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ABSTRACT 

Environmental sensing encompasses a broad range of systems (surface waters, groundwater, atmospheric, 

etc…) and spatially distributed attributes (microbial, chemical, physical) that describe the system and its 
perturbations in response to human interference (industrial discharge, agricultural runoff, etc…).  

Microbiological pollution represents one of the most widespread impairments of potable and recreational 

waters, yet the sampling design for public health protection exhibits significant uncertainties due to 
sample selection constraints, and the delay in obtaining analytical results for effective decision-making.  

With the advances in wireless sensor technology, networks have the promise to provide useful spatio-

temporal representation of environmental signals that cover large geographical areas.  As State and 

Federal agencies have started to invest in these systems, there is a need to design network optimization 
strategies that explicitly incorporate sensor characteristics, microbiological criteria and economic 

constraints in the decisions.  To enable adoption of these technologies, we need to ensure that the value 

proposition of environmental sensing cyberinfrastructure is defined not only from a technical perspective 
(i.e. What technical problems are we trying to solve?), but also from a market-based perspective (i.e. 

What are the business fundamentals that will allow these technologies to come to the market?).  

 

These concepts capitalize on on-going early stage data collection efforts by the Great Lakes 
Environmental Research Laboratory (GLERL) in Lake Erie (wireless sensor hubs to analyze causes and 

forecasting of hypoxia), the Macomb County Health Department in Lake St. Clair (wireless chemical, and 

off-line microbial analysis at water intakes), the Great Lakes Commission (GLC) managed Great Lakes 
Observatory System (GLOS), the NSF-supported WATer and Environmental Research Systems Network 

(WATERS Network; http://www.watersnet.org/), and the Macomb County Public Health Department 

which manages the Lake St. Clair Regional Monitoring Project (http://www.lakestclairdata.net/).  
Leveraging each of these, currently separate, efforts towards deploying a data-driven sensing network for 

risk forecasting and communication in the Lake Huron-Lake Erie Corridor will allow the University of 

Michigan and its private and government partners to position itself to establish a cyberinfrastructure 

testbed in the Great Lakes region under the NSF Major Research Equipment and Facilities Construction 
(MREFC) program.  Funded by congressional appropriation in 2011, this program releases funding to 

provide unique capabilities at the frontiers of science and engineering. Several authors of this white paper 

(Finholt, DePinto), and the Association of Environmental Engineering and Science Professors (AEESP; 
Adriaens, Vice President; Love, Board Member) have been involved over for the last few years in 

defining the science, education, and cyberinfrastructure needs of the WATERS Network.  This paper 

illustrates technical advances and market-based strategies in cyberinfrastructure (hardware, software, data 

integration and visualization) as applied to address microbial sensing needs. 
 

The overarching goal of the white paper is to develop a framework to establish a microbial and chemical 

risk forecasting cyberinfrastructure network along the Lake Huron-Lake Erie corridor.  



 2 

1.  THE WATERS NETWORK 

 

The WATERS Network is a distributed network for research on complex environmental systems. It 

emphasizes research on the nation's water resources related to human-dominated natural and built 

environments. The network will be comprised of: interacting field sites with an integrated CI; a 

centralized technical resource staff and management infrastructure to support interdisciplinary research 
through data collection from advanced sensor systems, data mining and aggregation from multiple 

sources and databases; cyber-tools for analysis, visualization, and predictive multi-scale modeling that is 

dynamically driven. As such, the network will transform workforce development in the water-related 
intersection of environmental science and engineering, as well as enable educational engagement 

opportunities for all age levels. The scientific goal and strategic intent of the Network is to transform our 

understanding of the earth's water cycle and associated biogeochemical cycles across spatial and temporal 
scales-enabling quantitative forecasts of critical water-related processes, especially those that affect and 

are affected by human activities. This strategy will develop scientific and engineering tools that will 

enable more effective adaptive approaches for resource management.  

 
The need for the network is based on three critical deficiencies in current abilities to understand large-

scale environmental systems and thereby develop more effective management strategies. First we lack 

basic data and the infrastructure to collect them at the needed resolution. Second, we lack the means to 
integrate data across scales from different media (paper records, electronic worksheets, web-based) and 

sources (observations, experiments, simulations). Third, we lack sufficiently accurate modeling and 

decision-support tools to predict the underlying processes or subsequently forecast the effects of different 
management strategies. The network will foster cutting-edge science and engineering research that 

addresses major national needs (public and governmental) related to water and include, for example: (i) 

water resource problems, such as impaired surface waters, contaminated ground water, water availability 

for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural 
runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a 

balance of economic and environmental sustainability; (iv) 

reversing environmental degradation; and (v) protecting 
against chemical and biological threats. WATERS has been 

supported by $ 1M of NSF funding for 3 years has a Program 

Office, and has supported pilot projects across the US.  The 

Program Office and committee have been established to 
prepare an application for MREFC funding in 2011.   

