphing it.
3. Other options, such as a graph title, axis labels and overall theme for the graph.

ggplot2 Starts By Calling The Aesthetic.

For one variable:

\[
p <- \text{ggplot(mydata, aes(x = \ldots))}
\]

This says there is only one variable running along the horizontal x axis in the aesthetic.

The \(p <- \ldots \) means that we are assigning this graph aesthetic to plot \(p \). We can then add other features to plot \(p \) as we continue our work. This iterative nature of \texttt{ggplot2} is one of the things that makes it so powerful. As your workflow and your documents become more complex, you can build a simple consistent foundation\(^1\) for your graphs, then add something simple to make a first graph, and a different something simple to make a second graph.

For two variables:

\[
p <- \text{ggplot(mydata, aes(x = \ldots, y = \ldots))}
\]

This says there are two variables: one for the horizontal x axis; and another for the vertical y axis, in the aesthetic.

We Then Call The geom

We can then add different geometries to our plot:

For one variable:

+ \texttt{geom_dotplot()} This says add a dotplot geometry to the graph.

+ \texttt{geom_histogram()} This says add a histogram geometry to the graph.

\(^1\)By way of illustration, this foundation could be just an aesthetic (e.g. \texttt{aes(\ldots)}) alone, or possibly an aesthetic plus a theme (e.g. \texttt{theme_tufte()}), plus axis labels to create a consistent look and feel for your graphs across a report.
+ `geom_violin()` This says add a *violin plot* geometry to the graph.
+ `geom_beeswarm()` This says add a *beeswarm* geometry to the graph.

A *beeswarm* is a creative layout of points that intuitively lets you understand the distribution of a quantity. The *beeswarm* geometry requires separate installation of the *ggbeeswarm* package. You also need to call `library(ggbeeswarm)` to use this geometry.

For two variables:
+ `geom_point()` This says add a point (scatterplot) geometry to the graph.
+ `geom_smooth()` This says add a smoother to the graph.

7 Examples

7.1 One Continuous Variable At A Time

7.1.1 Dotplot

call ggplot2 where aesthetic is: x uses our predictor variable

```r
p1 <- ggplot(mydata, aes(x = predictor))
```

```r
t + geom_dotplot(dots = .15) # add dotplot geom
```

![Dotplot of predictor](image)

7.1.2 Add Some Options

```r
t + geom_dotplot(dots = .15, fill = "red") + # add dotplot geom in red
t + labs(title = "Dotplot of predictor") # Add title
```
7.1.3 Different Geoms

7.1.3.1 Histogram

```r
p1 + geom_histogram(fill = "blue") + # add histogram geom in blue
  labs(title = "Histogram of predictor") # Add title
```

7.1.3.2 Density

```r
p1 + geom_density(fill = "gold") + # add density geom in gold
  labs(title = "Density of predictor") # Add title
```

7.1.3.3 Violin Plot

```r
p2 <- ggplot(mydata,
              aes(x = 1, # we need an aesthetic with _x_
                  y = predictor)) # & _y_

p2 + geom_violin(fill = "blue") +
  labs(title = "Violin Plot of predictor") # Add title
```
7.1.3.4 Beeswarm

```r
p3 <- ggplot(mydata,
             aes(x = predictor, # we need an aesthetic with _x_
                 y = 1)) # & _y_

p3 + geom_beeswarm(color = "red",
                   groupOnX = FALSE) +
  labs(title ="Beeswarm Plot of predictor") + # Add title
  theme(axis.title.y = element_blank(),
         axis.text.y = element_blank()) # tweak y axis
```

7.2 One Categorical Variable at a Time

The easiest way to represent a single categorical variable is likely a bar graph.

Here bars represent the count of observations in each group.

```r
p_barchart <- ggplot(mydata,
                     aes(x = group)) +
  geom_bar(fill = "red")

p_barchart
```
Changing the aesthetic slightly results in a stacked bar chart. Since all groups are stacked in 1 bar, we have to add information about the colors that we want to use to distinguish the groups.

```r
p_stacked_barchart <- ggplot(mydata,
   aes(x = 1,
        fill = group)) +
   geom_bar() +
   scale_fill_manual(values = c("red", "blue"))
```

7.3 A Categorical Variable and A Continuous Variable

7.3.1 Barchart

Here bars represent the average value of our outcome variable for members of each group.

```r
p_barchart_of_mean <- ggplot(mydata,
   aes(x = group,
        # slightly different aesthetic
        y = outcome)) +
   stat_summary(fun.y = mean,
                fill = "blue", # fill color
                geom = "bar") # we want to summarize data with bars
```

p_barchart_of_mean
7.4 Two Continuous Variables At A Time

7.4.1 Basic Scatterplot

call ggplot2 where aesthetic uses both predictor and outcome

p4 <- ggplot(mydata,
 aes(x = predictor,
 y = outcome)) # set up aesthetic

p4 + geom_point() # add point geom (scatterplot)

