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Preface

Linear mixed-effects model (LMMs) are powerful modeling tools that allow
for the analysis of datasets with complex, hierarchical structures. Intensive re-
search in the past decade has led to a better understanding of their properties.
The growing body of literature, including recent monographs, has consider-
ably increased their popularity among applied researchers. There are several
statistical software packages containing routines for LMMs. These include, for
instance, SAS, SPSS, STATA, S+, and R. The major advantage of R is that
it is a freely available, dynamically developing, open-source environment for
statistical computing and graphics.

The goal of our book is to provide a description of tools available for fitting
LMMs in R. The description is accompanied by a presentation of the most im-
portant theoretical concepts of LMMs. Additionally, examples of applications
from various areas illustrate the main features of both theory and software.
The presented material should allow readers to obtain a basic understanding
of LMMs and to apply them in practice. In particular, theoretical concepts and
their practical implementation in R are presented in the context of simpler,
more familiar classes of models like, for example the classical linear regression
model. Based on these concepts, more advanced classes of models, such as
models with correlated residual errors, are introduced. In this way, we incre-
mentally set the stage for LMMs, so that the exposition of the theory and
R tools for these models becomes simpler and clearer. This structure natu-
rally corresponds to the object-oriented programming concept, according to
which R functions/methods for simpler models are also applicable to the more
complex ones.

We assume that readers are familiar with intermediate linear algebra, calculus,
and the basic theory of statistical inference and linear modeling. Thus, the
intended audience for this book are graduate students of statistics and applied
researchers in other fields.
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Our exposition of the theory of various classes of models presented in the book
focuses on concepts, which are implemented in the functions available in R.
Readers interested in a more detailed description of the theory are referred to
appropriate theoretical monograph books, which we indicate in the text.

There are a large number of R packages, that can be used to fit LMMs. Rather
then attempting to briefly describe all of these packages, we focus mainly on
two of them namely, nlme and lme4. In this way, we can provide a more
detailed account of the tools offered by the two packages, which include a
wide variety of functions for model fitting, diagnostics, inference, etc. The
package nlme includes functions which allow for the fitting of a wide range
of linear models and LMMs. Moreover, it has been available for many years
and its code has been stable for some time now. Thus, it is a well-established
R tool. On the other hand, the more recent package lme4 offers an efficient
computational implementation and an enhanced syntax, though at the cost
of a more restricted choice of LMMs.

All classes of linear models presented in the book are illustrated using data
from a particular dataset. In this way, the differences between the various
classes of models, as well as differences in the R software, can be clearly delin-
eated. LMMs, which are the main focus of the book, are also illustrated using
three additional datasets, which extend the presentation of various aspects of
the models and R functions. We have decided to include the direct output of
R commands in the text. In this way, readers who would like to repeat the
analyses conducted in the book, can directly check their own output. How-
ever, in order to avoid the risk of incompatibility with updated versions of the
software, the results of the analyses have also been summarized in the form
of edited tables.

To further support those readers who are interested in actively using the mate-
rial presented in the book, we have developed the package nlmeU. It contains
all the datasets and R code used in the book. The package is downloadable at
http://www-personal.umich.edu/~agalecki/.

We hope that our book, which aims to provide a state-of-the-art description
of the details of implementing of LMMs in R, will support a widespread use of
the models by applied researchers in a variety of fields including biostatistics,
public health, psychometrics, educational measurement, and sociology.

When working on the text, we were receiving considerable assistance and valu-
able comments from many people. We would like to acknowledge Geert Molen-
berghs (Hasselt University and the Catholic University of Leuven), Geert Ver-
beke (Catholic University of Leuven), José Pinheiro (Novartis AG), Paul Mur-
rell (Auckland University), Przemys law Biecek (Warsaw University), Fabian
Scheipl (Ludwig Maximilian University of Munich), Jeffrey Halter (University
of Michigan), Shu Chen (University of Michigan), Marta Ga lecka (Weill Cor-
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nell Medical College) and members of the R-sig-ME discussion group led by
Douglas Bates (University of Wisconsin-Madison) and Ben Bolker (McMaster
University), for their comments and discussions at various stages during the
preparation of the book. We are grateful to John Kimmel for encouraging us
to consider writing the book and to Marc Strauss from Springer for their edito-
rial assistance and patience. We also gratefully acknowledge financial support
from the Claude Pepper Center grants AG08808 and AG024824 from the Na-
tional Institute of Aging and from the IAP research Network P6/03 of the
Belgian Government (Belgian Science Policy).
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Introduction

1.1 The aim of the book

Linear mixed-effects models (LMMs) are an important class of statistical mod-
els that can be used to analyze correlated data. Such data include clustered
observations, repeated measurements, longitudinal measurements, multivariate
observations, etc.

The aim of our book is to help readers in fitting LMMs using R software. R

(www.r-project.org) is a language and an environment aimed at facilitating
implementation of statistical methodology and graphics. It is an open-source
software, which can be freely downloaded and used under the GNU general
Public License. In particular, users can define and share their own functions,
which implement various methods and extend the functionality of R. This
feature makes R a very useful platform for propagating the knowledge and
use of statistical methods.

We believe that, by describing selected tools available in R for fitting LMMs,
we can promote the broader application of the models. To help readers less fa-
miliar with this class of linear models (LMs), we include in our book a descrip-
tion of the most important theoretical concepts and features of LMMs. More-
over, we present examples of applications of the models to real-life datasets
from various areas to illustrate the main features of both theory and software.

1.2 Implementation of linear mixed-effects models in R

There are many packages in R, which contain functions that allow fitting var-
ious forms of LMMs. The list includes, but is not limited to, packages amer,
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arm, gamm, gamm4, GLMMarp, glmmAK, glmmBUGS, heavy, HGLMMM,
lme4, lmec, lmm, longRPart, MASS, MCMCglmm, nlme, PSM, and pedi-

greemm. On the one hand, it would seem that the list is rich enough to allow
for a widespread use of LMMs. On the other hand, the number of available
packages leads to difficulty evaluating their relative merits choosing of the
most suitable package.

It is virtually impossible to describe the contents of all of the packages men-
tioned above. To facilitate and promote the use of LMMs in practice, it might
be more useful to provide details for a few of them, so that they could be used
as a starting point. Therefore, we decided to focus on the packages nlme and
lme4, for several reasons. First, they contain the functions lme() and lmer(),
respectively, which are specifically designed for fitting a broad range of LMMs.
Second, they include many tools useful for applications such as model diagnos-
tics. Finally, many other packages, which add new LMM classes or function-
alities, depend on and are built around nlme and/or lme4. Examples include,
but are not limited to, packages amer, gamm, gamm4, or RLRsim.

In fact, we focus more on the package nlme than on lme4. The main reason
is that the former has already been around for some time. Thus, its code is
stable. On the other hand, the package lme4 is still under development and its
code may be subject to changes in the near future. Thus, there is a risk that
the features we might want to describe in the context of the current version
of the package, may be modified in the later versions.

An important feature, that distinguishes R from many other existing statis-
tical software packages implementing LMMs, is that it incorporates several
concepts of an object-oriented (O-O) programming, such as classes of objects
and methods operating on those classes. There are two O-O systems that have
been implemented in R, namely, S3 and S4. They incorporate the O-O con-
cepts to different degree, with S3 being a less formal, and S4 being a more
stringent implementation. In both systems, the O-O concepts are implemented
by defining special type of functions called generic functions. When such a
function is applied to an object, it dispatches an appropriate method based
on object’s class. The system S3 has been used in the package nlme, while S4
has been used in the package lme4.

The O-O programming approach is very attractive in the context of statisti-
cal modeling because models can often be broken down into separable (au-
tonomous) components such as data, mean structure, variance function, etc.
Moreover, components defined for one type of model can also be used as build-
ing blocks for a different type of model.
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1.3 The structure of the book

As it was mentioned in the previous section, an inherent feature of the O-O
programming approach is that concepts and methods used for simpler objects
or models are applicable to more complex objects or models. For this rea-
son, in our book we chose an incremental build-up of the knowledge about
the implementation of LMMs in the functions from packages nlme and lme4.
In particular, in the first step, we decided to introduce theoretical concepts
and their practical implementation in the R code in the context of simpler
classes of LMs, like the classical linear regression model. The concepts are
then carried over to more advanced classes of models, including LMMs. This
step-by-step approach offers a couple of advantages. First, we believe that it
makes the exposition of the theory and R tools for LMMs simpler and clearer.
In particular, the presentation of the key concepts in the context of a simpler
model makes them easier to explain and understand. Second, the step-by-step
approach is helpful in the use of other R packages, which rely on classes of
objects defined in the nlme and/or lme4 packages.

As a result of this conceptual approach, we divided our book into four parts.
Part I contains the introduction to the datasets used in the book. Parts II,
III, and IV focus on different classes of LMs of increasing complexity. The
structure of the three parts is, to a large extent, similar. First, a brief review
of the main concepts and theory of a particular class of models is presented.
Special attention is paid to the presentation of the link between similar con-
cepts used for different classes. Then, the details of how to implement the
particular class of models in the packages nlme and/or lme4 are described.
The idea is to present the key concepts in the context of simpler models, in
order to enhance the understanding of them and facilitate their use for the
more complex models. Finally, in each part, the particular class of LMs and
the corresponding R tools are illustrated by analyzing real-life datasets.

In a bit more detail, the content of the four parts is as follows:

Chapter 2 of Part I contains a description of four case studies, which are used
to illustrate various classes of LMs and of the corresponding R tools. On the
other hand, Chap. 3 contains results of exploratory analyses of the datasets.
The results are used in later chapters to support model-based analyses. Note
that one of the case studies, the Age-related Macular Degeneration (ARMD)
clinical trial, is used repeatedly for the illustration of all classes of LMs. We
believe that in this way the differences between the models concerning, e.g.,
the underlying assumptions, may become easier to appreciate.

Part II focuses on LMs for independent observations. In Chap. 4, we recall the
main concepts of the theory of the classical LMs with homoscedastic residual
errors. Then, in Chap. 5, we present the tools available in R to fit such models.
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This allows us to present the fundamental concepts used in R for statistical
model-building, like model formula, model frame, etc. The concepts are briefly
illustrated in Chap. 6 using the data from the ARMD trial.

Subsequently, we turn our attention to models with heteroscedastic residual
errors. In Chap. 7, we review the basic elements of the theory. Chapter 8
presents the function gls() from the package nlme, which can be used to fit
the models. In particular, the important concept of the variance function is
introduced in the chapter. The use of the function gls() is illustrated using
data from the ARMD trial in Chap. 9.

In Part III, we consider general LMs, i.e., LMs for correlated observations.
In Chap. 10, we recall the basic elements of the theory of the models. In
particular, we explain how the concepts used in the theory of the LMs
with heteroscedastic residual errors for independent observations, presented
in Chap. 7, are extended to the case of models for correlated observations. In
Chap. 11, we describe additional features of the function gls(), which allow
the use of it for fitting general LMs. In particular, we introduce the key con-
cept of the correlation structure. The use of the function gls() is illustrated
in Chap. 12 using the data from the ARMD trial.

Finally, Part IV is devoted to LMMs. Chapter 13 reviews the fundamental
elements of the theory of LMMs. In the presentation, we demonstrate the
links between the concepts used in the theory of LMMs with those developed
in the theory of general LMs (Chap. 10). We believe that by pointing to the
links, the exposition of the fundamentals of the LMM theory becomes more
transparent and easier to follow.

In Chap. 14, we describe the features of the function lme() from the package
nlme. This function is the primary tool in the package used to fit LMMs. In
particular, we describe in detail the representation of positive-definite matri-
ces, which are instrumental in the implementation of the routines that allow
fitting LMMs. Note that the concepts of the variance function and correlation
structure, introduced in Chaps. 8 and 11, respectively, are also important for
the understanding of the use of the function lme().

In Chap. 15, we present the capabilities of the function lmer() from the pack-
age lme4. In many aspects, the function is used similarly to lme(), but there
are important differences, which we discuss. The basic capabilities of both of
the functions are illustrated by application of LMMs to the analysis of the
ARMD trial data in Chap. 16. More details on the use of the function lme()

are provided in Chaps. 17, 18, and 19, in which we analyze using LMMs,
the data from the Progressive Resistance Training (PRT) study, the Study of
Instructional Improvement (SII), and the Flemish Community Attainment-
targets (FCAT) study, respectively. Finally, in Chap. 20, we present some-
what more advanced material on the additional R tools for LMMs, including
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the methods for power calculations, influence diagnostics, and a new class of
positive-definite matrices. The latter can be used to construct LMMs with
random effects having a variance-covariance matrix defined as a Kronecker
product of two or more matrices. Note that the newly-defined class is used in
the analysis presented in Chap. 17.

Table 1.1 summarizes the successive classes of LMs, described in our book,
together with the concepts introduced in the context of the particular class.
The classes are identified by the assumptions made about the random part of
the model.

==== Table 1.1 about here =====

Table 1.1: Classes of linear models with the corresponding components (build-
ing blocks) presented in the book. The R classes refer to the package nlme.

Linear model Model component

Class (residual errors) Theory Syntax Name R class

Homoscedastic, indep. Ch. 4 Ch. 5 Data data.frame

Mean structure formula

Heteroscedastic, indep. Ch. 7 Ch. 8 Variance structure varFunc

Correlated Ch. 10 Ch. 11 Correlation structure corStruct

Mixed-effects (LMM) Ch. 13 CH. 14 Random-effects structure reStruct

Our book contains 67 figures, 47 tables, and 187 panels with R code.

Finally, we would like to outline the scope of the contents of the book:

• The book is aimed primarily at providing explanations and help with
respect to the tools available in R for fitting LMMs. Thus, we do
not provide a comprehensive account of the methodology of LMMs.
Instead, we limit ourselves to the main concepts and techniques, which
have been implemented in the functions lme() and lmer() from the
packages nlme and lme4, respectively, and which are important to
the understanding of the use of the functions. A detailed exposition
of the methodology of LMMs can be found in books by, for example,
Searle et al. (1992), Davidian & Giltinan (1995), Vonesh & Chinchilli
(1997), Pinheiro & Bates (2000), Verbeke & Molenberghs (2000),
Demidenko (2004), Fitzmaurice et al. (2004), or West et al. (2007).
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• In our exposition of methodology, we focus on the likelihood-based esti-
mation methods, as they are primarily used in lme() and lmer(). Thus,
we do not discuss, e.g., Bayesian approaches to the estimation of LMMs.

• We try to describe the use of various functions, which are available in the
packages nlme and lme4, in sufficient detail. In our presentation, we focus
on the main, or most often used, arguments of the functions. For a detailed
description of all of the arguments, we refer the readers to R’s help system.

• It is worth keeping in mind that, in many instances, the same task can
be performed in R in several different ways. To some extent, the choice
between the different methods is a matter of individual preference. In our
description of the R code, we present methods, which we find to be the
most useful. If alternative solutions are possible, we may mention them,
but we are not aiming to be exhaustive.