 

Why the Great Lakes? There is a strong rationale for choosing 
the Great Lakes in general, and the lake Huron-Lake Erie 

corridor as a test bed.  First, they are representative of the 

challenges facing the management of large water bodies in the 
United States and elsewhere in the world.  Second, the lakes 

are a critical freshwater resource for the United States and 

Canada, impacting national economic sectors such as 

agriculture, power generation, steel production, shipping, 
drinking water and bottling industries, tourism, and natural 

resources management.  Also, given the potential impacts of 

climate change on water resources in more arid areas of the 
western (and now Southeastern) U.S., there will be a growing 

pressure to divert Great Lakes water to those areas, thus 

creating a significant management issue.  In addition, it will be possible to take advantage of existing 
programs and partnerships in collecting data and planning research activities.  

 

Figure 1.  Lake Huron –Erie Corridor 
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The CI will take into account the properties of collected data, and the representation and utility of the 

collected data. To maximize the utility of the network information to public stakeholders and for research 
purposes, the proposed project will focus on translating the modeled data using (near) real time 

communication modes, including interactive axis grid displays, and teleconference uplinks.  Advancing 

the theoretical understanding of spatio-temporal risks through an application-driven sensor network 

design, and implementation of an effective risk communication strategy through environmental CI, offers 
unique advantages to integrate sensor network implementation in policy designs for multi-stakeholder 

source water protection. 

 
2.  MICROBIAL SENSING:  PROBLEM DEFINITION AND MOTIVATION 

 

Microbiological contamination represents one of the most widespread impairments of potable source 
water and recreational waters.  To protect public health and ensure the microbiological and chemical 

safety of source water, the USEPA has required the development of source water assessment and 

protection programs (SWAP) to delineate the source water protection area, to inventory contaminant 

sources and to determine the susceptibility of the source area to contamination.  Implementation of these 
plans requires extensive monitoring programs for biological and physical water quality indicators, in 

support of the quantitative guidelines developed for human health protection.  Specifically for 

microbiological pollution, the guidelines usually recommend collecting a minimum number of water 
samples, estimating the density of a target (indicator) organism in the samples, computing a number of 

summary statistics and comparing them with predefined limits [EPA-86, NRC-04].  Information on the 

presence and levels of pathogenic organisms is required routinely and quickly in order to monitor the risk 
of waterborne disease to human health, often using a combination of microbial analysis and predictive 

(pathogen loading) modeling tools [EPA-99].  In most cases, there continues to be a lack of scientific data 

to support monitoring schemes that would provide the most meaningful information about whether the 

guidelines are met.  For example, the EMPACT (Environmental Monitoring for Public Access and 
Community Tracking) Beaches project [EPA-05] recently reported on how the compounded uncertainty 

of the collected summary statistics and the delay in obtaining analytical results led to misdiagnoses of 

problems and therefore to incorrect recreational water management recommendations. 
 

To reduce the uncertainty associated with delayed decision-making, a wide range of model types, and 

complexities, are used [summarized in EPA-99]. Considering the quick turnaround time needed for 

decisions of a recreational and consumptive nature, simple models are most often used.  Computer models 
that predict pathogen concentrations by simulating the dominant mixing and transport processes in the 

receiving water include modules to characterize point and non-point sources of pathogens to establish the 

loading rates, estimate the dominant fate and transport processes to predict pathogen distribution, and 
interpret the model output to find the pathogen concentration at a point of interest to determine the need 

for an advisory.  The predictive capability of available methods and models exhibits considerable 

uncertainty in space and time, and requires either measured pathogen concentrations (diagnostic) or 
surrogate triggers to validate the likely occurrence of a microbial event.   

 

Advances in wireless technology and the design of intelligent sensors have the promise to improve 

environmental monitoring of water bodies, by providing useful spatio-temporal representations of 
environmental signals over large geographical areas [EGPS-01, SOPHME-04].  A wireless sensor 

network needs to be co-optimized to sample physical heterogeneity while maximizing network longevity 

and robustness under harsh environmental conditions, characterized by internal (e.g. calibration) and 
external (e.g. weather) failure [SBWMAMRTRG-03].   Network designs such as multi-hop wireless 

mesh, biologically-inspired decentralized management, and tiered embedded networks have been 

proposed to address the robustness and longevity concerns, but have to date not been significantly 
constrained by specific environmental applications  [e.g. PK-05].    
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The current deployment of wireless networks is largely limited to fixed-buoy systems focused on water 

quantity and physical characteristics of oceans and watersheds.  Yet, public health officials are 
increasingly taking an active interest in wireless sensing technology to improve modeling and forecasting 

of public health and ecological risks, as well as for real-time monitoring of existing exposure [ASEGE-

03].  For example, NOAA's Great Lakes Environmental Research Laboratory (GLERL) has deployed the 

Real Time Environmental Coastal Observation Network (RECON) pilot in the Lake Huron-Erie corridor. 
RECON (Figure 1) consists of six wireless observation systems that make detailed real-time scientific 

data - including various combinations of wind and wave information, air temperature, current and 

temperature profiles, dissolved oxygen, pH, turbidity, and water temperature - available through the 
Internet. Collected information is housed on servers located at GLERL (Ann Arbor) for both real-time 

and archival access. GLERL has agreed to make this data freely accessible to share experiences in design  

and implementation -- such as difficulties in establishing reliable data transfer protocols -- of the RECON 
infrastructure in order to inform the development of tools for the optimization of sensor networks.   