7.4.2 Add Some Options

p4 + # start with basic plot that has only an aesthetic
 geom_point(color = "blue") + # add point geom in blue
 labs(title = "Scatterplot of Outcome by Predictor") # add title
7.4.3 Try A Smoother

```r
p4 + `geom_smooth()` + # add smooth geom
  labs(title = "Smoother of Outcome by Predictor") # add title
```

![Smoother of Outcome by Predictor](image)

7.4.4 Try A Density Plot

7.4.4.1 Simple Density

```r
p4 + `geom_density2d(color = "blue")` + # add density geom
  labs(title = "Density Plot of Outcome by Predictor") # add title
```

![Density Plot of Outcome by Predictor](image)

7.4.4.2 Filled Density

While not strictly necessary, the use of `scale_fill_gradient` seems to improve the presentation. You can choose your own colors.

```r
p4 + 
  `stat_density_2d(aes(fill = ..level..),
  geom = "polygon")` + # add filled density geom
  `scale_fill_gradient(low = "blue",
  high = "red")` +
  labs(title = "Density Plot of Outcome by Predictor") # add title
```

![Filled Density Plot of Outcome by Predictor](image)
7.4.4.3 Add Points

```r
p4 +
  stat_density_2d(aes(fill = ..level..),
                  geom = "polygon") + # add filled density geom
geom_point(color = "orange") +
  scale_fill_gradient(low = "blue",
                     high = "red") +
  labs(title = "Density Plot of Outcome by Predictor") # add title
```

7.4.4.4 Use a Raster Geom Instead

```r
p4 +
  stat_density_2d(geom = "raster",
                  aes(fill = ..density..),
                  contour = FALSE) +
  scale_fill_gradient(low = "blue",
                      high = "red") +
  labs(title = "Density Plot (Raster) of Outcome by Predictor") # add title
```
7.4.5 Try a Hexagon Geom

`geom_hex` may be a useful visualization, especially when there is the possibility of over-plotting due to many points.

```r
p4 +
  geom_hex() +
  scale_fill_gradient(low = "blue",
                     high = "red") +
  labs(title = "Hexagon Plot of Outcome by Predictor") # add title
```

7.4.6 Combine Points and Smoother And Add Some Themes

7.4.6.1 Themes Included With `ggplot2`

7.4.6.1.1 Default `ggplot2` Theme

```r
p4 + geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
  theme_grey() # default theme
```
7.4.6.1.2 The “minimal” theme

```r
p4 + geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
  theme_minimal() # default theme
```

7.4.6.2 Themes requiring `ggthemes()`
The themes below make use of `library(ggthemes)` which you will need to install.

7.4.6.2.1 “538” Theme

```r
p4 + geom_point() + # point geom
ggeom_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
theme_fivethirtyeight() + # "538"-like theme
scale_color_fivethirtyeight() # "538"-like colors
```

7.4.6.2.2 “Solarized Theme”

```r
p4 + geom_point() + # point geom
ggeom_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
theme_solarized() + # Google Docs theme
scale_colour_solarized() # Google Docs colors
```
7.4.6.2.3 “Solarized Dark” Theme

p4 + geom_point() + # point geom
gem_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
theme_solarized(light = FALSE) + # solarized dark theme
scale_colour_solarized("blue") # solarized dark color palette
7.4.6.2.4 “Economist” Theme

```r
p4 + geom_point() + # point geom
geom_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
theme_economist() + # Economist magazine theme
scale_colour_economist() # Economist magazine colors
```

7.4.6.2.5 “Tufte” Theme

```r
# same plot with theme and geom based on the work of Edward Tufte
p4 + geom_point() +
geom_smooth(color = "red") +
geom_rangeframe() +
theme_tufte() +
labs(title = "Scatterplot And Smoother of Outcome \nby Predictor")
```
7.4.6.2.6 "Google Docs Theme"

```r
p4 + geom_point() + # point geom
gmeet_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
theme_gdocs() + # Google Docs theme
scale_colour_gdocs() # Google Docs colors
```
7.5 Two Continuous Variables And A Third Categorical Variable

7.5.1 Modify the aesthetic to include group.

```r
p5 <- ggplot(mydata,
             aes(x = predictor, y = outcome,
                 color = group)) # aesthetic includes color by group

p5 + geom_point() +
geom_smooth() +
theme_economist() +
scale_color_economist() +
labs(title = "Scatterplot And Smoother of Outcome by Predictor")
```

![Scatterplot And Smoother of Outcome by Predictor](image)

7.5.2 Add facets or “small multiples” by group

```r
p5 + geom_point() +
geom_smooth() +
facet_wrap(~group) + # facets or "small multiples" by group
theme_economist() +
scale_color_economist() +
labs(title = "Scatterplot And Smoother of Outcome by Predictor")
```
8 There Is A Lot More That Can Be Done With ggplot2

More information can be found at ggplot2.

More ggplot2 examples can be found here.

Graphics made with the ggplot2 graphing library created by Hadley Wickham.

Available online at https://agroganweb.wordpress.com/data-visualization-dataviz/

Quick Introduction to ggplot2 by Andrew Grogan-Kaylor is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Last updated: February 05 2019 at 10:57