• The analyses of the case studies aim principally to illustrate various lin-
ear models and the possibility of fitting the models in R. While we try to
conduct as meaningful analyses as possible, they are not necessarily per-
formed in the most optimal way with respect to, e.g., the model-building
strategy. Thus, their results should not be treated as our contribution to
the subject-matter discussion related to the examples. However, whenever
possible or useful, we make an attempt to provide quantitative and/or
qualitative interpretation of the results. We also try to formulate practical
recommendations or guidance regarding model-building strategies, model
diagnostics, etc. As mentioned earlier, however, the book is not meant to
serve as a complete monograph on statistical modeling. Thus, we limit
ourselves to providing recommendations or guidance for the topics which
appear to be of interest in the context of the analyzed case studies.

1.4 Technical notes

The book is aimed at helping readers in fitting LMMs in R. We do assume
that the reader has a basic knowledge of R. An introduction to R can be found
in the book by Dalgaard (2008). A more advanced exposition is presented by
Venables & Ripley (2010).

To allow readers to apply the R code presented in the book, we created the R

package nlmeU. The package contains all the datasets and the code we used
in the text. It also includes additional R functions, which we have developed.

We tried to use short lines of the R code to keep matters simple, transparent,
and easy to generalize. To facilitate locating the code, we placed it in panels.
The panels are numbered consecutively in each chapter and referred to, for
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example as, R2.3, where “2” gives the number of the chapter and “3” is the
consecutive number of the panel within the chapter. Each panel was given a
caption explaining the contents. In some cases, the contents of a panel were
logically split into different subpanels. The subpanels are then marked by
consecutive letters and referred to by adding the appropriate letter to panel’s
number, for example, R2.3a or R2.3b. Tables and figures are numbered in a
similar fashion.

Only in rare instances a few lines of R code were introduced directly into
the text. In all these cases (as in the examples given later in this section),
the code was written using the true type font and placed in separate lines
marked with “>”, mimicking R’s command-window style.

To limit the volume of the output presented in the panels, in some cases
we skipped a part of it. These interventions are indicated by the . . . [snip]
string.

The R functions are referred to in the text as function(), e.g., lme(). Func-
tions’ arguments and objects are marked using the same font, e.g., argument
and object. For the R classes, we use italic, e.g., lme class.

For the proper execution of the R code used in the book, the following packages
are required: lattice, lme4, nlme, Matrix, plyr, reshape, RLRsim, splines,
WWGbook. Additionally, nlmeU is needed. Packages lattice, nlme, Matrix,
and splines come with basic distribution of R and do not need to be installed.
The remaining packages can be installed using the following code:

> pckgs <-

+ c("lme4", "nlmeU", "plyr", "reshape", "RLRsim", "WWGbook",

+ "ellipse")

> install.packages(pckgs)

There are additional utility functions, namely, Sweave() (Leisch, 2002) and
xtable() in Sweave and xtable (Dahl, 2009) packages, respectively, which are
not needed to execute the code presented in the book, but were extensively
used by us when preparing this manuscript.

It is worth noting that there are functions, which bear the same name in
the packages nlme and lme4, but which have different definitions. To avoid
unintentional masking of the functions, the packages should not be loaded si-
multaneously. Instead, it is recommended to switch between the packages. For
example, when using nlme in a hypothetical R session, we load the package
by using the library() or require() functions and execute statements as
needed. Then, before switching to lme4, it is mandatory to detach the nlme

package by using the detach() function. We also note that the conflicts()
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function, included for illustration below, is very useful to identify names’ con-
flicts:

> library(nlme) # Load package

> conflicts(detail = TRUE) # Identifies names’ conflicts

... statements omitted

> detach(package:nlme) # Detach package

A similar approach should be applied when using the package lme4:

> library(lme4)

... statements omitted

> detach("package:lme4")

> detach("package:Matrix") # Recommended

Note that detaching Matrix is less critical, but recommended.

In the examples above, we refer to the packages nlme and lme4. However,
to avoid unintentional masking of objects, the same strategy may also be
necessary for other packages, which may cause function names’ conflicts.

When creating figures we used "CMRoman" and "CMSans" Computer Modern
font families available in cmrutils package. These fonts are based on CM-
Super font LATEXpackage (Volovich & Lemberg, 1999) and CMSYASE fonts
(Murrell & Ripley, 2006). The full syntax needed to create figures presented in
the book is often extensive. In many cases, we decided to present a shortened
version of the code. A full version is available in the nlmeU package.

Finally, the R scripts in our book were executed by using R version 2.14.1

(2012-12-22) under the Windows-XP operating system. We used the follow-
ing global options:

> options(width = 65, digits = 5, show.signif.stars = FALSE)
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Case Studies

2.1 Introduction

In this chapter, we introduce the case studies, that will be used to illustrate
the models and R code described in the book.

The case studies come from different application domains; however, they share
a few features. For instance, in all of them the study and/or sampling design
generates the observations that are grouped according to the levels of one or
more grouping factors. More specifically the levels of grouping factors, i.e.
subjects, schools, etc. are assumed to be randomly selected from a population
being studied. This means that observations within a particular group are
likely to be correlated. The correlation should be taken into account in the
analysis. Also, in each case there is one (or more) continuous measurement,
which is treated as the dependent variable in the models considered in this
book.

In particular, we consider the following datasets:

• Age-related Macular Degeneration (ARMD) Trial: A clinical trial com-
paring several doses of interferon-α and placebo in patients with ARMD.
Visual acuity of patients participating in the trial was measured at base-
line and at four post-randomization time points. The resulting data are an
example of longitudinal data with observations grouped by subjects. We
describe the related datasets in more detail in Sect. 2.2.

• Progressive Resistance Training (PRT) Trial: A clinical trial comparing
low- and high-intensity training for improving the muscle power in elderly
people. For each participant, characteristics of two types of muscle fibers
were measured at two occasions, pre- and post-training. The resulting data
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are an example of clustered data, with observations grouped by subjects.
We present a more detailed information about the dataset in Sect. 2.3.

• Study of Instructional Improvement (SII): An educational study aimed
at assessing improvement in mathematics grades of first-grade pupils, as
compared to their kindergarten achievements. It included pupils from
randomly selected classes in randomly selected elementary schools. The
dataset is an example of hierarchical data, with observations (pupils’
scores) grouped within classes, which are themselves grouped in schools.
We refer to Sect. 2.4 for more details about the data.

• Flemish Community Attainment-targets (FCAT) Study: An educational
study, in which elementary-school graduates were evaluated with respect
to reading comprehension in Dutch. Pupils from randomly selected schools
were assessed for a set of nine attainment targets. The dataset is an exam-
ple of grouped data, for which the grouping factors are crossed. We describe
the dataset in more detail in Sect. 2.5.

The data from ARMD study will be used throughout the book to illustrate
various classes of LMs and corresponding R tools. The remaining case studies
will be used in Part IV, only, to illustrate R functions for fitting LMMs.

For each of the aforementioned case studies, there is one or more datasets
included into the package nlmeU which accompanies this book. In the next
sections of this chapter, we use the R syntax to describe the contents of these
datasets. Results of exploratory analyses of the case studies are presented in
Chap. 3. Note that, unlike in the other parts of the book, we are not discussing
the code in much detail, as the data-processing functionalities are not the main
focus of our book. The readers interested in the functionalities are referred to
the monograph by Dalgaard (2008).

The R language is not particularly suited for data entry. Typically, researchers
use raw data created using other software. Data are then stored in external
files, for example, in the .csv format, read into R, and prepared for the analysis.
To emulate this situation, we assume, for the purpose of this chapter, that the
data are stored in a .csv-format file in the “C:\temp” directory.

2.2 Age-related Macular Degeneration (ARMD) Trial

The Age-related Macular Degeneration data arise from a random-
ized multi-center clinical trial comparing an experimental treat-
ment (interferon-α) versus placebo for patients diagnosed with
ARMD. The full results of this trial have been reported by
Pharmacological Therapy for Macular Degeneration Study Group (1997).
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We focus on the comparison between placebo and the highest dose (6 million
units daily) of interferon-α.

Patients with macular degeneration progressively lose vision. In the trial, vi-
sual acuity of each of 240 patients was assessed at baseline and at four post-
randomization timepoints, i.e., at 4, 12, 24, and 52 weeks. Visual acuity was
evaluated based on patient’s ability to read lines of letters on standardized
vision charts. The charts display lines of five letters of decreasing size, which
the patient must read from top (largest letters) to bottom (smallest letters).
Each line with at least four letters correctly read is called one “line of vision.”
In our analyses, we will focus on the visual acuity defined as the total num-
ber of letters correctly read. Another possible approach would be to consider
visual acuity measured by the number of lines correctly read. Note that the
two approaches are closely linked, as each line of vision contains five letters.

It follows that, for each of 240 patients, we have longitudinal data in the form
of up to five visual acuity measurements collected at different, but common
to all patients, timepoints. These data will be useful to illustrate the use of
LMMs for continuous, longitudinal data. We will also use them to present
other classes of LMs considered in our book.

2.2.1 Raw data

We assume that the raw ARMD data are stored in the “C:\temp” directory
in a .csv-format file named armd240.data.csv. In what follows, we assume
that our goal is to verify the content of the data.

In Panel R2.1, the data are loaded into R using the read.csv() function and
are stored in the data-frame object armd240.data. Note that this data frame
is not included in the nlmeU package.

==== RSession R2.1 about here ====

The number of rows (records) and columns (variables) in the object
armd240.data is obtained using the function dim(). The data frame contains
240 observations and 9 variables. The names of the variables are displayed us-
ing the names() function. All the variables are of class integer . By applying the
function str(), we get a summary description of variables in armd240.data

data. In particular, for each variable, we get its class and a listing of the first
few values.

The variable subject contains patients’ identifiers. Treatment identifiers are
contained in the variable treat. Variables visual0, visual4, visual12, vi-
sual24, and visual52 store visual acuity measurements obtained at baseline
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R2.1: ARMD Trial : Loading raw data from a .csv-format file into the
armd240.data object and checking their contents.

> dataDir <- file.path("C:", "temp") # Data directory

> fp <- # File path

+ file.path(dataDir, "armd240.data.csv")

> armd240.data <- # Read data

+ read.csv(fp, header = TRUE)

> dim(armd240.data) # No. of rows and cols

[1] 240 9

> (nms <- names(armd240.data)) # Variables’ names

[1] "subject" "treat" "lesion" "line0" "visual0"

[6] "visual4" "visual12" "visual24" "visual52"

> unique(sapply(armd240.data, class)) # Variables’ classes

[1] "integer"

> str(armd240.data) # Data structure

’data.frame’: 240 obs. of 9 variables:

$ subject : int 1 2 3 4 5 6 7 8 9 10 ...

$ treat : int 2 2 1 1 2 2 1 1 2 1 ...

$ lesion : int 3 1 4 2 1 3 1 3 2 1 ...

$ line0 : int 12 13 8 13 14 12 13 8 12 10 ...

$ visual0 : int 59 65 40 67 70 59 64 39 59 49 ...

$ visual4 : int 55 70 40 64 NA 53 68 37 58 51 ...

$ visual12: int 45 65 37 64 NA 52 74 43 49 71 ...

$ visual24: int NA 65 17 64 NA 53 72 37 54 71 ...

$ visual52: int NA 55 NA 68 NA 42 65 37 58 NA ...

> names(armd240.data) <- abbreviate(nms) # Variables’ names shortened

> head(armd240.data, 3) # First 3 records

sbjc tret lesn lin0 vsl0 vsl4 vs12 vs24 vs52

1 1 2 3 12 59 55 45 NA NA

2 2 2 1 13 65 70 65 65 55

3 3 1 4 8 40 40 37 17 NA

> names(armd240.data) <- nms # Variables’ names reinstated

and week 4, 12, 24, and 52, respectively. Variables lesion and line0 contain
additional information, which will not be used for analysis in our book.

Finally, at the bottom of Panel R2.1, we list the first three rows of the data
frame armd240.data with the help of the head() function. To avoid splitting
lines of the output and to make the latter more transparent, we shorten vari-
ables’ names using the abbreviate() function. After printing the contents of
the first three rows and before proceeding further, we reinstate the original
names. Note that we apply a similar sequence of R commands in many other
R panels across the book to simplify the displayed output.
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Based on the output, we note that the data frame contains one record for each
patient. The record includes all information obtained for the patient. In par-
ticular, each record contains five variables with visual acuity measurements,
which are, essentially, of the same format. This type of data storage, with one
record per subject, is called the “wide” format. An alternative is the “long”
format with multiple records per subject. We will discuss the formats in the
next section.

2.2.2 Data for analysis

In this section, we describe auxiliary data frames, namely armd.wide, armd0,
and armd, which were derived from armd240.data for the purpose of analyses
of ARMD data that will be presented later in the book. The data frames are
included in the package nlmeU. In what follows, we present the structure,
contents, and for illustration purposes, how the data were created.

Data in the “wide” format: the data frame armd.wide

Panel R2.2 presents the structure and the contents of the armd.wide data
frame.

==== RSession R2.2 around here ====

Note that the data are loaded into R using the data() function, without
the need for loading the package nlmeU. The data frame contains 10 vari-
ables. In particular, it includes variables visual0, visual4, visual12, vi-
sual24, visual52, lesion, and line0, which are exactly the same as those
in armd240.data. In contrast to armd240.data data frame, it contains three
factors: subject, treat.f and miss.pat. The first two contain patient’s iden-
tifier and treatment. They are constructed from the corresponding numeric
variables available in armd240.data. The factor miss.pat is a new variable
and contains a missing-pattern identifier, i.e., a character string that indicates
which of the four post-randomization measurements of visual acuity are miss-
ing for a particular patient. The missing values are marked by X. Thus, for
instance, for the patient with the subject identifier equal to 1, the pattern is
equal to --XX, because there is no information about visual acuity at weeks
24 and 52. On the other hand, for the patient with the subject identifier
equal to 6, there are no missing visual-acuity measurements, and hence the
value of the miss.pat factor is equal to ----. At the bottom of Panel R2.2,
we demonstrate how to extract the names of the factors from a data frame.

Panel R2.3 presents the syntax used to create factors treat.f and miss.pat

in the armd.wide data frame. The former is constructed in Panel R2.3a from
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R2.2: ARMD Trial : The structure and contents of data frame armd.wide

stored in the “wide” format.

> data(armd.wide, package = "nlmeU") # armd.wide loaded

> str(armd.wide) # Structure of data

’data.frame’: 240 obs. of 10 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 2 3 4 5 6 ...

. . . [snip]
$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 1 2 1 9 1 1 1 ...

> head(armd.wide) # First few records

subject lesion line0 visual0 visual4 visual12 visual24

1 1 3 12 59 55 45 NA

. . . [snip]
6 6 3 12 59 53 52 53

visual52 treat.f miss.pat

1 NA Active --XX

. . . [snip]
6 42 Active ----

> (facs <- sapply(armd.wide, is.factor)) # Factors indicated

subject lesion line0 visual0 visual4 visual12 visual24

TRUE FALSE FALSE FALSE FALSE FALSE FALSE

visual52 treat.f miss.pat

FALSE TRUE TRUE

> names(facs[facs == TRUE]) # Factor names displayed

[1] "subject" "treat.f" "miss.pat"

the variable treat from the data frame armd240.data using the function
factor(). The factor treat.f has two levels, Placebo and Active, which
correspond to the values of 1 and 2, repectively, of treat.