 

 
These properties would be applicable to microbial systems, whose behavior is adaptive and responds to 

variations of various parameters in their environment, such as temperature, redox potential, pH and 

organic carbon, as well as extreme weather events such as precipitation and wind- or current-induced 
mixing [RDG-88, CPRL-01, JGRPCW-05].  The challenge presented to a wireless network design with 

application to microbial contamination is to align microbial action criteria with sensor characteristics 

(surrogate measurements vs. diagnostic analysis) as constrained by the economics of network deployment 

within the physical boundaries and a priori knowledge of the natural system (Figure 3).  The opportunity 
to advance the theoretical understanding through an application-driven network optimization strategy will 

 

Step 1: Baseline 

Monitoring/ 

Information 

Step 2: Network 
Constraints 

Step 3: Network 

Optimization 

Buoy 3

Buoy 2

Buoy 1

Cleveland, OH

Buoy 3

Buoy 2

Buoy 1

Cleveland, OH

Figure 2.  Configuration and deployment of RECON in Lake Erie  (NOAA-GLERL) 

Figure 3.  Conceptualization of the proposed wireless network optimization strategy for microbial 

attributes constrained by environmental monitoring and economic considerations 
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aid in the integration of wireless sensor networks for source water protection. 

 
3. DYNAMICS AND MEASUREMENT OF MICROBIAL INDICATORS AND ANCILLARY 

DATA IN SOURCE WATERS 

 

The main causes of microbial contamination in surface waters include municipal discharges such as non-
disinfected or poorly disinfected sewage treatment plant (STP) effluents [HEHHSLAC-93], combined 

sewage overflows (CSO) [MDMT-96], and urban stormwater [e.g. DM-93].  While the fecal pollution 

impacts of STPs have been recognized for a long time (and considered in locating STP outfalls either 
offshore in deep water or downstream from urban areas) CSOs and stormwater are discharged throughout 

urban areas and impact the receiving water and its uses [e.g. NRC-98].  Extreme precipitation and high 

water tables decrease the efficiency of onsite sewage disposal and may increase the likelihood of 
microorganisms in water systems. Increased urbanization has and will continue to alter watersheds and 

freshwater flows, resulting in contamination from both point sources and nonpoint sources. 

 

Waterborne bacterial pathogens include Salmonella, Shigella, Vibrio, Campylobacter, Yersinia, and 
pathogenic E. coli strains.  Indicator bacterial analysis includes total coliforms, fecal coliforms, E. coli, 

fecal streptococci, enterococci, and Clostridium perfringens [FMH-00, NRC-98], though problems 

remain in their use.  This is in part due to the discrepancy in microbiological screening between finished 
waters, and source or recreational waters [AGGLSY-99], considering the range of point and nonpoint 

sources of fecal contamination.  To fulfill various regulations, early warning of potential microbial 

contamination requires a rapid, simple, broadly applicable technique. For applications of health risk 
confirmation and to identify the source of a microbial contamination problem, the time frame and 

investment in indicators, indicator approaches, and methods must be greater [NRC-04]. The necessity for 

both descriptive and predictive analysis of these highly complex microbial ecosystems requires accurate 

detection and quantification of microbial parameters as a function of matrix variables describing the 

relevant physico-chemical environments on both a spatial and temporal basis.  Databases such as EPAs 

Storage and Retrieval (STORET) system indicate that the distribution of water quality indicators, and the 

relationship between microbial and surrogate parameters for microbial events is highly site specific.  
Surrogate indicators for microbial pathogens, such as particles [BHBRLMA – 05], bacteriophages 

[LMMCCGCGSSJ-03], pH, temperature, redox potential, turbidity, and organic carbon [BROV-02; A-

05], and wet/dry weather events [e.g. JGRPCW-05], have been observed at statistically significant levels, 

and are used in predictive models.  
 

The prediction of pathogen concentrations in source waters is largely based on simulating the dominant 

mixing and transport processes, and by incorporating multiple input parameters [EPA-99].  Considering 
the non-conservative nature of microbial contamination, its irregular distribution in space and time [e.g. 

EPA-05, JGRPCW-05], and variable concentration due to growth and interaction between microbial 

communities, the statistical output afforded by these models often results in misdiagnosis of water quality 
problems and incorrect management decisions.  New modeling approaches such as artificial neural 

networks (ANN) have shown promising applications for microbial quality prediction in surface waters 

[e.g. NLB-02, BL-03], due to the capacity of these models to be trained, and interpret complex, inter-

related, and often non-linear, relationships between multiple parameters.  However, these models do not 

explicitly address the spatial and temporal microbial distribution and its associated uncertainty, and 

therefore do not inform monitoring network placement. 

 
3.1.  Water Quality Metrics 

 

Quantitative tests for indicator bacteria are used in monitoring surface drinking water intakes because 
these waters often show evidence of fecal contamination and are usually treated with filtration and 

disinfection. Interpretation of indicator data in recreational water applications is different again because 
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the exposure can be more irregular and involves a more limited population at risk.  Hence, wireless 

network design can only be optimized once data quality criteria are defined and quantified. Data quality 

is defined as the ability of the sensor network to represent the parameter distribution within the entire 

system, where this ability is defined based on specific criteria.  Depending on the application or water 

quality management goal, these criteria may include: (i) Minimization of average uncertainty in spatial 

distribution; (ii) Minimization of single maximum point uncertainty in the system; (iii) Maximized ability 
to determine whether the parameter is above/below a given threshold at a receptor node.  The choice of 

criteria and its associated requirements for network design will be aligned with NRC [NRC-04] 

recommendations (Figure 4) for phased monitoring.  In all cases, however, the data quality assessment 
goes well beyond issues of measurement precision and sensor calibration. The implications for this task 

are that speed, cost, specificity, and sensitivity will drive the achievable data quality metrics and thus the 

associated network design objectives.   
 

