Andrzej Gałecki
 Tomasz Burzykowski

Linear Mixed Effects Models
 Using R

A Step-by-step Approach

January 31, 2012

Springer

Moim bliskim
 Violi, Martuni, Samancie, Arturkowi, i Pawetkowi
 Moim Rodzicom i Nauczycielom
 Dekadentom
 - A.T.G.

Moim najbliższym i przyjaciotom

- T.B.

In memory of Tom Ten Have

Preface

Linear mixed-effects model (LMMs) are powerful modeling tools that allow for the analysis of datasets with complex, hierarchical structures. Intensive research in the past decade has led to a better understanding of their properties. The growing body of literature, including recent monographs, has considerably increased their popularity among applied researchers. There are several statistical software packages containing routines for LMMs. These include, for instance, SAS, SPSS, STATA, S+, and R. The major advantage of R is that it is a freely available, dynamically developing, open-source environment for statistical computing and graphics.

The goal of our book is to provide a description of tools available for fitting LMMs in R. The description is accompanied by a presentation of the most important theoretical concepts of LMMs. Additionally, examples of applications from various areas illustrate the main features of both theory and software. The presented material should allow readers to obtain a basic understanding of LMMs and to apply them in practice. In particular, theoretical concepts and their practical implementation in R are presented in the context of simpler, more familiar classes of models like, for example the classical linear regression model. Based on these concepts, more advanced classes of models, such as models with correlated residual errors, are introduced. In this way, we incrementally set the stage for LMMs, so that the exposition of the theory and R tools for these models becomes simpler and clearer. This structure naturally corresponds to the object-oriented programming concept, according to which R functions/methods for simpler models are also applicable to the more complex ones.

We assume that readers are familiar with intermediate linear algebra, calculus, and the basic theory of statistical inference and linear modeling. Thus, the intended audience for this book are graduate students of statistics and applied researchers in other fields.

Our exposition of the theory of various classes of models presented in the book focuses on concepts, which are implemented in the functions available in R. Readers interested in a more detailed description of the theory are referred to appropriate theoretical monograph books, which we indicate in the text.

There are a large number of R packages, that can be used to fit LMMs. Rather then attempting to briefly describe all of these packages, we focus mainly on two of them namely, nlme and lme4. In this way, we can provide a more detailed account of the tools offered by the two packages, which include a wide variety of functions for model fitting, diagnostics, inference, etc. The package nlme includes functions which allow for the fitting of a wide range of linear models and LMMs. Moreover, it has been available for many years and its code has been stable for some time now. Thus, it is a well-established R tool. On the other hand, the more recent package lme4 offers an efficient computational implementation and an enhanced syntax, though at the cost of a more restricted choice of LMMs.

All classes of linear models presented in the book are illustrated using data from a particular dataset. In this way, the differences between the various classes of models, as well as differences in the R software, can be clearly delineated. LMMs, which are the main focus of the book, are also illustrated using three additional datasets, which extend the presentation of various aspects of the models and R functions. We have decided to include the direct output of R commands in the text. In this way, readers who would like to repeat the analyses conducted in the book, can directly check their own output. However, in order to avoid the risk of incompatibility with updated versions of the software, the results of the analyses have also been summarized in the form of edited tables.

To further support those readers who are interested in actively using the material presented in the book, we have developed the package nlmeU. It contains all the datasets and R code used in the book. The package is downloadable at http://www-personal.umich.edu/~agalecki/.

We hope that our book, which aims to provide a state-of-the-art description of the details of implementing of LMMs in R, will support a widespread use of the models by applied researchers in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology.

When working on the text, we were receiving considerable assistance and valuable comments from many people. We would like to acknowledge Geert Molenberghs (Hasselt University and the Catholic University of Leuven), Geert Verbeke (Catholic University of Leuven), José Pinheiro (Novartis AG), Paul Murrell (Auckland University), Przemysław Biecek (Warsaw University), Fabian Scheipl (Ludwig Maximilian University of Munich), Jeffrey Halter (University of Michigan), Shu Chen (University of Michigan), Marta Galecka (Weill Cor-
nell Medical College) and members of the R-sig-ME discussion group led by Douglas Bates (University of Wisconsin-Madison) and Ben Bolker (McMaster University), for their comments and discussions at various stages during the preparation of the book. We are grateful to John Kimmel for encouraging us to consider writing the book and to Marc Strauss from Springer for their editorial assistance and patience. We also gratefully acknowledge financial support from the Claude Pepper Center grants AG08808 and AG024824 from the National Institute of Aging and from the IAP research Network P6/03 of the Belgian Government (Belgian Science Policy).

Ann Arbor, Michigan, USA
Diepenbeek, Belgium, and Warszawa, Poland

Andrzej T. Gatecki
Tomasz Burzykowski
January, 2012

Contents

Part I Introduction

1 Introduction 1
1.1 The aim of the book 1
1.2 Implementation of linear mixed-effects models in R 1
1.3 The structure of the book 3
1.4 Technical notes 6
2 Case Studies 9
2.1 Introduction 9
2.2 Age-related Macular Degeneration (ARMD) Trial 10
2.2.1 Raw data 11
2.2.2 Data for analysis 13
2.3 Progressive Resistance Training (PRT) Study 19
2.3.1 Raw data 19
2.3.2 Data for analysis 21
2.4 The Study of Instructional Improvement (SII) Project 23
2.4.1 Raw data 24
2.4.2 Data for analysis 26
2.4.3 Data hierarchy 28
2.5 The Flemish Community Attainment-targets (FCAT) Study 32
2.5.1 Raw data 33
2.5.2 Data for analysis 34
2.6 Chapter summary 36
3 Data Exploration 39
3.1 Introduction 39
3.2 ARMD Trial: Visual acuity 39
3.2.1 Patterns of missing data 41
3.2.2 Mean-value profiles 42
3.2.3 Sample variances and correlations of visual-acuity measurements 47
3.3 PRT Study: Muscle fiber specific-force 50
3.4 SII Project: Gain in the math achievement-score 58
3.4.1 School-level data 58
3.4.2 Class-level data 61
3.4.3 Pupil-level data 64
3.5 FCAT Study: Target score 67
3.6 Chapter summary 69
Part II Linear Models for Independent Observations
4 Linear Models with Homogeneous Variance 73
4.1 Introduction 73
4.2 Model specification 74
4.2.1 Model equation at the level of the observation 74
4.2.2 Model equation for all data 75
4.3 Offset 75
4.4 Estimation 76
4.4.1 Ordinary least squares 77
4.4.2 Maximum-likelihood estimation 77
4.4.3 Restricted maximum-likelihood estimation 78
4.4.4 Uncertainty in parameter estimates 79
4.5 Model diagnostics 80
4.5.1 Residuals 80
4.5.2 Residual diagnostics 83
4.5.3 Influence diagnostics 84
4.6 Inference 86
4.6.1 The Wald, likelihood ratio, and score tests 86
4.6.2 Confidence intervals for parameters 89
4.7 Model reduction and selection 89
4.7.1 Model reduction 90
4.7.2 Model selection criteria 92
4.8 Chapter summary 93
5 Fitting Linear Models with Homogeneous Variance: The lm() and gls() Functions 95
5.1 Introduction 95
5.2 Specifying the mean structure using a model formula 95
5.2.1 The formula syntax 96
5.2.2 Representation of R formula: The terms class. 101
5.3 From a formula to the design matrix 103
5.3.1 Creating a model frame 104
5.3.2 Creating a design matrix 109
5.4 Using the $\operatorname{lm}()$ and $g l s()$ functions to fit a linear model 115
5.5 Extracting information from a model-fit object 116
5.6 Tests of linear hypotheses for fixed effects 119
5.7 Chapter summary 119
6 ARMD Trial: Linear Model with Homogeneous Variance 121
6.1 Introduction 121
6.2 A linear model with independent residual errors with homogeneous variance 121
6.3 Fitting a linear model using the $\operatorname{lm}()$ function 122
6.4 Fitting a linear model using the gls() function 127
6.5 Chapter summary 130
7 Linear Models with Heterogeneous Variance 131
7.1 Introduction 131
7.2 Model specification 132
7.2.1 Known variance weights 133
7.2.2 Variance function 133
7.3 Details of the model specification 135
7.3.1 Groups of variance functions 135
7.3.2 Aliasing in variance parameters 138
7.4 Estimation 139
7.4.1 Weighted least squares 140
7.4.2 Likelihood optimization 140
7.4.3 Constrained versus unconstrained parameterization of the variance parameters 144
7.4.4 Uncertainty in parameter estimation 144
7.5 Model diagnostics 145
7.5.1 Pearson residuals 146
7.5.2 Influence diagnostics 146
7.6 Inference 147
7.6.1 Statistical significance tests 147
7.6.2 Confidence intervals for parameters 149
7.7 Model reduction and selection 150
7.8 Mean-variance models 151
7.8.1 Estimation 151
7.8.2 Model diagnostics and inference 155
7.9 Chapter summary 156
8 Fitting Linear Models with Heterogeneous Variance: The gls() Function 159
8.1 Introduction 159
8.2 Variance-function representation: The varFunc class 159
8.2.1 Variance-function constructors 159
8.2.2 Initialization of objects of class varFunc 161
8.3 Inspecting and modifying objects of class varFunc 162
8.4 Using the gls() function to fit linear models with heterogeneous variance 166
8.5 Extracting information from a model-fit object of class gls 167
8.6 Chapter summary 169
9 ARMD Trial: Linear Model with Heterogeneous Variance 171
9.1 Introduction 171
9.2 A linear model with independent residual errors and heterogeneous variance 171
9.2.1 Fitting the model using the gls() function 172
9.3 Linear models with the varPower(•) variance-function 175
9.3.1 Fitting the models using the gls() function 176
9.3.2 Model fit evaluation 179
9.4 Chapter summary 186
Part III Linear Fixed-effects Models for Correlated Data
10 Linear Model with Fixed Effects and Correlated Errors 191
10.1 Introduction 191
10.2 Model specification 192
10.3 Details of model specification 194
10.3.1 Variance structure 195
10.3.2 Correlation structure 196
10.4 Estimation 200
10.4.1 Weighted least squares 201
10.4.2 Likelihood-based estimation 202
10.4.3 Constrained versus unconstrained parameterization of the variance-covariance matrix 203
10.4.4 Uncertainty in parameter estimation 206
10.5 Model diagnostics 206
10.5.1 Residual diagnostics 206
10.5.2 Influence diagnostics 208
10.6 Inference and model selection 208
10.7 Mean-variance models 210
10.8 Chapter summary 212
11 Fitting Linear Models with Fixed Effects and Correlated Errors: The gls() Function 215
11.1 Introduction 215
11.2 Correlation-structure representation: The corStruct class 215
11.2.1 Correlation-structure constructor functions 216
11.2.2 Initialization of objects of class corStruct 217
11.3 Inspecting and modifying objects of class corStruct 217
11.3.1 Coefficients of correlation structures 218
11.3.2 Semivariogram 219
11.3.3 The corMatrix() function 220
11.4 Illustration of correlation structures 221
11.4.1 Compound symmetry: The corCompSymm class 221
11.4.2 Autoregressive structure of order 1: The corAR1 class 223
11.4.3 Exponential structure: The corExp class 225
11.5 Using the gls() function 229
11.6 Extracting information from a model-fit object of class gls 230
11.7 Chapter summary 232
12 ARMD Trial: Modeling Correlated Errors for Visual Acuity 233
12.1 Introduction 233
12.2 The model with heteroscedastic, independent residual errors re-visited 233
12.2.1 Empirical semivariogram 234
12.3 A linear model with a compound-symmetry correlation structure 236
12.3.1 Model specification 237
12.3.2 Syntax and results 237
12.4 Heteroscedastic autoregressive residual errors 240
12.4.1 Model specification 240
12.4.2 Syntax and results 241
12.5 General correlation matrix for residual errors 244
12.5.1 Model specification 244
12.5.2 Syntax and results 244
12.6 Model-fit diagnostics 249
12.6.1 Scatterplots of raw residuals 249
12.6.2 Scatterplots of Pearson residuals 251
12.6.3 Normalized residuals 254
12.7 Inference about the mean structure 258
12.7.1 Models with the general correlation structure and power variance-function 259
12.7.2 Syntax and results 260
12.8 Chapter summary 264
Part IV Linear Mixed-effects Models
13 Linear Mixed-effects Model 269
13.1 Introduction 269
13.2 The classical linear mixed-effects model 270
13.2.1 Specification at a level of a grouping factor 271
13.2.2 Specification for all data 272
13.3 The extended linear mixed-effects model 273
13.4 Distributions defined by the \mathbf{y} and \mathbf{b} random variables 274
13.4.1 Unconditional distribution of random effects 274
13.4.2 Conditional distribution of \mathbf{y} given the random effects 275
13.4.3 Additional distributions defined by \mathbf{y} and \mathbf{b} 277
13.5 Estimation 279
13.5.1 The marginal model implied by the classical linear mixed-effect model 279
13.5.2 Maximum-likelihood estimation 280
13.5.3 Penalized weighted least squares 282
13.5.4 Constrained versus unconstrained parameterization of the variance-covariance matrix 285
13.5.5 Uncertainty in parameter estimation 287
13.5.6 Alternative estimation approaches 288
13.6 Model diagnostics 288
13.6.1 Normality of random effects 288
13.6.2 Residual diagnostics 290
13.6.3 Influence diagnostics 291
13.7 Inference 291
13.7.1 Testing hypotheses about the fixed effects 292
13.7.2 Testing hypotheses about the variance-covariance parameters 292
13.7.3 Confidence intervals for parameters 294
13.8 Mean-variance models 294
13.8.1 Single-level mean-variance linear mixed-effects models 295
13.8.2 Multi-level hierarchies 297
13.8.3 Inference 297
13.9 Chapter summary 298
14 Fitting Linear Mixed-effects Models: The lme() Function 299
14.1 Introduction 299
14.2 Representation of a positive-definite matrix: The pdMat class 300
14.2.1 Constructor functions for the $p d M a t$ class 300
14.2.2 Inspecting and modifying objects of the $p d M a t$ class 304
14.3 Random-effects structure representation: The reStruct class 309
14.3.1 Constructor function for the reStruct class 309
14.3.2 Inspecting and modifying objects of class reStruct 312
14.4 The random part of the model representation: The lmeStruct class 317
14.5 Using the function lme() to specify and fit linear mixed-effects models 318
14.6 Extracting information from a model-fit object of class lme 321
14.7 Tests of hypotheses about the model parameters 326
14.8 Chapter summary 330
15 Fitting Linear Mixed-effects Models: The lmer() Function 331
15.1 Introduction 331
15.2 Specification of models with crossed and nested random effects 332
15.3 Using the function $\operatorname{lmer}()$ to specify and fit linear mixed-effects models 336
15.3.1 The lmer() formula 337
15.4 Extracting information from a model-fit object of class mer 341
15.5 Tests of hypotheses about the model parameters 343
15.6 Illustration of computations 345
15.7 Chapter summary 357
16 ARMD Trial: Modeling Visual Acuity 359
16.1 Introduction 359
16.2 A model with random intercepts and homogeneous residual variance 360
16.2.1 Model specification 360
16.2.2 R syntax and results 362
16.3 A model with random intercepts and the $\operatorname{varPower(\cdot)}$ residual variance-function 367
16.3.1 Model specification 367
16.3.2 R syntax and results 368
16.3.3 Diagnostic plots 371
16.4 Models with random intercepts and slopes and varPower(•) residual variance 380
16.4.1 Model with a general \mathcal{D} matrix 381
16.4.2 Model with a diagonal \mathcal{D} matrix 383
16.4.3 Model with a diagonal \mathcal{D} matrix and a constant treatment effect 387
16.5 An alternative residual variance-function: varIdent(•) 392
16.6 Testing hypotheses about random effects 398
16.6.1 Test for random intercepts 399
16.6.2 Test for random slopes 401
16.7 Analysis using the function $\operatorname{lmer}()$ 405
16.7.1 Basic results 405
16.7.2 Simulation-based p-values: The simulate.mer() method411
16.7.3 Test for random intercepts 416
16.7.4 Test for random slopes 417
16.8 Chapter summary 421
17 PRT Trial: Modeling Muscle Fiber Specific-force 425
17.1 Introduction 425
17.2 A conditional independence model with occasion-specific random intercepts for type-1 fibers 425
17.2.1 Model specification 426
17.2.2 R syntax and results 428
17.3 A mean-variance model with occasion-specific random intercepts for type-1 fibers 438
17.3.1 Model specification 438
17.3.2 R syntax and results 438
17.4 A model with heteroscedastic occasion \times type-specific random intercepts for both fiber types 442
17.4.1 Model specification 442
17.4.2 R syntax and results 444
17.5 A model with random effects corresponding to the occasion and fiber type 454
17.5.1 Model specification 454
17.5.2 R syntax and results 456
17.6 A model with heteroscedastic occasion \times fiber-type-specific random intercepts and a structured \mathcal{D} matrix 459
17.6.1 Model specification 459
17.6.2 R syntax and results 460
17.7 A model with homoscedastic occasion \times fiber-type-specific random intercepts and a structured \mathcal{D} matrix. 463
17.7.1 Model specification 463
17.7.2 R syntax and results 463
17.8 A joint model for two dependent variables 467
17.8.1 Model specification 467
17.8.2 R syntax and results 468
17.9 Chapter summary 474
18 SII Project: Modeling Gains in Mathematics Achievement-scores 477
18.1 Introduction 477
18.2 A model with fixed effects for school- and pupil-specific covariates and random intercepts for schools and classes 477
18.2.1 Model specification 478
18.2.2 R syntax and results 479
18.3 A model with an interaction between school- and pupil-level covariates 486
18.3.1 Model specification 486
18.3.2 R syntax and results 487
18.4 A model with fixed-effects of pupil-level covariates only 488
18.4.1 Model specification 488
18.4.2 R syntax and results 489
18.5 A model with a $3^{\text {rd }}$-degree polynomial of a pupil-level covariate in the mean structure 491
18.5.1 Model specification 492
18.5.2 R syntax and results 492
18.6 A model with a spline of a pupil-level covariate in the mean structure 496
18.6.1 Model specification 496
18.6.2 R syntax and results 496
18.7 The final model with only pupil-level variables in the mean structure 497
18.7.1 Model specification 498
18.7.2 R syntax and results 498
18.8 Analysis using the function lmer () 508
18.9 Chapter summary 512
19 FCAT Study: Modeling Attainment-target Scores 515
19.1 Introduction 515
19.2 A fixed-effects linear model fitted using $\operatorname{lm}()$ 516
19.2.1 Model specification 516
19.2.2 R syntax and results 516
19.3 A linear mixed-effects model with crossed random effects fitted using the function $\operatorname{lmer}()$ 519
19.3.1 Model specification 519
19.3.2 R syntax and results 520
19.4 A linear mixed-effects model with crossed random effects fitted using the function lme() 530
19.5 A linear mixed-effects model with crossed random effects and heterogeneous residual errors fitted using lme() 537
19.5.1 Model specification 538
19.5.2 R syntax and results 539
19.6 Chapter summary 542
20 Extensions of the R Tools for Linear Mixed-effects Models 543
20.1 Introduction 543
20.2 The new pdMat-class: pdKronecker 543
20.2.1 Creating objects of $p d$ Kronecker class 545
20.2.2 Extracting information from objects of class pdKronecker 546
20.3 Influence diagnostics 549
20.3.1 Preparatory steps 550
20.3.2 Influence-diagnostics 554
20.4 Simulation of the dependent variable 564
20.5 Power analysis 566
20.5.1 Post-hoc power calculations 567
20.5.2 A priori power calculations for a hypothetical study 569
20.5.3 Power evaluation using simulations 578
Acronyms 583
References 585