==== RSession R2.3 around here ====

The factor miss.pat is constructed in Panel R2.3b with the help of the
function missPat() included in the nlmeU package. The function returns
a character vector of the length equal to the number of rows of the matrix
created by column-wise contactenation of the vectors given as arguments to
the function. The elements of the resulting vector indicate the occurrence
of missing values in the rows of the matrix. In particular, the elements are
character strings of the length equal to the number of the columns (vectors).
As shown in Panel R2.2, the strings contain characters “-” and “X”, where
the former indicates a non-missing value in the corresponding column of the
matrix, while the latter indicates a missing value. Thus, application of the
function to variables visual4, visual12, visual24, and visual52 from the
data frame armd240.data results in a character vector of length 240 with
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R2.3: ARMD Trial : Construction of factors treat.f and miss.pat in
the data frame armd.wide. The data frame armd240.data was created in
Panel R2.1.

(a) Factor treat.f.

> attach(armd240.data) # Attach data

> treat.f <- # Factor created

+ factor(treat, labels = c("Placebo", "Active"))

> levels(treat.f) # (1) Placebo, (2) Active

[1] "Placebo" "Active"

> str(treat.f)

Factor w/ 2 levels "Placebo","Active": 2 2 1 1 2 2 1 1 2 1 ...

(b) Factor misspat.

> miss.pat <- # Missing patterns

+ nlmeU:::missPat(visual4, visual12, visual24, visual52)

> length(miss.pat) # Vector length

[1] 240

> mode(miss.pat) # Vector mode

[1] "character"

> miss.pat # Vector contents

[1] "--XX" "----" "---X" "----" "XXXX" "----" "----" "----"

. . . [snip]
[233] "----" "----" "----" "----" "----" "----" "----" "----"

> detach(armd240.data) # Detach armd240.data

strings containing four characters as the elements. The elements of the re-
sulting miss.pat vector indicate that, for instance, for the first patient in
the data frame armd240.data visual acuity measurements at week 24 and 52
were missing, while for the fifth patient no visual-acuity measurements were
obtained at any post-randomization visit.

Note that, we used nlmeU:::missPat() syntax, which allowed us to invoke
the missPat() function without loading the nlmeU package.

Data in the “long” format: the data frame armd0

In addition to the armd.wide data stored in the “wide” format, we will need
data in the “longitudinal” (or “long”) format. In the latter format, for each
patient, there are multiple records containing visual acuity measurements for
separate visits. An example of data in“long”format is stored in the data frame
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armd0. It was obtained from the armd.wide data using functions melt() and
cast() from the package reshape (Wickham, 2007).

==== RSession R2.4 about here ====

R2.4: ARMD Trial : The structure and contents of the data frame armd0

stored in the “long” format.

> data(armd0, package = "nlmeU") # From nlmeU package

> dim(armd0) # No. of rows and cols

[1] 1107 8

> head(armd0) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

1 1 Active 59 --XX Baseline 0 59 0

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

4 2 Active 65 ---- Baseline 0 65 0

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

> names(armd0) # Variables’ names

[1] "subject" "treat.f" "visual0" "miss.pat" "time.f"

[6] "time" "visual" "tp"

> str(armd0) # Data structure

’data.frame’: 1107 obs. of 8 variables:

$ subject : Factor w/ 240 levels "1","2","3","4",..: 1 1 1 2 2 2 ...

$ treat.f : Factor w/ 2 levels "Placebo","Active": 2 2 2 2 2 2 2 ...

$ visual0 : int 59 59 59 65 65 65 65 65 40 40 ...

$ miss.pat: Factor w/ 9 levels "----","---X",..: 4 4 4 1 1 1 1 1 ...

$ time.f : Ord.factor w/ 5 levels "Baseline"<"4wks"<..: 1 2 3 1 ...

$ time : num 0 4 12 0 4 12 24 52 0 4 ...

$ visual : int 59 55 45 65 70 65 65 55 40 40 ...

$ tp : num 0 1 2 0 1 2 3 4 0 1 ...

Panel R2.4 presents the contents and structure of the data frame armd0. The
data frame includes eight variables and 1107 records. The contents of variables
subject, treat.f, and miss.pat, is the same as in armd.wide, while visual0
contains the value of the visual acuity measurement at baseline. Note that
the values of these four variables are repeated across the multiple records
corresponding to a particular patient. On the other hand, the records differ
with respect to the values of variables time.f, time, tp, and visual. The
first three of those four variables are different forms of an indicator of the
visit time, while visual contains the value of the visual acuity measurement
at the particular visit. We note that having three variables representing time
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visits is not mandatory, but we created them to simplify the syntax used for
analyses in later chapters.

The numerical variable time provides the actual week, at which a particular
visual-acuity measurement was taken. The variable time.f is a corresponding
ordered factor, with levels Baseline, 4wks, 12wks, 24wks, and 52wks. Finally,
tp is a numerical variable, which indicates the position of the particular mea-
surement visit in the sequence of the five possible measurements. Thus, for
instance, tp=0 for the baseline measurement and tp=4 for the fourth post-
randomization measurement at week 52.

Interestingly, enough visual acuity measures taken at baseline are stored both
in visual0 and in selected rows of the visual variables. This structure will
proof useful when creating armd data containing rows with post-randomization
visual-acuity measures, while keeping baseline values.

The “long” format is preferable for storing longitudinal data over the “wide”
format. We note, that storing of the visual acuity measurements in the data
frame armd.wide requires the use of six variables, i.e., subject and the five
variables containing the values of the measurements. On the other hand, stor-
ing the same information in the data frame armd0 requires only three variables,
i.e., subject, time, and visual. Of course, this is achieved at the cost of in-
cluding more rows in the armd0 data frame, i.e., 1107, as compared to 240
records in armd.wide.

We also note that variables, with values invariant within subjects, such as
treat.f, visual0 are referred to as time-fixed. In contrast time, tp, and vi-

sual are called time-varying. This distinction will have important implications
for the specification of the models and interpretation of the results.

Subsetting data in the “long” format: the data frame armd

Data frame armd was also stored in a “long” format and was created from the
armd0 data frame, by omitting records corresponding to the baseline visual-
acuity measurements.

=== Place Panel R2.5 about here =====

Panel R2.5 presents the syntax used to create the data frame armd. In partic-
ular, the function subset() is used to remove the baseline measurements,
i.e., the records, for which time>0, from the object armd0. By removing
the baseline measurements, we reduce the number of records from 1107 (see
Panel R2.4) to 867.

While subsetting the data, care needs to be taken regarding the levels of the
time.f and potentially other factors. In the data frame armd0, the factor had
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R2.5: ARMD Trial : Creation of the data frame armd from armd0.

> auxDt <- subset(armd0, time > 0) # Post-baseline measures

> dim(auxDt) # No. of rows & cols

[1] 867 8

> levels(auxDt$time.f) # Levels of treat.f

[1] "Baseline" "4wks" "12wks" "24wks" "52wks"

> armd <- droplevels(auxDt) # Drop unused levels

> levels(armd$time.f) # Baseline level dropped

[1] "4wks" "12wks" "24wks" "52wks"

> armd <- # Data modified

+ within(armd,

+ {

+ contrasts(time.f) <- # Contrasts assigned

+ contr.poly(4, scores = c(4, 12, 24, 52))

+ })

> head(armd) # First six records

subject treat.f visual0 miss.pat time.f time visual tp

2 1 Active 59 --XX 4wks 4 55 1

3 1 Active 59 --XX 12wks 12 45 2

5 2 Active 65 ---- 4wks 4 70 1

6 2 Active 65 ---- 12wks 12 65 2

7 2 Active 65 ---- 24wks 24 65 3

8 2 Active 65 ---- 52wks 52 55 4

five levels. In Panel R2.5, we extract the factor time.f from the auxiliary
data frame auxDt. Note that in the data frame the level Baseline is not used
in any of the rows. For many functions in R it would not be a problem, but
sometimes the presence of an unused level in the definition of a factor may lead
to unexpected results. Therefore, it is prudent to drop the unused level from
the definition of the time.f factor, by applying the function droplevels(). It
is worth noting that, using the droplevels() function, the number of levels
of the factors subject and miss.pat is also affected (not shown).

After modifying the aforementioned factors, we store the resulting data in the
data frame armd. We also assign orthogonal polynomial contrasts to the fac-
tor time.f using syntax of the form “contrasts(factor)<-contr.function”.
We will revisit the issue of assigning contrasts to a factor in Panel R5.9
(Sect. 5.3.2).

The display of the first six records of armd in Panel R2.5 confirms that the
data do not include the records corresponding to the baseline measurements of
visual acuity. Of course, the information about the values of the measurements
is still available in the variable visual0.
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Both data frames armd0 and armd, introduced in this section, are stored in
“long” format. The armd0 will be primarily used for exploratory data analyses
(Sect. 3.2). On the other hand, armd will be the primary data frame used for
the analyses throughout the entire book.

2.3 Progressive Resistance Training (PRT) Study

The Progressive Resistance Training (PRT) data originate from a randomized
trial aimed at devising evidence-based methods for improving and measuring
the mobility and muscle power of elderly men and women in the 70+ age
category. The working hypothesis was that a 12-week program of PRT would
increase: (a) the power output of the overall musculature associated with
movements of the ankles, knees and hips; (b) the cross-sectional area and the
force and power of permeabilized single fibers obtained from the vastus later-
alis muscle; and (c) the ability of young and elderly men and women to safely
arrest standardized falls. The training consisted of repeated leg extensions by
shortening contractions of the leg extensor muscles against a resistance that
was increased as the subject trained using a specially designed apparatus.

In the trial, healthy young (21–30 years) and older (65–80 years) male and
female subjects were randomized between a “high” and “low” intensity of a
12-week PRT intervention. Randomization was stratified by age group (young
or old) and sex. In total, the data set used in our book includes 63 subjects.

For each subject, multiple measurements characterizing two types of muscle
fibers were obtained before and after the 12-week PRT. The resulting data
are thus an example of clustered data. In particular, the measurements for
a particular characteristic of muscle fibers for each subject correspond to a
2 × 2 factorial design, with fiber type (1, 2) and occasion (pre-training, post-
training) as the two design factors, which has important implications for the
data analysis (Chapt. 17).

2.3.1 Raw data

We assume that subjects’ characteristics and experimental measure-
ments are contained in external files named prt.subjects.data.csv and
prt.fiber.data.csv, respectively.

=== Place Panel R2.6 about here ======================

In Panel R2.6, we present the syntax for loading and inspecting the two
datasets. As can be seen from the output presented in Panel R2.6a, the file
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R2.6: PRT Trial : Loading raw data from .csv files into objects
prt.subjects.data and prt.fiber.data. The object dataDir was created
in Panel R2.1.

(a) Loading and inspecting data from the prt.subjects.data.csv file.

> fp <- file.path(dataDir, "prt.subjects.data.csv")

> prt.subjects.data <- read.csv(fp, header = TRUE, as.is = TRUE)

> dim(prt.subjects.data)

[1] 63 6

> names(prt.subjects.data)

[1] "id" "gender" "ageGrp" "trainGrp" "height"

[6] "weight"

> str(prt.subjects.data)

’data.frame’: 63 obs. of 6 variables:

$ id : int 5 10 15 20 25 35 45 50 60 70 ...

$ gender : chr "F" "F" "F" "F" ...

$ ageGrp : int 0 0 1 1 1 0 0 1 0 0 ...

$ trainGrp: int 0 1 1 1 1 0 0 0 0 1 ...

$ height : num 1.56 1.71 1.67 1.55 1.69 1.69 1.72 1.61 1.71 ...

$ weight : num 61.9 66 70.9 62 79.1 74.5 89 68.9 62.9 68.1 ...

> head(prt.subjects.data, 4)

id gender ageGrp trainGrp height weight

1 5 F 0 0 1.56 61.9

2 10 F 0 1 1.71 66.0

3 15 F 1 1 1.67 70.9

4 20 F 1 1 1.55 62.0

(b) Loading and inspecting data from the prt.fiber.data.csv file.

> fp <- file.path(dataDir, "prt.fiber.data.csv")

> prt.fiber.data <- read.csv(fp, header = TRUE)

> str(prt.fiber.data)

’data.frame’: 2471 obs. of 5 variables:

$ id : int 5 5 5 5 5 5 5 5 5 5 ...

$ fiber.type : int 1 1 2 1 2 1 1 1 2 1 ...

$ train.pre.pos: int 0 0 0 0 0 0 0 0 0 0 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 ...

$ spec.fo : num 83.5 132.8 161.1 158.8 117.9 ...

> head(prt.fiber.data, 4)

id fiber.type train.pre.pos iso.fo spec.fo

1 5 1 0 0.265 83.5

2 5 1 0 0.518 132.8

3 5 2 0 0.491 161.1

4 5 1 0 0.718 158.8
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prt.subjects.data.csv contains information about 63 subjects, with one
record per subject. It includes one character variable and five numeric vari-
ables, three of which are integer-valued. The variable id contains subjects’
identifiers, gender identifies sex, ageGrp indicates the age group, and train-

Grp identifies the study group. Finally, height and weight contain the infor-
mation of subjects’ height and weight at baseline.

Note that the as.is argument used in the read.csv() function is set to TRUE.
Consequently, it prevents the creation of a factor from a character variable.
This applies to the gender variable, which is coded using the “F” and “M”
characters.

The output in Panel R2.6b presents the contents of the file
prt.fiber.data.csv. The file contains 2471 records corresponding to
individual muscle fibers. It includes five numeric variables, three of which
are integer-valued. The variable id contains subjects’ identifiers, fiber.type
identifies the type of fiber, while train.pre.pos indicates whether the
measurement was taken pre- or post-training. Finally, iso.fo and spec.fo

contain the measured values of two characteristics of muscle fibers. These two
variables will be treated as outcomes of interest in the analyses presented in
Part IV of the book.

2.3.2 Data for analysis

In Panels R2.7 and R2.8, we present the syntax used to create the prt data
set that will be used for analysis.

=== Place Panel R2.7 about here ======================

First, in Panel R2.7, we prepare data for merging. Specifically in
Panel R2.7a, we create the data frame prt.subjects, corresponding to
prt.subjects.data, with several variables added and modified. To this aim,
we use the function within(), which applies all the modifications to the data
frame prt.subjects.data. In particular, we replace the variable id by a cor-
responding factor. We also define the numeric variable bmi, which contains
subject’s Body Mass Index (BMI), expressed in units of kg/m2. Moreover, we
create the factors sex.f, age.f, and prt.f, which correspond to the variables
gender, ageGrp, and trainGrp, respectively. Finally, we remove the variables
weight, height, trainGrp, ageGrp, and gender, and store the result as the
data frame prt.subjects. The contents of the data frame is summarized
using the str() function.