Level A.  Data quality for screening 

and routine monitoring is 

characterized by an emphasis on 
good spatial and/or temporal 

coverage and frequency of 

monitoring.  Hence, the cost per 
node is a major driver for 

comprehensive sampling for 

screening purposes with broad 
applicability to a number of 

geographic locations, various types 

of watersheds, and different water 

matrices are preferred.  Considering 
this driver, the sensor nodes will 

focus on collecting ancillary data, 

and on using spatial/temporal 
correlations between 

physical/chemical measurements 

and microbial events to inform the 

spatial characterization of possible 
microbial events, rather than using 

direct microbial analysis. Work in this task could include setting up univariate and multivariate statistical 

correlations using ANOVA- and ANN-based analysis of Lake St. Clair Data 
(http://www.lakestclairdata.net/), as well as review of published literature to inform the goal of 

minimizing the average spatial uncertainty of a potential emergent trigger of an emergent microbial 

problem in Step 2.  Once screening has identified a potential problem (‘trigger’ event), the second phase 
involves more detailed information to confirm public health risks.   

 

Level B. Data quality for health risk assessment is characterized by more extensive sampling to 

“maximize the ability to determine whether a microbial threshold criterion is exceeded at selected 
receptor nodes.”   The aim of Level 2 actions is to assess the need for further management actions (e.g., 

beach closures, boil-water orders).  Hence, the data quality is driven by risk classification with quantified 

uncertainty (e.g. 95% chance that a target threshold is exceeded).  A typical approach involves expanded 
sampling with supplemental information (ancillary and microbial) to determine whether the response is 

repeatable over space and time and to determine whether the signal persists.  From a sensor network 

perspective, ancillary data predictions will be informed by increasing microbial indicator attributes (i.e. 
increase in sensor heterogeneity), and more reliable processing methods are used to confirm that the result 

is not an artifact.  Exceedance criteria of source water for drinking and recreational uses, as well as 

High speed, low cost (logistical feasibility), 

broad applicability, and sensitivity 

Processing reliability, ancillary information, 

direct microbial measurement 

Level A 

Routine 
monitoring

/screening 
(‘trigger’) 

Level B 

Health risk 
confirmatio

n (expanded 
sampling) 

Level C 

Direct microbial 

assessment 
(confirmation/ 

mitigation) 

Figure 4.  Phased monitoring framework for selection of 

data quality criteria for waterborne pathogens, indicating 

needs and criteria of network attributes 
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sampling frequency criteria (e.g. days to weeks for recreational waters) may be used as recommended by 

EPA [e.g. EPA-86. EPA-98, EPA-03], using either a maximum concentration or summary statistics 
(geometric mean of at least five samples collected over 30 days).  Monte-Carlo type simulations could be 

applied to the correlations developed or used for Level A, to evaluate the impact of measurement and 

correlation uncertainty on the predictive outcome of the threshold or the relevant summary statistics used 

for guidance criteria.   
 

Level C. Data quality for source identification and mitigation is a diagnostic assessment of confirmed 

microbial contamination and identification (source attribution), and represents the highest level of sensing 
in terms of specificity and sensitivity (impacting cost, response time, and power requirements).  The 

assumption is that source identification will be based as a first approximation on error-prone, but easy-to-

use, metrics such as the fecal coliform:fecal streptococci (FC:FS) ratios (>4: predominantly human, <0.7 
non-human) to imply human and non-human sources of contamination [e.g. F-74, ECDVMM-97].   

Rather than using mean values, a frequency distribution within indicative values will be used to inform 

the network design.  Molecular deterministic methods used for identifying microorganisms are expensive 

and time-consuming and will be incorporated as a cost-function for network design considerations, rather 
than as a water quality measure. 

 

3.2.  ‘Trigger’ vs. Diagnostic Sensing Technology  

 

The highly heterogeneous nature of microbial occurrence and activity or viability in natural systems 

indicates a need for distributed microbial sensing capabilities.  The current approaches for microbial 
(indicator) detection and quantification in source water emphasize off-line membrane-culturing (24 hour), 

molecular tools (hours), or flow-cytometry (FCM)-based (minutes) analyses, techniques which to date are 

sub-optimal because of time delay, cost, or ease-of-use reasons. Hence, the integration of distributed 

sensing with economic constraints of the cost of the network will require a technology implementation 
commensurate with the phased criteria described in Figure 4.  ‘Trigger’ technology provides early 

warning of impending hazard, whereas diagnostic technology quantitatively and specifically describes the 

type of hazard (Figure 5).    
 

