Development and In Situ Application of Sorbent/reagent-amended "Active" Sediment Caps for Managing HOC-contaminated Sediments

> Greg Lowry Carnegie Mellon University Civil and Environmental Engineering

Technology Benchmarking Workshop for Sediment and Floodplain Remediation Ann Arbor, MI

March 25-26, 2004

Support: HSRC, NSF, Alcoa

Outline

- Technology Description
- Development and Application
- Observations/lessons learned
- Future Directions

Concept

$$\left(1 + \frac{\rho_b \mathbf{K}_d}{n}\right) \frac{\partial C}{\partial t} = -u_z \frac{\partial C}{\partial z} + D_e \frac{\partial^2 C}{\partial z^2} - \mathbf{k}C$$

Proposed Placement Method

Anacostia River Sediment Profile

Proposed Placement Method

RCM=Reactive Core Mat

RCM unrolled and placed by divers

Anacostia River Sediment Profile

Proposed Placement Method

15-25 cm clean sand placed over RCM

- 1. Provides Containment
- 2. Protects Benthic organisms
- 3. Reduces PCB flux
- 4. Eliminates exposure pathway

Development and Application

Data Gaps Addressed

• Suitable "Active" Materials

Degrade or sequester PCBs

- Placement Techniques
 Clam shell, geotextiles
- Demonstration of technology (ongoing)
 - Effectiveness of placement method and risk reduction
 - Performance evaluation

Identifying Suitable Sorbents

- Treatability Study Goals
 - Determine reactivity of PCBs with Fe⁰
 - Compare performance of different sorbents
 - Provide design criteria for demonstration

Rationale for Fe⁰ and Sorbents

- Fe^{0}
 - Proven dechlorination potential
 - Removes meta and para chlorines
 - Potential to decrease toxicity of PCB mixtures
- Sorbents (Coke, AC, soil, sand)
 - Sequester PCBs and decreases bioavailability
 - Coke is inexpensive (~\$100/ton)
 - Soil (OC) is inexpensive and previously tested
 - Sand is standard cap material

Approach: Fe⁰

- Batch experiments monitoring PCB loss and byproduct formation
 - Commercial Fe(0), Pd/Fe(0), Nano-Fe(0)
 - Individual PCB congeners
 - Rate constants (k) based on byproduct formation

Fe⁰ Media

Peerless Fe(0) Size: 0.4 - 2.4 mm Civil and nvironmental ENGINEERING arnegieMellon

Pd/Fe⁰-0.05% k~21 yr⁻¹

CarnegieMellon

2,2',3,5'-Nano Fe⁰

Civil and vironmental engineering rnegieMellon

PCB Dechlorination Patterns

ellon

Fe⁰ Reactivity Summary

MEDIA	RESULTS	k (yr ⁻¹)
Commercial Fe(0)	No Observable Reaction (6 months)	0
Pd/Fe(0) (500 ppmw Pd)	Rapid dechlorination not sustainable	21
Nano Fe(0)	Dechlorination rates variable Meta and Para chlorine dechlorination favored	0.01-6

Approach: Sorbents

- Isotherms/column breakthrough with 1,2-DCB
- Estimate **K**_d for PCBs
- Assess coke toxicity
 - Leaching tests-Heavy metals, PAHs, VOCs

Properties of Sorbents

	Sand	<u>Soil</u>	<u>Coke</u>	AC
Carbon (%)	~0	3.8%	92	90
Porosity (eff)	0.29	0.47	0.48	0.53
Size (mm)	~0.3	0.4-2.0	0.4-2.0	0.3-2.0
Particle Density (g/cm ³)	2.5	2.0	1.5	1.4
BET SA (m ² /g)	<1	6.6	2-12	919
R (retardation)	6 x 10 ²	1.6 x 10⁵	2.3 x 10 ⁵	1.8 x 10 ⁷

Environmental Engineering CarnegieMellon

Sorbent	K _d	Log K _d	R ²
	(L/kg)	(L/kg)	
Activated Carbon	62950	4.80	0.959
Coke	616	2.79	0.955
Anacostia Sediment	375	2.57	0.981
Farm Soil	308	2.49	0.945

Jonker and Koelmans. Environ. Sci. Technol. 2002, 36, 3725-3734

CarnegieMellon

Sorbent Performance and Capacity

Coke Toxicity Evaluation

• Solid Coke

- 11 Heavy Metals, 16 PAHs, 33 VOCs, CN⁻, N, P

- Leachate (DI and Sediment Pore Water)
 Heavy Metals, PAHs
- Comparison with Sediment Quality Guidelines (e.g. ERL¹) and WQ standards (e.g. CMC²)
 - 1 Effects Range Low (NOAA)

2 Criterion Maximum Concentration (EPA)

Heavy Metals in Solid Coke

	Rept. Limit	Conc.	\mathbf{ERL}^2
NIetal	(mg/kg)	(mg/kg)	(mg / kg)
Mercury	0.033	0.034	0.15
Aluminum	20	<u>466</u>	NA
Arsenic	1	1.7	8.2
Barium	5	11.4	NA
Chromium	1	1.5	81
Copper	2.5	<u>20.2</u>	34
Iron	10	<u>2500</u>	NA
Lead	0.3	0.74	46.7
Manganese	1.5	10.1	NA
Selenium	0.5	0.56	NA
Zinc	2	5.8	Environmen