In Panel R2.7b, we create the data frame prt.fiber. It corresponds
to prt.fiber.data, but instead of the variables fiber.type and
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R2.7: PRT Trial : Construction of the data frame prt. Creating data frames
prt.subjects and prt.fiber containing subjects’ and fiber measurements.
Data frames prt.subjects.data and prt.fiber.data were created in
Panel R2.6.

(a) Subjects’ characteristics.

> prt.subjects <-

+ within(prt.subjects.data,

+ {

+ id <- factor(id)

+ bmi <- weight/(height^2)

+ sex.f <- factor(gender, labels = c("Female", "Male"))

+ age.f <- factor(ageGrp, labels = c("Young", "Old"))

+ prt.f <-

+ factor(trainGrp, levels = c("1", "0"),

+ labels = c("High", "Low"))

+ gender <- ageGrp <- trainGrp <- height <- weight <- NULL

+ })

> str(prt.subjects)

’data.frame’: 63 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 2 3 4 5 6 7 8 9 ...

$ prt.f: Factor w/ 2 levels "High","Low": 2 1 1 1 1 2 2 2 2 1 ...

$ age.f: Factor w/ 2 levels "Young","Old": 1 1 2 2 2 1 1 2 1 1 ...

$ sex.f: Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 2 1 2 2 ...

$ bmi : num 25.4 22.6 25.4 25.8 27.7 ...

(b) Fiber measurements.

> prt.fiber <-

+ within(prt.fiber.data,

+ {

+ id <- factor(id)

+ fiber.f <-

+ factor(fiber.type, labels = c("Type 1", "Type 2"))

+ occ.f <-

+ factor(train.pre.pos, labels = c("Pre", "Pos"))

+ fiber.type <- train.pre.pos <- NULL

+ })

> str(prt.fiber)

’data.frame’: 2471 obs. of 5 variables:

$ id : Factor w/ 63 levels "5","10","15",..: 1 1 1 1 1 1 1 1 ...

$ iso.fo : num 0.265 0.518 0.491 0.718 0.16 0.41 0.371 0.792 ...

$ spec.fo: num 83.5 132.8 161.1 158.8 117.9 ...

$ occ.f : Factor w/ 2 levels "Pre","Pos": 1 1 1 1 1 1 1 1 1 1 ...

$ fiber.f: Factor w/ 2 levels "Type 1","Type 2": 1 1 2 1 2 1 1 1 ...
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train.pre.pos, it includes the factors fiber.f and occ.f. Also, a subject’s
identifier id is stored as a factor.

=== Place Panel R2.8 about here =====

R2.8: PRT Trial : Construction of the data frame prt by merging
prt.subjects with prt.fiber containing subjects’ and fiber data. Data
prt.subjects and prt.fiber were created in Panel R2.7.

> prt <- merge(prt.subjects, prt.fiber, sort = FALSE)

> dim(prt)

[1] 2471 9

> names(prt)

[1] "id" "prt.f" "age.f" "sex.f" "bmi" "iso.fo"

[7] "spec.fo" "occ.f" "fiber.f"

> head(prt)

id prt.f age.f sex.f bmi iso.fo spec.fo occ.f fiber.f

1 5 Low Young Female 25.436 0.265 83.5 Pre Type 1

2 5 Low Young Female 25.436 0.518 132.8 Pre Type 1

3 5 Low Young Female 25.436 0.491 161.1 Pre Type 2

4 5 Low Young Female 25.436 0.718 158.8 Pre Type 1

5 5 Low Young Female 25.436 0.160 117.9 Pre Type 2

6 5 Low Young Female 25.436 0.410 87.8 Pre Type 1

In Panel R2.8, we construct the data frame prt by merging the data frames
prt.subjects and prt.fiber created in Panel R2.7. As a result, we obtain
data stored in the “long” format with 2471 records and nine variables. The
contents of the first six rows of the data frame prt is displayed with the help
of the head() function.

2.4 The Study of Instructional Improvement (SII)
Project

The Study of Instructional Improvement (SII) was carried out to assess the
math achievement-scores of first- and third-grade pupils in randomly selected
classrooms from a national U.S. sample of elementary schools (Hill et al.,
2005). The data set includes results for 1,190 first-grade pupils sampled from
312 classrooms in 107 schools.

The SII data exhibit a hierarchical structure. That is, pupils are grouped in
classes, which, in turn, are grouped within schools. This structure implies that,
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e.g., scores for pupils from the same class are likely correlated. The correlation
should be taken into account in the analysis.

2.4.1 Raw data

As a starting point, we use the data frame classroom, which can be found in
the WWGbook package.

In Panel R2.9, we investigate the structure and contents of the data frame.
As it can be seen from the results of application of the dim() function, the
data frame contains 1190 records and 12 variables.

=== Place Panel R2.9 about here =====

The names of the variables are listed with the help of the names() function.
The contents of the variables described on p. 118 of the book by West et al.
(2007) are as follows:

• School-level variables:

– schoolid: school’s ID number;

– housepov: % of households in the neighborhood of the school below
the poverty level;

• Classroom-level variables:

– classid: classroom’s ID number;

– yearstea: years of teacher’s experience in teaching in the first grade;

– mathprep: the number of preparatory courses on the first-grade math
contents and methods followed by the teacher;

– mathknow: teacher’s knowledge of the first-grade math contents (higher
values indicate a higher knowledge of the contents);

• Pupil-level variables:

– childid: pupil’s ID number;

– mathgain: pupil’s gain in the math achievement-score from the spring
of kindergarten to the spring of first grade;

– mathkind: pupil’s math score in the spring of the kindergarten year;

– sex: an indicator variable for sex;
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R2.9: SII Project : The structure and contents of the data frame classroom

from the WWGbook package.

> data(classroom, package = "WWGbook")

> dim(classroom) # Number of rows & variables

[1] 1190 12

> names(classroom) # Variable names

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "yearstea" "mathknow" "housepov" "mathprep" "classid"

[11] "schoolid" "childid"

> classroom # Raw data

sex minority mathkind mathgain ses yearstea mathknow

1 1 1 448 32 0.46 1 NA

2 0 1 460 109 -0.27 1 NA

3 1 1 511 56 -0.03 1 NA

. . . [snip]
1189 0 0 473 44 -0.03 25 0.50

1190 1 0 453 69 -0.37 25 0.50

housepov mathprep classid schoolid childid

1 0.082 2.00 160 1 1

2 0.082 2.00 160 1 2

3 0.082 2.00 160 1 3

. . . [snip]
1189 0.177 2.00 239 107 1189

1190 0.177 2.00 239 107 1190

> str(classroom)

’data.frame’: 1190 obs. of 12 variables:

$ sex : int 1 0 1 0 0 1 0 0 1 0 ...

$ minority: int 1 1 1 1 1 1 1 1 1 1 ...

$ mathkind: int 448 460 511 449 425 450 452 443 422 480 ...

$ mathgain: int 32 109 56 83 53 65 51 66 88 -7 ...

$ ses : num 0.46 -0.27 -0.03 -0.38 -0.03 0.76 -0.03 0.2 0.64 ...

$ yearstea: num 1 1 1 2 2 2 2 2 2 2 ...

$ mathknow: num NA NA NA -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 ...

$ housepov: num 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 ...

$ mathprep: num 2 2 2 3.25 3.25 3.25 3.25 3.25 3.25 3.25 ...

$ classid : int 160 160 160 217 217 217 217 217 217 217 ...

$ schoolid: int 1 1 1 1 1 1 1 1 1 1 ...

$ childid : int 1 2 3 4 5 6 7 8 9 10 ...
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– minority: an indicator variable for the minority status;

– ses: pupil’s socioeconomic status.

The outcome of interest is contained in the variable mathgain.

The abbreviated display of the contents of the classroom data frame shows
that the data are stored with one record for each pupil. The output of the
str() function indicates that the variables, contained in the data frame, are all
either numeric or integer-valued. Note, however, that we do not have informa-
tion about, e.g., the number of distinct levels of the integer-valued variables.

2.4.2 Data for analysis

In the analyses presented later in the book, we will be using the data frame
SIIdata, which is included in the nlmeU package. It was constructed from
the data frame classroom using the syntax shown in Panel R2.10.

=== Place Panel R2.10 about here =====

R2.10: SII Project : Creation of the data frame SIIdata from the classroom
data.

> SIIdata <-

+ within(classroom,

+ {

+ sex <- # 0 -> 1(M), 1 -> 2(F)

+ factor(sex, levels = c(0, 1), labels = c("M", "F"))

+ minority <- # 0 -> 1(No), 1 -> 2(Yes)

+ factor(minority, labels = c("Mnrt:No", "Mnrt:Yes"))

+ schoolid <- factor(schoolid)

+ classid <- factor(classid)

+ childid <- factor(childid)

+ })

> str(SIIdata)

’data.frame’: 1190 obs. of 12 variables:

$ sex : Factor w/ 2 levels "M","F": 2 1 2 1 1 2 1 1 2 1 ...

$ minority: Factor w/ 2 levels "Mnrt:No","Mnrt:Yes": 2 2 2 2 2 2 ...

. . . [snip]
$ classid : Factor w/ 312 levels "1","2","3","4",..: 160 160 160 ...

$ schoolid: Factor w/ 107 levels "1","2","3","4",..: 1 1 1 1 1 1 ...

$ childid : Factor w/ 1190 levels "1","2","3","4",..: 1 2 3 4 5 6 ...
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Essentially, the data frame SIIdata contains all the variables from classroom.
However, the variables sex, minority, schoolid, classid, and childid are
replaced by corresponding factors. Note that, in Panel R2.10, we illustrate
various forms of the syntax for the function factor(), which can be used to
create a factor. In this way, we can explain the process of construction of a
factor in more detail.

For the variable sex, we explicitly use both the levels and labels arguments
of the function factor(). In this way, we fully control the mapping of the
values of the original variable to the factor levels, and to their labels. In
the syntax shown in Panel R2.10, the value 0 of the variable sex from the
classroom data is considered the first level and is assigned the label M. On
the other hand, the value 1 is considered the second level and is labeled F.

It is worth noting that, in the printout of the structure of SIIdata, the variable
sex is defined as a factor with two levels: M (first) and F (second). In the listing
of the first values of the variable, obtained using the str() function, we only
see the numerical representation (the ranks) of the levels, i.e., 1 or 2. Thus,
the information about the coding, 0 and 1, of the original variable sex from
the classroom data frame is lost. Of course, if needed, we could recover it
based on the specified value of the levels argument.

For the variable minority, we only use the labels argument of the function
factor(). Thus, by default, the levels argument is obtained by taking the
unique values of the variable, i.e., 0 and 1; representing them as characters “0”
and “1”, respectively; and then sorting them according to in increasing order
of the numeric values of the variable. Thus, the assumed (ordered) levels are
“0” (first) and “1” (second). Subsequently, the labels argument assigns the
label "Mnrt:No" to the first level (“0”) and "Mnrt:Yes" to the second level
(“1”). In the printout of the structure of SIIdata, the listing of the first values
of minority includes only the value 2, i.e., the second level. Hence, we could
conclude that, in the classroom data frame, the numeric value of minority for
the first observations was equal to 1, which is in agreement with the printout
shown in Panel R2.9.

When converting variables schoolid, childid, and classid into factors, we
use neither the levels nor labels argument. Thus, by default, the levels of
the constructed factors are defined by taking the unique numeric values of each
of the variables, representing the values as character strings, and sorting the
strings in an increasing order according to the numeric values. On the other
hand, the labels are defined, by default, as equal to the (character) levels of the
factor. Hence, for instance, for the variable schoolid, the ordered (character)
levels are: “1”, “2”, . . ., “107”, with the same sequence used to create the
corresponding set of labels (see Panel R2.10).

=== Place Panel R2.11 about here =====
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R2.11: SII Project : Saving the SIIdata data in an external file.

> rdaDir <- file.path("C:", "temp") # Dir path

> fp <- file.path(rdaDir, "SIIdata.Rdata") # External file path

> save(SIIdata, file = fp) # Save data

> file.exists(fp)

[1] TRUE

> (load(fp)) # Load data

[1] "SIIdata"

For illustration purposes, in Panel R2.11, we present a syntax that allows
saving data in an external file for later use and then loading them back from
that file. It is recommended to perform these steps at the end of an R session.
In our book, we do not have to do it, because the data are already saved in
the nlmeU package.

2.4.3 Data hierarchy

In practice, we often want to verify whether identifying variables, contained
in a data set, were properly coded, so that they correctly reflect the intended
data hierarchy. In this section, we present the R tools that can be used for this
purpose. As an example, we use the data stored in the data frame SIIdata.
In this way, we provide additional information about the structure of the data
frame.

=== Place Panel R2.12 about here===============

To this aim, we create, in Panel R2.12, an auxiliary data frame dtId, which
contains the school, class, and pupil identifiers from SIIdata. We then apply
the function duplicated() to the auxiliary data frame. The function looks for
duplicated rows in the data frame and returns a logical vector that indicates,
which rows are duplicates. By applying the function any() to the resulting
logical vector, we check if any of the elements of the vector contains the logical
value of TRUE. It turns out that there are no such elements, i.e., that there
are no duplicated combinations of the three identifiers in the SIIdata data
frame. This indicates that individual pupils in the data are uniquely identified
by these variables, as intended.

Next, we apply the function gsummary() from the package nlme. The function
provides a summary of variables, contained in a data frame, by groups of
rows. In particular, the function can be used to determine whether there
are variables that are invariant within the groups. Note that, the groups are
defined by the factors specified on the right-hand side of the formula specified
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R2.12: SII Project : Investigation of the data hierarchy in the data frame
SIIdata.

> data(SIIdata, package = "nlmeU") # Load data

> dtId <- subset(SIIdata, select = c(schoolid, classid, childid))

> names(dtId) # id names

[1] "schoolid" "classid" "childid"

> any(duplicated(dtId)) # Any duplicate ids?

[1] FALSE

> require(nlme)

> names(gsummary(dtId, form = ~childid, inv = TRUE))

[1] "schoolid" "classid" "childid"

> names(gsummary(dtId, form = ~classid, inv = TRUE))

[1] "schoolid" "classid"

> names(gsummary(dtId, form = ~schoolid, inv = TRUE))

[1] "schoolid"

in the argument form (more information on the use of formulae in R will be
provided in Chap. 5).

We first apply the function gsummary() to the data frame dtId, with groups
defined by childid. We also use the argument inv = TRUE. This means that
only those variables, which are invariant within each group, are to be summa-
rized. By applying the function names() to the data frame returned by the
function gsummary(), we learn that, within the rows sharing the same value of
childid, the values of variables schoolid and classid are also constant. In
other words variable childid is inner to both classid and schoolid. In par-
ticular, this implies that no pupil is present in more than one class or school.
Hence, we can say that pupils are nested within both schools and classes. If
some pupils were enrolled in, e.g., more than one class, then we could say
that pupils were crossed with classes. In such case, the values of the classid

identifier would not be constant within the groups defined by the levels of the
childid variable.