List of Tables

I Introduction
1.1 Classes of linear models presented in the book 5
2.1 AToT: Attainment targets for reading comprehension 32
2.2 Data frames in the nlmeU package 36
II Linear Models for Independent Observations
4.1 Scaled residuals 81
4.2 Scaled residuals that involve the hat-matrix elements. 82
4.3 Sequential (Type I) and marginal (Type III) tests 91
5.1 Operators used in an R formula 96
5.2 Interpretation of non-essential operators 99
5.3 Expanding elementary formulae 101
5.4 Selected arguments of the $\operatorname{lm}()$ and gls() functions 115
5.5 Extracting results from objects of class $l m$ and $g l s$ 118
6.1 The $\operatorname{lm}()$ and $g l s()$ estimates for model M6.1 129
XXII List of Tables
7.1 Groups of variance functions 136
7.2 Variance functions from the $\langle\boldsymbol{\delta}\rangle$-group 137
7.3 Variance functions from the $\langle\delta, \mu>$-group 137
7.4 Variance functions from the $\langle\mu\rangle$-group 138
7.5 Pearson residuals 147
8.1 Variance functions in the package nlme 160
8.2 Variance-structure components of an object of class gls 168
9.1 REML-based estimates for models with variance functions from the $\langle\delta\rangle$-group 181
9.2 REML-based estimates for models with variance functions from the $\langle\delta, \mu\rangle$ - and $\langle\mu\rangle$-groups 182
9.3 Summary of the models defined in Chapter 9 187
III Linear Fixed-effects Models for Correlated Data
10.1 Examples of correlation structures 198
11.1 Correlation-structure components of an object of class $g l s$ 231
12.1 REML estimates for models with various correlation structures 248
12.2 ML estimates for models with various mean structures 263
12.3 Summary of the models defined in Chapter 12 264
IVLinear Mixed-effects Models
14.1 Syntax for the object argument of the reStruct() function 310
14.2 Limitations of syntax for the argument object of the reStruct() function 311
14.3 Extracting results from an object of class reStruct 316
14.4 Selected arguments of the lme() function. 319
14.5 Extracting results from a model-fit object of class lme. 322
14.6 Extracting components of the lme()-function call from a model-fit object 324
14.7 Extracting information about the random components of an LMM from a model-fit object 325
15.1 Examples of Z-terms used in the $\operatorname{lmer}()$ formulae for single-level models 338
15.2 Additional examples of Z-terms in the $\operatorname{lmer}()$ formulae 339
15.3 Extracting results from an object of class mer 342
16.1 Parameter estimates for models M16.1and M16.2 372
16.2 Parameter estimates for models M16.3, M16.4, and M16.5. 397
16.3 Parameter estimates for models M16.6 and M16.7 405
16.4 Summary of the models defined in Chapter 16 422
17.1 Parameter estimates for models M17.1 and M17.2 441
17.2 Parameter estimates for models M17.4 and M17.5 466
17.3 Summary of the models defined in Chapter 17 475
18.1 Parameter estimates for models M18.1-M18.3 491
18.2 ML-based parameter estimates for models M18.4-M18.6 499
18.3 Summary of models defined in Chapter 18 513

List of Figures

I Introduction

3.1 $A R M D$: Visual-acuity profiles for selected patients 40
3.2 Box-and-whiskers plots for visual acuity 44
3.3 Mean visual-acuity profiles 45
3.4 Scatterplot matrix for visual acuity measurements 48
3.5 PRT: Individual spec.fo means 55
3.6 Individual summary statistics for spec.fo 56
3.7 Individual spec.fo-mean differences 57
3.8 SII: Scatterplots of the school-specific mathgain means 62
3.9 Scatterplots of the class-specific mathgain means 64
3.10 Scatterplots of the observed values of mathgain 66
3.11 AToT: Histograms of total target-scores 68
II Linear Models for Independent Observations
5.1 From a formula to the design matrix 104
6.1 Raw residuals for model M6.1 127

XXVI List of Figures

9.1 Residual plots for model M9.2 184
9.2 Scale-location plots for model M9.2 185
9.3 Scatterplot matrix of Pearson residuals 186
III Linear Fixed-effects Models for Correlated Data
10.1 Semivariogram and correlation functions 200
12.1 Empirical semivariograms for model M9.2 236
12.2 Raw residuals per timepoint and treatment for model M12.3 251
12.3 Pearson residuals vs. fitted values for model M12.3 252
12.4 Pearson residuals vs. time for model M12.3 253
12.5 Correlation between Pearson residuals for model M12.3 254
12.6 Scatterplot-matrix of residuals for model M12.3 255
12.7 Normalized residuals per timepoint and treatment for model M12. 3 256
12.8 Normal Q-Q plots of normalized residuals for model M12.3 257

IVLinear Mixed-effects Models

15.1 The number of non-zero elements in a Cholesky factor 351
15.2 Patterns of matrices used in the PWLS estimaton 355
16.1 Conditional Pearson residuals for model M16.2 374
16.2 Conditional Pearson residuals per timepoint and treatment for model M16.2 375
16.3 Normal Q-Q plots of the conditional Pearson residuals for model M16.2 377
16.4 Normal Q-Q plot of random intercepts for model M16.2 378
16.5 Observed and predicted values for model M16.2 380
16.6 Conditional Pearson residuals for model M16.4 386
16.7 Normal Q-Q plots of the conditional Pearson residuals for model M16.4 387
16.8 Normal Q-Q plots of random effects for model M16.4 388
16.9 Observed and predicted values for model M16.4 389
16.10Normal Q-Q plot of the conditional Pearson residuals for model M16.6 395
16.11REML function for model M16.6 396
$16.12 P$-values for testing random slopes for model M16.7 404
16.13Density plots for simulation-based estimates for model M16.1 416
17.1 Empirical BLUPs for model M17.1 437
17.2 Conditional Pearson residuals for models M17.1 and M17.2 440
17.3 Normal Q-Q plots of the conditional Pearson residuals for models M17.1 and M17.2 440
17.4 Conditional Pearson residuals for model M17.3 452
17.5 Normal Q-Q plot of the conditional Pearson residuals for model M17.3 453
17.6 Empirical BLUPs for models M17.3 and M17.3a 458
18.1 Marginal residuals for model M18.1 486
18.2 Marginal residuals for model M18.3 490
18.3 Predicted values of mathgain for model M18.4 494
18.4 Marginal residuals for model M18.4 495
18.5 Class-level Pearson residuals for model M18.6 501
18.6 Normal Q-Q plots of the conditional Pearson residuals for model M18.6 502
18.7 Q-Q plots of Pearson residuals for model M18.6 without outliers504
XXVIIIList of Figures
18.8 Empirical BLUPs for class and school for model M18.6 506
18.9 Normal Q-Q plots for EBLUPs for model M18.6 507
18.10Predicted values and 95\%CIs for model M18.6 508
19.1 Normal Q-Q plots of EBLUPs for model M19.2 524
19.2 Normal Q-Q plots of the predicted random coefficients for model M19.2 525
19.3 Dotplots of EBLUPs for model M19.2 527
19.4 Random- vs. fixed-effects for models M19.2 and M19.1. 530
19.5 Conditional Pearson residuals for different targets for model M19.2 537
20.1 Per-observation log-likelihood contributions for model M16.5 555
20.2 Likelihood-displacement values for model M16.5 559
20.3 Cook's distances for model M16.5 562
20.4 Standardized differences $\widehat{\boldsymbol{\beta}}_{(-i)}-\widehat{\boldsymbol{\beta}}$ for model M16.5 563
20.5 Mean values for the alternative model for the a priori power analysis 575
20.6 The power curve resulting from the a priori power calculations. 578

List of \mathbf{R} sessions

I Introduction
1 Introduction 1
2 Case Studies 9
R2.1 $A R M D$: Loading raw data stored in the .csv format 12
R2.2 Data in the "wide" format (armd.wide) 14
R2.3 Construction of factors in the data frame armd.wide 15
R2.4 Data in the "long" format (armd0) 16
R2.5 Creation of the data frame armd 18
R2.6 $P R T$: Loading raw data stored in the .csv format 20
R2.7 Construction of the data frame prt (preparatory steps) 22
R2.8 Construction of the data frame prt 23
R2.9 SII: The classroom data frame 25
R2.10 Creation of the data frame SIIdata 26
R2.11 Saving data in an external file 28
R2.12 Data hierarchy of SIIdata 29
R2.13 School-, class-, and pupil-level variables 30
R2.14 AToT: Loading raw data stored in the .csv format 33
R2.15 Contents of the raw data 34
R2.16 Construction of the data frame fcat 35
3 Data Exploration 39
R3.1 ARMD: "Spaghetti" plot 41
R3.2 Inspecting missing-data patterns 42
R3.3 Subgroup descriptive statistics 43
R3.4 Box-and-whiskers plots 45
R3.5 The number of patients by missing pattern 47
R3.6 Variance-covariance and correlation matrices 49
R3.7 PRT: Subjects' characteristics 51
R3.8 Fiber-level information 52
R3.9 Fiber-level information (use of the reshape package) 53
R3.10 SII: The number of missing values 58
R3.11 The number of pupils per school 59
R3.12 The mean math-scores per school 60
R3.13 Preparing the school-specific summary data 61
R3.14 Exploring the school-level data 62
R3.15 The number of pupils per class 63
R3.16 Contents of the class-level data 63
R3.17 Exploring the pupil-level data 65
R3.18 AToT: Summarizing the total target-scores 67
II Linear Models for Independent Observations
4 Models with Homogeneous Variance: Theory 73
5 Models with Homogeneous Variance: Syntax 95
R5.1 Basic formulae involving essential operators 97
R5.2 Formulae involving non-essential operators 98
R5.3 Formulae with a more advanced syntax 99
R5.4 Attributes of objects of class terms 102
R5.5 Creating a model frame 106
R5.6 Attribute terms of a model frame 108
R5.7 Creating a design matrix 110
R5.8 Pre-defined contrast functions 112
R5.9 Assigning and extracting contrasts for a factor 113
6 Models with Homogeneous Variance: ARMD Trial 121
R6.1 Design matrix for model M6.1 123
R6.2 Model M6.1 fitted using the lm() function 125
R6.3 CIs for parameters of model M6.1 fitted by gls() 128
7 Models with Heterogeneous Variance: Theory 131
8 Models with Heterogeneous Variance: Syntax 159
R8.1 Definition and initialization of an object of class varIdent 162
R8.2 Coefficients of an object of class varIdent. 164
R8.3 Extracting information from a varIdent-class object 165
9 Models with Heterogeneous Variance: ARMD Trial 171
R9.1 Estimates and CIs for variance parameters of model M9.1 174
R9.2 Inference for models employing various variance functions 177
R9.3 Variance functions for models M9.2 and M9.3 180
R9.4 Residual plots for model M9.2 183

III Linear Fixed-effects Models for Correlated Data

10 Models for Correlated Data: Theory 191
11 Models for Correlated Data: Syntax 215
R11.1 Semivariogram and correlation function plots for corExp 220
R11.2 Hypothetical data to illustrate correlation structures 221
R11.3 Defining and initializing an object of class corCompSymm 222
R11.4 Coefficients of an object of class corAR1 224
R11.5 Defining and initializing an object of class corAR1 226
R11.6 Defining and initializing an object of class corExp 227
12 Models for Correlated Data: ARMD Trial 233
R12.1 Semivariograms for Pearson residuals for model M9.2 235
R12.2 Model M12.1 with a CS correlation structure 238
R12.3 Variance-covariance structure for model M12.1. 239
R12.4 Model M12.2 with an AR(1) correlation structure 242
R12.5 Variance-covariance structure for model M12.2 243
R12.6 Model M12.3 with a general correlation structure 245
R12.7 Variance-covariance structure for model M12.3 246
R12.8 Tests of variance-covariance parameters of model M12.3 247
R12.9 Residual plots for model M12.3 250
R12.10Sequential F-tests for fixed effects for model M12.3 258
R12.11Fixed-effects tests for models with different mean structures 261
R12.12Variance-covariance structure for model M12.5 262
IVLinear Mixed-effects Models
13 Mixed-effects Models: Theory 269
14 Mixed-effects Models: The lme() syntax 299
R14.1 Creating objects inheriting from the pdMat class 302
R14.2 Probing initialized objects of class pdMat 305
R14.3 Extracting coefficients from an object of class pdMat 306
R14.4 Parameterizations of a general variance-covariance matrix 307
R14.5 Creating an object of class reStruct 313
R14.6 Probing an object of class reStruct 314
R14.7 Creating the matrix Z 315
R14.8 Probing an object of class lmeStruct 318
15 Mixed-effects Models: The lmer() syntax 331
R15.1 Simulating data with two crossed random effects 346
R15.2 Constructing the random-effects design-matrices 346
R15.3 The number of non-zero elements in the Cholesky factor (S3 system) 347

XXXII LIST OF R SESSIONS

R15.4 The number of non-zero elements in a Cholesky factor (S4 system) 349
R15.5 A model with crossed random intercepts 352
R15.6 Extracting matrices from an object of class mer 353
R15.7 Extracting information about matrices and transformations from an object of class mer 355
16 Mixed-effects Models: ARMD Trial 359
R16.1 Model M16.1 fitted using lme() 363
R16.2 Data hierarchy implied by model (M16.1) 364
R16.3 The estimated $\widehat{\mathcal{D}}$ and $\widehat{\mathcal{R}}_{i}$ matrices for model M16.1 366
R16.4 The estimated $\widehat{\mathcal{V}}_{i}$ matrix for model M16.1 367
R16.5 Model M16.2 fitted using lme() 369
R16.6 The $\widehat{\mathcal{D}}, \widehat{\mathcal{R}}_{i}$, and $\widehat{\mathcal{V}}_{i}$ matrices for model M16.2 370
R16.7 Residual plots for model M16.2 373
R16.8 Outlying conditional Pearson residuals for model M16.2 376
R16.9 Predicted visual-acuity values for model M16.2 376
R16.10Model M16.3 fitted using lme() 382
R16.11Model M16.4 fitted using lme() 384
R16.12A test for $\boldsymbol{\theta}_{D}$ parameters for model M16.4 385
R16.13Model M16.5 fitted using lme() 390
R16.14Estimates of matrices $\widehat{\mathcal{D}}, \widehat{\mathcal{R}}_{i}$, and $\widehat{\mathcal{V}}_{i}$ for model M16.5 391
R16.15Model M16.6 fitted using lme() 393
R16.16 Akaike's Information Criterion for selected models 399
R16.17REML-based LR test for random intercepts for model M16.1 400
R16.18REML-based LR test for random slopes for model M16.7 402
R16.19Model M16.1 fitted using lmer () 406
R16.20Estimated variance components for model M16.1 using lmer() 408
R16.21"Na ive" p-values for fixed effects for model M16.1 410
R16.22Simulations using the simulate.mer() method for model M16.1 413
R16.23Simulation-based distribution of estimates for model M16.1 414
R16.24Density plots for simulation-based estimates for model M16.1 415R16.25REML-based LR test for no random intercepts for modelM16.1418
R16.26Model M16.7 fitted using the function lmer() 420
R16.27REML-based LR test for random slopes for model M16.7 421
17 Mixed-effects Models: PRT Trial 425
R17.1 Model M17.1 with two random intercepts for type-1 fibers 429
R17.2 Estimates of the fixed effects for model M17.1 431
R17.3 The estimated \mathcal{D} and $\boldsymbol{\mathcal { R }}_{i}$ matrices for model M17.1 433
R17.4 The estimated \mathcal{V}_{i} matrix (M17.1) 434
R17.5 EBLUPs for model M17.1 436
R17.6 Conditional Pearson residuals for model M17.1 437
R17.7 Model M17.2 with two random intercepts for type-1 fibers 439
R17.8 Model M17.3 with four random intercepts for both fiber types 445
R17.9 Estimates of \mathcal{D} and σ^{2} for model M17.3 447
R17.10Confidence intervals for $\boldsymbol{\theta}_{\mathbf{D}}$ for model M17.3 449
R17.11Conditional Pearson residuals for model M17.3 449
R17.12Estimates of matrices \mathcal{V}_{i} and \mathcal{C}_{i} for model M17.3 451
R17.13Model M17.3a with four random intercepts for both fiber types 457
R17.14Model M17.4 with a structured \mathcal{D} matrix 461
R17.15The Kronecker-product structure of the matrix \mathcal{D} for model M17.4 with four random intercepts 462
R17.16Model M17.5 with a structured \mathcal{D} matrix 464
R17.17The Kronecker-product structure of the matrix \mathcal{D} for model M17.5 465
R17.18Likelihood-ratio tests for models M17.3-M17.5 465
R17.19Model M17.6 for two dependent variables 469
R17.20The estimated matrix \boldsymbol{D} for model M17.6 470
R17.21The Kronecker-product structure of the matrix \boldsymbol{D} for model M17. 6 471
R17.22 PRT Trial: Verification of (17.21) for model M17.6 472
R17.23 PRT Trial: Fixed-effects estimates for model M17.6 473
18 Mixed-effects Models: SII Project 477
R18.1 Model M18.1 fitted using lme() 480
R18.2 Data grouping/hierarchy implied by model M18.1 481
R18.3 Estimates of the fixed effects for model M18.1 482
R18.4 Estimates of the variances for the random intercepts of model M18.1 482
R18.5 Marginal approximate F-tests of the fixed effects for model M18.1 484
R18.6 Marginal residuals for model M18.1 485
R18.7 Model M18.2 fitted using lme() 488
R18.8 Model M18.3 fitted using lme() 489
R18.9 Model M18.4 fitted using lme() 493
R18.10Predicted values of mathgain for model M18.4 494
R18.11Model M18.5 fitted using lme() 497
R18.12Model M18.6 fitted using lme() 498
R18.13Residuals for model M18.6 500
R18.14Normal Q-Q plots of the Pearson residuals for model M18.6 without outliers. 503
R18.15Empirical BLUPs for model M18.6 505
R18.16Normal Q-Q plots for EBLUPs for model M18.6 506
R18.17Model M18.6 fitted using lmer () 509
R18.18Extracting information about model M18.6 from the mer-class object 510
R18.19Class-level conditional residuals and predicted random effects for model M18.6 511
19 Mixed-effects Models: FCAT Study 515
R19.1 Model M19.1 with crossed fixed effects fitted using lm() 517
R19.2 Estimates of the fixed-effects coefficients for model M19.1 518
R19.3 Model M19.2 with crossed random effects fitted using lmer() 521
R19.4 Extracting information about the fitted model M19.2 522
R19.5 Normal Q-Q plots of EBLUPs for model M19.2 523
R19.6 Dotplots of the EBLUPs for model M19.2 526
R19.7 "Shrinkage" of EBLUPs for model M19.2 528
R19.8 Model M19.2 fitted using lme() 531
R19.9 Extracting information about the fitted model M19.2 533
R19.10Confidence intervals for parameters of model M19.2 534
R19.11EBLUPs and residuals for model M19.2 535
R19.12Model M19.3 fitted using lme() 540
R19.13Results for model M19.3 541
20 Extensions of the R Tools 543
R20.1 Kronecker-product structure: a hypothetical example 544
R20.2 The main argument of the pdKronecker() function. 546
R20.3 Construction of an object of class pdKronecker 547
R20.4 Component matrices in an object of class pdKronecker 548
R20.5 Extracting the formula from an object of class pdKronecker 549
R20.6 Extracting selected results for model M16.5 551
R20.7 Individual-subject contributions to the log-likelihood for model M16.5 553
R20.8 Fitting model M16.5 to "leave-one-subject-out" datasets. 556
R20.9 Likelihood displacement for model M16.5 558
R20.10Cook's distances for model M16.5 560
R20.11The use of the simulateY() function for model M16.5 564
R20.12The empirical distribution of $\widehat{\boldsymbol{\beta}}$ for model M16.5 566
R20.13Preparatory steps for post-hoc power calculations for model M16.5 568
R20.14 Post-hoc power calculations for model M16.5 570
R20.15An exemplary dataset for an a priori power analysis 572
R20.16 An object of class lme representing the alternative model 574
R20.17The a priori power calculations using the function Pwr () 577
R20.18Simulation of the F-test statistics for a hypothetical study 579
R20.19Empirical power of the F-test 581

Part I

Introduction

Introduction

1.1 The aim of the book

Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data include clustered observations, repeated measurements, longitudinal measurements, multivariate observations, etc.