State-of-the-art microbial sensors compatible with wireless network systems emphasize optical detection 

methods for chlorophyll content, and flow cytometers, which are capable of quantifying total numbers, 

and some target organisms.  Both the RECON system and the Networked Aquatic Microbial System 
(NAMOS), which consists of ten stationary buoys and one mobile robotic boat for real-time, in-situ 

measurements and analysis of chemical and physical factors governing the abundances and dynamics of 

microorganisms at biologically-relevant spatiotemporal scales, focus on chlorophyll measurements. 
Woods Hole and UT-Galveston have deployed field FCM systems for microbial monitoring of plankton; 

bacterial sensors are either off-line or near real-time but have not been deployed in open water systems.  

The array of different technology platforms currently available for microbial sensing is provided in Table 
1.   

 

Near-term technological capabilities for achieving automated, low-cost ($500 per sensor node), and 

robust detection of microbial parameters of interest in field settings have focused on micro-
electromechanical systems (MEMS) and improvements in the environmental application of molecular 

tools  [IAAW-99, SSR-02, GSA-04, NRC-04].  To achieve acceptable specificity and applicability in the 

environment, the performance characteristics (e.g., detection limit, setup time, adaptability, matrix 
interferences) of these approaches vary [reviewed in GSA-04]  Once relevant spatio-temporal correlations 

between surrogate (non-microbial) and diagnostic variables for microbial events are incorporated in a 

spatial modeling and uncertainty analysis framework, sensor network designs can be informed based on 
the types and characteristics of sensors that would be required to capture the parameter field [ASEGE-03].  

The development of a sensor that can function in a real environment is a far greater challenge than one 
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that can operate in a lab; to achieve the sensitivity, selectivity and reliability that is necessary, we use a 

multi-modal approach where one “sensor” can sense many different analytes, or can sense one analyte 
with many different sensitivities. 

 

Table 1.  Comparison of Selected Technology Platform Attributes for Microbial Sensing 

 

Methodology Detection Limit
a
 

(cfu/mL or cfu/g) 

Setup Time Adaptability Matrix 

Interference 

Plating Techniques 1 1-3 days Excellent Low 

Bioluminescence 103-104  h Low Medium 

Piezoelectric 106 5h Good High 

Impedance 1-105 6-24 h Moderate/good Medium 

Flow Cytometry 102-103  h Good Medium 

Acoustic 5x104-106 3h Moderate High 

Electrochemical 103 -2 h Low Low 

 

 

Voluminous Real -Time Microbial Monitoring

(e.g. Micro -Integrated Flow Cytometer )

Viability and Pathogenicity Analysis 

(e.g. Gene Chip Technology)

Early Warning

(‘on line ’)
Full 

Assessment

(‘off line ’)

Aqueous System

Actuation and 

System Design

Voluminous Real -Time Microbial Monitoring

(e.g. Micro -Integrated Flow Cytometer )

Viability and Pathogenicity Analysis 

(e.g. Gene Chip Technology)

Early Warning

(‘on line ’)
Full 

Assessment

(‘off line ’)

Aqueous System

Actuation and 

System Design

 
 

Figure 5.  Microbial Sensing for System Management: Trigger vs. Diagnostics 

 

4.  SPATIAL MODELING AND UNCERTAINTY ANALYSIS 

 

Microbial parameters exhibit significant variability both spatially and temporally.  A recently released 
report put together by the US EPA [WBMSSD-05], for example, notes that microbial parameters at 

beaches exhibit “some form of systematic spatial variation” that was not adequately accounted for by the 

depth at which samples were taken.  Although this has been recognized for some time, few methods are 
available to identify and take into account this heterogeneity.  In order to effectively propagate the 

information provided by measurements in time and space, statistical methods need to be able to quantify 
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the degree of spatial variability and use this information to estimate microbial parameters at unsampled 

locations in a probabilistic framework.  The methods should be able to quantify and ultimately reduce the 
uncertainty associated with the spatial distribution of microbial parameters. 

 

Geostatistical and multiscale statistical modeling tools provide a framework for achieving the goal 

outlined above, and have begun to be incorporated in a limited number of studies.  The field of 
geostatistics, or the theory of regionalized variables, was introduced by Matheron [M-63, M-71] and is an 

adaptation of least squares methods to quantities that are correlated in space.  Geostatistical interpolation 

methods were first developed in mining engineering.  Much of the early applications were in subsurface 
environments, describing the spatial distributions of geological structural parameters [JH-78], 

hydrogeological parameters [K-97] and soil properties [G-97].  More recently, the generality and 

adaptability of the geostatistical approach has led to a wide range of applications in the earth and 
environmental sciences, including a limited number of applications to the estimation of surface water 

quality parameters and contaminant loads [LEP-97, JCC-97, BML-00, AGSEE-03, GS-04, MK-05]. 

 

Geostatistical approaches model the spatial and/or temporal distribution of a parameter as a random field, 
described by a covariance function that captures the degree to which information is lost as one moves 

away from sampled locations.  Kriging-based methods 

not only provide a Best Linear Unbiased Estimate 
(BLUE) of the distribution of a parameter of interest, but 

also characterize the uncertainty associated with that 

estimate.  This makes them ideally suited to analyzing 
limited environmental data and to designing monitoring 

network that can effectively capture the spatial and 

temporal heterogeneity of physical, chemical and 

biological parameters.   
 