Application of the function gsummary() to the data frame dtId with groups
defined by classid allows to conclude that, within the rows sharing the same
value of classid, the values of schoolid are also constant. This confirms
that, in the data, classes are coded as nested within schools. Equivalently, we
can say that the variable classid is inner to schoolid.

Finally, there are no invariant identifiers within the groups of rows defined by
the same value of schoolid, apart from schoolid itself.

== Place Panel R2.13 about here===============



30 2 Case Studies

R2.13: SII Project : Identification of school-, class-, and pupil-level variables
in the data frame SIIdata.

(a) School-level variables.

> (nms1 <-

+ names(gsummary(SIIdata,

+ form = ~schoolid, # schoolid-specific

+ inv = TRUE)))

[1] "housepov" "schoolid"

(b) Class-level variables.

> nms2a <-

+ names(gsummary(SIIdata,

+ form = ~classid, # classid- and schoolid-specific

+ inv = TRUE))

> idx1 <- match(nms1, nms2a)

> (nms2 <- nms2a[-idx1]) # classid-specific

[1] "yearstea" "mathknow" "mathprep" "classid"

(c) Pupil-level variables.

> nms3a <-

+ names(gsummary(SIIdata,

+ form = ~childid, # All

+ inv = TRUE))

> idx12 <- match(c(nms1, nms2), nms3a)

> nms3a[-idx12] # childid-specific

[1] "sex" "minority" "mathkind" "mathgain" "ses"

[6] "childid"

In a similar fashion, in Panel R2.13, we use the function gsummary() to in-
vestigate, which covariates are defined at the school-, class-, or pupil-level. In
Panel R2.13a, we apply the function to the data frame SIIdata, with groups
defined by schoolid. The displayed result of the function names() implies
that the values of the variable housepov are constant (invariant) within the
groups of rows with the same value of schoolid. Hence, housepov is the only
school-level covariate, in accordance with the information given in Sect. 2.4.1.

In Panel R2.13b, we apply the function gsummary() with groups defined by
classid. We store the names of invariant variables in the character vector
nms2a. We identify the names of variables, which are constant both at the
school- and class level, by matching the elements of vectors nms1 and nms2a.
After removing the matching elements from the vector nms2a, we store the
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result in the vector nms2. The latter vector contains the names of variables,
which are invariant at the class-level, namely, yearstea, mathknow, and math-

prep.

Finally, in Panel R2.13c, we look for pupil-level variables. The syntax is sim-
ilar to the one used in R2.13b. As a result, we identify variables sex, minor-
ity, mathkind, mathgain, and ses, again consistent with variables listed in
Sect. 2.4.1.

Considerations presented in Panel R2.13 aimed to identify grouping factor(s)
for which given covariate is invariant, i.e. is inner to, have important implica-
tions for computations of the number of denominator degrees of freedom for
the conditional F -tests applied to fixed effects in LMMs (see Sects. 14.7 and
Panel R18.5 in Sect. 18.2.2).

Explicit and implicit nesting

The SIIdata data frame is an example of data having nested structure. This
structure, with classes being nested within schools, can be represented in the
data in two different ways, depending on how the two relevant factors, namely,
schoolid and classid, are coded.

First, we consider the case when the levels of classid are explicitly coded as
nested within the levels of the schoolid grouping factor. This way of coding is
referred to as explicit nesting and is consistent with that used in SIIdata, as
shown in Panel R2.12. More specifically, the nesting was accomplished using
different levels of the classid factor for different levels of the schoolid factor.
Consequently, the intended nested structure of data is explicitly reflected by
the levels of the factors. This is the preferred and natural approach.

The nested structure could also be represented using crossed grouping factors.
Taking the SIIdata data as an example, we might consider the case when, by
mistake or for any other reason, two different classrooms from two different
schools would have the same code. In such a situation, and without any ad-
ditional information about the study design, the factors would be incorrectly
interpreted as (partially) crossed. To specify the intended nested structure,
we would need to cross schoolid and classid factors using, for example,
the command factor(schoolid:classid). The so-obtained grouping factor,
together with schoolid, would specify the desired nested structure. Such an
approach to data coding is referred to as implicit nesting.

Although the first way of representing the nested structure is simpler and
more natural, it requires caution when coding the levels of grouping factors.
The second approach is more inclusive, in the sense that it can be used both
for crossed and nested factors.
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We raise the issue of the different representations of nested data, because it
has important implications for a specification of an LMM. We will re-visit this
issue in Chap. 15.

2.5 The Flemish Community Attainment-targets
(FCAT) Study

The Flemish Community Attainment-targets (FCAT) data results from an
educational study, in which elementary-school graduates were evaluated with
respect to reading comprehension in Dutch. The evaluation was based on
a set of attainment targets, which were issued by the Flemish Community
in Belgium. These attainment targets can be characterized by the text type
and by the level of processing. We use data which consist of the responses
of a group of 539 pupils from 15 schools who answered 57 items assumed to
measure nine attainment targets. In Table 2.1, the nine attainment targets
are described by the type of text and by the level of processing. In addition,
we indicate the number of items that were used to measure each one of the
targets.

==== Table 2.1 about here =====

Table 2.1: FCAT Study : Attainment targets for reading comprehension in
Dutch. Based on Janssen et al. (2000).

Target Text type Level of No. of

processing items

1 Instructions Retrieving 4

2 Articles in magazine Retrieving 6

3 Study material Structuring 8

4 Tasks in textbook Structuring 5

5 Comics Structuring 9

6 Stories, novels Structuring 6

7 Poems Structuring 8

8 Newspapers for children, textbooks, encyclopedias Evaluating 6

9 Advertising material Evaluating 5

These data were analyzed before by, e.g., Janssen et al. (2000) and
Tibaldi et al. (2007). In our analyses we will use two types of outcomes. First,
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we will consider total target-scores, i.e., the sum of all positive answers for
a target. Second, we will consider average target-scores, i.e., the sum of all
positive answers for a category divided by the number of items within the
target. In both cases, we will treat the outcome as a continuous variable.

2.5.1 Raw data

We assume that the raw data for the FCAT study are stored in an external
file named crossreg.data.csv.

In Panel R2.14, we present the syntax for loading and inspecting the data. As
seen from the output presented in the panel, the file crossreg.data.csv con-
tains 4851 records and three variables. The variable id contains pupils’ iden-
tifiers, target identifies the attainment targets (see Table 2.1), and scorec

provides the total target-score for a particular pupil. Note that the data are
stored using the “long” format, with multiple records per pupil.

=== Place Panel R2.14 about here ======================

R2.14: FCAT Study : Loading raw data from the .csv file into the object
crossreg.data. The object dataDir was created in Panel R2.1.

> fp <- file.path(dataDir, "crossreg.data.csv")

> crossreg.data <- read.csv(fp, header = TRUE)

> dim(crossreg.data) # No. of rows and columns

[1] 4851 3

> names(crossreg.data) # Variable names

[1] "target" "id" "scorec"

> head(crossreg.data) # First six records

target id scorec

1 1 1 4

2 2 1 6

3 3 1 4

4 4 1 1

5 5 1 7

6 6 1 6

> str(crossreg.data) # Data structure

’data.frame’: 4851 obs. of 3 variables:

$ target: int 1 2 3 4 5 6 7 8 9 1 ...

$ id : int 1 1 1 1 1 1 1 1 1 2 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...
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In Panel R2.15, we investigate the contents of the crossreg.data data frame
in more detail. In particular, by applying the function unique() to each of
the three variables contained in the data frame, we conclude that there are
539 unique values for id, nine unique values for target, and 10 unique values
for scorec. Thus, the data fame includes scores for nine targets for each of
539 pupils. Note that 9× 539 = 4851, i.e., the total number of records (rows).
Because the maximum number of items for a target is nine (see Table 2.1),
the variable scorec contains integer values between 0 and 9.

=== Place Panel R2.15 about here ======================

R2.15: FCAT Study : Inspection of the contents of the raw data. The data
frame cressreg.data was created in Panel R2.14

> unique(crossreg.data$target) # Unique values for target

[1] 1 2 3 4 5 6 7 8 9

> (unique(crossreg.data$id)) # Unique values for id

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . [snip]
[526] 526 527 528 529 530 531 532 533 534 535 536 537 538 539

> unique(crossreg.data$scorec) # Unique values for scorec

[1] 4 6 1 7 5 3 2 8 0 9

> summary(crossreg.data$scorec) # Summary statistics for scorec

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 3.0 4.0 3.9 5.0 9.0

2.5.2 Data for analysis

In the analyses presented later in the book, we will be using the data frame
fcat, which is constructed based on the data frame crossreg.data. In
Panel R2.16, we present the syntax used to create the fcat data and investi-
gate data grouping structure. First in Panel R2.16a, we replace the variables
id and target by corresponding factors. For the factor target, the labels
given in parentheses indicate the number of items for a particular target.

=== Place Panel R2.16 about here ======================

In Panel R2.16b, we cross-tabulate the factors id and target and store the
resulting table in the object tab1. Given the large number of levels of the factor
id, it is difficult to verify the values of the counts for all cells of the table.
By applying the function all() to the result of the evaluation of expression
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R2.16: FCAT Study : Construction and inspection of the contents of the data
frame fcat. The data frame crossreg.data was created in Panel R2.14.

(a) Construction of the data frame fcat.

> nItms <- c(4, 6, 8, 5, 9, 6, 8, 6, 5) # See Table 2.1

> (lbls <- paste("T", 1:9, "(", nItms, ")", sep = ""))

[1] "T1(4)" "T2(6)" "T3(8)" "T4(5)" "T5(9)" "T6(6)" "T7(8)"

[8] "T8(6)" "T9(5)"

> fcat <-

+ within(crossreg.data,

+ {

+ id <- factor(id)

+ target <- factor(target, labels = lbls)

+ })

> str(fcat)

’data.frame’: 4851 obs. of 3 variables:

$ target: Factor w/ 9 levels "T1(4)","T2(6)",..: 1 2 3 4 5 6 7 8 ...

$ id : Factor w/ 539 levels "1","2","3","4",..: 1 1 1 1 1 1 1 ...

$ scorec: int 4 6 4 1 7 6 6 5 5 3 ...

(b) Investigation of the data grouping structure.

> (tab1 <- xtabs(~ id + target, data = fcat)) # id by target table

target

id T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

. . . [snip]
539 1 1 1 1 1 1 1 1 1

> all(tab1 > 0) # All counts > 0?

[1] TRUE

> range(tab1) # Range of counts

[1] 1 1

tab1>0, we check that all counts of the table are non-zero. On the other hand,
with the help of the range() function, we verify that all the counts are equal to
1. This indicates that, in the data frame fcat, the levels of the factor target
are crossed with the levels of the factor id. Moreover, the data are balanced,
in the sense that there is exactly one observation for each combination of the
levels of the two factors. Because all counts in the table are greater than zero,
we can say that the factors are fully crossed.
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2.6 Chapter summary

In this chapter, we introduced four case studies, which will be used for illus-
tration of LMs described in our book.

We started the presentation of each case study by describing study design and
considering that raw data are stored in a .csv file. We chose this approach in
an attempt to emulate a common situation of using external data files when
analyzing data using R. In the next step, we prepared the data for analysis
by creating the necessary variables and, in particular, factors. Including fac-
tors as part of data is a feature fairly unique to R. It affects how a given
variable is treated by graphical and modeling functions. This approach is rec-
ommended, but not obligatory. In particular, creating factors can be deferred
to a later time, when, e.g., model formula is specified. We will revisit this issue
in Chap. 5.

The data frames, corresponding to the four case studies, are included in the
package nlmeU. As with other packages, the list of datasets available in the
package can be obtained by using the data(package = "nlmeU") command.
For the reader’s convenience, the datasets are summarized in Table 2.2. The
table includes the information about the R-session panels, which present the
syntax used to create the data frames; grouping factors and number of rows
and variables.

==== Table 2.2 about here =====

Table 2.2: Data frames available in the nlmeU package.

Study Data frame R-panel Grouping factors Rows × vars

ARMD Trial armd.wide R2.2 none 240 × 10

armd0 R2.4 subject 1107 × 8

armd R2.5 subject 867× 8

PRT Trial prt.subjects R2.7a none 63× 5

prt.fiber R2.7b id 2471 × 5

prt R2.8 id 2471 × 9

SII Project SIIdata R2.10 classid nested ... 1190× 12

... in schoolid

FCAT Study fcat R2.16 id crossed ... 4851 × 3

... with target
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The four case studies introduced in this chapter are conducted by employing
different study designs. All of them lead to grouped data defined by one or
more nested or crossed grouping factors. Preferable way of storing this type
of data is to use “long” format with multiple records per subject. Although
this term is borrowed from the literature pertaining to longitudinal data it is
also used in the context of other grouped data. Below, we describe the key
features of the data in each study.

In ARMD Trial the armd.wide data frame stores data in the “wide” format.
Data frames armd and armd0 store data in a “long”format and reflect a hierar-
chical data structure defined by a single grouping factor, namely, subject. For
this reason, and following the naming convention used in the nlme package,
we will refer to the data structure in our book as data with a single level of
grouping. Note that, more traditionally, these data are referred to as two-level
data (West et al., 2007).

The hierarchical structure of data contained in the data frame SIIdata is
defined by two (nested) grouping factors, namely schoolid and classid.
Thus, in our book, this data structure will be referred to as data with two
levels of grouping.

This naming convention works well for hierarchical data, i.e., for data with
nested grouping factors. It is more problematic for structures with crossed
factors. This is the case of the FCAT study, in which the data structure is
defined by two crossed grouping factors, thus without a particular hierarchy.

As a result of data grouping, variables can be roughly divided into group- and
measurement- specific. In the context of longitudinal data they are referred
to as time-fixed and time-varying variables. The classification of the variables
has important implications on the model specification.

To our knowledge, the groupedData class, defined in the nlme package, appears
to be the only attempt to directly associate a hierarchical structure of the
data with objects of data.frame class. We do not describe this class in more
detail, however, because it has some limitations. Also, its initial importance
has diminished substantially over time. In fact, the data hierarchy is most
often reflected indirectly by specifying the structure of the model fitted to the
data. We will revisit this issue in Parts III and IV of our book.

When introducing the SII case study, we noted that the nested data structure
can be specified by using two different approaches, namely explicit and implicit
nesting, depending on the coding of the levels of grouping factors. The choice
of the approach is left to the researcher’s discretion. The issue has important
implications for the specification of LMMs, though, it will be discussed in
Chap. 15.
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The different data structures of the cases studies presented in this chapter
will allow us to present various aspects of LMMs in Part IV of the book.
Additionally, the ARMD data set will be used in the other parts to illustrate
other classes of LMs and related R tools.

The main focus of this chapter was on the presentation of the data frames
related to the case studies. In the presentation, we also introduced selected
concepts related to grouped data and R functions, which are useful for data
transformation and inspection of the contents of data sets. By necessity, our
introduction was very brief and fragmentary; a more in-depth discussion of
those and other functions is beyond the scope of our book. The interested
readers are referred to, e.g., the book by Dalgaard (2008) for a more thorough
explanation of the subject.