The aim of our book is to help readers in fitting LMMs using R software. R (www.r-project.org) is a language and an environment aimed at facilitating implementation of statistical methodology and graphics. It is an open-source software, which can be freely downloaded and used under the GNU general Public License. In particular, users can define and share their own functions, which implement various methods and extend the functionality of R. This feature makes R a very useful platform for propagating the knowledge and use of statistical methods.

We believe that, by describing selected tools available in R for fitting LMMs, we can promote the broader application of the models. To help readers less familiar with this class of linear models (LMs), we include in our book a description of the most important theoretical concepts and features of LMMs. Moreover, we present examples of applications of the models to real-life datasets from various areas to illustrate the main features of both theory and software.

1.2 Implementation of linear mixed-effects models in \mathbf{R}

There are many packages in R, which contain functions that allow fitting various forms of LMMs. The list includes, but is not limited to, packages amer,
arm, gamm, gamm4, GLMMarp, glmmAK, glmmBUGS, heavy, HGLMMM, lme4, lmec, lmm, longRPart, MASS, MCMCglmm, nlme, PSM, and pedigreemm. On the one hand, it would seem that the list is rich enough to allow for a widespread use of LMMs. On the other hand, the number of available packages leads to difficulty evaluating their relative merits choosing of the most suitable package.

It is virtually impossible to describe the contents of all of the packages mentioned above. To facilitate and promote the use of LMMs in practice, it might be more useful to provide details for a few of them, so that they could be used as a starting point. Therefore, we decided to focus on the packages nlme and lme4, for several reasons. First, they contain the functions lme() and lmer (), respectively, which are specifically designed for fitting a broad range of LMMs. Second, they include many tools useful for applications such as model diagnostics. Finally, many other packages, which add new LMM classes or functionalities, depend on and are built around nlme and/or lme4. Examples include, but are not limited to, packages amer, gamm, gamm4, or RLRsim.

In fact, we focus more on the package nlme than on lme4. The main reason is that the former has already been around for some time. Thus, its code is stable. On the other hand, the package lme4 is still under development and its code may be subject to changes in the near future. Thus, there is a risk that the features we might want to describe in the context of the current version of the package, may be modified in the later versions.

An important feature, that distinguishes R from many other existing statistical software packages implementing LMMs, is that it incorporates several concepts of an object-oriented (O-O) programming, such as classes of objects and methods operating on those classes. There are two O-O systems that have been implemented in R, namely, S3 and S4. They incorporate the O-O concepts to different degree, with S3 being a less formal, and S4 being a more stringent implementation. In both systems, the O-O concepts are implemented by defining special type of functions called generic functions. When such a function is applied to an object, it dispatches an appropriate method based on object's class. The system S3 has been used in the package nlme, while S4 has been used in the package lme4.

The O-O programming approach is very attractive in the context of statistical modeling because models can often be broken down into separable (autonomous) components such as data, mean structure, variance function, etc. Moreover, components defined for one type of model can also be used as building blocks for a different type of model.

1.3 The structure of the book

As it was mentioned in the previous section, an inherent feature of the O-O programming approach is that concepts and methods used for simpler objects or models are applicable to more complex objects or models. For this reason, in our book we chose an incremental build-up of the knowledge about the implementation of LMMs in the functions from packages nlme and lme4. In particular, in the first step, we decided to introduce theoretical concepts and their practical implementation in the R code in the context of simpler classes of LMs, like the classical linear regression model. The concepts are then carried over to more advanced classes of models, including LMMs. This step-by-step approach offers a couple of advantages. First, we believe that it makes the exposition of the theory and R tools for LMMs simpler and clearer. In particular, the presentation of the key concepts in the context of a simpler model makes them easier to explain and understand. Second, the step-by-step approach is helpful in the use of other R packages, which rely on classes of objects defined in the nlme and/or lme 4 packages.

As a result of this conceptual approach, we divided our book into four parts. Part I contains the introduction to the datasets used in the book. Parts II, III, and IV focus on different classes of LMs of increasing complexity. The structure of the three parts is, to a large extent, similar. First, a brief review of the main concepts and theory of a particular class of models is presented. Special attention is paid to the presentation of the link between similar concepts used for different classes. Then, the details of how to implement the particular class of models in the packages nlme and/or lme4 are described. The idea is to present the key concepts in the context of simpler models, in order to enhance the understanding of them and facilitate their use for the more complex models. Finally, in each part, the particular class of LMs and the corresponding R tools are illustrated by analyzing real-life datasets.

In a bit more detail, the content of the four parts is as follows:
Chapter 2 of Part I contains a description of four case studies, which are used to illustrate various classes of LMs and of the corresponding R tools. On the other hand, Chap. 3 contains results of exploratory analyses of the datasets. The results are used in later chapters to support model-based analyses. Note that one of the case studies, the Age-related Macular Degeneration (ARMD) clinical trial, is used repeatedly for the illustration of all classes of LMs. We believe that in this way the differences between the models concerning, e.g., the underlying assumptions, may become easier to appreciate.

Part II focuses on LMs for independent observations. In Chap. 4, we recall the main concepts of the theory of the classical LMs with homoscedastic residual errors. Then, in Chap. 5, we present the tools available in R to fit such models.

This allows us to present the fundamental concepts used in R for statistical model-building, like model formula, model frame, etc. The concepts are briefly illustrated in Chap. 6 using the data from the ARMD trial.

Subsequently, we turn our attention to models with heteroscedastic residual errors. In Chap. 7, we review the basic elements of the theory. Chapter 8 presents the function gls() from the package nlme, which can be used to fit the models. In particular, the important concept of the variance function is introduced in the chapter. The use of the function $g l s()$ is illustrated using data from the ARMD trial in Chap. 9.

In Part III, we consider general LMs, i.e., LMs for correlated observations. In Chap. 10, we recall the basic elements of the theory of the models. In particular, we explain how the concepts used in the theory of the LMs with heteroscedastic residual errors for independent observations, presented in Chap. 7, are extended to the case of models for correlated observations. In Chap. 11, we describe additional features of the function gls(), which allow the use of it for fitting general LMs. In particular, we introduce the key concept of the correlation structure. The use of the function gls() is illustrated in Chap. 12 using the data from the ARMD trial.

Finally, Part IV is devoted to LMMs. Chapter 13 reviews the fundamental elements of the theory of LMMs. In the presentation, we demonstrate the links between the concepts used in the theory of LMMs with those developed in the theory of general LMs (Chap. 10). We believe that by pointing to the links, the exposition of the fundamentals of the LMM theory becomes more transparent and easier to follow.

In Chap. 14, we describe the features of the function lme() from the package nlme. This function is the primary tool in the package used to fit LMMs. In particular, we describe in detail the representation of positive-definite matrices, which are instrumental in the implementation of the routines that allow fitting LMMs. Note that the concepts of the variance function and correlation structure, introduced in Chaps. 8 and 11, respectively, are also important for the understanding of the use of the function lme().

In Chap. 15, we present the capabilities of the function lmer () from the package lme4. In many aspects, the function is used similarly to lme(), but there are important differences, which we discuss. The basic capabilities of both of the functions are illustrated by application of LMMs to the analysis of the ARMD trial data in Chap. 16. More details on the use of the function lme () are provided in Chaps. 17, 18, and 19, in which we analyze using LMMs, the data from the Progressive Resistance Training (PRT) study, the Study of Instructional Improvement (SII), and the Flemish Community Attainmenttargets (FCAT) study, respectively. Finally, in Chap. 20, we present somewhat more advanced material on the additional R tools for LMMs, including
the methods for power calculations, influence diagnostics, and a new class of positive-definite matrices. The latter can be used to construct LMMs with random effects having a variance-covariance matrix defined as a Kronecker product of two or more matrices. Note that the newly-defined class is used in the analysis presented in Chap. 17.

Table 1.1 summarizes the successive classes of LMs, described in our book, together with the concepts introduced in the context of the particular class. The classes are identified by the assumptions made about the random part of the model.
$====$ Table 1.1 about here $=====$

Table 1.1: Classes of linear models with the corresponding components (building blocks) presented in the book. The R classes refer to the package nlme.

Linear model					Model component	
Class (residual errors)	Theory	Syntax		Name	R class	
	Homoscedastic, indep.	Ch. 4	Ch. 5		Data	data.frame
				Mean structure	formula	
Heteroscedastic, indep.	Ch. 7	Ch. 8		Variance structure	varFunc	
Correlated	Ch. 10	Ch. 11		Correlation structure	corStruct	
Mixed-effects (LMM)	Ch. 13	CH. 14		Random-effects structure	reStruct	

Our book contains 67 figures, 47 tables, and 187 panels with R code.
Finally, we would like to outline the scope of the contents of the book:

- The book is aimed primarily at providing explanations and help with respect to the tools available in R for fitting LMMs. Thus, we do not provide a comprehensive account of the methodology of LMMs. Instead, we limit ourselves to the main concepts and techniques, which have been implemented in the functions $\operatorname{lme}()$ and $\operatorname{lmer}()$ from the packages nlme and lme4, respectively, and which are important to the understanding of the use of the functions. A detailed exposition of the methodology of LMMs can be found in books by, for example, Searle et al. (1992), Davidian \& Giltinan (1995), Vonesh \& Chinchilli (1997), Pinheiro \& Bates (2000), Verbeke \& Molenberghs (2000), Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).
- In our exposition of methodology, we focus on the likelihood-based estimation methods, as they are primarily used in lme() and lmer(). Thus, we do not discuss, e.g., Bayesian approaches to the estimation of LMMs.
- We try to describe the use of various functions, which are available in the packages nlme and lme4, in sufficient detail. In our presentation, we focus on the main, or most often used, arguments of the functions. For a detailed description of all of the arguments, we refer the readers to R's help system.
- It is worth keeping in mind that, in many instances, the same task can be performed in R in several different ways. To some extent, the choice between the different methods is a matter of individual preference. In our description of the R code, we present methods, which we find to be the most useful. If alternative solutions are possible, we may mention them, but we are not aiming to be exhaustive.
- The analyses of the case studies aim principally to illustrate various linear models and the possibility of fitting the models in R. While we try to conduct as meaningful analyses as possible, they are not necessarily performed in the most optimal way with respect to, e.g., the model-building strategy. Thus, their results should not be treated as our contribution to the subject-matter discussion related to the examples. However, whenever possible or useful, we make an attempt to provide quantitative and/or qualitative interpretation of the results. We also try to formulate practical recommendations or guidance regarding model-building strategies, model diagnostics, etc. As mentioned earlier, however, the book is not meant to serve as a complete monograph on statistical modeling. Thus, we limit ourselves to providing recommendations or guidance for the topics which appear to be of interest in the context of the analyzed case studies.

1.4 Technical notes

The book is aimed at helping readers in fitting LMMs in R. We do assume that the reader has a basic knowledge of R. An introduction to R can be found in the book by Dalgaard (2008). A more advanced exposition is presented by Venables \& Ripley (2010).

To allow readers to apply the R code presented in the book, we created the R package nlmeU. The package contains all the datasets and the code we used in the text. It also includes additional R functions, which we have developed.

We tried to use short lines of the R code to keep matters simple, transparent, and easy to generalize. To facilitate locating the code, we placed it in panels. The panels are numbered consecutively in each chapter and referred to, for
example as, R2.3, where " 2 " gives the number of the chapter and " 3 " is the consecutive number of the panel within the chapter. Each panel was given a caption explaining the contents. In some cases, the contents of a panel were logically split into different subpanels. The subpanels are then marked by consecutive letters and referred to by adding the appropriate letter to panel's number, for example, R2.3a or R2.3b. Tables and figures are numbered in a similar fashion.

Only in rare instances a few lines of R code were introduced directly into the text. In all these cases (as in the examples given later in this section), the code was written using the true type font and placed in separate lines marked with ">", mimicking R's command-window style.

To limit the volume of the output presented in the panels, in some cases we skipped a part of it. These interventions are indicated by the ... [snip] string.

The R functions are referred to in the text as function(), e.g., lme(). Functions' arguments and objects are marked using the same font, e.g., argument and object. For the R classes, we use italic, e.g., lme class.

For the proper execution of the R code used in the book, the following packages are required: lattice, lme4, nlme, Matrix, plyr, reshape, RLRsim, splines, WWGbook. Additionally, nlmeU is needed. Packages lattice, nlme, Matrix, and splines come with basic distribution of R and do not need to be installed. The remaining packages can be installed using the following code:

```
> pckgs <-
+ c("lme4", "nlmeU", "plyr", "reshape", "RLRsim", "WWGbook",
+ "ellipse")
> install.packages(pckgs)
```

There are additional utility functions, namely, Sweave() (Leisch, 2002) and xtable () in Sweave and xtable (Dahl, 2009) packages, respectively, which are not needed to execute the code presented in the book, but were extensively used by us when preparing this manuscript.

It is worth noting that there are functions, which bear the same name in the packages nlme and lme4, but which have different definitions. To avoid unintentional masking of the functions, the packages should not be loaded simultaneously. Instead, it is recommended to switch between the packages. For example, when using nlme in a hypothetical R session, we load the package by using the library () or require() functions and execute statements as needed. Then, before switching to lme4, it is mandatory to detach the nlme package by using the detach() function. We also note that the conflicts()
function, included for illustration below, is very useful to identify names' conflicts:

```
> library(nlme) # Load package
> conflicts(detail = TRUE) # Identifies names' conflicts
... statements omitted
> detach(package:nlme) # Detach package
```

A similar approach should be applied when using the package lme4:

```
> library(lme4)
... statements omitted
> detach("package:lme4")
> detach("package:Matrix") # Recommended
```

Note that detaching Matrix is less critical, but recommended.
In the examples above, we refer to the packages nlme and lme4. However, to avoid unintentional masking of objects, the same strategy may also be necessary for other packages, which may cause function names' conflicts.

When creating figures we used "CMRoman" and "CMSans" Computer Modern font families available in cmrutils package. These fonts are based on CMSuper font IATEXpackage (Volovich \& Lemberg, 1999) and CMSYASE fonts (Murrell \& Ripley, 2006). The full syntax needed to create figures presented in the book is often extensive. In many cases, we decided to present a shortened version of the code. A full version is available in the nlmeU package.

Finally, the R scripts in our book were executed by using R version 2.14.1 (2012-12-22) under the Windows-XP operating system. We used the following global options:

```
> options(width = 65, digits = 5, show.signif.stars = FALSE)
```


Case Studies

2.1 Introduction

In this chapter, we introduce the case studies, that will be used to illustrate the models and R code described in the book.

The case studies come from different application domains; however, they share a few features. For instance, in all of them the study and/or sampling design generates the observations that are grouped according to the levels of one or more grouping factors. More specifically the levels of grouping factors, i.e. subjects, schools, etc. are assumed to be randomly selected from a population being studied. This means that observations within a particular group are likely to be correlated. The correlation should be taken into account in the analysis. Also, in each case there is one (or more) continuous measurement, which is treated as the dependent variable in the models considered in this book.

In particular, we consider the following datasets:

- Age-related Macular Degeneration (ARMD) Trial: A clinical trial comparing several doses of interferon- α and placebo in patients with ARMD. Visual acuity of patients participating in the trial was measured at baseline and at four post-randomization time points. The resulting data are an example of longitudinal data with observations grouped by subjects. We describe the related datasets in more detail in Sect. 2.2.
- Progressive Resistance Training (PRT) Trial: A clinical trial comparing low- and high-intensity training for improving the muscle power in elderly people. For each participant, characteristics of two types of muscle fibers were measured at two occasions, pre- and post-training. The resulting data
are an example of clustered data, with observations grouped by subjects. We present a more detailed information about the dataset in Sect. 2.3.
- Study of Instructional Improvement (SII): An educational study aimed at assessing improvement in mathematics grades of first-grade pupils, as compared to their kindergarten achievements. It included pupils from randomly selected classes in randomly selected elementary schools. The dataset is an example of hierarchical data, with observations (pupils' scores) grouped within classes, which are themselves grouped in schools. We refer to Sect. 2.4 for more details about the data.
- Flemish Community Attainment-targets (FCAT) Study: An educational study, in which elementary-school graduates were evaluated with respect to reading comprehension in Dutch. Pupils from randomly selected schools were assessed for a set of nine attainment targets. The dataset is an example of grouped data, for which the grouping factors are crossed. We describe the dataset in more detail in Sect. 2.5.

The data from ARMD study will be used throughout the book to illustrate various classes of LMs and corresponding R tools. The remaining case studies will be used in Part IV, only, to illustrate R functions for fitting LMMs.

For each of the aforementioned case studies, there is one or more datasets included into the package nlmeU which accompanies this book. In the next sections of this chapter, we use the R syntax to describe the contents of these datasets. Results of exploratory analyses of the case studies are presented in Chap. 3. Note that, unlike in the other parts of the book, we are not discussing the code in much detail, as the data-processing functionalities are not the main focus of our book. The readers interested in the functionalities are referred to the monograph by Dalgaard (2008).

The R language is not particularly suited for data entry. Typically, researchers use raw data created using other software. Data are then stored in external files, for example, in the .csv format, read into R , and prepared for the analysis. To emulate this situation, we assume, for the purpose of this chapter, that the data are stored in a .csv-format file in the "C:\temp" directory.

2.2 Age-related Macular Degeneration (ARMD) Trial

The Age-related Macular Degeneration data arise from a randomized multi-center clinical trial comparing an experimental treatment (interferon- α) versus placebo for patients diagnosed with ARMD. The full results of this trial have been reported by Pharmacological Therapy for Macular Degeneration Study Group (1997).

We focus on the comparison between placebo and the highest dose (6 million units daily) of interferon- α.
Patients with macular degeneration progressively lose vision. In the trial, visual acuity of each of 240 patients was assessed at baseline and at four postrandomization timepoints, i.e., at 4, 12, 24, and 52 weeks. Visual acuity was evaluated based on patient's ability to read lines of letters on standardized vision charts. The charts display lines of five letters of decreasing size, which the patient must read from top (largest letters) to bottom (smallest letters). Each line with at least four letters correctly read is called one "line of vision." In our analyses, we will focus on the visual acuity defined as the total number of letters correctly read. Another possible approach would be to consider visual acuity measured by the number of lines correctly read. Note that the two approaches are closely linked, as each line of vision contains five letters.

It follows that, for each of 240 patients, we have longitudinal data in the form of up to five visual acuity measurements collected at different, but common to all patients, timepoints. These data will be useful to illustrate the use of LMMs for continuous, longitudinal data. We will also use them to present other classes of LMs considered in our book.

2.2.1 Raw data

We assume that the raw ARMD data are stored in the "C:\temp" directory in a .csv-format file named armd240.data.csv. In what follows, we assume that our goal is to verify the content of the data.

In Panel R2.1, the data are loaded into R using the read.csv() function and are stored in the data-frame object armd240.data. Note that this data frame is not included in the nlmeU package.
$====$ RSession R2.1 about here $====$
The number of rows (records) and columns (variables) in the object armd240. data is obtained using the function $\operatorname{dim}()$. The data frame contains 240 observations and 9 variables. The names of the variables are displayed using the names () function. All the variables are of class integer. By applying the function $\operatorname{str}()$, we get a summary description of variables in armd240. data data. In particular, for each variable, we get its class and a listing of the first few values.