PAHs in Solid Coke

	Result	ERL	
PAH	(µg/kg)	(µg/kg)	
Anthracene	31	85.3	
Benzo (a) anthracene	81	261	
Benzo (a) pyrene	83	430	
Benzo (b) fluoranthene	70	N/A	
Benzo (ghi) pyrene	68	N/A	
Benzo (k) fluoranthene	68	N/A	
Chrysene	110	384	
Dibenz (a,h) anthracene	32	63.4	
Fluoranthene	110	600	
Indeno (1,2,3-cd) pyrene	42	N/A	
Naphthalene	48	160	
Phenanthrene	<u>120</u>	240 Environme	l anc ntal
Pyrene	100	665 Carnegie Mel	lon

Metals Detected in Leachate

Metal	Leachate DI	Leachate PW	Anacostia Porewater	Rept. Limit
	(µg/L)	(µg/L)	(µg/L)	(µg/L)
B	228	279	249	200
Ba	53.7	58.4	76.1	6
Fe	419	368	481	40
<u>Se</u>	<u>7.6</u>	<u>10.6</u>	<u>ND</u>	<u>5</u>

PAHs in Leachate

PAH	Leachate (DI)	Leachate (PW)	Reporting Limit	CMC
	μg/L	μ g/L	μg/L	μ g/L
Benzo(a)anthracene	1.4	ND	10	300
Benzo(a)pyrene	1.6	ND	10	300
Chrysene	1.9	ND	10	300
Fluoranthene	1.7	ND	10	3980
Phenanthrene	3.2	1.2	10	30
Pyrene	2	ND	10	300

Predicting Performance in the Anacostia River

Depth	5.6 m
Flow rate	260 m ³ /min
$U_{z \ (seepage)}$	-2-6 cm/d
k (assumed)	0 yr ⁻¹
RCM	1.25cm

$$\left(1 + \frac{\rho_b \mathbf{K}_d}{n}\right) \frac{\partial C}{\partial t} = -u_z \frac{\partial C}{\partial z} + D_e \frac{\partial^2 C}{\partial z^2} - \mathbf{k}C$$

Sorbent Performance (v=1 cm/d)

Cap Placement and Concerns

- Methods of placement
 - Particle Broadcasting
 - Reactive Core Mat (RCM)

Particle Broadcasting

Potential Problems with Particle Broadcasting for Sorbents

- Difficult to place thin layers
- Variable settling velocities
- Floating material
- Fines

Release of Fines From Coke

1.6 kg Coke ~ 6 L Water

Release of fines during placement could be an issue!

Coke Settling

<u>V_s~12-24 cm/s</u>

<u>6 Hours after release</u> ~13% of material does not sink Some fines still suspended

Uneven distribution

Reactive Core Mat (RCM)

Reactive Core Mat II

Mat Properties and Costs

Polyester laminate

- Thickness ~ 0.5 in. (1.25cm)
- Loading

 ~0.8-1.0 lb/ft² (3.4 kg/m²)
- Twelve 10' x 100' rolls produced
 - $-\sim 6.5$ tons of (10 x 40 mesh coke)

• Costs

1.25 cm

- Materials (\$2700)
- Lamination (\$1750)

Coke-filled polyester core

- Labor (\$2850)
- Coke (\$950)
- Shipping (\$2900)
- $\begin{array}{c} \text{ Total} & \underline{(\$11,100)} \\ (\$1.11/\text{ft}^2) \end{array}$

11.5 mils

Comparative Materials Costs

Factors Affecting Suitability of Approach

- Types of contaminants
- Site characteristics
- Geotextile properties

Types of Contaminants

- Hydrophobic organics

 PCBs (log K_{ow}=4-8)
 PAHs (log K_{ow}=3-6)
 PCDD (log K_{ow}=4-8)
 PCDF (log K_{ow}=4-8)
- Other contaminants
 - Metals
 - Less hydrophobic organics

Favorable Site Characteristics

Parameters (coke)

Effective Porosity	0.48	
Bulk Density	0.78	g/cm ³
Dispersivity	0.5	cm/sec
Log K _d	5.15	L/kg

- Diffuse contamination
- Low energy depositional and stable environment
- Minimal surface roughness/debris
- Minimal seepage rates

Geotextile Properties

• Strength

- Placement and integrity

- Permeability (gas and liquid)
 - Seepage and burping potential
- Susceptibility to pore plugging

 Changes in permeability with time
- Density
 - Placement and stability

Observations/conclusions

- Most Promising Aspects
 - RCM technology is simple
 - **Provides ability to accurately place thin layer caps
 - Will work with AC as sorbent, less expensive sorbents may be effective if natural attenuation occurring
 - High potential for future development of <u>reactive</u> media
 - Technologies with modest reaction rates (<1 yr⁻¹) can be effective
- Concerns
 - Sorbents do NOT directly provide PCB mass reductions
 - Sorbent capacity
 - Fe⁰ may NOT be cost effective (lifetime unknown)
 - Further research needed to develop reactive media for RCMs
 - Effect of NOM and colloids on sorptive properties
 - Geotextile/cap integrity

Open Scientific Questions?

- What should design lifetime be?
- How will NOM affect performance?
- Cap Stability
- What geotextiles properties are needed?
- Can contaminants effectively be degraded in situ?
- Who will fund development/testing?

Ongoing Research

- Column studies-long term performance
 - Evaluating the effect of DOM and colloids in porewater on sorbent/mat performance (lower K_d, competition, ...)
- Anacostia River Pilot Demonstration (April 04)
 Mat placement and performance
- Evaluate alternative geotextiles
- Develop "reactive" media for PCBs and other contaminants

Questions/Comments?