3

Data Exploration

3.1 Introduction

In this chapter, we present the results of exploratory analyses of the case
studies introduced in Chap. 2. The results will serve as a basis for building
LMs for the data in the next parts of the book.

While exploring the case-study data, we also illustrate the use of selected
functions and graphical tools, which are commonly used to perform these
tasks. Note, however, that, unlike in the other parts of the book, we are not
discussing the functions and tools in much detail. The readers interested in the
functionalities are referred to the monograph by Venables & Ripley (2010).

3.2 ARMD Trial: Visual acuity

In the ARMD data, we are mainly interested in the effect of treatment on
the visual acuity measurements. Thus, in Fig. 3.1, we first take a look at the
measurements by plotting them against time for several selected patients from
both treatment groups. More specifically, we selected every 10-th patient from
each group.

==== Fig.3.1 about here =====
(EPS: Figs/Figarmdprofiles See: Figarmdprofiles)

Based on the plots shown in Fig. 3.1, several observations can be made:
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Fig. 3.1: ARMD Trial : Visual-acuity profiles for selected patients (“spaghetti
plot”).

• In general, visual acuity tends to decrease in time. This is in agreement
with the remark made in Sect. 2.2 that patients with ARMD progressively
loose vision.

• For some patients, a linear decrease of visual acuity over time can be
observed, but there are also patients for whom individual profiles strongly
deviate from a linear trend.

• Visual acuity measurements adjacent in time are fairly well correlated,
with the correlation decreasing with an increasing distance in time.

• Visual acuity at baseline seems to, at least partially, determine the overall
level of the post-randomization measurements.

• There are patients for whom several measurements are missing.

These observations will be taken into account when constructing models for
the data.

=== Place Panel R3.1 about here =====

The syntax used to create Fig. 3.1 is shown in Panel R3.1. First, we load
data to be used for exploration from the nlmeU package. Note that the code
used to create figure employs the function xyplot() from the package lattice
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R3.1: ARMD Trial : Syntax for the plot of visual-acuity profiles for selected
patients in Figure 3.1.

> data(armd.wide, armd0, package = "nlmeU") # Data loaded

> library(lattice)

> armd0.subset <- # Subset

+ subset(armd0, as.numeric(subject) %in% seq(1, 240, 10))

> xy1 <- # Draft plot

+ xyplot(visual ~ jitter(time) | treat.f,

+ groups = subject,

+ data = armd0.subset,

+ type = "l", lty = 1)

> update(xy1, # Fig. 3.1

+ xlab = "Time (in weeks)",

+ ylab = "Visual acuity",

+ grid = "h")

> detach(package:lattice)

(Sarkar, 2008). The function is applied to the subset of the data frame armd0

(Sect. 2.2.2). The formula used in the syntax indicates that the variables
visual and time are to be used on the y- and x-axis, respectively. These
variables are plotted against each other in separate panels for different values
of the treat.f factor. Within each panel, data points are grouped for each
subject and connected using solid lines. The function jitter() is used to add
a small amount of noise to the variable time, thereby reducing the number of
overlapping points.

In the next subsections, we explore particular features of the ARMD data in
more detail.

3.2.1 Patterns of missing data

First, we check the number and patterns of missing visual acuity measure-
ments. To this aim, we use the data frame armd.wide. As mentioned in
Sect. 2.2.2, the data frame contains the factor miss.pat that indicates which
of the four post-randomization measurements are missing for a particular pa-
tient. For example, the pattern --X- indicates that the only missing measure-
ment was at the third post-randomization timepoint, i.e., at 24 weeks.

In Panel R3.2, we use three different methods to tabulate the number of pa-
tients with different levels of the factor miss.pat. From the displayed results
we can conclude that, for instance, there were 188 patients, for whom all four
post-randomization visual-acuity measurements were obtained. On the other
hand, there were six patients, for whom the four measurements were missing.
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==== RSession R3.2 around here ====

R3.2: ARMD Trial : Inspecting missing-data patterns in armd.wide data
for the post-randomization visual-acuity measurements using three different
methods.

> table(armd.wide$miss.pat)

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> with(armd.wide, table(miss.pat))

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

> xtabs(~miss.pat, armd.wide)

miss.pat

---- ---X --X- --XX -XX- -XXX X--- X-XX XXXX

188 24 4 8 1 6 2 1 6

It is also worth noting that there are eight (= 4 +1 +2 +1) patients with four
different non-monotone missing-data patterns, i.e., with intermittent missing
visual-acuity measurements. When modeling data with such patterns, extra
care is needed when specifying variance-covariance structures. We will come
back to this issue in Sect. 11.4.2.

3.2.2 Mean-value profiles

In this section, we investigate the number of missing values and calculate the
sample means of visual acuity measurements for different visits and treatment
groups. To this aim, in Panel R3.3 we use the“long”-format data frame armd0,
which was described in Sect. 2.2.2.

==== RSession R3.3 around here ====

To calculate counts of missing values in Panel R3.3a, we use the function
tapply(). In general, this function is used to apply a selected function to
each (non-empty) group of values defined by a unique combination of the
levels of one or more factors. In our case, the selected function, specified in
the FUN argument, checks the length of the vector created by selecting non-
missing values from the vector passed as an argument to the function. Using
tapply() functin, we apply it to the variable visualwithin the groups defined
by combinations of the levels of factors time.f and treat.f. As a result, we
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R3.3: ARMD Trial : Sample means and medians for visual acuity by time
and treatment.

(a) Counts of non-missing visual-acuity measurements.

> attach(armd0)

> flst <- list(time.f, treat.f) # "By" factors

> (tN <- # Counts

+ tapply(visual, flst,

+ FUN = function(x) length(x[!is.na(x)])))

Placebo Active

Baseline 119 121

4wks 117 114

12wks 117 110

24wks 112 102

52wks 105 90

(b) Sample means and medians of visual-acuity measurements.

> tMn <- tapply(visual, flst, FUN = mean) # Sample means

> tMd <- tapply(visual, flst, FUN = median) # Sample medians

> colnames(res <- cbind(tN, tMn, tMd)) # Column names

[1] "Placebo" "Active" "Placebo" "Active" "Placebo" "Active"

> nms1 <- rep(c("P", "A"), 3)

> nms2 <- rep(c("n", "Mean", "Mdn"), rep(2, 3))

> colnames(res) <- paste(nms1, nms2, sep = ":") # New column names

> res

P:n A:n P:Mean A:Mean P:Mdn A:Mdn

Baseline 119 121 55.336 54.579 56.0 57.0

4wks 117 114 53.966 50.912 54.0 52.0

12wks 117 110 52.872 48.673 53.0 49.5

24wks 112 102 49.330 45.461 50.5 45.0

52wks 105 90 44.438 39.100 44.0 37.0

> detach(armd0)

obtain a matrix with the number of non-missing visual-acuity measurements
for each visit and each treatment group. We store the matrix in the object
tN for further use. The display of the matrix indicates that there were no
missing measurements at baseline. On the other hand, at week 4, for instance,
there were two and seven missing measurements in the placebo and active-
treatment arms, respectively. In general, there are more missing measurements
in the active-treatment group.

In Panel R3.3b, we use the function tapply() twice to compute the sample
means and sample medians of visual acuity measurements for each combi-
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nation of the levels of factors time.f and treat.f. We store the results in
matrices tMn and tMd, respectively. We then create the matrix res by combin-
ing matrices tN, tMn, and tMn by columns. Finally, to improve the legibility
of displays, we modify the names of the columns of res.

From the display of the matrix res we conclude that, on average, there was
very little difference in visual acuity between the two treatment groups at base-
line. This is expected in a randomized study. During the course of the study,
the mean visual acuity decreased with time in both arms, which confirms the
observation made based on the individual profiles presented in Fig. 3.1. It is
worth noting that the mean value is consistently higher in the placebo group,
which suggests lack of effect of interferon-α.

Fig. 3.2: ARMD Trial : Box-and-whiskers plots for visual acuity by treatment
and time.

==== Fig.3.2 about here =====
(EPS:Figs/Figarmdmeans See: Figarmdmeans.eps)

Figure 3.2 presents box-and-whiskers plots of visual acuity for the five time-
points and the two treatment arms. The syntax to create the figure is shown
in Panel R3.4. It uses the function bwplot() from the package lattice. Note
that, we first create a draft of the plot, which we subsequently enhance by
providing labels for the horizontal axis. In contrast to Fig. 3.1, measurements
for all subjects at all timepoints are plotted. A disadvantage of the plot is that
it does not reflect the longitudinal structure of the data.
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=== Place Panel R3.4 about here =====

R3.4: ARMD Trial : Syntax for the box-and-whiskers plots in Fig. 3.2.

> library(lattice)

> bw1 <- # Draft plot

+ bwplot(visual ~ time.f | treat.f,

+ data = armd0)

> xlims <- c("Base", "4\nwks", "12\nwks", "24\nwks", "52\nwks")

> update(bw1, xlim = xlims, pch = "|") # Final plot

> detach(package:lattice)

The box-and-whiskers plots illustrate the patterns implied by the sample
means and medians, presented in Panel R3.3b. The decrease of the mean val-
ues in time is clearly seen for both treatment groups. It is more pronounced for
the active-treatment arm. As there was a slightly higher dropout in that arm,
a possible explanation could be that patients, whose visual acuity improved,
dropped out of the study. In such case, a faster progression of the disease in
that treatment arm would be observed.

Fig. 3.3: ARMD Trial : Mean visual-acuity profiles by missing pattern and
treatment (monotone missing-data patterns only).
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==== Fig.3.3 about here =====
(EPS: Figs/Figarmdmissmeans.eps. Figarmdmissmeans.eps)

To check this possibility, we take a look at Fig. 3.3. It shows the mean values
of visual acuity for patients with different monotone missing-data patterns.
In addition, the number of subjects for each pattern is also given. We note
that the number of subjects for the patterns with a larger number of missing
values tends to be smaller. Note that, to save space, we do not present the
syntax used to create the figure, as it is fairly complex.

The mean profiles, shown in Fig. 3.3, consistently decrease for the majority of
the patterns. In general, they do not suggest an improvement in visual acuity
before the drop off. Thus, they do not support the aforementioned explanation
of a faster decrease of the mean visual acuity in the active-treatment arm.

In Panel R3.5, we present the syntax to investigate the number and form
of monotone missing-data patterns for visual acuity. In particular, in Panel
R3.5a, we create the data frame armd.wide.mnt, which contains data only for
patients with monotone patterns. There are 232 such patients in total. Note
that despite the fact that some patterns are not present in the data frame
armd.wide.mnt they are still recognized as valid levels of the factor miss.pat.
This might cause problems when using some R functions. Similarly to Panel
R2.5, we could use the droplevels() function to remove the unused levels
of the miss.pat variable. Instead, in Panel R3.5b, we modify the levels of
the factor miss.pat in the armd.wide.mnt data with the help of the function
factor(). Note that, instead of using the levels argument of the function,
we could have used the argument exclude while indicating the levels to be
excluded from the definition of the miss.pat factor.

==== RSession R3.5 around here ====

Finally, in Panel R3.5c, we use the function tapply() to obtain a matrix
containing the number of patients for each monotone missing-data pattern
and for each treatment arm. The displayed results indicate that the mean-
value profiles for missing-data patterns with a larger number of missing values,
shown in Fig. 3.3, are based on measurements for a small number of patients.
Thus, the variability of these profiles is larger than for the patterns with a
smaller number of missing values. Therefore, Fig. 3.3 should be interpreted
with caution.
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R3.5: ARMD Trial : The number of patients by treatment and missing-data
pattern (monotone patterns only).

(a) Subset of the data with monotone missing-data patterns.

> mnt.pat<- # Monotone patterns

+ c("----", "---X", "--XX", "-XXX", "XXXX")

> armd.wide.mnt <- # Data subset

+ subset(armd.wide, miss.pat %in% mnt.pat)

> dim(armd.wide.mnt) # Number of rows and cols

[1] 232 10

> levels(armd.wide.mnt$miss.pat) # Some levels not needed

[1] "----" "---X" "--X-" "--XX" "-XX-" "-XXX" "X---" "X-XX"

[9] "XXXX"

(b) Removing unused levels from the miss.pat factor.

> armd.wide.mnt1 <-

+ within(armd.wide.mnt,

+ {

+ miss.pat <- factor(miss.pat, levels=mnt.pat)

+ })

> levels(armd.wide.mnt1$miss.pat)

[1] "----" "---X" "--XX" "-XXX" "XXXX"

(c) The number of patients with different monotone missing-data patterns.

> with(armd.wide.mnt1,

+ {

+ fl <- list(treat.f, miss.pat) # List of "by" factors

+ tapply(subject, fl, FUN=function(x) length(x[!is.na(x)]))

+ })

---- ---X --XX -XXX XXXX

Placebo 102 9 3 1 1

Active 86 15 5 5 5

3.2.3 Sample variances and correlations of visual-acuity

measurements

Figure 3.4 shows a scatterplot matrix for the visual acuity measurements for
those patients, for whom all post-randomization measurements are available.
Scatterplots for corresponding pairs of variables are given below the diagonal.
The size of the font for correlation coefficients reported above the diagonal is
proportional to its value. We do not present the syntax for constructing the fig-
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ure, as it is fairly complex. It can be observed that the measurements adjacent
in time are strongly correlated. The correlation decreases with an increasing
time gap. Worth noting is the fact that there is a substantial positive corre-
lation between visual acuity at baseline and at the other post-randomization
measurements. Thus, baseline values might be used to explain the overall
variability of the post-randomization observations. This agrees with the ob-
servation made based on Fig. 3.1. It is worth noting that a scatterplot matrix
of the type shown in Fig. 3.4 may not work well for longitudinal data with
irregular time intervals.

Fig. 3.4: ARMD Trial : Scatterplot matrix for visual acuity measurements.
Scatterplots (below diagonal) and correlation coefficients (above diagonal)
for complete cases only (n = 188).
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==== Fig.3.4 about here =====
(EPS: Figs/Figarmdscatter.eps Figarmdscatter.eps)

=== Place Panel R3.6 about here ===================

R3.6: ARMD Trial : Variance-covariance and correlation matrices for visual-
acuity measurements for complete cases only (n = 188).