The variable subject contains patients' identifiers. Treatment identifiers are contained in the variable treat. Variables visual0, visual4, visual12, visual24, and visual52 store visual acuity measurements obtained at baseline

R2.1: ARMD Trial: Loading raw data from a .csv-format file into the armd240.data object and checking their contents.

```
> dataDir <- file.path("C:", "temp") # Data directory
> fp <- # File path
+ file.path(dataDir, "armd240.data.csv")
> armd240.data <- # Read data
+ read.csv(fp, header = TRUE)
> dim(armd240.data) # No. of rows and cols
    [1] 240 9
> (nms <- names(armd240.data)) # Variables' names
    [1] "subject" "treat" "lesion" "line0" "visual0"
    [6] "visual4" "visual12" "visual24" "visual52"
> unique(sapply(armd240.data, class)) # Variables' classes
    [1] "integer"
> str(armd240.data) # Data structure
    'data.frame': 240 obs. of 9 variables:
        $ subject : int 1 2 3 4 5 6 7 8 9 10 ...
        $ treat : int 2 2 1 1 2 2 1 1 2 1 ...
        $ lesion : int 3 1 4 2 1 3 1 3 2 1 ...
        $ line0 : int 12 13 8 13 14 12 13 8 12 10 ...
        $ visual0 : int 59 65 40 67 70 59 64 39 59 49 ...
        $ visual4 : int 55 70 40 64 NA 53 68 37 58 51 ...
        $ visual12: int 45 65 37 64 NA 52 74 43 49 71 ...
        $ visual24: int NA 65 17 64 NA 53 72 37 54 71 ...
        $ visual52: int NA 55 NA 68 NA 42 65 37 58 NA ...
> names(armd240.data) <- abbreviate(nms) # Variables' names shortened
> head(armd240.data, 3) # First 3 records
        sbjc tret lesn lin0 vsl0 vsl4 vs12 vs24 vs52
    1
    2
> names(armd240.data) <- nms # Variables' names reinstated
```

and week $4,12,24$, and 52 , respectively. Variables lesion and line0 contain additional information, which will not be used for analysis in our book.

Finally, at the bottom of Panel R2.1, we list the first three rows of the data frame armd240. data with the help of the head() function. To avoid splitting lines of the output and to make the latter more transparent, we shorten variables' names using the abbreviate() function. After printing the contents of the first three rows and before proceeding further, we reinstate the original names. Note that we apply a similar sequence of R commands in many other R panels across the book to simplify the displayed output.

Based on the output, we note that the data frame contains one record for each patient. The record includes all information obtained for the patient. In particular, each record contains five variables with visual acuity measurements, which are, essentially, of the same format. This type of data storage, with one record per subject, is called the "wide" format. An alternative is the "long" format with multiple records per subject. We will discuss the formats in the next section.

2.2.2 Data for analysis

In this section, we describe auxiliary data frames, namely armd.wide, armd0, and armd, which were derived from armd240. data for the purpose of analyses of ARMD data that will be presented later in the book. The data frames are included in the package nlmeU. In what follows, we present the structure, contents, and for illustration purposes, how the data were created.

Data in the "wide" format: the data frame armd. wide

Panel R2.2 presents the structure and the contents of the armd.wide data frame.
$====$ RSession R2.2 around here $===$
Note that the data are loaded into R using the data() function, without the need for loading the package nlmeU. The data frame contains 10 variables. In particular, it includes variables visual0, visual4, visual12, visual24, visual52, lesion, and line0, which are exactly the same as those in armd240.data. In contrast to armd240.data data frame, it contains three factors: subject, treat.f and miss.pat. The first two contain patient's identifier and treatment. They are constructed from the corresponding numeric variables available in armd240.data. The factor miss.pat is a new variable and contains a missing-pattern identifier, i.e., a character string that indicates which of the four post-randomization measurements of visual acuity are missing for a particular patient. The missing values are marked by X. Thus, for instance, for the patient with the subject identifier equal to 1 , the pattern is equal to --XX , because there is no information about visual acuity at weeks 24 and 52 . On the other hand, for the patient with the subject identifier equal to 6 , there are no missing visual-acuity measurements, and hence the value of the miss.pat factor is equal to ----. At the bottom of Panel R2.2, we demonstrate how to extract the names of the factors from a data frame.

Panel R2.3 presents the syntax used to create factors treat.f and miss.pat in the armd.wide data frame. The former is constructed in Panel R2.3a from

```
R2.2: ARMD Trial: The structure and contents of data frame armd.wide
stored in the "wide" format.
```

```
> data(armd.wide, package = "nlmeU") # armd.wide loaded
```

> data(armd.wide, package = "nlmeU") \# armd.wide loaded
> str(armd.wide) \# Structure of data
> str(armd.wide) \# Structure of data
'data.frame': 240 obs. of 10 variables:
'data.frame': 240 obs. of 10 variables:
\$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...
\$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...
[snip]
[snip]
\$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...
\$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...
\$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...
\$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...
> head(armd.wide) \# First few records
> head(armd.wide) \# First few records
subject lesion line0 visual0 visual4 visual12 visual24
subject lesion line0 visual0 visual4 visual12 visual24
1 1 1 3
1 1 1 3
... [snip]
... [snip]
6 6 3 3 12 59 53 53 52
6 6 3 3 12 59 53 53 52
visual52 treat.f miss.pat
visual52 treat.f miss.pat
1 NA Active --XX
1 NA Active --XX
... [snip]
... [snip]
6 42 Active ----
6 42 Active ----
> (facs <- sapply(armd.wide, is.factor)) \# Factors indicated
> (facs <- sapply(armd.wide, is.factor)) \# Factors indicated
subject lesion line0 visual0 visual4 visual12 visual24
subject lesion line0 visual0 visual4 visual12 visual24
TRUE FALSE FALSE FALSE FALSE FALSE FALSE
TRUE FALSE FALSE FALSE FALSE FALSE FALSE
visual52 treat.f miss.pat
visual52 treat.f miss.pat
FALSE TRUE TRUE
FALSE TRUE TRUE
> names(facs[facs == TRUE]) \# Factor names displayed
> names(facs[facs == TRUE]) \# Factor names displayed
[1] "subject" "treat.f" "miss.pat"

```
    [1] "subject" "treat.f" "miss.pat"
```

the variable treat from the data frame armd240. data using the function factor(). The factor treat.f has two levels, Placebo and Active, which correspond to the values of 1 and 2 , repectively, of treat.
$====$ RSession R2.3 around here $====$
The factor miss.pat is constructed in Panel R2.3b with the help of the function missPat() included in the nlmeU package. The function returns a character vector of the length equal to the number of rows of the matrix created by column-wise contactenation of the vectors given as arguments to the function. The elements of the resulting vector indicate the occurrence of missing values in the rows of the matrix. In particular, the elements are character strings of the length equal to the number of the columns (vectors). As shown in Panel R2.2, the strings contain characters "-" and "X", where the former indicates a non-missing value in the corresponding column of the matrix, while the latter indicates a missing value. Thus, application of the function to variables visual4, visual12, visual24, and visual52 from the data frame armd240.data results in a character vector of length 240 with

```
R2.3: ARMD Trial: Construction of factors treat.f and miss.pat in the data frame armd.wide. The data frame armd240. data was created in
Panel R2.1.
(a) Factor treat.f.
> attach (armd240.data) \# Attach data
> treat.f <- \# Factor created
+ factor (treat, labels = c("Placebo", "Active"))
> levels(treat.f) \# (1) Placebo, (2) Active
    [1] "Placebo" "Active"
> str (treat.f)
    Factor w/ 2 levels "Placebo","Active": 2211221121 ...
(b) Factor misspat.
```

```
> miss.pat <- # Missing patterns
```

> miss.pat <- \# Missing patterns

+ nlmeU:::missPat(visual4, visual12, visual24, visual52)
+ nlmeU:::missPat(visual4, visual12, visual24, visual52)
> length(miss.pat) \# Vector length
> length(miss.pat) \# Vector length
[1] 240
[1] 240
> mode(miss.pat) \# Vector mode
> mode(miss.pat) \# Vector mode
[1] "character"
[1] "character"
> miss.pat \# Vector contents
> miss.pat \# Vector contents
[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "-----"
[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "-----"
[233] "----" "----" "----" "----" "-----" "----" "----" "----"
[233] "----" "----" "----" "----" "-----" "----" "----" "----"
> detach(armd240.data) \# Detach armd240.data

```
> detach(armd240.data) # Detach armd240.data
```

strings containing four characters as the elements. The elements of the resulting miss.pat vector indicate that, for instance, for the first patient in the data frame armd240. data visual acuity measurements at week 24 and 52 were missing, while for the fifth patient no visual-acuity measurements were obtained at any post-randomization visit.

Note that, we used nlmeU:::missPat() syntax, which allowed us to invoke the missPat () function without loading the nlmeU package.

Data in the "long" format: the data frame armd0

In addition to the armd.wide data stored in the "wide" format, we will need data in the "longitudinal" (or "long") format. In the latter format, for each patient, there are multiple records containing visual acuity measurements for separate visits. An example of data in "long" format is stored in the data frame
armd0. It was obtained from the armd. wide data using functions melt() and cast() from the package reshape (Wickham, 2007).
$====$ RSession R2.4 about here $====$

R2.4: ARMD Trial: The structure and contents of the data frame armd0 stored in the "long" format.

```
data(armd0, package = "nlmeU") # From nlmeU package
dim(armdO) # No. of rows and cols
    [1] 1107 8
> head(armd0) # First six records
        subject treat.f visual0 miss.pat time.f time visual tp
    1 1 Active 59 --XX Baseline 0 59 0
    2 1 Active 59 --XX 4wks 4 5 5 1 
    3 1 Active 59 --XX 12wks 12 12 45 2
    4 2 Active 65 ---- Baseline 0 65 0
    5 2 Active 65 _--- 
> names(armd0)
    # Variables' names
    [1] "subject" "treat.f" "visual0" "miss.pat" "time.f"
    [6] "time" "visual" "tp"
> str(armd0) # Data structure
    'data.frame': }1107\mathrm{ obs. of 8 variables:
    $ subject : Factor w/ 240 levels "1","2","3","4",..: 1 1 1 2 2 2 ...
    $ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 2 2 2 2 2 ...
    $ visual0 : int 59 59 59 65 65 65 65 65 40 40 ...
    $ miss.pat: Factor w/ 9 levels "----","---X",..: 4 4 4 1 1 1 1 1 ...
    $ time.f : Ord.factor w/ 5 levels "Baseline"<"4wks"<..: 1 2 3 1 ...
    $ time : num 0 4 12 0 4 12 24 52 0 4 ...
    $ visual : int 59 55 45 65 70 65 65 55 40 40 ...
    $ tp : num 0 1 2 0 1 2 3 4 0 1 ...
```

Panel R2.4 presents the contents and structure of the data frame armd0. The data frame includes eight variables and 1107 records. The contents of variables subject, treat.f, and miss.pat, is the same as in armd.wide, while visual0 contains the value of the visual acuity measurement at baseline. Note that the values of these four variables are repeated across the multiple records corresponding to a particular patient. On the other hand, the records differ with respect to the values of variables time.f, time, tp, and visual. The first three of those four variables are different forms of an indicator of the visit time, while visual contains the value of the visual acuity measurement at the particular visit. We note that having three variables representing time
visits is not mandatory, but we created them to simplify the syntax used for analyses in later chapters.

The numerical variable time provides the actual week, at which a particular visual-acuity measurement was taken. The variable time.f is a corresponding ordered factor, with levels Baseline, $4 \mathrm{wks}, 12 \mathrm{wks}, 24 \mathrm{wks}$, and 52 wks . Finally, tp is a numerical variable, which indicates the position of the particular measurement visit in the sequence of the five possible measurements. Thus, for instance, $\mathrm{tp}=0$ for the baseline measurement and $\mathrm{tp}=4$ for the fourth postrandomization measurement at week 52 .

Interestingly, enough visual acuity measures taken at baseline are stored both in visual0 and in selected rows of the visual variables. This structure will proof useful when creating armd data containing rows with post-randomization visual-acuity measures, while keeping baseline values.

The "long" format is preferable for storing longitudinal data over the "wide" format. We note, that storing of the visual acuity measurements in the data frame armd.wide requires the use of six variables, i.e., subject and the five variables containing the values of the measurements. On the other hand, storing the same information in the data frame armd0 requires only three variables, i.e., subject, time, and visual. Of course, this is achieved at the cost of including more rows in the armd0 data frame, i.e., 1107, as compared to 240 records in armd.wide.

We also note that variables, with values invariant within subjects, such as treat.f, visual0 are referred to as time-fixed. In contrast time, tp, and visual are called time-varying. This distinction will have important implications for the specification of the models and interpretation of the results.

Subsetting data in the "long" format: the data frame armd

Data frame armd was also stored in a "long" format and was created from the armd0 data frame, by omitting records corresponding to the baseline visualacuity measurements.
$===$ Place Panel R2.5 about here $=====$
Panel R2.5 presents the syntax used to create the data frame armd. In particular, the function subset () is used to remove the baseline measurements, i.e., the records, for which time>0, from the object armd0. By removing the baseline measurements, we reduce the number of records from 1107 (see Panel R2.4) to 867.

While subsetting the data, care needs to be taken regarding the levels of the time.f and potentially other factors. In the data frame armd0, the factor had

```
R2.5: ARMD Trial: Creation of the data frame armd from armd0.
auxDt <- subset(armd0, time > 0) \# Post-baseline measures
\(>\operatorname{dim}(a u x D t) \quad\) \# No. of rows \& cols
    [1] 8678
> levels(auxDt\$time.f) \# Levels of treat.f
    [1] "Baseline" "4wks" "12wks" "24wks" "52wks"
    armd <- droplevels (auxDt) \# Drop unused levels
    levels(armd\$time.f) \# Baseline level dropped
    [1] "4wks" "12wks" "24wks" "52wks"
> armd <- \# Data modified
+ within(armd,
+ \{
\(+\quad\) contrasts(time.f) <- \# Contrasts assigned
\(+\quad\) contr.poly(4, scores \(=c(4,12,24,52))\)
\(+\quad\})\)
head (armd) \# First six records
    subject treat.f visual0 miss.pat time.f time visual tp
    1 Active \(59 \quad-\)-XX \(4 \mathrm{wks} 4 \quad 55 \quad 1\)
    31 Active \(59 \quad--X X \quad\) 12wks \(12 \quad 45 \quad 2\)
    52 Active 65 ---- 4wks 4
    62 Active 65 ---- 12 wks \(12 \quad 65 \quad 2\)
    \(7 \quad 2\) Active 65 ---- \(24 \mathrm{wks} 24 \quad 65 \quad 3\)
    82 Active 65 ---- \(52 \mathrm{wks} 52 \quad 554\)
```

five levels. In Panel R2.5, we extract the factor time.f from the auxiliary data frame auxDt. Note that in the data frame the level Baseline is not used in any of the rows. For many functions in R it would not be a problem, but sometimes the presence of an unused level in the definition of a factor may lead to unexpected results. Therefore, it is prudent to drop the unused level from the definition of the time.f factor, by applying the function droplevels(). It is worth noting that, using the droplevels() function, the number of levels of the factors subject and miss.pat is also affected (not shown).

After modifying the aforementioned factors, we store the resulting data in the data frame armd. We also assign orthogonal polynomial contrasts to the factor time.f using syntax of the form "contrasts(factor)<-contr.function". We will revisit the issue of assigning contrasts to a factor in Panel R5.9 (Sect. 5.3.2).

The display of the first six records of armd in Panel R2.5 confirms that the data do not include the records corresponding to the baseline measurements of visual acuity. Of course, the information about the values of the measurements is still available in the variable visualo.

Both data frames armd0 and armd, introduced in this section, are stored in "long" format. The armd0 will be primarily used for exploratory data analyses (Sect. 3.2). On the other hand, armd will be the primary data frame used for the analyses throughout the entire book.

2.3 Progressive Resistance Training (PRT) Study

The Progressive Resistance Training (PRT) data originate from a randomized trial aimed at devising evidence-based methods for improving and measuring the mobility and muscle power of elderly men and women in the $70+$ age category. The working hypothesis was that a 12 -week program of PRT would increase: (a) the power output of the overall musculature associated with movements of the ankles, knees and hips; (b) the cross-sectional area and the force and power of permeabilized single fibers obtained from the vastus lateralis muscle; and (c) the ability of young and elderly men and women to safely arrest standardized falls. The training consisted of repeated leg extensions by shortening contractions of the leg extensor muscles against a resistance that was increased as the subject trained using a specially designed apparatus.

In the trial, healthy young (21-30 years) and older (65-80 years) male and female subjects were randomized between a "high" and "low" intensity of a 12 -week PRT intervention. Randomization was stratified by age group (young or old) and sex. In total, the data set used in our book includes 63 subjects.

For each subject, multiple measurements characterizing two types of muscle fibers were obtained before and after the 12 -week PRT. The resulting data are thus an example of clustered data. In particular, the measurements for a particular characteristic of muscle fibers for each subject correspond to a 2×2 factorial design, with fiber type (1,2) and occasion (pre-training, posttraining) as the two design factors, which has important implications for the data analysis (Chapt. 17).

2.3.1 Raw data

We assume that subjects' characteristics and experimental measurements are contained in external files named prt.subjects.data.csv and prt.fiber.data.csv, respectively.
$===$ Place Panel R2.6 about here $=====================$
In Panel R2.6, we present the syntax for loading and inspecting the two datasets. As can be seen from the output presented in Panel R2.6a, the file

```
R2.6: PRT Trial: Loading raw data from .csv files into objects
prt.subjects.data and prt.fiber.data. The object dataDir was created
in Panel R2.1.
(a) Loading and inspecting data from the prt.subjects.data.csv file.
fp <- file.path(dataDir, "prt.subjects.data.csv")
> prt.subjects.data <- read.csv(fp, header = TRUE, as.is = TRUE)
> dim(prt.subjects.data)
    [1] 636
> names (prt.subjects.data)
    [1] "id" "gender" "ageGrp" "trainGrp" "height"
    [6] "weight"
> str(prt.subjects.data)
    'data.frame': 63 obs. of 6 variables:
    \$ id : int 5101520253545506070 ...
    \$ gender : chr "F" "F" "F" "F" ...
    \$ ageGrp : int \(00111100100 \ldots\)
    \$ trainGrp: int \(01111100001 \ldots\)
    \$ height : num 1.561 .711 .671 .551 .691 .691 .721 .611 .71 ..
    \$ weight : num 61.96670 .96279 .174 .58968 .962 .968 .1 ...
> head(prt.subjects.data, 4)
        id gender ageGrp trainGrp height weight
    \(1 \quad \mathrm{~F} \quad 0 \quad 0 \quad 1.56 \quad 61.9\)
    \(\begin{array}{llllll}210 & F & 0 & 1 & 1.71 & 66.0\end{array}\)
    \(\begin{array}{llllll}315 & F & 1 & 1 & 1.67 & 70.9\end{array}\)
    \(\begin{array}{llllll}420 & F & 1 & 1 & 1.55 & 62.0\end{array}\)
```

(b) Loading and inspecting data from the prt.fiber.data.csv file.

```
> fp <- file.path(dataDir, "prt.fiber.data.csv")
> prt.fiber.data <- read.csv(fp, header = TRUE)
> str(prt.fiber.data)
    'data.frame': 2471 obs. of 5 variables:
    $ id : int 5 5 5 5 5 5 5 5 5 5 ...
    $ fiber.type : int 1 1 2 1 2 1 1 1 2 1 ...
    $ train.pre.pos: int 0 0 0 0 0 0 0 0 0 0 ...
    $ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 ...
    $ spec.fo : num 83.5 132.8 161.1 158.8 117.9 ...
> head(prt.fiber.data, 4)
        id fiber.type train.pre.pos iso.fo spec.fo
\begin{tabular}{rrrrrr}
1 & 5 & 1 & 0 & 0.265 & 83.5 \\
2 & 5 & 1 & 0 & 0.518 & 132.8 \\
3 & 5 & 2 & 0 & 0.491 & 161.1 \\
4 & 5 & 1 & 0 & 0.718 & 158.8
\end{tabular}
```

prt.subjects.data.csv contains information about 63 subjects, with one record per subject. It includes one character variable and five numeric variables, three of which are integer-valued. The variable id contains subjects' identifiers, gender identifies sex, ageGrp indicates the age group, and trainGrp identifies the study group. Finally, height and weight contain the information of subjects' height and weight at baseline.

Note that the as.is argument used in the read.csv() function is set to TRUE. Consequently, it prevents the creation of a factor from a character variable. This applies to the gender variable, which is coded using the " F " and " M " characters.

The output in Panel R2.6b presents the contents of the file prt.fiber.data.csv. The file contains 2471 records corresponding to individual muscle fibers. It includes five numeric variables, three of which are integer-valued. The variable id contains subjects' identifiers, fiber.type identifies the type of fiber, while train.pre.pos indicates whether the measurement was taken pre- or post-training. Finally, iso.fo and spec.fo contain the measured values of two characteristics of muscle fibers. These two variables will be treated as outcomes of interest in the analyses presented in Part IV of the book.