In surface water quality monitoring, basic geostatistical 

methods have been applied in a few instances.  As part 
of its EMPACT Beaches Project [WBMSSD-05], the 

EPA constructed variograms (although did not call them 

by that name) designating the expected variance between 

pairs of measurements of indicator densities taken at a 
given separation distance.  This work clearly indicated 

that spatial correlation was present.  Posa and Rossi [PR-

91] applied a geostatistical approach to estimate 
dissolved oxygen concentrations in the Mar Piccolo of 

Tarato, Italy.  Little et al. [LEP-97] used ordinary 

kriging (a geostatistical interpolation approach where the 
underlying process is assumed to have a constant but 

unknown mean) to interpolate measurements in Murrells 

Inlet, South Carolina, including coliform and other data.  

No cross-correlations between variables were 
considered.  Bellehumeur et al. [BML-00] used 

geostatistical simulation methods to estimate the spatial 

distribution of lake acidity (pH) on the Canadian Shield.  
Gardner et al. [GSL-03] and Gardner and Sullivan [GS-

04] used geostatistical methods to analyze stream 

temperature data.  They considered different spatial and 
temporal scales of variability by implementing a 

complex nested variogram model to explain the 

Figure 6. The objective of sensor networks is to 

develop a methodology that is able to deliver high 

initial data quality and a slow decrease in data 

quality as sensors begin to fail.  An additional 

desirable feature is a relatively low level of 

uncertainty about a network’s ability to continue 

delivering high data quality over time.  The green 

represents the optimal scenario of a high initial 

data quality, a slow anticipated decrease in data 

quality over time, and a relatively low level of 

uncertainty regarding future performance.  The 

orange and red lines represent sub-optimal 

design, with either a lower initial data quality 

level, a faster decrease in quality over time, 

and/or a higher level of uncertainty with regard 

to future performance. 
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observed distributions.  These recent works demonstrate the potential of geostatistical approaches for 

interpreting spatial patterns of water quality data.  However, these studies all focused on analyzing either 
a single type of data, or considered different data types independently.  Novel approaches are needed to 

jointly assimilate the variety of data that can be collected using a wireless sensor network and that can 

take into account the time-dependent decay of the data quality as a function of power depletion, 

accidental loss of a sensor, and other decays. Three data decay functions are illustrated in Figure 6; the 
goal for an optimized sensing network is to have high data quality and slow decay rates of sensor quality. 

 

A variety of works have also explored the design of monitoring networks based on a criterion of 
minimizing the uncertainty of the interpolated product [e.g. C-91].  For surface water systems, the 

possibility of using geostatistics as a monitoring network design tool was described by Jassby et al. [JCC-

97] for San Francisco Bay.  The design of a wireless sensing network for microbial attributes involves 
several factors and constraints not considered by existing methods, typically developed for groundwater 

applications.  First, the hydrodynamics of surface water systems make it unlikely that the covariance 

structure of the parameter fields will be stationary in space.  As such, the field cannot be described by a 

single variogram or covariance structure.  Recent and ongoing work at the University of Michigan and 
Michigan Technological University has focused on developing tools for identifying and quantifying 

spatially-variable covariance structures that can represent the variability in the degree of physical 

heterogeneity of a natural system [AM-06].  This work is also developing novel methods for sampling 
network design based on such heterogeneity.   Second, a variety of auxiliary (or trigger) variables can be 

measured in surface water systems that may provide additional information about microbial parameter 

distributions.  Geostatistical methods can incorporate information on such auxiliary information in a 
statistically rigorous manner.  Third, existing methods optimize monitoring arrays based primarily on the 

criterion of reducing uncertainty in areas of interest, but without considering constraints and criteria 

imposed by other elements of the network.  In the case of a wireless sensor network deployed in a 

surface water environment, technological issues of network longevity, robustness and communication 

must be considered in conjunction with scientific monitoring criteria. 

 

5.  WIRELESS SENSOR NETWORKS AND TESTBEDS 

 

Over the past decades, antennas, radio transceivers and processors have been greatly improved in terms of 

form, size, and power efficiency.  Such progress in wireless communication technologies together with 

marked advances in micro-electromechanical systems (MEMS) has enabled the integration of sensing, 
actuation, processing, and wireless communication capabilities into tiny sensor devices, which are 

envisioned to be made increasingly inexpensive, energy-efficient, and reliable.  At the same time, the 

advances in mobile ad hoc networks have enabled the development of wireless sensor network, a subject 
of extensive study within the networking research community in recent years, whereby sensors may be 

deployed to self-organize into networks that serve a variety of applications.  