> visual.x <- subset(armd.wide, select = c(visual0:visual52))

> (varx <- var(visual.x, use = "complete.obs")) # Var-cov mtx

visual0 visual4 visual12 visual24 visual52

visual0 220.31 206.71 196.24 193.31 152.71

visual4 206.71 246.22 224.79 221.27 179.23

visual12 196.24 224.79 286.21 257.77 222.68

visual24 193.31 221.27 257.77 334.45 285.23

visual52 152.71 179.23 222.68 285.23 347.43

> print(cor(visual.x, use = "complete.obs"), # Corr mtx

+ digits = 2)

visual0 visual4 visual12 visual24 visual52

visual0 1.00 0.89 0.78 0.71 0.55

visual4 0.89 1.00 0.85 0.77 0.61

visual12 0.78 0.85 1.00 0.83 0.71

visual24 0.71 0.77 0.83 1.00 0.84

visual52 0.55 0.61 0.71 0.84 1.00

> diag(varx) # Var-cov diagonal elements

visual0 visual4 visual12 visual24 visual52

220.31 246.22 286.21 334.45 347.43

> cov2cor(varx) # Corr mtx (alternative way)

. . . [snip]

In Panel R3.6, we provide the estimates of the variance-covariance and corre-
lation matrices for visual acuity measurements. To this aim, we create the data
frame visual.x from armd.wide by selecting only the five variables contain-
ing the measurements. We then apply functions var() and cor() to estimate
the variance-covariance matrix and the correlation matrix, respectively. Note
that, for both functions, we specify the argument use = "complete.cases",
which selects only those rows of the data frame visual.x that do not con-
tain any missing values. In this way, the estimated matrices are assured to be
positive semidefinite. An alternative (not shown) would be to specify use =

"pairwise.complete.obs". In that case, the elements of the matrices would
be estimated using data for all patients with complete observations for the
particular pair of visual acuity measurements. This could result in estimates
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of variance-covariance or correlation matrices, which might not be positive
semidefinite.

The variance-covariance matrix for visual acuity measurements is stored in the
varx matrix. It indicates an increase of the variance of visual acuity measure-
ments obtained at later timepoints. The estimated correlation matrix suggests
a moderate to strong correlation of the measurements. We also observe that
the correlation clearly decreases with the time gap, as already concluded from
Fig. 3.4.

At the bottom of Panel R3.6 we demonstrate how to extract the diagonal
elements of the matrix varx using the diag() function. We also present the
use of the function cov2cor() to compute a correlation matrix corresponding
to the variance-covariance. Note that we do not display the result of the use
of the function, as it is exactly the same as the one obtained for the function
cor(), already shown in Panel R3.6.

3.3 PRT Study: Muscle fiber specific-force

In the PRT study, we are primarily interested in the effect of the intensity
of the training on the muscle fiber specific-force, measurements of which are
contained in the variable spec.fo of the prt data frame (Sect. 2.3.2). In
some analyses, we will also investigate the effect on the measurements of the
isometric force, which are stored in the variable iso.fo.

First, however, we take a look at the information about subjects’ characteris-
tics, stored in the data frame prt.subjects (see Sect. 2.3.2). In Panel R3.7,
we use the function tapply() to obtain summary statistics for the variable
bmi for separate levels of the prt.f factor. The statistics are computed with
the help of the summary() function. The displayed values of the statistics do
not indicate any substantial differences in the distribution of BMI between
subjects assigned to the low- or high-intensity training. Given that the assign-
ment was randomized, this result is anticipated.

=== Place Panel R3.7 about here =====

For illustration purposes, we also obtain summary statistics for all variables
in the prt.subjects data frame, except for id, with the help of the func-
tion by(). The function splits the data frame according to the levels of the
factor prt.f and applies the function summary() to the two data frames re-
sulting from the split. As a result, we obtain summary statistics for variables
prt.f, age.f, sex.f, and bmi for the two training-intensity groups. From
the displayed values of the statistics we conclude that there are no important
differences in the distribution of sex and age-groups between the two inter-
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R3.7: PRT Trial : Summary statistics for subjects’ characteristics.

> data(prt.subjects, prt, package = "nlmeU") # Data loaded

> with(prt.subjects, tapply(bmi, prt.f, summary))

$High

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.4 22.9 24.8 25.1 28.2 31.0

$Low

Min. 1st Qu. Median Mean 3rd Qu. Max.

19.0 23.1 24.8 24.7 26.3 32.3

> by(subset(prt.subjects, select = -id), prt.subjects$prt.f, summary)

prt.subjects$prt.f: High

prt.f age.f sex.f bmi

High:31 Young:15 Female:17 Min. :18.4

Low : 0 Old :16 Male :14 1st Qu.:22.9

Median :24.8

Mean :25.1

3rd Qu.:28.2

Max. :31.0

------------------------------------------------

prt.subjects$prt.f: Low

prt.f age.f sex.f bmi

High: 0 Young:15 Female:17 Min. :19.0

Low :32 Old :17 Male :15 1st Qu.:23.1

Median :24.8

Mean :24.7

3rd Qu.:26.3

Max. :32.3

vention groups. This is expected, given that the randomization was stratified
by the two factors (see Sect. 2.3). Note that we should ignore the display for
the factor prt.f, because it has been used for splitting the data.

=== Place Panel R3.8 about here =====

In Panel R3.8, we take a look at fiber measurements stored in the data frame
prt. In particular, in Panel R3.8a, we check the number of non-missing mea-
surements of the specific force per fiber type and occasion for selected subjects.
To this aim, with the help of the function tapply(), we apply the function
length() to the variable spec.fo for separate levels of the id, fiber.f, and
occ.f factors. Note that, in the call to the function tapply(), we use a named
list of the factors. The names of the components of the list are shortened ver-
sions of the factor names. In this way, we obtain a more legible display of the
resulting array. In Panel R3.8a, we show the display for two subjects, "5" and
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R3.8: PRT Trial : Extracting and summarizing the fiber-level information.

(a) Number of fibers per type and occasion for the subjects "5" and "335".

> fibL <-

+ with(prt,

+ tapply(spec.fo,

+ list(id = id, fiberF = fiber.f, occF = occ.f),

+ length))

> dimnms <- dimnames(fibL)

> names(dimnms) # Shortened names displayed

[1] "id" "fiberF" "occF"

> fibL["5", , ] # Number of fiber measurements for subject 5

occF

fiberF Pre Pos

Type 1 12 18

Type 2 7 4

> fibL["335", , ] # Number of fiber measurements for subject 335

occF

fiberF Pre Pos

Type 1 NA 8

Type 2 14 11

(b) Mean value of spec.fo by fiber type and occasion for subject "5".

> fibM <-

+ with(prt,

+ tapply(spec.fo,

+ list(id = id, fiberF = fiber.f, occF = occ.f),

+ mean))

> fibM["5", , ]

occF

fiberF Pre Pos

Type 1 132.59 129.96

Type 2 145.74 147.95

"335". For the latter, we see that no measurements of the specific force were
taken for type-1 fibers before the training.

In Panel R3.8b, we take a look at the mean value of the specific force per
fiber type and occasion for selected subjects. To this aim, we use the function
tapply() in a similar way as in Panel R3.8a, but in combination with the
function mean(). In the panel, we display the mean values for the subject
"5".

=== Place Panel R3.9 about here =====
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R3.9: PRT Trial : Summarizing the fiber-level information with the help of
functions melt() and cast() from the reshape package.

(a) Pre-processing of the data (melting).

> library(reshape)

> idvar <- c("id", "prt.f", "fiber.f", "occ.f")

> meas.var <- c("spec.fo", "iso.fo")

> prtM <- # Melting data

+ melt(prt, id.var = idvar, measure.var = meas.var)

> dim(prtM)

[1] 4942 6

> head(prtM, n = 4) # First four rows

id prt.f fiber.f occ.f variable value

1 5 Low Type 1 Pre spec.fo 83.5

2 5 Low Type 1 Pre spec.fo 132.8

3 5 Low Type 2 Pre spec.fo 161.1

4 5 Low Type 1 Pre spec.fo 158.8

> tail(prtM, n = 4) # Last four rows

id prt.f fiber.f occ.f variable value

4939 520 High Type 2 Pos iso.fo 0.527

4940 520 High Type 1 Pos iso.fo 0.615

4941 520 High Type 2 Pos iso.fo 0.896

4942 520 High Type 2 Pos iso.fo 0.830

(b) Aggregating data (casting).

> prtC <- cast(prtM, fun.aggregate = mean) # Casting data

> names(prtC)

[1] "id" "prt.f" "fiber.f" "occ.f" "spec.fo" "iso.fo"

> names(prtC)[5:6] <- c("spec.foMn", "iso.foMn") # Names modified

> head(prtC, n = 4)

id prt.f fiber.f occ.f spec.foMn iso.foMn

1 5 Low Type 1 Pre 132.59 0.51500

2 5 Low Type 1 Pos 129.96 0.72289

3 5 Low Type 2 Pre 145.74 0.47057

4 5 Low Type 2 Pos 147.95 0.71175
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In Panel R3.9, we illustrate how to summarize the fiber-level information using
functions from the package reshape. First, in Panel R3.9a, we use the generic
function melt() to prepare the data for further processing. More specifically,
we apply the function to the data frame prt and we specify factors id, prt.f,
fiber.f, and occ.f as “identifying variables.”On the other hand, we indicate
variables spec.fo and iso.f as “measured variables.” In the resulting data
frame, prtM, the values of the measured variables are “stacked” within the
groups defined by the combinations of the levels of the identifying variables.
The stacked values are stored in a single variable named, by default, value.
They are identified by the levels of factor named, by default, variable, which
contain the names of the measured variables.

The display, shown in Panel R3.9a, indicates that the number of records in
the data frame prtM increases to 4942, as compared to 2471 records in the
data frame prt (see Panel R2.7). The increase results from the stacking of
the values of spec.fo and iso.fo in the variable value. The outcome of the
process is further illustrated by the display of the first and last four rows of
the data frame prtM.

In Panel R3.9b, we apply the function cast() to the data frame prtM to
compute the mean values of the measured variables, i.e., spec.fo and iso.fo,
within the groups defined by the combinations of the levels of the identifying
variables. To indicate that we want to compute the mean values, we use the
argument fun.aggregate=mean. The resulting data frame is stored in the
object prtC. Before displaying the contents of the object, we modify the names
of the two last variables, which contain the mean values of spec.fo and
iso.fo. The display of the first four records of prtC shows the means per
fiber type and occasion for the subject "5". Note that, for spec.fo, the mean
values correspond to the values reported at the end of Panel R3.8.

==== Fig.3.5 about here =====
(EPS: Figs/FigMLSexplore11 See: FigMLSexplore11.eps)

Figure 3.5 shows the pre- and post-training mean values of the specific force
for all subjects separately for the two fiber types and training intensities. The
figure was created using the function dotplot() from the package lattice.
To increase interpretability of this figure, we ordered the subjects on y-axis
within each study group by mean values of the pre-training spec.fo for type-
1 fibers. If for a given subject like, e.g., “335”, the pre-training measures were
not available, the post-training measures were used instead. For brevity, we
do not show the syntax used to create the figure.

Several observations can be made based on the figure:

• there is no clear effect of the training intensity;
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Fig. 3.5: Individual means for specific force by occasion, fiber type, and train-
ing intensity.

• in general, measurements of the specific force are higher for type-2 than
for type-1 fibers;

• on average, post-training values are larger than pre-training measurements;

• for both types of fibers there is considerable variability between subjects
with respect to the overall level of measurements and with respect to the
magnitude of the post-pre differences;

• there is a correlation between the mean measurements observed for the
same individual, as seen, e.g., from the similar pattern of measurements
for both types.
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These observations will be taken into account when modeling the data in
Part IV of the book.

Note that the plot in the lower-left panel of Fig. 3.5 confirms the missing
pre-training measurements for type-1 fibers for the subject "335".

Fig. 3.6: PRT Trial : Subject-specific box-and-whiskers plots for the specific
force by training intensity and measurement occasion (type-1 fibers only).

==== Fig.3.6 about here =====
(EPS: Figs/Figmlsbwhisk2.eps) See: Figmlsbwhisk2.eps )

Figure 3.6 presents information for the specific force for the type-1 fibers. More
specifically, it shows box-and-whiskers plots for the individual measurements
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of the specific force for the two measurement occasions and training intensities.
All 63 subjects on the y-axis are ordered in the same way as in Fig. 3.5.
Figure 3.6 was created using the function bw() from the package lattice. Note,
however, that we do not present the detailed code. The plots suggest that
the subject-specific variances of the pre-training measurements are somewhat
smaller than the post-training ones. There is also a considerable variability
between the subjects with respect to the variance of the measurements.

Fig. 3.7: PRT Trial : Individual pre-post differences of the mean values for the
specific force, ordered by an increasing value, for the two training intensity
groups (type-1 fibers only).

==== Fig.3.7 about here =====
(EPS: Figs/MLSexploreFig22.eps See: MLSxploreFig22.eps )

Figure 3.7 presents the individual pre-post differences of the mean values for
the specific force for the type-1 fibers for the two training-intensity groups. The
differences were ordered according to increasing values within each training
group. To conserve space, we do not show the syntax used to create the figure.
The plots indicate an outlying value of the difference for the subject "275" in
the low-intensity training group.
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3.4 SII Project: Gain in the math achievement-score

In this section, we conduct an exploratory analysis of the SII data that were
described in Sect. 2.4. We focus on the measurements of the gain in the math
achievement-score, stored in the variable mathgain (see Sect. 2.4.1). Given
the hierarchical structure of the data, we divide the analysis into three parts,
in which we look separately at the school, class-, and child-level data.

=== Place Panel R3.10 about here===============

R3.10: SII Project : The number of missing values for variables included in
the SIIdata data frame.

> data(SIIdata, package = "nlmeU")

> sapply(SIIdata, FUN = function(x) any(is.na(x)))

sex minority mathkind mathgain ses yearstea mathknow

FALSE FALSE FALSE FALSE FALSE FALSE TRUE

housepov mathprep classid schoolid childid

FALSE FALSE FALSE FALSE FALSE

> sum(as.numeric(is.na(SIIdata$mathknow)))

[1] 109

> range(SIIdata$mathknow, na.rm = TRUE)

[1] -2.50 2.61

First, however, we check whether the data frame SIIdata contains complete
information for all variables for all pupils. To this aim, in Panel R3.10, we use
the function sapply(). It applies the function, specified in the FUN argument,
to each column (variable) of the data frame SIIdata. The latter function
checks whether any value in a particular column is missing. The displayed
results indicate that only the variable mathknow contains missing values. By
applying the function sum() to the vector resulting from the transformation
of a logical vector indicating the location of missing values in the variable
mathknow to a numeric vector, we check that the variable contains 109 missing
values. The non-missing values range from −2.50 to 2.61.

3.4.1 School-level data

In this section, we investigate the school-level data.

First, in Panel R3.11, we use the function xtabs() to tabulate the number
of pupils per school. The result is stored in the array schlN. The display of
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the array is difficult to interpret. By applying the function range(), we check
that the number of pupils per school varied between 2 and 31. By applying
the function xtabs() to the array schlN, we obtain the information about
the number of schools with a particular number of pupils. For instance, there
were two schools, for which data for only two pupils are included in the data
frame SIIdata. On the other hand, there was only one school, for which data
for 31 pupils were collected.

=== Place Panel R3.11 about here===============

R3.11: SII Project : Extracting the information about the number of pupils
per school.

> (schlN <- xtabs(~schoolid, SIIdata)) # Number of pupils per school

schoolid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11 10 14 6 6 12 14 16 6 18 31 27 9 15 13 6

. . . [snip]
97 98 99 100 101 102 103 104 105 106 107

6 2 19 13 16 11 8 6 10 2 10

> range(schlN)

[1] 2 31

> xtabs(~schlN) # Distribution of the number of pupils over schools

schlN

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2 4 6 5 8 5 9 9 10 7 7 6 3 5 4 2 2 3 1 2 2

24 27 31

1 3 1

In Panel R3.12, we obtain the information about the mean value of variables
mathkind and mathgain for each school (see Sect. 2.4.1). To this aim, with
the help of the function by(), we apply the function colMeans() to the values
of the two variables within the groups defined by the same level of the factor
schoolid, i.e., within each school. Note that the resulting output has been
abbreviated.