2.3.2 Data for analysis

In Panels R2.7 and R2.8, we present the syntax used to create the prt data set that will be used for analysis.
$===$ Place Panel R2.7 about here $======================$
First, in Panel R2.7, we prepare data for merging. Specifically in Panel R2.7a, we create the data frame prt.subjects, corresponding to prt.subjects.data, with several variables added and modified. To this aim, we use the function within(), which applies all the modifications to the data frame prt.subjects.data. In particular, we replace the variable id by a corresponding factor. We also define the numeric variable bmi, which contains subject's Body Mass Index (BMI), expressed in units of $\mathrm{kg} / \mathrm{m}^{2}$. Moreover, we create the factors sex.f, age.f, and prt.f, which correspond to the variables gender, ageGrp, and trainGrp, respectively. Finally, we remove the variables weight, height, trainGrp, ageGrp, and gender, and store the result as the data frame prt.subjects. The contents of the data frame is summarized using the $\operatorname{str}()$ function.

In Panel R2.7b, we create the data frame prt.fiber. It corresponds to prt.fiber.data, but instead of the variables fiber.type and

R2.7: PRT Trial: Construction of the data frame prt. Creating data frames prt.subjects and prt.fiber containing subjects' and fiber measurements.
Data frames prt.subjects.data and prt.fiber.data were created in Panel R2.6.
(a) Subjects' characteristics.

```
> prt.subjects <-
+ within(prt.subjects.data,
+ {
+ id <- factor(id)
+ bmi <- weight/(height^2)
+ sex.f <- factor(gender, labels = c("Female", "Male"))
+ age.f <- factor(ageGrp, labels = c("Young", "Old"))
+ prt.f <-
+ factor(trainGrp, levels = c("1", "0"),
+ labels = c("High", "Low"))
+ gender <- ageGrp <- trainGrp <- height <- weight <- NULL
+ })
str(prt.subjects)
    'data.frame': 63 obs. of 5 variables:
    $ id : Factor w/ 63 levels "5","10","15",..: 1 2 3 4 5 6 7 8 9 ...
    $ prt.f: Factor w/ 2 levels "High","Low": 2 1 1 1 1 2 2 2 2 1 ...
    $ age.f: Factor w/ 2 levels "Young","Old": 1 1 2 2 2 1 1 2 1 1 ...
    $ sex.f: Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 2 1 2 2 ...
    $ bmi : num 25.4 22.6 25.4 25.8 27.7 ...
```

(b) Fiber measurements.

```
> prt.fiber <-
+ within(prt.fiber.data,
+ {
+ id <- factor(id)
+ fiber.f <-
+ factor(fiber.type, labels = c("Type 1", "Type 2"))
+ occ.f <-
+ factor(train.pre.pos, labels = c("Pre", "Pos"))
+ fiber.type <- train.pre.pos <- NULL
+ })
> str(prt.fiber)
    'data.frame': 2471 obs. of 5 variables:
    $ id : Factor w/ 63 levels "5","10","15",..: 1 1 1 1 1 1 1 1 ...
    $ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 0.792 ...
    $ spec.fo: num 83.5 132.8 161.1 158.8 117.9 ...
    $ occ.f : Factor w/ 2 levels "Pre","Pos": 1 1 1 1 1 1 1 1 1 1 1 ...
    $ fiber.f: Factor w/ 2 levels "Type 1","Type 2": 1 1 2 1 2 1 1 1 ...
```

train.pre.pos, it includes the factors fiber.f and occ.f. Also, a subject's identifier id is stored as a factor.
$===$ Place Panel R2.8 about here $=====$

R2.8: PRT Trial: Construction of the data frame prt by merging prt.subjects with prt.fiber containing subjects' and fiber data. Data prt.subjects and prt.fiber were created in Panel R2.7.

```
> prt <- merge(prt.subjects, prt.fiber, sort = FALSE)
> dim(prt)
    [1] 2471 9
> names(prt)
    [1] "id" "prt.f" "age.f" "sex.f" "bmi" "iso.fo"
    [7] "spec.fo" "occ.f" "fiber.f"
> head(prt)
            id prt.f age.f sex.f bmi iso.fo spec.fo occ.f fiber.f
        5 Low Young Female 25.436 0.265 83.5 Pre Type 1
    5 Low Young Female 25.436 0.518 132.8 Pre Type 1
    5 Low Young Female 25.436 0.491 161.1 Pre Type 2
    5 Low Young Female 25.436 0.718 158.8 Pre Type 1
    5 Low Young Female 25.436 0.160 117.9 Pre Type 2
    5 Low Young Female 25.436 0.410 87.8 Pre Type 1
```

In Panel R2.8, we construct the data frame prt by merging the data frames prt.subjects and prt.fiber created in Panel R2.7. As a result, we obtain data stored in the "long" format with 2471 records and nine variables. The contents of the first six rows of the data frame prt is displayed with the help of the head() function.

2.4 The Study of Instructional Improvement (SII) Project

The Study of Instructional Improvement (SII) was carried out to assess the math achievement-scores of first- and third-grade pupils in randomly selected classrooms from a national U.S. sample of elementary schools (Hill et al., 2005). The data set includes results for 1,190 first-grade pupils sampled from 312 classrooms in 107 schools.

The SII data exhibit a hierarchical structure. That is, pupils are grouped in classes, which, in turn, are grouped within schools. This structure implies that,
e.g., scores for pupils from the same class are likely correlated. The correlation should be taken into account in the analysis.

2.4.1 Raw data

As a starting point, we use the data frame classroom, which can be found in the WWGbook package.

In Panel R2.9, we investigate the structure and contents of the data frame. As it can be seen from the results of application of the dim() function, the data frame contains 1190 records and 12 variables.
$===$ Place Panel R2.9 about here $=====$
The names of the variables are listed with the help of the names() function. The contents of the variables described on p. 118 of the book by West et al. (2007) are as follows:

- School-level variables:
- schoolid: school's ID number;
- housepov: \% of households in the neighborhood of the school below the poverty level;
- Classroom-level variables:
- classid: classroom's ID number;
- yearstea: years of teacher's experience in teaching in the first grade;
- mathprep: the number of preparatory courses on the first-grade math contents and methods followed by the teacher;
- mathknow: teacher's knowledge of the first-grade math contents (higher values indicate a higher knowledge of the contents);
- Pupil-level variables:
- childid: pupil's ID number;
- mathgain: pupil's gain in the math achievement-score from the spring of kindergarten to the spring of first grade;
- mathkind: pupil's math score in the spring of the kindergarten year;
- sex: an indicator variable for sex;

R2.9: SII Project: The structure and contents of the data frame classroom from the WWGbook package.

```
> data(classroom, package = "WWGbook")
> dim(classroom) # Number of rows & variables
    [1] 1190 12
> names(classroom) # Variable names
    [1] "sex" "minority" "mathkind" "mathgain" "ses"
    [6] "yearstea" "mathknow" "housepov" "mathprep" "classid"
    [11] "schoolid" "childid"
> classroom # Raw data
        sex minority mathkind mathgain ses yearstea mathknow
\begin{tabular}{llllrrrr}
1 & 1 & 1 & 448 & 32 & 0.46 & 1 & NA \\
2 & 0 & 1 & 460 & 109 & -0.27 & 1 & NA \\
3 & 1 & 1 & 511 & 56 & -0.03 & 1 & NA \\
\(\ldots\) & {\([\) snip \(]\)} & & & & & & \\
1189 & 0 & 0 & 473 & 44 & -0.03 & 25 & 0.50 \\
1190 & 1 & 0 & 453 & 69 & -0.37 & 25 & 0.50
\end{tabular}
        housepov mathprep classid schoolid childid
\begin{tabular}{llllll}
1 & 0.082 & 2.00 & 160 & 1 & 1
\end{tabular}
\begin{tabular}{llllll}
2 & 0.082 & 2.00 & 160 & 1 & 2
\end{tabular}
\begin{tabular}{llllll}
3 & 0.082 & 2.00 & 160 & 1 & 3
\end{tabular}
            [snip]
                0.177 2.00 239 107 1189
    1190 0.177 2.00 239 107 1190
> str(classroom)
    'data.frame': }1190\mathrm{ obs. of 12 variables:
    $ sex : int 1 0 1 0 0 1 0 0 1 0 ...
    $ minority: int 1 1 1 1 1 1 1 1 1 1 ...
    $ mathkind: int 448 460 511449 425 450 452 443 422 480 ...
    $ mathgain: int 32 109 56 83 53 65 51 66 88 -7 \ldots..
    $ ses : num 0.46-0.27 -0.03-0.38 -0.03 0.76 -0.03 0.2 0.64 ...
    $ yearstea: num 1 1 1 2 2 2 2 2 2 2 ...
    $ mathknow: num NA NA NA -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 .. 
    $ housepov: num 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 ...
    $ mathprep: num 2 2 2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 \ldots..
    $ classid : int 160 160 160 217 217 217 217 217 217 217 ...
    $ schoolid: int 1 1 1 1 1 1 1 1 1 1 ...
    $ childid : int 12 3 4 5 6 7 8 9 10 ...
```

- minority: an indicator variable for the minority status;
- ses: pupil's socioeconomic status.

The outcome of interest is contained in the variable mathgain.
The abbreviated display of the contents of the classroom data frame shows that the data are stored with one record for each pupil. The output of the $\operatorname{str}()$ function indicates that the variables, contained in the data frame, are all either numeric or integer-valued. Note, however, that we do not have information about, e.g., the number of distinct levels of the integer-valued variables.

2.4.2 Data for analysis

In the analyses presented later in the book, we will be using the data frame SIIdata, which is included in the nlmeU package. It was constructed from the data frame classroom using the syntax shown in Panel R2.10.
$===$ Place Panel R2.10 about here $=====$

R2.10: SII Project: Creation of the data frame SIIdata from the classroom data.

```
SIIdata <-
    within(classroom,
{
                    sex <- # 0 -> 1(M), 1 -> 2(F)
                factor(sex, levels = c(0, 1), labels = c("M", "F"))
                    minority <- # 0 -> 1(No), 1 -> 2(Yes)
                    factor(minority, labels = c("Mnrt:No", "Mnrt:Yes"))
            schoolid <- factor(schoolid)
            classid <- factor(classid)
            childid <- factor(childid)
            })
    str(SIIdata)
    'data.frame': }1190\mathrm{ obs. of 12 variables:
    $ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 2 1 1 2 1 ...
    $ minority: Factor w/ 2 levels "Mnrt:No","Mnrt:Yes": 2 2 2 2 2 2 ...
            [snip]
    $ classid : Factor w/ 312 levels "1","2","3","4",..: 160 160 160 ...
    $ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 1 1 1 1 1 ...
    $ childid : Factor w/ 1190 levels "1","2","3","4",..: 1 2 3 4 5 6 ...
```

Essentially, the data frame SIIdata contains all the variables from classroom. However, the variables sex, minority, schoolid, classid, and childid are replaced by corresponding factors. Note that, in Panel R2.10, we illustrate various forms of the syntax for the function factor (), which can be used to create a factor. In this way, we can explain the process of construction of a factor in more detail.

For the variable sex, we explicitly use both the levels and labels arguments of the function factor(). In this way, we fully control the mapping of the values of the original variable to the factor levels, and to their labels. In the syntax shown in Panel R2.10, the value 0 of the variable sex from the classroom data is considered the first level and is assigned the label M. On the other hand, the value 1 is considered the second level and is labeled F .

It is worth noting that, in the printout of the structure of SIIdata, the variable sex is defined as a factor with two levels: M (first) and F (second). In the listing of the first values of the variable, obtained using the $\operatorname{str}()$ function, we only see the numerical representation (the ranks) of the levels, i.e., 1 or 2. Thus, the information about the coding, 0 and 1 , of the original variable sex from the classroom data frame is lost. Of course, if needed, we could recover it based on the specified value of the levels argument.

For the variable minority, we only use the labels argument of the function factor(). Thus, by default, the levels argument is obtained by taking the unique values of the variable, i.e., 0 and 1 ; representing them as characters " 0 " and " 1 ", respectively; and then sorting them according to in increasing order of the numeric values of the variable. Thus, the assumed (ordered) levels are "0" (first) and " 1 " (second). Subsequently, the labels argument assigns the label "Mnrt:No" to the first level (" 0 ") and "Mnrt:Yes" to the second level (" 1 "). In the printout of the structure of SIIdata, the listing of the first values of minority includes only the value 2, i.e., the second level. Hence, we could conclude that, in the classroom data frame, the numeric value of minority for the first observations was equal to 1 , which is in agreement with the printout shown in Panel R2.9.

When converting variables schoolid, childid, and classid into factors, we use neither the levels nor labels argument. Thus, by default, the levels of the constructed factors are defined by taking the unique numeric values of each of the variables, representing the values as character strings, and sorting the strings in an increasing order according to the numeric values. On the other hand, the labels are defined, by default, as equal to the (character) levels of the factor. Hence, for instance, for the variable schoolid, the ordered (character) levels are: " 1 ", " 2 ", ..., " 107 ", with the same sequence used to create the corresponding set of labels (see Panel R2.10).
$===$ Place Panel R2.11 about here $=====$

```
R2.11: SII Project: Saving the SIIdata data in an external file.
rdaDir <- file.path("C:", "temp") \# Dir path
> fp <- file.path(rdaDir, "SIIdata.Rdata") \# External file path
> save(SIIdata, file = fp) \# Save data
file.exists(fp)
    [1] TRUE
(load(fp)) \# Load data
[1] "SIIdata"
```

For illustration purposes, in Panel R2.11, we present a syntax that allows saving data in an external file for later use and then loading them back from that file. It is recommended to perform these steps at the end of an R session. In our book, we do not have to do it, because the data are already saved in the nlmeU package.

2.4.3 Data hierarchy

In practice, we often want to verify whether identifying variables, contained in a data set, were properly coded, so that they correctly reflect the intended data hierarchy. In this section, we present the R tools that can be used for this purpose. As an example, we use the data stored in the data frame SIIdata. In this way, we provide additional information about the structure of the data frame.
$===$ Place Panel R2.12 about here $==============$
To this aim, we create, in Panel R2.12, an auxiliary data frame dtId, which contains the school, class, and pupil identifiers from SIIdata. We then apply the function duplicated () to the auxiliary data frame. The function looks for duplicated rows in the data frame and returns a logical vector that indicates, which rows are duplicates. By applying the function any () to the resulting logical vector, we check if any of the elements of the vector contains the logical value of TRUE. It turns out that there are no such elements, i.e., that there are no duplicated combinations of the three identifiers in the SIIdata data frame. This indicates that individual pupils in the data are uniquely identified by these variables, as intended.

Next, we apply the function gsummary () from the package nlme. The function provides a summary of variables, contained in a data frame, by groups of rows. In particular, the function can be used to determine whether there are variables that are invariant within the groups. Note that, the groups are defined by the factors specified on the right-hand side of the formula specified

```
R2.12: SII Project: Investigation of the data hierarchy in the data frame
    SIIdata.
> data(SIIdata, package = "nlmeU") \# Load data
> dtId <- subset(SIIdata, select = c(schoolid, classid, childid))
> names(dtId) \# id names
    [1] "schoolid" "classid" "childid"
any(duplicated(dtId)) \# Any duplicate ids?
    [1] FALSE
require (nlme)
> names(gsummary(dtId, form \(=\) ~childid, inv \(=\) TRUE))
    [1] "schoolid" "classid" "childid"
> names (gsummary (dtId, form \(={ }^{\sim}\) classid, inv \(=\) TRUE))
    [1] "schoolid" "classid"
> names(gsummary(dtId, form \(=\) ~schoolid, inv \(=\) TRUE))
    [1] "schoolid"
```

in the argument form (more information on the use of formulae in R will be provided in Chap. 5).

We first apply the function gsummary () to the data frame dtId, with groups defined by childid. We also use the argument inv = TRUE. This means that only those variables, which are invariant within each group, are to be summarized. By applying the function names () to the data frame returned by the function gsummary (), we learn that, within the rows sharing the same value of childid, the values of variables schoolid and classid are also constant. In other words variable childid is inner to both classid and schoolid. In particular, this implies that no pupil is present in more than one class or school. Hence, we can say that pupils are nested within both schools and classes. If some pupils were enrolled in, e.g., more than one class, then we could say that pupils were crossed with classes. In such case, the values of the classid identifier would not be constant within the groups defined by the levels of the childid variable

Application of the function gsummary () to the data frame dtId with groups defined by classid allows to conclude that, within the rows sharing the same value of classid, the values of schoolid are also constant. This confirms that, in the data, classes are coded as nested within schools. Equivalently, we can say that the variable classid is inner to schoolid.

Finally, there are no invariant identifiers within the groups of rows defined by the same value of schoolid, apart from schoolid itself.
$==$ Place Panel R2.13 about here===============

R2.13: SII Project: Identification of school-, class-, and pupil-level variables

 in the data frame SIIdata.(a) School-level variables.

```
> (nms1 <-
```

+ names (gsummary (SIIdata,
$+\quad$ form $=$ ~schoolid, \# schoolid-specific
$+\quad$ inv $=$ TRUE)))
[1] "housepov" "schoolid"
(b) Class-level variables.

```
> nms2a <-
+ names(gsummary(SIIdata,
+ form = ~classid, # classid- and schoolid-specific
+ inv = TRUE))
idx1 <- match(nms1, nms2a)
> (nms2 <- nms2a[-idx1]) # classid-specific
    [1] "yearstea" "mathknow" "mathprep" "classid"
```

(c) Pupil-level variables.

```
> nms3a <-
+ names(gsummary(SIIdata,
+ form = ~childid, # All
+ inv = TRUE))
idx12 <- match(c(nms1, nms2), nms3a)
nms3a[-idx12] # childid-specific
[1] "sex" "minority" "mathkind" "mathgain" "ses"
[6] "childid"
```

In a similar fashion, in Panel R2.13, we use the function gsummary () to investigate, which covariates are defined at the school-, class-, or pupil-level. In Panel R2.13a, we apply the function to the data frame SIIdata, with groups defined by schoolid. The displayed result of the function names() implies that the values of the variable housepov are constant (invariant) within the groups of rows with the same value of schoolid. Hence, housepov is the only school-level covariate, in accordance with the information given in Sect. 2.4.1.

In Panel R2.13b, we apply the function gsummary () with groups defined by classid. We store the names of invariant variables in the character vector nms2a. We identify the names of variables, which are constant both at the school- and class level, by matching the elements of vectors nms1 and nms2a. After removing the matching elements from the vector nms 2 a , we store the
result in the vector nms2. The latter vector contains the names of variables, which are invariant at the class-level, namely, yearstea, mathknow, and mathprep.

Finally, in Panel R2.13c, we look for pupil-level variables. The syntax is similar to the one used in R2.13b. As a result, we identify variables sex, minority, mathkind, mathgain, and ses, again consistent with variables listed in Sect. 2.4.1.

Considerations presented in Panel R2.13 aimed to identify grouping factor(s) for which given covariate is invariant, i.e. is inner to, have important implications for computations of the number of denominator degrees of freedom for the conditional F-tests applied to fixed effects in LMMs (see Sects. 14.7 and Panel R18.5 in Sect. 18.2.2).

Explicit and implicit nesting

The SIIdata data frame is an example of data having nested structure. This structure, with classes being nested within schools, can be represented in the data in two different ways, depending on how the two relevant factors, namely, schoolid and classid, are coded.

First, we consider the case when the levels of classid are explicitly coded as nested within the levels of the schoolid grouping factor. This way of coding is referred to as explicit nesting and is consistent with that used in SIIdata, as shown in Panel R2.12. More specifically, the nesting was accomplished using different levels of the classid factor for different levels of the schoolid factor. Consequently, the intended nested structure of data is explicitly reflected by the levels of the factors. This is the preferred and natural approach.

