Natural Recovery of Contaminated Sediments

Victor Magar Battelle, Columbus, Ohio

MNR Definition

Monitored Natural Recovery (MNR) involves *leaving contaminated sediments in place* and allowing ongoing aquatic, sedimentary, and biological processes to reduce the bioavailability of the contaminants in order to protect receptors

It must be the result of a deliberate, thoughtful decision-making process following careful site assessment and characterization

NRC, 1997. Contaminated Sediments in Ports and Waterways

Past Sites that Identified and Selected Natural Recovery their RODs

- Kepone, James River (VA)
 - Active remediation estimated at \$3 to \$10 billion
 - Active remediation would disturb existing habitat
 - Sediments likely to be buried, or diluted by flushing and mixing
- Lead, Interstate Lead Company Superfund site (AL),1995 ROD
 - Historical trends indicated a general decline in sediment lead concentrations, attributed to dispersal, dilution, and burial
 - No evidence of damage to existing ecosystem
 - In situ capping and sediment removal would damage existing ecosystem
 - Natural recovery would result in minimal environmental disturbance
- PCBs, Lake Hartwell Superfund site (SC), 1994 ROD
 - Active remediation technically impracticable or too costly
 - EPA and public agreed that fishing advisories and education could adequately reduce risk
 - Simple 1-D model predicted recovery to 1 mg/kg within a reasonable time, once terrestrial PCB source was removed

Current Direction of MNR: Develop a more rigorous approach to evaluate and demonstrate MNR efficacy

- Advances in environmental science & engineering
 - Computers and modeling capability
 - Analytical chemistry
 - Understanding of sediment transport and contaminant mass transport processes
- Time: Decades since original releases
- EPA acceptance of MNR
- Efforts to establish principles to evaluate MNR
 - RTDF
 - SMWG
 - EPA & DoD

MNR Principles

- 1. Containment through natural capping (deposition of increasingly clean sediment)
 - Requires net depositional areas
 - Provides natural barrier to aquatic environment
 - Largest contributor to natural recovery
- 2. Contaminant weathering
 - Biodegradation/Dechlorination
 - Other physical/chemical processes
 - Contaminant sorption/sequestration
- 3. Assess **sediment stability** to determine the potential for resuspension of buried contaminants
- 4. Modeling to predict long-term sediment recovery
- 5. Demonstrate ecological recovery, or potential recovery

Lake Hartwell Site

- Fresh water lake
- Sangamo-Weston
 Capacitor Manufacturing (1955 – 1978)
- Aroclors 1016, 1242, 1254
- Terrestrial PCB sources removed in mid-90s
- MNR selected by Region 4 (EPA/ROD/R04-94/178)

Sediment Coring and Profiling

Containment: Vertical contaminant profiling and age dating (²¹⁰Pb & ¹³⁷Cs)

Brenner et al., ES&T 2004

Time to Achieve ROD (U.S. EPA 1994) Cleanup Goals

- ROD surface sediment cleanup goal (1 mg/kg)
- Mean site-specific sediment quality criteria (0.4 mg/kg)
- NOAA effects range-low (0.05 mg/kg)

Time to Achieve Cleanup Goals		
1 mg/kg t-PCB	0.4 mg/kg t-PCB	0.05 mg/kg t-PCB
1 – 5 yrs	2 – 10 yrs	10 – 30 yrs

95% confidence levels increased the time frame up to 95 yrs

Relative *meta* and *para* Dechlorination Rates

PCB Dechlorination

Ecological Recovery Hybrid Bass

Do fish PCB concentrations over time reflect reduced surface sediment concentrations?

Sediment Stability

- Lake Hartwell Site
 - Historical storms
 - Drought conditions
 - Hunters Point Shipyard
 - Sedflume
 - Hydrodynamic studies