 
These applications range from scientific data gathering, environmental monitoring and pollution detection 

[AC-00, IG-99, BGS-00, BEGH-01], to building smart homes and laboratories [AS-00, E-00, HK-00, 

PGPMG-00]. Specific examples include the ZebraNet project [LSZM-04], which used GPS-enabled 

sensors to monitor the zebra migrations in Kenya, the monitoring of nesting habitats of birds and 
environmental conditions such as temperature and humidity in Maine [MPSCA-02, SPMC-04], which 

used the Berkeley Motes [MICA2], habitat monitoring [CEHZ-01], health [KKP-99], and the monitoring 

and detection of car theft [PK-00].  Wireless sensor networks are well suited for these applications due to 
their rapid and inexpensive deployment (e.g., compared to wired solutions). They can be deployed (e.g., 

airborne) to areas otherwise inaccessible by land.  The low cost and low energy nature of these sensors 

also makes them easily disposable (if made bio-degradable).   
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Along with this wide range of emerging applications, there have been extensive studies on building 

protocols, software, as well as simulation and emulation tools that help bring these applications to reality, 
for example, different sensor platforms [WINS, MICA2, MBCISSWC-02, SS-02] as well as operating 

systems [TinyOS, LC-02, LSZM-04].  Applications most relevant to the project outlined here are 

waterborne sensor networks for the monitoring of 

marine ecosystems, water quality, and contaminants.   
Few examples exist, and those that do focus on 

multivariate ocean monitoring (e.g. ARGO system) 

for plankton, algal blooms and other ecosystem 
degradation parameters [EGPS-01, PK-05]. 

 

The network optimization approach could be based 
on a tiered communication structure such as shown 

in Figure 7.  Wireless waterborne sensors are then 

deployed similar to RECON.  The ones closest to 

shore can form the first tier of the network and 
potentially serve as relays for other sensors that 

located further away.  Each tier is located further 

away from shore.  The number of tiers formed will 
explicitly incorporate the area of the sensing region 

and the transceiver capability of the sensors.  Failure 

functions will be incorporated in the network design 
to evaluate the impact of sensor degradation and data 

loss on the spatio-temporal interpretation of 

microbial data.  Generalization of the network design methodology for monitoring programs in other 

lakes, with emphasis on the Great Lakes basin, will use a scenario-testing approach in the iteration model.  
Since the data quality metrics impact the design criteria for the network, both in terms of environmental 

(spatio-temporal) constraints and network robustness (in terms of communication and data heterogeneity), 

this Step will provide a data-driven design space for wireless network implementation in environmental 
systems. 

 

Various co-authors have been working to apply these techniques with various plug-in (or off line) sensors 

to the specifics of an environmental system (scale, available data, and data quality objectives).  Real-
world constraints will prove invaluable to answer the question: “How does a priori information influence 

the design of networks co-optimized for environmental and network failure constraints?”  The application 

testbed for this project may capitalize on the Lake St. Clair system, which is part of the Lake Erie basin 
and is located on the border between southeastern Michigan and southern Ontario. The lake is connected 

to Lake Huron to the North by the St. Clair River and to Lake Erie to the south by the Detroit River, and 

exhibits the largest delta system (and thus contributing contaminant sources) of all the Great Lakes.  This 
testbed may be proposed because: (i) a database with parameters collected over eight years is available 

online (http://www.lakestclairdata.net/); (ii) a wireless data collection system is being implemented at the 

water treatment plants that can serve as a benchmark for the models, (iii) the availability of a high 

resolution numerical hydrodynamic model, developed by Prof. Guy Meadows at the University of 
Michigan, designed to model the transport and dispersion of microbial and other constituents in this 

basin; and (iv) results generated from network optimization based on a well-characterized system will 

help with generalizing the methodological approach to the Lake Huron-Erie corridor, currently 
instrumented by GLERL.   Given the monitoring that has taken place in the Lake St. Clair basin, and the 

impending data from the wireless systems at the water intakes, this would enable us to apply our methods 

at a 200m resolution within the lake area.   
 

 

Figure 7.  Conceptual testbed in Lake St. Clair 
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6.  DATA COMPILATION AND COMMUNICATION 

 
Ecosystem management at the scale of the Great Lakes will require significant advances in data 

management and computational capabilities.  Existing programs designed to support environmental 

observatories have emphasized the compilation and federation of existing data from multiple sources.  To 

complement and leverage these efforts, the ERC will implement a new grid-based computational 
infrastructure with a research focus on the deployment of high performance simulation models.  The new 

Great Lakes Grid (GLGrid) will be based on the New York State Grid (NYS Grid), developed by project 

co-leader Miller with support from NSF.  The NYS Grid, which currently includes computational and 
data systems throughout New York State (including UB and Cornell), will be extended to include UM 

and other systems involved with Great Lakes Research, and will provide access to government 

researchers and regulatories (USEPA and NOAA Great Lakes and Ecosystems Research labs), as well as 
private-sector partners.  The administration of GLGrid will be coordinated by UB’s Center for 

Computational Research under Miller’s direction. 

 

In addition to deploying a dedicated grid infrastructure, current efforts will develop and evaluate the 
necessary interfaces and “middleware” needed to deploy and optimize high-performance ERC simulation 

models.  Research needs will emphasize (1) development of secure and high-performance grid 

technologies that allow for the integration of high-end computers, data, networking, and visualization, as 
well as sensors, imaging devices, and databases; (2) implementation of grid technologies, dynamic 

resource classification for fast processing on homogeneous parallel platforms, and the distributed 

computation for individual computational tasks on heterogeneous platforms; (3) development of 
technology for building a common core database platform on the grid, the development of distributed 

search technology utilizing heterogeneous databases, large-scale distributed text searching, and intelligent 

storage controller development; and (4) portal development to promote access to a wide range of users at 

all levels, pre-college, college and the general public.   
 