=== Place Panel R3.12 about here===========

Panel R3.13 shows the syntax for constructing the data frame schlDt, which
contains the school-specific means of variables mathgain, mathkind, and
housepov. In particular, in Panel R3.13a, we use functions melt() and
cast() (for an explanation of the use of the functions, see the description
of Panel R3.9) to create the data frame cst1, which contains the number
of classes and children for each school. On the other hand, in Panel R3.13b,
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R3.12: SII Project : Computation of the mean value of pupils’ math scores
for each school.

> attach(SIIdata)

> (mthgM <- by(cbind(mathgain, mathkind), schoolid, colMeans))

INDICES: 1

mathgain mathkind

59.636 458.364

------------------------------------------------

. . . [snip]
------------------------------------------------

INDICES: 107

mathgain mathkind

48.2 464.2

> detach(SIIdata)

we use the functions to create the data frame cst2 with the mean values
of variables mathgain, mathkind, and housepov for each school. Finally, in
Panel R3.13c, we merge the two data frames to create schlDt. Note that,
after merging, we remove the two auxiliary data frames.

== Place Panel R3.13 about here===============

The data frame schlDt is used in Panel R3.14 to explore the school-specific
mean values of variables housepov and mathgain. In particular, in Panel R3.14a,
we use the function summary() to display the summary statistics for the mean
values. On the other hand, in Panel R3.14b, we use the function xyplot()

from the package lattice to construct scatterplots of the mean values of the
variable mathgain versus variables housepov and mthkMn.

== Place Panel R3.14 about here===============

The scatterplots are shown in Fig. 3.8. The plot in Fig. 3.8a does not suggest a
strong relationship between the school-specific mean values of mathgain and
housepov. On the other hand, in Fig. 3.8b there is a strong negative relation-
ship between the mean values of mathgain and mathkind: the larger the mean
for the latter, the lower the mean for the former. The relationship suggests
that the higher the teacher’s knowledge of first-grade math contents, the lower
the mean gain in the math achievement-score of pupils. Note that the plots
in Fig. 3.8 should be interpreted with caution, as they show school-specific
means, which were estimated based on different numbers of observations.

==== Fig. 3.8 about here==
(EPS: Figs/SiieploreFig50A-B))
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R3.13: SII Project : Constructing a data frame with summary data for
schools.

(a) Creating a data frame with the number of classes and children for each school.

> library(reshape)

> idvars <- c("schoolid")

> mvars <- c("classid", "childid")

> dtm1 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)

> names(cst1 <-

+ cast(dtm1,

+ fun.aggregate = function(el) length(unique(el))))

[1] "schoolid" "classid" "childid"

> names(cst1) <- c("schoolid", "clssn", "schlN")

(b) Creating a data frame with the school-specific means of selected variables.

> mvars <- c("mathgain", "mathkind", "housepov")

> dtm2 <- melt(SIIdata, id.vars = idvars, measure.vars = mvars)

> names(cst2 <- cast(dtm2, fun.aggregate = mean))

[1] "schoolid" "mathgain" "mathkind" "housepov"

> names(cst2) <- c("schoolid", "mthgMn", "mthkMn", "housepov")

(c) Merging the data frames created in parts (a) and (b) above.

> (schlDt <- merge(cst1, cst2, sort = FALSE))

schoolid clssn schlN mthgMn mthkMn housepov

1 1 2 11 59.636 458.36 0.082

2 2 3 10 65.000 487.90 0.082

3 3 4 14 88.857 469.14 0.086

4 4 2 6 35.167 462.67 0.365

. . . [snip]
107 107 2 10 48.200 464.20 0.177

> rm(cst1, cst2)

3.4.2 Class-level data

In this section, we investigate the class-level data.

First, in Panel R3.15, we use the function xtabs() to tabulate the number
of pupils per class. The result is stored in the array clssN. By applying the
function sum() to the array, we check that the total number of pupils is 1190,
in agreement with the information obtained, e.g., in Panel R2.10. With the
help of the function range(), we find that the number of pupils per class varies
between 1 and 10. By applying the function xtabs() to the array clssN, we
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R3.14: SII Project : Exploring the school-level data. The data frame schlDt
was created in Panel R3.13.

(a) Summary statistics for the school-specific mean values of housepov.

> summary(schlDt$housepov)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0120 0.0855 0.1480 0.1940 0.2640 0.5640

(b) Scatterplots of the school-specific mean values for housepov and mathkind.

> library(lattice)

> xyplot(mthgMn ~ housepov, # Fig. 3.8a

+ schlDt, type = c("p", "smooth"), grid = TRUE)

> xyplot(mthgMn ~ mthkMn, # Fig. 3.8b

+ schlDt, type = c("p", "smooth"), grid = TRUE)

(a) vs. housepov (b) vs. mthkMn

Fig. 3.8: SII Project : Scatterplots of the school-specific mean values of the
variable mathgain versus variables housepov and mthkMn.

obtain information about the number of classes with a particular number of
pupils. The information is stored in the array clssCnt. The display of the
array indicates that, for instance, there were 42 classes with only one pupil
included in the data frame SIIdata. On the other hand, there were two classes,
for which data for 10 pupils were collected. Finally, by applying the function
sum() to the array clssCnt, we verify that the data frame SIIdata contains
information about 312 classes.

=== Place Panel R3.15 about here===============
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R3.15: SII Project : Extracting the information about the number of pupils
per class.

> (clssN <- xtabs(~ classid, SIIdata))

classid

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5 3 3 6 1 5 1 4 3 2 4 5 9 4 1 6

. . . [snip]
305 306 307 308 309 310 311 312

4 4 4 3 3 3 2 4

> sum(clssN) # Total number of pupils

[1] 1190

> range(clssN)

[1] 1 10

> (clssCnt <- xtabs(~clssN)) # Distribution of no. of pupils/classes

clssN

1 2 3 4 5 6 7 8 9 10

42 53 53 61 39 31 14 13 4 2

> sum(clssCnt) # Total number of classes

[1] 312

In Panel R3.16, we present an abbreviated printout of the contents of the data
frame clssDt. The data frame contains the mean values of variables mathgain
and mathkind for each class, together with the count of pupils, clssN. It also
includes the values of the class-level variables mathknow and mathprep and
the school-level variable housepov. The data frame was created using a syntax
(not shown) similar to the one presented in Panel R3.13.

=== Place Panel R3.16 about here===============

R3.16: SII Project : Contents of the class-level data. The auxiliary data frame
clssDt was created using a syntax similar to the one shown in Panel R3.13.

> clssDt

classid housepov mathknow mathprep clssN mthgMn mthkMn

1 1 0.335 -0.72 2.50 5 47.8000 459.00

2 2 0.303 0.58 3.00 3 65.6667 454.00

3 3 0.040 0.85 2.75 3 15.6667 492.67

4 4 0.339 1.08 5.33 6 91.5000 437.00

. . . [snip]
312 312 0.546 -1.37 2.00 4 47.5000 418.50
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Figure 3.9 presents scatterplots of the class-specific means of the variable
mathgain versus the values of the variable housepov and versus the class-
specific means of the variable mathkind. The figure was created by a syntax
similar to the one presented in Panel R3.14b based on the data from the data
frame clssDt. Figure 3.9a does not suggest a strong relationship between
the mean values of mathgain and housepov. On the other hand, as seen in
Fig. 3.9b, there is a strong negative relationship between the mean values
of mathgain and mathkind. These conclusions are similar to the ones drawn
based on Fig. 3.8. As was the case for the latter figure, the plots in Fig. 3.9
should be interpreted with caution, as they show class-specific mean values
estimated based on different numbers of observations.

(a) vs. housepov (b) vs. mthkMn

Fig. 3.9: SII Project : Scatterplots of the class-specific mean values of the vari-
able mathgain versus variables housepov and mthkMn.

==== Fig. 3.9 about here ==
(EPS: Figs/SiieploreFig90A,B )

3.4.3 Pupil-level data

In this section, specifically in Panel R3.17, we explore the pupil-level data.

== Place Panel R3.17 about here===============

First, in Panel R3.17a, we construct an auxiliary data frame auxDt by merging
data frames SIIdata and clssDt. Note that the latter contains the class-level
data, including the means of variables mathgain and mathkind and the num-
ber of pupils (see Panel R3.16). Next, with the help of the function with(),
we add a new factor, clssF, to auxDt and store the resulting data frame in



3.4 SII Project: Gain in the math achievement-score 65

R3.17: SII Project : Exploring the pupil-level data. The data frame clssDt

was created in Panel R3.16.
(a) Adding the class-level data to the data frame SIIdata.

> auxDt <- merge(SIIdata, clssDt, sort = FALSE)

> auxDt2 <-

+ within(auxDt,

+ {

+ auxL <- paste(classid, schoolid, sep = "\n:")

+ auxL1 <- paste(auxL, clssN, sep = "\n(")

+ auxL2 <- paste(auxL1, ")", sep = "")

+ clssF <- # Factor clssF created

+ factor(schoolid:classid, labels = unique(auxL2))

+ })

> tmpDt <- subset(auxDt2, select = c(classid, schoolid, clssN, clssF))

> head(tmpDt, 4) # First four records

classid schoolid clssN clssF

1 160 1 3 160\n:1\n(3)

2 160 1 3 160\n:1\n(3)

3 160 1 3 160\n:1\n(3)

4 217 1 8 217\n:1\n(8)

> tail(tmpDt, 4) # Last four records

classid schoolid clssN clssF

1187 96 107 8 96\n:107\n(8)

1188 96 107 8 96\n:107\n(8)

1189 239 107 2 239\n:107\n(2)

1190 239 107 2 239\n:107\n(2)

(b) Scatterplots of the pupil-level data.

> library(lattice)

> dotplot(mathgain ~ clssF, # Fig. 3.10a

+ subset(auxDt2, schoolid %in% 1:4))

> xyplot(mathgain ~ housepov, SIIdata, # Fig. 3.10b

+ type = c("p", "smooth"))

> detach(package:lattice)

the object auxDt2. The factor clssF combines the information about the class
and the school for each pupil. The information is stored in a character string
of the form: classid\n:schoolid\n(clssN). The particular format of the
string will prove useful in the construction of plots of the pupil-specific data.
The format is illustrated in the display of the first and last four records of
the data frame auxDt2. Note that we limit the display to variables classid,
schoolid, clssN, and clssF.
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In Panel R3.17b, we construct two plots of the pupil-level data. First, by
applying the function dotplot() from the package lattice to the data frame
auxDt2, we plot the values of the variable mathgain versus the levels of the
factor clssF for the schools with schoolid between 1 and 4. Then, using the
function xyplot() from the package lattice, we plot the values of the variable
mathgain versus the values of the variable houspov for all pupils from the
data frame SIIdata. The resulting plots are shown in Fig. 3.10.

The plot shown in Fig. 3.10a indicates considerable variability of the observed
values of the gain in the math achievement-score even between the classes
belonging to the same school. Note that the interpretation of the plot is much
enhanced by the labels provided on the horizontal axis. The construction of
the labels is facilitated by the chosen format of the levels of the factor clssF.

The plot shown in Fig. 3.10b indicates the lack of a relationship between the
observed values of the gain in the math achievement-score for individual pupils
and the values of the variable housepov. Note that a similar conclusion was
drawn for the school- and class-specific mean values of mathgain based on
Fig. 3.8a and 3.9a, respectively.

(a) vs. clssF (selected schools) (b) vs. housepov

Fig. 3.10: SII Project : Scatterplots of the observed values of mathgain for indi-
vidual pupils versus the school/class indicator and the variable housepov.

==== Fig. 3.10 about here ==
(EPS: Figs/Fig.SiieploreFig400A,B.eps )
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3.5 FCAT Study: Target score

The FCAT data set have a rather simple structure and contents (see Sect. 2.5).
The main interest pertains to the distribution of the scores for the nine attain-
ment targets, which are stored in the variable scorec of the data frame fcat
(see Sect. 2.5.2). In Panel R3.18, we present syntax addressing this issue.

== Place Panel R3.18 about here===============

R3.18: FCAT Study : Summarizing the information about the total scores
for attainment targets.

(a) Summarizing scores for each child and attainment target.

> data(fcat, package = "nlmeU")

> (scM <- with(fcat, tapply(scorec, list(id, target), mean)))

T1(4) T2(6) T3(8) T4(5) T5(9) T6(6) T7(8) T8(6) T9(5)

1 4 6 4 1 7 6 6 5 5

2 3 4 6 2 7 4 6 3 3

. . . [snip]
539 0 3 5 1 6 3 5 2 4

(b) Histograms of scores for different attainment targets.

> library(lattice)

> histogram(~scorec | target, data = fcat, # Fig. 3.11

+ breaks = NULL)

> detach(package:lattice)

In Panel R3.18a, we present how to obtain the mean value of the dependent
variable for each combination of levels of the crossed factors, i.e. id and target

in the fcat data frame. In particular, we use the function tapply() to apply
the function mean() to the variable scorec for each combination of levels of
the crossed factors. As a result, we obtain the matrix scM, which contains
the mean value of the total score for each child and each attainment target.
Obviously, in our case, there is only one observation for each child and target.
Thus, by displaying a (abbreviated) summary of the matrix scM, we obtain,
in fact, a tabulation of individual scores for all children.

In Panel R3.18b, we use the function histogram() from the package lattice to
construct a histogram of the observed values of total scores for each attainment
target. The resulting histograms are shown in Fig. 3.11. They clearly illustrate
the differences in the measurement scale for different targets, which result from
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the varying number of items per target (see Sect. 2.5). Some asymmetry of
the distribution of the scores can also be observed.

Fig. 3.11: Histograms of individual total scores for different attainment tar-
gets.

==== Fig.3.11 about here =====
(EPS: Figs/FigatotHist)===)
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3.6 Chapter summary

In this chapter, we presented exploratory analyses of the four case studies
introduced in Chap. 2. The results of the analyses will be used in the next
parts of our book to build models for the case studies.

In parallel to the presentation of the results of the exploratory analyses, we
introduced a range of R tools, which are useful for such analyses. For instance,
functions cast() and melt() from the package reshape are very useful in
transforming data involving aggregated summaries. The importance of using
graphical displays is also worth highlighting. To this aim, the tools available
in packages graphics (R Development Core Team, 2010) and lattice (Sarkar,
2008) are very helpful. The former package implements traditional graphical
displays, whereas the latter offers displays based on a grid-graphics system
(Murrell, 2005).

Due to space limitations, our presentation of the tools was neither exhaustive
nor detailed. However, we hope that the syntax and its short description,
which were provided in the chapter, can help the reader in finding appropriate
methods applicable to a particular problem at hand.