The nested structure could also be represented using crossed grouping factors. Taking the SIIdata data as an example, we might consider the case when, by mistake or for any other reason, two different classrooms from two different schools would have the same code. In such a situation, and without any additional information about the study design, the factors would be incorrectly interpreted as (partially) crossed. To specify the intended nested structure, we would need to cross schoolid and classid factors using, for example, the command factor (schoolid:classid). The so-obtained grouping factor, together with schoolid, would specify the desired nested structure. Such an approach to data coding is referred to as implicit nesting.

Although the first way of representing the nested structure is simpler and more natural, it requires caution when coding the levels of grouping factors. The second approach is more inclusive, in the sense that it can be used both for crossed and nested factors.

We raise the issue of the different representations of nested data, because it has important implications for a specification of an LMM. We will re-visit this issue in Chap. 15.

2.5 The Flemish Community Attainment-targets (FCAT) Study

The Flemish Community Attainment-targets (FCAT) data results from an educational study, in which elementary-school graduates were evaluated with respect to reading comprehension in Dutch. The evaluation was based on a set of attainment targets, which were issued by the Flemish Community in Belgium. These attainment targets can be characterized by the text type and by the level of processing. We use data which consist of the responses of a group of 539 pupils from 15 schools who answered 57 items assumed to measure nine attainment targets. In Table 2.1, the nine attainment targets are described by the type of text and by the level of processing. In addition, we indicate the number of items that were used to measure each one of the targets.
$====$ Table 2.1 about here $=====$

Table 2.1: FCAT Study: Attainment targets for reading comprehension in Dutch. Based on Janssen et al. (2000).

Target	Text type	Level of processing	No. of items
1	Instructions	Retrieving	4
2	Articles in magazine	Retrieving	6
3	Study material	Structuring	8
4	Tasks in textbook	Structuring	5
5	Comics	Structuring	9
6	Stories, novels	Structuring	6
7	Poems	Structuring	8
8	Newspapers for children, textbooks, encyclopedias	Evaluating	6
9	Advertising material	Evaluating	5

These data were analyzed before by, e.g., Janssen et al. (2000) and Tibaldi et al. (2007). In our analyses we will use two types of outcomes. First,
we will consider total target-scores, i.e., the sum of all positive answers for a target. Second, we will consider average target-scores, i.e., the sum of all positive answers for a category divided by the number of items within the target. In both cases, we will treat the outcome as a continuous variable.

2.5.1 Raw data

We assume that the raw data for the FCAT study are stored in an external file named crossreg.data.csv.

In Panel R2.14, we present the syntax for loading and inspecting the data. As seen from the output presented in the panel, the file crossreg. data.csv contains 4851 records and three variables. The variable id contains pupils' identifiers, target identifies the attainment targets (see Table 2.1), and scorec provides the total target-score for a particular pupil. Note that the data are stored using the "long" format, with multiple records per pupil.
$===$ Place Panel R2.14 about here $=====================$

```
R2.14: FCAT Study: Loading raw data from the .csv file into the object
    crossreg. data. The object dataDir was created in Panel R2.1.
    fp <- file.path(dataDir, "crossreg.data.csv")
> crossreg.data <- read.csv(fp, header = TRUE)
> dim(crossreg.data) \# No. of rows and columns
    [1] 48513
> names(crossreg.data) \# Variable names
    [1] "target" "id" "scorec"
> head(crossreg.data) \# First six records
        target id scorec
    \(\begin{array}{llll}1 & 1 & 1 & 4\end{array}\)
    \(\begin{array}{llll}2 & 2 & 1 & 6\end{array}\)
    \(\begin{array}{llll}3 & 3 & 1 & 4\end{array}\)
    \(\begin{array}{llll}4 & 4 & 1 & 1\end{array}\)
    \(\begin{array}{llll}5 & 5 & 1 & 7\end{array}\)
    \(\begin{array}{llll}6 & 6 & 1 & 6\end{array}\)
> str (crossreg.data) \# Data structure
    'data.frame': 4851 obs. of 3 variables:
    \$ target: int \(1234567891 \ldots\)
    \$ id : int \(1111111111112 \ldots\)
    \$ scorec: int \(4641766553 \ldots\)
```

In Panel R2.15, we investigate the contents of the crossreg.data data frame in more detail. In particular, by applying the function unique() to each of the three variables contained in the data frame, we conclude that there are 539 unique values for id, nine unique values for target, and 10 unique values for scorec. Thus, the data fame includes scores for nine targets for each of 539 pupils. Note that $9 \times 539=4851$, i.e., the total number of records (rows). Because the maximum number of items for a target is nine (see Table 2.1), the variable scorec contains integer values between 0 and 9 .
$===$ Place Panel R2.15 about here $=====================$

R2.15: FCAT Study: Inspection of the contents of the raw data. The data frame cressreg.data was created in Panel R2.14

2.5.2 Data for analysis

In the analyses presented later in the book, we will be using the data frame fcat, which is constructed based on the data frame crossreg.data. In Panel R2.16, we present the syntax used to create the fcat data and investigate data grouping structure. First in Panel R2.16a, we replace the variables id and target by corresponding factors. For the factor target, the labels given in parentheses indicate the number of items for a particular target.
$===$ Place Panel R2.16 about here $=====================$
In Panel R2.16b, we cross-tabulate the factors id and target and store the resulting table in the object tab1. Given the large number of levels of the factor id, it is difficult to verify the values of the counts for all cells of the table. By applying the function all() to the result of the evaluation of expression

R2.16: FCAT Study: Construction and inspection of the contents of the data frame fcat. The data frame crossreg.data was created in Panel R2.14.
(a) Construction of the data frame fcat.

```
> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # See Table 2.1
> (lbls <- paste("T", 1:9, "(", nItms, ")", sep = ""))
    [1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"
    [8] "T8(6)" "T9(5)"
> fcat <-
+ within(crossreg.data,
+ {
+ id <- factor(id)
+ target <- factor(target, labels = lbls)
+ })
> str(fcat)
    'data.frame': 4851 obs. of 3 variables:
        $ target: Factor w/ 9 levels "T1(4)","T2(6)",..: 1 2 3 4 5 6 7 8 ...
        $ id : Factor w/ 539 levels "1","2","3","4",..: 1 1 1 1 1 1 1 ...
    $ scorec: int 464176655 3 ...
```

(b) Investigation of the data grouping structure.

tab1>0, we check that all counts of the table are non-zero. On the other hand, with the help of the range () function, we verify that all the counts are equal to 1. This indicates that, in the data frame fcat, the levels of the factor target are crossed with the levels of the factor id. Moreover, the data are balanced, in the sense that there is exactly one observation for each combination of the levels of the two factors. Because all counts in the table are greater than zero, we can say that the factors are fully crossed.

2.6 Chapter summary

In this chapter, we introduced four case studies, which will be used for illustration of LMs described in our book.

We started the presentation of each case study by describing study design and considering that raw data are stored in a .csv file. We chose this approach in an attempt to emulate a common situation of using external data files when analyzing data using R. In the next step, we prepared the data for analysis by creating the necessary variables and, in particular, factors. Including factors as part of data is a feature fairly unique to R. It affects how a given variable is treated by graphical and modeling functions. This approach is recommended, but not obligatory. In particular, creating factors can be deferred to a later time, when, e.g., model formula is specified. We will revisit this issue in Chap. 5.

The data frames, corresponding to the four case studies, are included in the package nlmeU. As with other packages, the list of datasets available in the package can be obtained by using the data(package = "nlmeU") command. For the reader's convenience, the datasets are summarized in Table 2.2. The table includes the information about the R-session panels, which present the syntax used to create the data frames; grouping factors and number of rows and variables.
$====$ Table 2.2 about here $=====$

Table 2.2: Data frames available in the nlmeU package.

Study	Data frame	R-panel	Grouping factors	Rows \times vars
ARMD Trial	armd.wide	R2.2	none	240×10
	armd0	R2.4	subject	1107×8
	armd	R2.5	subject	867×8
PRT Trial	prt.subjects	R2.7a	none	63×5
	prt.fiber	R2.7b	id	2471×5
	prt	R2.8	id	2471×9
SII Project	SIIdata	R2.10	classid nested ...	1190×12
			R2.16	id crossed ... FCAT Study fcat

The four case studies introduced in this chapter are conducted by employing different study designs. All of them lead to grouped data defined by one or more nested or crossed grouping factors. Preferable way of storing this type of data is to use "long" format with multiple records per subject. Although this term is borrowed from the literature pertaining to longitudinal data it is also used in the context of other grouped data. Below, we describe the key features of the data in each study.

In ARMD Trial the armd.wide data frame stores data in the "wide" format. Data frames armd and armd0 store data in a "long" format and reflect a hierarchical data structure defined by a single grouping factor, namely, subject. For this reason, and following the naming convention used in the nlme package, we will refer to the data structure in our book as data with a single level of grouping. Note that, more traditionally, these data are referred to as two-level data (West et al., 2007).

The hierarchical structure of data contained in the data frame SIIdata is defined by two (nested) grouping factors, namely schoolid and classid. Thus, in our book, this data structure will be referred to as data with two levels of grouping.

This naming convention works well for hierarchical data, i.e., for data with nested grouping factors. It is more problematic for structures with crossed factors. This is the case of the FCAT study, in which the data structure is defined by two crossed grouping factors, thus without a particular hierarchy.

As a result of data grouping, variables can be roughly divided into group- and measurement- specific. In the context of longitudinal data they are referred to as time-fixed and time-varying variables. The classification of the variables has important implications on the model specification.

To our knowledge, the groupedData class, defined in the nlme package, appears to be the only attempt to directly associate a hierarchical structure of the data with objects of data.frame class. We do not describe this class in more detail, however, because it has some limitations. Also, its initial importance has diminished substantially over time. In fact, the data hierarchy is most often reflected indirectly by specifying the structure of the model fitted to the data. We will revisit this issue in Parts III and IV of our book.

When introducing the SII case study, we noted that the nested data structure can be specified by using two different approaches, namely explicit and implicit nesting, depending on the coding of the levels of grouping factors. The choice of the approach is left to the researcher's discretion. The issue has important implications for the specification of LMMs, though, it will be discussed in Chap. 15.

The different data structures of the cases studies presented in this chapter will allow us to present various aspects of LMMs in Part IV of the book. Additionally, the ARMD data set will be used in the other parts to illustrate other classes of LMs and related R tools.

The main focus of this chapter was on the presentation of the data frames related to the case studies. In the presentation, we also introduced selected concepts related to grouped data and R functions, which are useful for data transformation and inspection of the contents of data sets. By necessity, our introduction was very brief and fragmentary; a more in-depth discussion of those and other functions is beyond the scope of our book. The interested readers are referred to, e.g., the book by Dalgaard (2008) for a more thorough explanation of the subject.

Data Exploration

3.1 Introduction

In this chapter, we present the results of exploratory analyses of the case studies introduced in Chap. 2. The results will serve as a basis for building LMs for the data in the next parts of the book.

While exploring the case-study data, we also illustrate the use of selected functions and graphical tools, which are commonly used to perform these tasks. Note, however, that, unlike in the other parts of the book, we are not discussing the functions and tools in much detail. The readers interested in the functionalities are referred to the monograph by Venables \& Ripley (2010).

3.2 ARMD Trial: Visual acuity

In the ARMD data, we are mainly interested in the effect of treatment on the visual acuity measurements. Thus, in Fig. 3.1, we first take a look at the measurements by plotting them against time for several selected patients from both treatment groups. More specifically, we selected every 10-th patient from each group.
$====$ Fig.3.1 about here $=====$
(EPS: Figs/Figarmdprofiles See: Figarmdprofiles)

Based on the plots shown in Fig. 3.1, several observations can be made:

Fig. 3.1: ARMD Trial: Visual-acuity profiles for selected patients ("spaghetti plot").

- In general, visual acuity tends to decrease in time. This is in agreement with the remark made in Sect. 2.2 that patients with ARMD progressively loose vision.
- For some patients, a linear decrease of visual acuity over time can be observed, but there are also patients for whom individual profiles strongly deviate from a linear trend.
- Visual acuity measurements adjacent in time are fairly well correlated, with the correlation decreasing with an increasing distance in time.
- Visual acuity at baseline seems to, at least partially, determine the overall level of the post-randomization measurements.
- There are patients for whom several measurements are missing.

These observations will be taken into account when constructing models for the data.
$===$ Place Panel R3.1 about here $=====$
The syntax used to create Fig. 3.1 is shown in Panel R3.1. First, we load data to be used for exploration from the nlmeU package. Note that the code used to create figure employs the function xyplot() from the package lattice

```
R3.1: ARMD Trial: Syntax for the plot of visual-acuity profiles for selected
patients in Figure 3.1.
```

```
data(armd.wide, armd0, package = "nlmeU") # Data loaded
```

data(armd.wide, armd0, package = "nlmeU") \# Data loaded
library(lattice)
library(lattice)
armd0.subset <- \# Subset
armd0.subset <- \# Subset
subset(armd0, as.numeric(subject) %in% seq(1, 240, 10))
subset(armd0, as.numeric(subject) %in% seq(1, 240, 10))
xy1 <- \# Draft plot
xy1 <- \# Draft plot

+ xyplot(visual ~ jitter(time) | treat.f,
+ xyplot(visual ~ jitter(time) | treat.f,
+ groups = subject,
+ groups = subject,
+ data = armdO.subset,
+ data = armdO.subset,
+ type = "l", lty = 1)
+ type = "l", lty = 1)
update(xy1, \# Fig. 3.1
update(xy1, \# Fig. 3.1
+ xlab = "Time (in weeks)",
+ xlab = "Time (in weeks)",
+ ylab = "Visual acuity",
+ ylab = "Visual acuity",
grid = "h")
grid = "h")
detach(package:lattice)

```
detach(package:lattice)
```

(Sarkar, 2008). The function is applied to the subset of the data frame armd0 (Sect. 2.2.2). The formula used in the syntax indicates that the variables visual and time are to be used on the y - and x-axis, respectively. These variables are plotted against each other in separate panels for different values of the treat.f factor. Within each panel, data points are grouped for each subject and connected using solid lines. The function jitter() is used to add a small amount of noise to the variable time, thereby reducing the number of overlapping points.

In the next subsections, we explore particular features of the ARMD data in more detail.

3.2.1 Patterns of missing data

First, we check the number and patterns of missing visual acuity measurements. To this aim, we use the data frame armd.wide. As mentioned in Sect. 2.2.2, the data frame contains the factor miss.pat that indicates which of the four post-randomization measurements are missing for a particular patient. For example, the pattern --X- indicates that the only missing measurement was at the third post-randomization timepoint, i.e., at 24 weeks.

In Panel R3.2, we use three different methods to tabulate the number of patients with different levels of the factor miss.pat. From the displayed results we can conclude that, for instance, there were 188 patients, for whom all four post-randomization visual-acuity measurements were obtained. On the other hand, there were six patients, for whom the four measurements were missing.
$====$ RSession R3.2 around here $====$

```
R3.2: \(A R M D\) Trial: Inspecting missing-data patterns in armd.wide data for the post-randomization visual-acuity measurements using three different methods.
```

```
> table(armd.wide\$miss.pat)
```

> table(armd.wide\$miss.pat)
---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX
---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX
> with(armd.wide, table(miss.pat))
> with(armd.wide, table(miss.pat))
miss.pat
miss.pat
$------X \quad-X---X X \quad-X X--X X X X---X-X X X X X X$
$------X \quad-X---X X \quad-X X--X X X X---X-X X X X X X$
> xtabs(~miss.pat, armd.wide)
> xtabs(~miss.pat, armd.wide)
miss.pat

```
    miss.pat
```


It is also worth noting that there are eight $(=4+1+2+1)$ patients with four different non-monotone missing-data patterns, i.e., with intermittent missing visual-acuity measurements. When modeling data with such patterns, extra care is needed when specifying variance-covariance structures. We will come back to this issue in Sect. 11.4.2.

3.2.2 Mean-value profiles

In this section, we investigate the number of missing values and calculate the sample means of visual acuity measurements for different visits and treatment groups. To this aim, in Panel R3.3 we use the "long"-format data frame armd0, which was described in Sect. 2.2.2.
$====$ RSession R3.3 around here $====$
To calculate counts of missing values in Panel R3.3a, we use the function tapply(). In general, this function is used to apply a selected function to each (non-empty) group of values defined by a unique combination of the levels of one or more factors. In our case, the selected function, specified in the FUN argument, checks the length of the vector created by selecting nonmissing values from the vector passed as an argument to the function. Using tapply () functin, we apply it to the variable visual within the groups defined by combinations of the levels of factors time.f and treat.f. As a result, we

R3.3: ARMD Trial: Sample means and medians for visual acuity by time and treatment
(a) Counts of non-missing visual-acuity measurements.

```
> attach(armdO)
> flst <- list(time.f, treat.f) # "By" factors
> (tN <- # Counts
+ tapply(visual, flst,
+ FUN = function(x) length(x[!is.na(x)])))
    Placebo Active
    Baseline 119 121
4wks 117114
12wks 117110
24wks 112102
52wks 10590
```

(b) Sample means and medians of visual-acuity measurements.

```
> tMn <- tapply(visual, flst, FUN = mean) # Sample means
> tMd <- tapply(visual, flst, FUN = median) # Sample medians
> colnames(res <- cbind(tN, tMn, tMd)) # Column names
    [1] "Placebo" "Active" "Placebo" "Active" "Placebo" "Active"
> nms1 <- rep(c("P", "A"), 3)
> nms2 <- rep(c("n", "Mean", "Mdn"), rep(2, 3))
> colnames(res) <- paste(nms1, nms2, sep = ":") # New column names
> res
    P:n A:n P:Mean A:Mean P:Mdn A:Mdn
    Baseline 119 121 55.336 54.579 56.0 57.0
    4wks 117 114 53.966 50.912 54.0 52.0
    12wks 117 110 52.872 48.673 53.0 49.5
    24wks 112 102 49.330 45.461 50.5 45.0
    52wks 105 90 44.438 39.100 44.0 37.0
> detach(armd0)
```

obtain a matrix with the number of non-missing visual-acuity measurements for each visit and each treatment group. We store the matrix in the object tN for further use. The display of the matrix indicates that there were no missing measurements at baseline. On the other hand, at week 4, for instance, there were two and seven missing measurements in the placebo and activetreatment arms, respectively. In general, there are more missing measurements in the active-treatment group.

In Panel R3.3b, we use the function tapply () twice to compute the sample means and sample medians of visual acuity measurements for each combi-
nation of the levels of factors time.f and treat.f. We store the results in matrices tMn and tMd , respectively. We then create the matrix res by combining matrices tN , tMn , and tMn by columns. Finally, to improve the legibility of displays, we modify the names of the columns of res.

From the display of the matrix res we conclude that, on average, there was very little difference in visual acuity between the two treatment groups at baseline. This is expected in a randomized study. During the course of the study, the mean visual acuity decreased with time in both arms, which confirms the observation made based on the individual profiles presented in Fig. 3.1. It is worth noting that the mean value is consistently higher in the placebo group, which suggests lack of effect of interferon- α.

Fig. 3.2: ARMD Trial: Box-and-whiskers plots for visual acuity by treatment and time.
$====$ Fig.3.2 about here $=====$
(EPS:Figs/Figarmdmeans See: Figarmdmeans.eps)

Figure 3.2 presents box-and-whiskers plots of visual acuity for the five timepoints and the two treatment arms. The syntax to create the figure is shown in Panel R3.4. It uses the function bwplot () from the package lattice. Note that, we first create a draft of the plot, which we subsequently enhance by providing labels for the horizontal axis. In contrast to Fig. 3.1, measurements for all subjects at all timepoints are plotted. A disadvantage of the plot is that it does not reflect the longitudinal structure of the data.
$===$ Place Panel R3.4 about here $=====$

R3.4: ARMD Trial: Syntax for the box-and-whiskers plots in Fig. 3.2.

```
library(lattice)
bw1 <- # Draft plot
bwplot(visual ~ time.f | treat.f,
data = armdO)
xlims <- c("Base", "4\nwks", "12\nwks", "24\nwks", "52\nwks")
> update(bw1, xlim = xlims, pch = "|") # Final plot
> detach(package:lattice)
```

The box-and-whiskers plots illustrate the patterns implied by the sample means and medians, presented in Panel R3.3b. The decrease of the mean values in time is clearly seen for both treatment groups. It is more pronounced for the active-treatment arm. As there was a slightly higher dropout in that arm, a possible explanation could be that patients, whose visual acuity improved, dropped out of the study. In such case, a faster progression of the disease in that treatment arm would be observed.