Dr. Finholt and colleagues at UM’s Collaboratory for Research on Electronic Work (CREW) have 

conducted extensive research on how new technologies enable new ways of organizing work, both for 
providers and users of the technology, as well as in both academic and business environments.  Similar to 

a recent NSF-sponsored evaluation of the Teragrid, the GLGrid evaluation will:  (a) provide specific 

information to GLGrid managers that will increase the likelihood of GLGrid success; and (b) give ERC 

and NSF leaders and policy makers general data that will assist them in making strategic decisions about 
future directions for cyberinfrastructure.  In particular, GLGrid will be evaluated in terms of progress in 

meeting user requirements, impact on research practice and outcomes, quality and content of GLGrid 

education, outreach, and training efforts, and satisfaction among GLGrid partners. 

 

7.  CONCLUSIONS AND RESEARCH QUESTIONS 

 
Technology development for environmental sensing infrastructure is governed by addressing 

technological and societal/market needs.  Substantial investment in materials, devices and modeling 

software for implementation of sensor networks has advanced our technological understanding of the 

critical elements required to accomplish this objective.  Yet, the deployment of sensor nodes (multiple 
sensors in a spatial network) remains costly and fragile, and the data feedback from these nodes is often 

too slow to impact decision-making or to forecast hazardous events, either using trigger or diagnostic 

data.  Leveraging the strengths at our Michigan institutions has the potential to position us to capture a 
cyberinfrastructure node as part of the WATERS program.   
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To better understand the needs and integration of the various aspects of building an appropriate 

cyberinfrastructure for the Great lakes system, the breakout session will seek to resolve outstanding 
questions and approaches in the following areas, not limited to microbial sensing needs : 

 

1. Data Specification and Collection:  What do you want to Forecast About the Ecosystem? 

 
Wireless network design can only be optimized once data quality criteria are specified.  We define data 

quality as the ability of the sensor network to represent the parameter distribution within the entire 

system, where this ability is defined based on specific criteria.  Depending on the application or water 
quality management goal, these criteria may include: (i) Minimization of average uncertainty in spatial 

distribution; (ii) Minimization of single maximum point uncertainty in the system; (iii) Maximized ability 

to determine whether the parameter is above/below a given threshold at a receptor node.  The choice of 
criteria and its associated requirements for network design include speed, cost, specificity, and sensitivity 

that will drive achievable data quality metrics and thus the associated network design objectives.  For 

example, the Lake St. Clair pilot collects general water quality data (e.g. oxygen, pH, conductivity) every 

15 minutes, chemical data (e.g. halogenated compounds, petroleum hydrocarbons) every few hours, and 
microbial data on a weekly basis).  The RECON system provides general water quality data in similar 

timeframes.   

 
2. Modeling and Interpretation:  What is the Quality of Information Provided by the Measured 

Attributes? 

 

The design of a wireless monitoring network that maximizes a specific measure of data quality must be 

based on the spatial and temporal covariance structure of microbial and related environmental parameters, 

available baseline measurements, and information about the hydrodynamics of the system.  Spatial 

statistical methods (geostatistical and multiscale modeling tools) provide an integrated framework for 
defining the optimal design criteria for minimizing the uncertainty associated with the characterization of 

microbial parameters in recreational and potable waters.  This topic will utilize this framework to (i) 

discuss modeling tools to quantify the uncertainty in the spatial and temporal distribution of water quality 
parameters related to microbial attributes, (ii) translate the spatial distributions and their uncertainty into 

an overall measure of data quality, and (iii) optimize the network to maximize the overall data quality at 

the time of deployment and in the presence/absence of sensor failure.   

 
3. Visualization and Communication:  Conceptualize the Utility of the System and its Interactions 

 

This section will address how models inform our physical understanding of the ecosystem.  In addition, 
we will discuss (1) ontology and model integration across the biotic, abiotic, and socio-economic 

domains, and (2) integration of computationally-, data-, instrument-, and sensor-based grids along with 

the design, development, and deployment of fundamental cyberinfrastructure middleware and tools to 
make the use of such systems transparent to the end user.  These projects will complement and extend 

similar ongoing national efforts within the environmental science and engineering communities, which 

emphasize cyberinfrastructure projects for disciplinary-focused programs (e.g., hydroinformatics and 

ecoinformatics).  The outcome of this topical area is to provide tools for a variety of stakeholders that will 
enable them to assess and manage the impacts of natural and anthropogenic stressors on regional 

ecosystem resources. 

 
4. Sensor Network Deployment:  Data- and Model-Driven Infrastructure for Forecasting 

 

This topic will address the development of sensor network configurations that satisfy (i) low power 
requirements for network placement, and (ii) data utility.  The configurations will include nodes that can 

be as simple as a temperature sensor, or as complex as a complete environmental sensor system that 
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measures and correlates temperature, pH, dissolved oxygen levels, and specific microbia biomarkers.  

While some of these sensors can be “off the shelf” components, the geographical extent and diversity of 
the data collection region dictates that specialized sensor systems be developed.  These sensor systems 

will be designed to simplify addition to an existing sensor network; the interface to the network will be 

standardized, while the sensing components will have whatever functionality is desired for a particular 

location.  Experiences from currently deployed systems and utility-driven networks (e.g. tiered 
communication systems) will be discussed. 
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