Fig. 3.3: ARMD Trial: Mean visual-acuity profiles by missing pattern and treatment (monotone missing-data patterns only).
$====$ Fig.3.3 about here $====$
(EPS: Figs/Figarmdmissmeans.eps. Figarmdmissmeans.eps)

To check this possibility, we take a look at Fig. 3.3. It shows the mean values of visual acuity for patients with different monotone missing-data patterns. In addition, the number of subjects for each pattern is also given. We note that the number of subjects for the patterns with a larger number of missing values tends to be smaller. Note that, to save space, we do not present the syntax used to create the figure, as it is fairly complex.

The mean profiles, shown in Fig. 3.3, consistently decrease for the majority of the patterns. In general, they do not suggest an improvement in visual acuity before the drop off. Thus, they do not support the aforementioned explanation of a faster decrease of the mean visual acuity in the active-treatment arm.

In Panel R3.5, we present the syntax to investigate the number and form of monotone missing-data patterns for visual acuity. In particular, in Panel R3.5a, we create the data frame armd. wide.mnt, which contains data only for patients with monotone patterns. There are 232 such patients in total. Note that despite the fact that some patterns are not present in the data frame armd. wide.mnt they are still recognized as valid levels of the factor miss.pat. This might cause problems when using some R functions. Similarly to Panel R2.5, we could use the droplevels() function to remove the unused levels of the miss.pat variable. Instead, in Panel R3.5b, we modify the levels of the factor miss.pat in the armd.wide.mnt data with the help of the function factor (). Note that, instead of using the levels argument of the function, we could have used the argument exclude while indicating the levels to be excluded from the definition of the miss.pat factor.
$====$ RSession R3.5 around here $===$
Finally, in Panel R3.5c, we use the function tapply() to obtain a matrix containing the number of patients for each monotone missing-data pattern and for each treatment arm. The displayed results indicate that the meanvalue profiles for missing-data patterns with a larger number of missing values, shown in Fig. 3.3, are based on measurements for a small number of patients. Thus, the variability of these profiles is larger than for the patterns with a smaller number of missing values. Therefore, Fig. 3.3 should be interpreted with caution.

R3.5: ARMD Trial: The number of patients by treatment and missing-data pattern (monotone patterns only).

```
(a) Subset of the data with monotone missing-data patterns.
```

```
> mnt.pat<- # Monotone patterns
```

> mnt.pat<- \# Monotone patterns

+ c("----", "---X", "--XX", "-XXX", "XXXX")
+ c("----", "---X", "--XX", "-XXX", "XXXX")
> armd.wide.mnt <- \# Data subset
> armd.wide.mnt <- \# Data subset
+ subset(armd.wide, miss.pat %in% mnt.pat)
+ subset(armd.wide, miss.pat %in% mnt.pat)
> dim(armd.wide.mnt) \# Number of rows and cols
> dim(armd.wide.mnt) \# Number of rows and cols
[1] 232 10
[1] 232 10
> levels(armd.wide.mnt$miss.pat) # Some levels not needed
> levels(armd.wide.mnt$miss.pat) \# Some levels not needed
[1] "----" "---X" "--X-" "--XX" "-XX-" "-XXX" "X---" "X-XX"
[9] "XXXX"

```
(b) Removing unused levels from the miss.pat factor.
```

> armd.wide.mnt1 <-

+ within(armd.wide.mnt,
+ {
+ miss.pat <- factor(miss.pat, levels=mnt.pat)
+ })
levels(armd.wide.mnt1\$miss.pat)
[1] "----" "---X" "--XX" "-XXX" "XXXX"

```
(c) The number of patients with different monotone missing-data patterns.
```

> with(armd.wide.mnt1,

+ {
+ fl <- list(treat.f, miss.pat) \# List of "by" factors
+ tapply(subject, fl, FUN=function(x) length(x[!is.na(x)]))
+ })

```
\begin{tabular}{lrrrrr} 
& ---- & - X & - XX & - XXX & XXXX \\
Placebo & 102 & 9 & 3 & 1 & 1 \\
Active & 86 & 15 & 5 & 5 & 5
\end{tabular}

\subsection*{3.2.3 Sample variances and correlations of visual-acuity measurements}

Figure 3.4 shows a scatterplot matrix for the visual acuity measurements for those patients, for whom all post-randomization measurements are available. Scatterplots for corresponding pairs of variables are given below the diagonal. The size of the font for correlation coefficients reported above the diagonal is proportional to its value. We do not present the syntax for constructing the fig-
ure, as it is fairly complex. It can be observed that the measurements adjacent in time are strongly correlated. The correlation decreases with an increasing time gap. Worth noting is the fact that there is a substantial positive correlation between visual acuity at baseline and at the other post-randomization measurements. Thus, baseline values might be used to explain the overall variability of the post-randomization observations. This agrees with the observation made based on Fig. 3.1. It is worth noting that a scatterplot matrix of the type shown in Fig. 3.4 may not work well for longitudinal data with irregular time intervals.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{|cccc}
\hline-80 & 40 & 60 & 80 \\
-60 & & \\
-40 & vis0 & 40 \\
0 & 20 & 40 & 20 \\
\hline
\end{tabular} & 0.89 & \[
0.78
\] & 0.71 & 0.55 \\
\hline  & \[
-\begin{array}{cccc}
-80 & 40 & 60 & 80 \\
-60 & & \\
-40 & \text { vis4 } & 40- \\
0 & 20 & 40 & 20
\end{array}-
\] & \[
0.85
\] & 0.77 & 0.61 \\
\hline  &  & \(\left.\begin{array}{cccc}-80 & 40 & 60 & 80 \\ -60 & & \\ -40 & \text { vis12 } & 40 \\ 0 & 20 & 40 & 20 \\ - & 0\end{array}\right]\) & 0.83 & 0.71 \\
\hline  &  &  & \begin{tabular}{rccc} 
& \multicolumn{2}{r}{} & 1 \\
-80 & 40 & 60 & 80 \\
-60 & & \\
-40 & \(\operatorname{vis} 24\) & 40 \\
0 & 20 & 40 & 20
\end{tabular}\(-\) & 0.84 \\
\hline  &  &  &  & \(\left.\begin{array}{|cccc}-80 & 40 & 60 & 80 \\ -60 & & & \\ -40 & \operatorname{vis} 52 & 40 \\ 0 & 20 & 40 & 20 \\ 1 & 1 & 1 & 0\end{array}\right]\) \\
\hline
\end{tabular}

Fig. 3.4: ARMD Trial: Scatterplot matrix for visual acuity measurements. Scatterplots (below diagonal) and correlation coefficients (above diagonal) for complete cases only ( \(n=188\) ).
\(====\) Fig.3.4 about here \(=====\)
(EPS: Figs/Figarmdscatter.eps Figarmdscatter.eps)
\(===\) Place Panel R3.6 about here \(==================\)

R3.6: ARMD Trial: Variance-covariance and correlation matrices for visualacuity measurements for complete cases only \((n=188)\).
```

> visual.x <- subset(armd.wide, select = c(visual0:visual52))
> (varx <- var(visual.x, use = "complete.obs")) \# Var-cov mtx
visualO visual4 visual12 visual24 visual52
visual0 220.31 206.71 196.24 193.31 152.71
visual4 206.71 246.22 224.79
visual12 196.24 224.79 286.21 257.77 222.68
visual24 193.31 221.27 257.77 334.45 285.23
visual52 152.71 179.23 222.68 285.23
> print(cor(visual.x, use = "complete.obs"), \# Corr mtx

+ digits = 2)
visual0 visual4 visual12 visual24 visual52
visual0 1.00 0.89 0.78
visual4
visual12
visual24
visual52
> diag(varx) \# Var-cov diagonal elements
visual0 visual4 visual12 visual24 visual52
220.31 246.22 286.21 334.45 347.43
> cov2cor(varx) \# Corr mtx (alternative way)
... [snip]

```

In Panel R3.6, we provide the estimates of the variance-covariance and correlation matrices for visual acuity measurements. To this aim, we create the data frame visual. \(x\) from armd.wide by selecting only the five variables containing the measurements. We then apply functions var () and cor () to estimate the variance-covariance matrix and the correlation matrix, respectively. Note that, for both functions, we specify the argument use = "complete.cases", which selects only those rows of the data frame visual.x that do not contain any missing values. In this way, the estimated matrices are assured to be positive semidefinite. An alternative (not shown) would be to specify use = "pairwise.complete.obs". In that case, the elements of the matrices would be estimated using data for all patients with complete observations for the particular pair of visual acuity measurements. This could result in estimates
of variance-covariance or correlation matrices, which might not be positive semidefinite.

The variance-covariance matrix for visual acuity measurements is stored in the varx matrix. It indicates an increase of the variance of visual acuity measurements obtained at later timepoints. The estimated correlation matrix suggests a moderate to strong correlation of the measurements. We also observe that the correlation clearly decreases with the time gap, as already concluded from Fig. 3.4.

At the bottom of Panel R3.6 we demonstrate how to extract the diagonal elements of the matrix varx using the diag() function. We also present the use of the function \(\operatorname{cov} 2 \operatorname{cor}()\) to compute a correlation matrix corresponding to the variance-covariance. Note that we do not display the result of the use of the function, as it is exactly the same as the one obtained for the function cor(), already shown in Panel R3.6.

\subsection*{3.3 PRT Study: Muscle fiber specific-force}

In the PRT study, we are primarily interested in the effect of the intensity of the training on the muscle fiber specific-force, measurements of which are contained in the variable spec.fo of the prt data frame (Sect. 2.3.2). In some analyses, we will also investigate the effect on the measurements of the isometric force, which are stored in the variable iso.fo.

First, however, we take a look at the information about subjects' characteristics, stored in the data frame prt. subjects (see Sect. 2.3.2). In Panel R3.7, we use the function tapply () to obtain summary statistics for the variable bmi for separate levels of the prt.f factor. The statistics are computed with the help of the summary () function. The displayed values of the statistics do not indicate any substantial differences in the distribution of BMI between subjects assigned to the low- or high-intensity training. Given that the assignment was randomized, this result is anticipated.
\(===\) Place Panel R3.7 about here \(=====\)
For illustration purposes, we also obtain summary statistics for all variables in the prt.subjects data frame, except for id, with the help of the function by (). The function splits the data frame according to the levels of the factor prt.f and applies the function summary() to the two data frames resulting from the split. As a result, we obtain summary statistics for variables prt.f, age.f, sex.f, and bmi for the two training-intensity groups. From the displayed values of the statistics we conclude that there are no important differences in the distribution of sex and age-groups between the two inter-
```

R3.7: PRT Trial: Summary statistics for subjects' characteristics.
> data(prt.subjects, prt, package = "nlmeU") \# Data loaded
> with(prt.subjects, tapply(bmi, prt.f, summary))
\$High
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{lllll}18.4 & 22.9 & 24.8 & 25.1 & 28.2\end{array}$
\$Low
Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}19.0 & 23.1 & 24.8 & 24.7 & 26.3 & 32.3\end{array}$
> by (subset(prt.subjects, select = -id), prt.subjects\$prt.f, summary)
prt.subjects\$prt.f: High
prt.f age.f sex.f bmi
High:31 Young:15 Female:17 Min. :18.4
Low : 0 Old :16 Male :14 1st Qu.:22.9
Median :24.8
Mean :25.1
3rd Qu.:28.2
Max. :31.0
prt.subjects\$prt.f: Low
prt.f age.f sex.f bmi
High: 0 Young:15 Female:17 Min. :19.0
Low :32 Old :17 Male :15 1st Qu.:23.1
Median :24.8
Mean :24.7
3rd Qu.:26.3
Max. : 32.3

```
vention groups. This is expected, given that the randomization was stratified by the two factors (see Sect. 2.3). Note that we should ignore the display for the factor prt.f, because it has been used for splitting the data.
\(===\) Place Panel R3.8 about here \(=====\)
In Panel R3.8, we take a look at fiber measurements stored in the data frame prt. In particular, in Panel R3.8a, we check the number of non-missing measurements of the specific force per fiber type and occasion for selected subjects. To this aim, with the help of the function tapply(), we apply the function length () to the variable spec.fo for separate levels of the id, fiber.f, and occ.f factors. Note that, in the call to the function tapply (), we use a named list of the factors. The names of the components of the list are shortened versions of the factor names. In this way, we obtain a more legible display of the resulting array. In Panel R3.8a, we show the display for two subjects, "5" and
```

R3.8: PRT Trial: Extracting and summarizing the fiber-level information.
(a) Number of fibers per type and occasion for the subjects "5" and "335".
> fibL <-
$+\quad$ with(prt,
$+\quad$ tapply(spec.fo,
$+\quad$ list (id $=$ id, fiberF $=$ fiber.f, occF = occ.f),

+ length))
> dimnms <- dimnames (fibL)
> names(dimnms) \# Shortened names displayed
[1] "id" "fiberF" "occF"
> fibL["5", ,] \# Number of fiber measurements for subject 5
occF
fiberF Pre Pos
$\begin{array}{lll}\text { Type } 12 & 12\end{array}$
Type 274
> fibL["335", ,] \# Number of fiber measurements for subject 335
occF
fiberF Pre Pos
Type 1 NA 8
Type 21411
(b) Mean value of spec. fo by fiber type and occasion for subject "5".

```
```

fibM <-

```
fibM <-
        with(prt,
        with(prt,
            tapply(spec.fo,
            tapply(spec.fo,
                                    list(id = id, fiberF = fiber.f, occF = occ.f),
                                    list(id = id, fiberF = fiber.f, occF = occ.f),
                                    mean))
                                    mean))
fibM["5", , ]
fibM["5", , ]
            occF
            occF
    fiberF Pre Pos
    fiberF Pre Pos
    Type 1132.59129 .96
    Type 1132.59129 .96
    Type 2145.74147 .95
```

 Type 2145.74147 .95
    ```
"335". For the latter, we see that no measurements of the specific force were taken for type-1 fibers before the training.

In Panel R3.8b, we take a look at the mean value of the specific force per fiber type and occasion for selected subjects. To this aim, we use the function tapply() in a similar way as in Panel R3.8a, but in combination with the function mean(). In the panel, we display the mean values for the subject "5".
\(===\) Place Panel R3.9 about here \(=====\)

R3.9: PRT Trial: Summarizing the fiber-level information with the help of functions melt() and cast() from the reshape package.
```

(a) Pre-processing of the data (melting).
> library(reshape)
> idvar <- c("id", "prt.f", "fiber.f", "occ.f")
> meas.var <- c("spec.fo", "iso.fo")
> prtM <- \# Melting data

+ melt(prt, id.var = idvar, measure.var = meas.var)
> dim(prtM)
[1] 4942 6
> head(prtM, n = 4) \# First four rows
id prt.f fiber.f occ.f variable value
5 Low Type 1 Pre spec.fo 83.5
2 5 Low Type 1 Pre spec.fo 132.8
3 5 Low Type 2 Pre spec.fo 161.1
4 Low Type 1 Pre spec.fo 158.8
> tail(prtM, n = 4) \# Last four rows
id prt.f fiber.f occ.f variable value
4 9 3 9 5 2 0 ~ H i g h ~ T y p e ~ 2 ~ P o s ~ i s o . f o ~ 0 . 5 2 7 ~
4 9 4 0 5 2 0 ~ H i g h ~ T y p e ~ 1 ~ P o s ~ i s o . f o ~ 0 . 6 1 5
4 9 4 1 5 2 0 ~ H i g h ~ T y p e ~ 2 ~ P o s ~ i s o . f o ~ 0 . 8 9 6 ~
4 9 4 2 5 2 0 ~ H i g h ~ T y p e ~ 2 ~ P o s ~ i s o . f o ~ 0 . 8 3 0

```
(b) Aggregating data (casting).
```

> prtC <- cast(prtM, fun.aggregate = mean) \# Casting data
> names(prtC)
[1] "id" "prt.f" "fiber.f" "occ.f" "spec.fo" "iso.fo"
> names(prtC)[5:6] <- c("spec.foMn", "iso.foMn") \# Names modified
> head(prtC, n = 4)
id prt.f fiber.f occ.f spec.foMn iso.foMn
1 5 Low Type 1 Pre 132.59 0.51500
2 5 Low Type 1 Pos 129.96 0.72289
3 5 Low Type 2 Pre 145.74 0.47057
4 5 Low Type 2 Pos 147.95 0.71175

```

In Panel R3.9, we illustrate how to summarize the fiber-level information using functions from the package reshape. First, in Panel R3.9a, we use the generic function melt () to prepare the data for further processing. More specifically, we apply the function to the data frame prt and we specify factors id, prt.f, fiber.f, and occ.f as "identifying variables." On the other hand, we indicate variables spec.fo and iso.f as "measured variables." In the resulting data frame, prtM, the values of the measured variables are "stacked" within the groups defined by the combinations of the levels of the identifying variables. The stacked values are stored in a single variable named, by default, value. They are identified by the levels of factor named, by default, variable, which contain the names of the measured variables.

The display, shown in Panel R3.9a, indicates that the number of records in the data frame prtM increases to 4942 , as compared to 2471 records in the data frame prt (see Panel R2.7). The increase results from the stacking of the values of spec.fo and iso.fo in the variable value. The outcome of the process is further illustrated by the display of the first and last four rows of the data frame prtM.

In Panel R3.9b, we apply the function cast() to the data frame prtM to compute the mean values of the measured variables, i.e., spec.fo and iso.fo, within the groups defined by the combinations of the levels of the identifying variables. To indicate that we want to compute the mean values, we use the argument fun.aggregate=mean. The resulting data frame is stored in the object prtC. Before displaying the contents of the object, we modify the names of the two last variables, which contain the mean values of spec.fo and iso.fo. The display of the first four records of prtC shows the means per fiber type and occasion for the subject " 5 ". Note that, for spec.fo, the mean values correspond to the values reported at the end of Panel R3.8.
\(====\) Fig. 3.5 about here \(====\)
(EPS: Figs/FigMLSexplore11 See: FigMLSexplore11.eps)

Figure 3.5 shows the pre- and post-training mean values of the specific force for all subjects separately for the two fiber types and training intensities. The figure was created using the function dotplot() from the package lattice. To increase interpretability of this figure, we ordered the subjects on \(y\)-axis within each study group by mean values of the pre-training spec.fo for type1 fibers. If for a given subject like, e.g., " 335 ", the pre-training measures were not available, the post-training measures were used instead. For brevity, we do not show the syntax used to create the figure.

Several observations can be made based on the figure:
- there is no clear effect of the training intensity;


Fig. 3.5: Individual means for specific force by occasion, fiber type, and training intensity.
- in general, measurements of the specific force are higher for type-2 than for type-1 fibers;
- on average, post-training values are larger than pre-training measurements;
- for both types of fibers there is considerable variability between subjects with respect to the overall level of measurements and with respect to the magnitude of the post-pre differences;
- there is a correlation between the mean measurements observed for the same individual, as seen, e.g., from the similar pattern of measurements for both types.

These observations will be taken into account when modeling the data in Part IV of the book.

Note that the plot in the lower-left panel of Fig. 3.5 confirms the missing pre-training measurements for type-1 fibers for the subject "335".


Fig. 3.6: PRT Trial: Subject-specific box-and-whiskers plots for the specific force by training intensity and measurement occasion (type-1 fibers only).
\(====\) Fig.3.6 about here \(=====\)
(EPS: Figs/Figmlsbwhisk2.eps) See: Figmlsbwhisk2.eps )

Figure 3.6 presents information for the specific force for the type-1 fibers. More specifically, it shows box-and-whiskers plots for the individual measurements
of the specific force for the two measurement occasions and training intensities. All 63 subjects on the \(y\)-axis are ordered in the same way as in Fig. 3.5. Figure 3.6 was created using the function bw() from the package lattice. Note, however, that we do not present the detailed code. The plots suggest that the subject-specific variances of the pre-training measurements are somewhat smaller than the post-training ones. There is also a considerable variability between the subjects with respect to the variance of the measurements.


Fig. 3.7: PRT Trial: Individual pre-post differences of the mean values for the specific force, ordered by an increasing value, for the two training intensity groups (type-1 fibers only).
==== Fig.3.7 about here =====
(EPS: Figs/MLSexploreFig22.eps See: MLSxploreFig22.eps )

Figure 3.7 presents the individual pre-post differences of the mean values for the specific force for the type-1 fibers for the two training-intensity groups. The differences were ordered according to increasing values within each training group. To conserve space, we do not show the syntax used to create the figure. The plots indicate an outlying value of the difference for the subject "275" in the low-intensity training group.

\subsection*{3.4 SII Project: Gain in the math achievement-score}

In this section, we conduct an exploratory analysis of the SII data that were described in Sect. 2.4. We focus on the measurements of the gain in the math achievement-score, stored in the variable mathgain (see Sect. 2.4.1). Given the hierarchical structure of the data, we divide the analysis into three parts, in which we look separately at the school, class-, and child-level data.
\(===\) Place Panel R3.10 about here \(===============\)
```

R3.10: SII Project: The number of missing values for variables included in
the SIIdata data frame.
> data(SIIdata, package = "nlmeU")
> sapply(SIIdata, FUN $=$ function(x) any(is.na(x)))
sex minority mathkind mathgain ses yearstea mathknow
FALSE FALSE FALSE FALSE FALSE FALSE TRUE
housepov mathprep classid schoolid childid
FALSE FALSE FALSE FALSE FALSE
> sum(as.numeric(is.na(SIIdata\$mathknow)))
[1] 109
> range(SIIdata\$mathknow, na.rm = TRUE)
[1] $-2.50 \quad 2.61$

```

First, however, we check whether the data frame SIIdata contains complete information for all variables for all pupils. To this aim, in Panel R3.10, we use the function sapply (). It applies the function, specified in the FUN argument, to each column (variable) of the data frame SIIdata. The latter function checks whether any value in a particular column is missing. The displayed results indicate that only the variable mathknow contains missing values. By applying the function sum () to the vector resulting from the transformation of a logical vector indicating the location of missing values in the variable mathknow to a numeric vector, we check that the variable contains 109 missing values. The non-missing values range from -2.50 to 2.61 .

\subsection*{3.4.1 School-level data}

In this section, we investigate the school-level data.
First, in Panel R3.11, we use the function xtabs() to tabulate the number of pupils per school. The result is stored in the array schlN. The display of
the array is difficult to interpret. By applying the function range(), we check that the number of pupils per school varied between 2 and 31. By applying the function xtabs() to the array schln, we obtain the information about the number of schools with a particular number of pupils. For instance, there were two schools, for which data for only two pupils are included in the data frame SIIdata. On the other hand, there was only one school, for which data for 31 pupils were collected.
\(===\) Place Panel R3.11 about here \(==============\)
```

$\overline{\text { R3.11: SII Project: Extracting the information about the number of pupils }}$
per school.
> (schlN <- xtabs(~schoolid, SIIdata)) \# Number of pupils per school
schoolid
$\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
$\begin{array}{llllllllllllllll}11 & 10 & 14 & 6 & 6 & 12 & 14 & 16 & 6 & 18 & 31 & 27 & 9 & 15 & 13 & 6\end{array}$
.. \quad snip]
$\begin{array}{llllllllllll}97 & 98 & 99 & 100 & 101 & 102 & 103 & 104 & 105 & 106 & 107\end{array}$
$\begin{array}{ccc}6 & 2 & 19 \\ \text { range }(s c h l N)\end{array}$
[1] 231
> xtabs(~schlN) \# Distribution of the number of pupils over schools
schlN
$\begin{array}{lllllllllllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22\end{array}$
$\begin{array}{lllllllllllllllllllll}2 & 4 & 6 & 5 & 8 & 5 & 9 & 9 & 10 & 7 & 7 & 6 & 3 & 5 & 4 & 2 & 2 & 3 & 1 & 2 & 2\end{array}$
242731
131

```

In Panel R3.12, we obtain the information about the mean value of variables mathkind and mathgain for each school (see Sect. 2.4.1). To this aim, with the help of the function by (), we apply the function colmeans () to the values of the two variables within the groups defined by the same level of the factor schoolid, i.e., within each school. Note that the resulting output has been abbreviated.
\(===\) Place Panel R3.12 about here \(==========\)
Panel R3.13 shows the syntax for constructing the data frame schlDt, which contains the school-specific means of variables mathgain, mathkind, and housepov. In particular, in Panel R3.13a, we use functions melt() and cast() (for an explanation of the use of the functions, see the description of Panel R3.9) to create the data frame cst1, which contains the number of classes and children for each school. On the other hand, in Panel R3.13b,
```

R3.12: SII Project: Computation of the mean value of pupils' math scores
for each school.
> attach(SIIdata)
> (mthgM <- by (cbind(mathgain, mathkind), schoolid, colMeans))
INDICES: 1
mathgain mathkind
59.636458 .364
--
.. [snip
INDICES: 107
mathgain mathkind
48.2464 .2
> detach(SIIdata)

```
we use the functions to create the data frame cst2 with the mean values of variables mathgain, mathkind, and housepov for each school. Finally, in Panel R3.13c, we merge the two data frames to create schlDt. Note that, after merging, we remove the two auxiliary data frames.
\(==\) Place Panel R3.13 about here===============
The data frame schlDt is used in Panel R3.14 to explore the school-specific mean values of variables housepov and mathgain. In particular, in Panel R3.14a, we use the function summary () to display the summary statistics for the mean values. On the other hand, in Panel R3.14b, we use the function xyplot() from the package lattice to construct scatterplots of the mean values of the variable mathgain versus variables housepov and mthkMn.
== Place Panel R3.14 about here================
The scatterplots are shown in Fig. 3.8. The plot in Fig. 3.8a does not suggest a strong relationship between the school-specific mean values of mathgain and housepov. On the other hand, in Fig. 3.8b there is a strong negative relationship between the mean values of mathgain and mathkind: the larger the mean for the latter, the lower the mean for the former. The relationship suggests that the higher the teacher's knowledge of first-grade math contents, the lower the mean gain in the math achievement-score of pupils. Note that the plots in Fig. 3.8 should be interpreted with caution, as they show school-specific means, which were estimated based on different numbers of observations.
\(====\) Fig. 3.8 about here \(==\)
(EPS: Figs/SiieploreFig50A-B))

R3.13: SII Project: Constructing a data frame with summary data for
schools.
(a) Creating a data frame with the number of classes and children for each school.
```

> library(reshape)
> idvars <- c("schoolid")
> mvars <- c("classid", "childid")
> dtm1 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)
> names(cst1 <-

+ cast(dtm1,
+ fun.aggregate = function(el) length(unique(el))))
[1] "schoolid" "classid" "childid"
> names(cst1) <- c("schoolid", "clssn", "schlN")

```
(b) Creating a data frame with the school-specific means of selected variables.
```

> mvars <- c("mathgain", "mathkind", "housepov")
> dtm2 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)
> names(cst2 <- cast(dtm2, fun.aggregate = mean))
[1] "schoolid" "mathgain" "mathkind" "housepov"
> names(cst2) <- c("schoolid", "mthgMn", "mthkMn", "housepov")

```
(c) Merging the data frames created in parts (a) and (b) above.


\subsection*{3.4.2 Class-level data}

In this section, we investigate the class-level data.
First, in Panel R3.15, we use the function xtabs() to tabulate the number of pupils per class. The result is stored in the array clssN. By applying the function sum() to the array, we check that the total number of pupils is 1190, in agreement with the information obtained, e.g., in Panel R2.10. With the help of the function range (), we find that the number of pupils per class varies between 1 and 10. By applying the function xtabs () to the array clssN, we

R3.14: SII Project: Exploring the school-level data. The data frame schlDt was created in Panel R3.13.
(a) Summary statistics for the school-specific mean values of housepov.
```

> summary(schlDt\$housepov)
Min. 1st Qu. Median Mean 3rd Qu. Max.

```

(b) Scatterplots of the school-specific mean values for housepov and mathkind.
```

> library(lattice)
> xyplot(mthgMn ~ housepov, \# Fig. 3.8a

+ schlDt, type = c("p", "smooth"), grid = TRUE)
> xyplot(mthgMn ~ mthkMn, \# Fig. 3.8b
+ schlDt, type = c("p", "smooth"), grid = TRUE)

```


Fig. 3.8: SII Project: Scatterplots of the school-specific mean values of the variable mathgain versus variables housepov and mthkMn.
obtain information about the number of classes with a particular number of pupils. The information is stored in the array clssCnt. The display of the array indicates that, for instance, there were 42 classes with only one pupil included in the data frame SIIdata. On the other hand, there were two classes, for which data for 10 pupils were collected. Finally, by applying the function sum() to the array clssCnt, we verify that the data frame SIIdata contains information about 312 classes.
\(===\) Place Panel R3.15 about here===============
```

R3.15: SII Project: Extracting the information about the number of pupils
per class.
> (clssN <- xtabs(~ classid, SIIdata))
classid
$\begin{array}{llllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}$
$\begin{array}{llllllllllllllll}5 & 3 & 3 & 6 & 1 & 5 & 1 & 4 & 3 & 2 & 4 & 5 & 9 & 4 & 1 & 6\end{array}$
[snip]
305306307308309310311312
$\begin{array}{llllllll}4 & 4 & 4 & 3 & 3 & 3 & 2 & 4\end{array}$
> sum(clssN) \# Total number of pupils
[1] 1190
> range (clssN)
[1] 110
> (clssCnt <- xtabs (~clssN)) \# Distribution of no. of pupils/classes
clssN
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
$\begin{array}{llllllllll}42 & 53 & 53 & 61 & 39 & 31 & 14 & 13 & 4 & 2\end{array}$
> sum(clssCnt) \# Total number of classes
[1] 312

```

In Panel R3.16, we present an abbreviated printout of the contents of the data frame clssDt. The data frame contains the mean values of variables mathgain and mathkind for each class, together with the count of pupils, clssN. It also includes the values of the class-level variables mathknow and mathprep and the school-level variable housepov. The data frame was created using a syntax (not shown) similar to the one presented in Panel R3.13.
\(===\) Place Panel R3.16 about here \(===============\)

R3.16: SII Project: Contents of the class-level data. The auxiliary data frame clssDt was created using a syntax similar to the one shown in Panel R3.13.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{> clssDt} \\
\hline & classid & housepov & mathknow & mathprep & clssN & mthgMn mthkMn \\
\hline 1 & 1 & 0.335 & -0.72 & 2.50 & 5 & 47.8000459 .00 \\
\hline 2 & 2 & 0.303 & 0.58 & 3.00 & 3 & 65.6667454 .00 \\
\hline 3 & 3 & 0.040 & 0.85 & 2.75 & 3 & 15.6667492 .67 \\
\hline 4 & 4 & 0.339 & 1.08 & 5.33 & 6 & 91.5000437 .00 \\
\hline & [snip] & & & & & \\
\hline 312 & 312 & 0.546 & -1.37 & 2.00 & 4 & 47.5000418 .50 \\
\hline
\end{tabular}

Figure 3.9 presents scatterplots of the class-specific means of the variable mathgain versus the values of the variable housepov and versus the classspecific means of the variable mathkind. The figure was created by a syntax similar to the one presented in Panel R3.14b based on the data from the data frame clssDt. Figure 3.9a does not suggest a strong relationship between the mean values of mathgain and housepov. On the other hand, as seen in Fig. 3.9b, there is a strong negative relationship between the mean values of mathgain and mathkind. These conclusions are similar to the ones drawn based on Fig. 3.8. As was the case for the latter figure, the plots in Fig. 3.9 should be interpreted with caution, as they show class-specific mean values estimated based on different numbers of observations.


Fig. 3.9: SII Project: Scatterplots of the class-specific mean values of the variable mathgain versus variables housepov and mthkMn.
\(====\) Fig. 3.9 about here \(==\)
(EPS: Figs/SiieploreFig90A,B )

\subsection*{3.4.3 Pupil-level data}

In this section, specifically in Panel R3.17, we explore the pupil-level data.
\(==\) Place Panel R3.17 about here===============
First, in Panel R3.17a, we construct an auxiliary data frame auxDt by merging data frames SIIdata and clssDt. Note that the latter contains the class-level data, including the means of variables mathgain and mathkind and the number of pupils (see Panel R3.16). Next, with the help of the function with(), we add a new factor, clssF, to auxDt and store the resulting data frame in
```

R3.17: SII Project: Exploring the pupil-level data. The data frame clssDt
was created in Panel R3.16.
(a) Adding the class-level data to the data frame SIIdata.
auxDt <- merge(SIIdata, clssDt, sort = FALSE)
auxDt2 <-
within (auxDt,
$+\quad$ \{
$+\quad$ auxL <- paste(classid, schoolid, sep = "\n:")
$+\quad$ auxL1 <- paste (auxL, clssN, sep $=$ " $\backslash n(")$
$+\quad$ auxL2 <- paste (auxL1, ")", sep = "")
$+\quad$ clssF <- \# Factor clssF created
$+\quad$ factor (schoolid:classid, labels = unique(auxL2))

+ \})
tmpDt <- subset(auxDt2, select = c(classid, schoolid, clssN, clssF))
head (tmpDt, 4) \# First four records
classid schoolid clssN clssF
$160 \quad 1 \quad 3160 \backslash \mathrm{n}: 1 \backslash \mathrm{n}(3)$
$160 \quad 1 \quad 3160 \backslash \mathrm{n}: 1 \backslash \mathrm{n}$ (3)
$160 \quad 1 \quad 3160 \backslash \mathrm{n}: 1 \backslash \mathrm{n}(3)$
$217 \quad 1 \quad 8 \quad 217 \backslash \mathrm{n}: 1 \backslash \mathrm{n}$ (8)
tail (tmpDt, 4) \# Last four records
classid schoolid clssN clssF
$1187 \quad 96 \quad 107 \quad 8 \quad 96 \backslash \mathrm{n}: 107 \backslash \mathrm{n}(8)$
$1188 \quad 96 \quad 107 \quad 8 \quad 96 \backslash \mathrm{n}: 107 \backslash \mathrm{n}(8)$
$1189239 \quad 107 \quad 2239 \backslash \mathrm{n}: 107 \backslash \mathrm{n}$ (2)
$1190239 \quad 107 \quad 239 \backslash \mathrm{n}: 107 \backslash \mathrm{n}(2)$
(b) Scatterplots of the pupil-level data.

```
```

> library(lattice)

```
> library(lattice)
> dotplot(mathgain ~ clssF, # Fig. 3.10a
> dotplot(mathgain ~ clssF, # Fig. 3.10a
+ subset(auxDt2, schoolid %in% 1:4))
+ subset(auxDt2, schoolid %in% 1:4))
> xyplot(mathgain ~ housepov, SIIdata, # Fig. 3.10b
> xyplot(mathgain ~ housepov, SIIdata, # Fig. 3.10b
+ type = c("p", "smooth"))
+ type = c("p", "smooth"))
> detach(package:lattice)
```

> detach(package:lattice)

```
the object auxDt2. The factor clssF combines the information about the class and the school for each pupil. The information is stored in a character string of the form: classid \(\backslash n\) :schoolid \(\backslash n(c l s s N)\). The particular format of the string will prove useful in the construction of plots of the pupil-specific data. The format is illustrated in the display of the first and last four records of the data frame auxDt2. Note that we limit the display to variables classid, schoolid, clssN, and clssF.

In Panel R3.17b, we construct two plots of the pupil-level data. First, by applying the function dotplot() from the package lattice to the data frame auxDt2, we plot the values of the variable mathgain versus the levels of the factor clssF for the schools with schoolid between 1 and 4 . Then, using the function xyplot () from the package lattice, we plot the values of the variable mathgain versus the values of the variable houspov for all pupils from the data frame SIIdata. The resulting plots are shown in Fig. 3.10.

The plot shown in Fig. 3.10a indicates considerable variability of the observed values of the gain in the math achievement-score even between the classes belonging to the same school. Note that the interpretation of the plot is much enhanced by the labels provided on the horizontal axis. The construction of the labels is facilitated by the chosen format of the levels of the factor clssF.

The plot shown in Fig. 3.10b indicates the lack of a relationship between the observed values of the gain in the math achievement-score for individual pupils and the values of the variable housepov. Note that a similar conclusion was drawn for the school- and class-specific mean values of mathgain based on Fig. 3.8a and 3.9a, respectively.

\[
(3)(8)(2)(4)(4)(4)(2)(5)(3)(4)(2)
\]
(a) vs. clssF (selected schools)

(b) vs. housepov

Fig. 3.10: SII Project: Scatterplots of the observed values of mathgain for individual pupils versus the school/class indicator and the variable housepov.
\(====\) Fig. 3.10 about here \(==\)
(EPS: Figs/Fig.SiieploreFig400A,B.eps )

\subsection*{3.5 FCAT Study: Target score}

The FCAT data set have a rather simple structure and contents (see Sect. 2.5). The main interest pertains to the distribution of the scores for the nine attainment targets, which are stored in the variable scorec of the data frame fcat (see Sect. 2.5.2). In Panel R3.18, we present syntax addressing this issue.
\(==\) Place Panel R3.18 about here===============
```

R3.18: FCAT Study: Summarizing the information about the total scores for attainment targets.

```
(a) Summarizing scores for each child and attainment target.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{data(fcat, package = "nlmeU")} \\
\hline & T1 (4) & T2 (6) & T3(8) & T4(5) & T5 (9) & T6(6) & T7 (8) & T8(6) & T9 (5) \\
\hline 1 & 4 & 6 & 4 & 1 & 7 & 6 & 6 & 5 & 5 \\
\hline 2 & 3 & 4 & 6 & 2 & 7 & 4 & 6 & 3 & 3 \\
\hline & [sn & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
(b) Histograms of scores for different attainment targets.
```

> library(lattice)
> histogram(~}scorec | target, data = fcat, \# Fig. 3.11

+ breaks = NULL)
> detach(package:lattice)

```

In Panel R3.18a, we present how to obtain the mean value of the dependent variable for each combination of levels of the crossed factors, i.e. id and target in the fcat data frame. In particular, we use the function tapply () to apply the function mean() to the variable scorec for each combination of levels of the crossed factors. As a result, we obtain the matrix scM , which contains the mean value of the total score for each child and each attainment target. Obviously, in our case, there is only one observation for each child and target. Thus, by displaying a (abbreviated) summary of the matrix scM , we obtain, in fact, a tabulation of individual scores for all children.

In Panel R3.18b, we use the function histogram() from the package lattice to construct a histogram of the observed values of total scores for each attainment target. The resulting histograms are shown in Fig. 3.11. They clearly illustrate the differences in the measurement scale for different targets, which result from
the varying number of items per target (see Sect. 2.5). Some asymmetry of the distribution of the scores can also be observed.


Fig. 3.11: Histograms of individual total scores for different attainment targets.
\(====\) Fig.3.11 about here \(====\)
\((\) EPS: Figs/FigatotHist \()===\) )

\subsection*{3.6 Chapter summary}

In this chapter, we presented exploratory analyses of the four case studies introduced in Chap. 2. The results of the analyses will be used in the next parts of our book to build models for the case studies.

In parallel to the presentation of the results of the exploratory analyses, we introduced a range of R tools, which are useful for such analyses. For instance, functions cast() and melt() from the package reshape are very useful in transforming data involving aggregated summaries. The importance of using graphical displays is also worth highlighting. To this aim, the tools available in packages graphics (R Development Core Team, 2010) and lattice (Sarkar, 2008) are very helpful. The former package implements traditional graphical displays, whereas the latter offers displays based on a grid-graphics system (Murrell, 2005).

Due to space limitations, our presentation of the tools was neither exhaustive nor detailed. However, we hope that the syntax and its short description, which were provided in the chapter, can help the reader in finding appropriate methods applicable to a particular problem at hand.```

