Technology Benchmarking Workshop for Sediment and Floodplain Remediation

Ann Arbor, Michigan March 25-26, 2004

CHIGAN STATE
I V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

In Vitro Cell-based Bioassays for Detection of Aryl Hydrocarbon (AhR)-Mediated Activity in Environmental Samples

John P. Giesy

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Key References:

Hilscherova, K., M. Miroslav, K. Kannan, A.L. Blankenship and J.P. Giesy. 2000. Cell Bioassays for Detection of Aryl Hydrocarbon (AhR) and Estrogen Receptor (ER) Mediated Activity in Environmental Samples. *Environ. Sci. Pollut. Res.* 7 (3): 159-171

Villeneuve, D. L., J. S. Khim, K. Kannan, J. Falandysz, A. L. Blankenship and J. P. Giesy. 2000. Relative Potencies of Individual Polychlorinated Napthalenes to nduce Dioxin-like Responses in Fish and Mammalian *In Vitro* Bioassays. *Arch. Environ. Contam. Toxicol.* 39:273-281.

CHIGAN STATE Zoology Department, National Food Safety and Toxicology Center & Center for Integrative Toxicology, Michigan State University

Exposure Questions

Are there chemicals in a given environment that can cause a biological response through the Ah-R-Mediated Mechanism of Action?

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Exposure Questions

What is the identity of the Ah-R active agent(s) present in the environment?

Advantages of *in vitro* bioassays relative to instrumental analysis

- **Biological relevance**
- Integrated measure of the combined potency of all chemicals in a complex mixture
- Can account for unknowns
- Can account for compounds for which analytical methods have not been developed

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Advantages of *in vitro* bioassays relative to instrumental analysis

- Can account for non-additive interactions between chemicals
- In some cases, more sensitive than instrumental analysis

CHIGAN STATE VERSITY Center for Integrative Toxicology, Michigan State University

isadvantages of *in vitro* bioassays relativ to instrumental analysis

Inability to *quantify* the concentration of active agent(s) present

Inability to identify the active agent(s)

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

n vitro bioassay-based TIE: Key Concept

Oxicity Identification and Evaluation Bioassay Directed Fractionation Mass (Potency) Balance Analysis

HIGAN STATE VERSITY Center for Integrative Toxicology, Michigan State University

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Complex PCDD/DF Mixtures

75 PCDD Congeners 135 PCDF Congeners

HIGAN STATE VERSITY Center for Integrative Toxicology, Michigan State University

Dioxin-Like Mechanism of Action

Toxic Effects Mediated by AhR Aromatic Hydrocarbon Receptor

HIGAN STATE VERSITY Center for Integrative Toxicology, Michigan State University

Mechanism of Action for AhR-Activation

STATE
S | T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Ε

R

V

METHODOLOGY

Bioassays - endpoints measured

- Luciferase activity is assessed as a measure of binding of ligands present in the samples to Ah-receptor (H4IIE-luc cells - standard TCDD) to evaluate TCDD-like activity or to estrogen-receptor
- After addition of luciferase assay reagent, the light production, a measure of luciferase activity, is determined with a luminometer
- <u>Viability index</u> measured by fluorimetric method with calcein AM/ethidinium bromide reagents
- Protein content measured by fluorimetric method with reagent fluorescamine

CHIGAN STATE Zoology Department, National Food Safety and Toxicology Center & Center for Integrative Toxicology, Michigan State University

n vitro bioassay-based TIE: Key Concept

Mass (Potency) Balance Analysis

 Used to assess whether compounds identified by instrumental analysis can account for the potency of a sample.

 Used to assess whether non-additive interactions are occurring between components of a mixture.

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

n vitro bioassay-based TIE: Key Concept

Bioassay directed fractionation

- Used to narrow the field of potential causative agents
- Involves an iterative process of chemical fractionation or treatment followed by *in vitro* bioassay
 - examples: HPLC, GPC, acid treatment, activated Copper
- Generally [active/inactive] screening-based, but response magnitudes may be considered

AN STATE E R S I T Y Center for Integrative Toxicology, Michigan State University

Luciferase Bioassay Methods Using H4IIE-Luc or other Ah-R-responsive Cells

H4IIE-Luc Cells

Cells trypsinized and plated at 15 000 cells in 250 ml media/well

After 24 hours cells dosed with standards

ter exposure, media is pirated, cells rinsed with PBS, dpoints measured, luciferase tivity measured after addition reagent Luclite as miniscence in plate-reading minometer

Time course for exposure: 72 hours

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Relative Potency Estimation

Assumptions of Indirect Bioassay

The sample being analyzed is assumed to respond as if it were simply a dilution of the standard compound

Dose-response curves should be effectively identical except for their position along the concentration or dose

axis.

The dose-response relationships being compared have equal (or parallel) slopes The maximum achievable response (efficacy) for the standard and sample must be identical

GAN STATE *Center for Integrative Toxicology, Michigan State University*

REP Estimation: Limitations

- Deviation from the assumptions of indirect bioassay are common for *in vitro* bioassay results
- Parallelism cannot be tested statistically for complex mixtures and unknowns
- Complex or unknown composition limits the ability to assign a meaningful set of dose units which are statistically comparable to those of the standard

GAN STATE
E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Unequal Efficacy

GAN STATE E R S I T Y Center for Integrative Toxicology, Michigan State University

V

Equal Efficacy and Parallel Dose-response Curve

IGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Nonparallel Dose-response relationships

CAN STATE
E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

V

REP₂₀₋₈₀-ranges: Standardization

- REP-ranges are sensitive to the range of responses over which they are calculated.
- To be directly comparable and give an independent measure of uncertainty due to non-parallel slopes, it is necessary to standardize the range of responses over which REP-ranges are calculated.
- The standard range has arbitrarily been defined as 20-80% of the maximum response achieved for the standard compound.

REP₂₀₋₈₀-range

• Extrapolation may be necessary for some samples

GAN STATE *Center for Integrative Toxicology, Michigan State University*

REP₂₀₋₈₀-ranges for Masan Bay sediment extracts

IGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Mass (Potency) Balance Analysis: Terms

<u>"Toxic" Equivalents</u>: An expression of the potency of a sample in terms of the concentration of a well characterized standard compound which elicits the same magnitude of response in a bioassay.

– Example: 50 pg dioxin-equivalents / g sediment

There are two types of "toxic" equivalents estimates

- Instrumentally derived
- Bioassay derived

GAN STATEZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Calculation of Relative Potency

Calculation of TCDD equivalents (TEQs) from analytical results - mass balance calculations

TEQs were calculated for all samples by multiplying the bioassay-specific <u>toxic</u> equivalency factor (TEF) by concentration of specific congener.

$$TEQ = \sum_{I=1}^{N} CONC \cdot OF COMPOUND_{i} \times TEF_{i}$$

HIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

IGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Mass (Potency) Balance Analysis: Terms

Instrumentally-derived toxic equivalents

- Calculated by multiplying the analytical concentrations of the compounds identified by their REPs and summing.
 - $-\Sigma$ (concentration_i) x (REP_i)
 - Assumes an additive model
 - Can only account for known compounds
- TEQ: instrumentally-derived dioxin equivalents

GAN STATE
E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Aass (Potency) Balance Analysis: Terms

Bioassay-derived toxic equivalents

- Estimated directly from dose-response curves resulting from bioassay analysis of a sample and standard.
 - Does not assume additivity
 - Can account for unknown compounds
- TCDD-EQ: bioassay-derived dioxin equivalents

IIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Mass (Potency) Balance Analysis

TCDD-EQ = TEQ

- suggests that the compounds identified by instrumental analysis can account for the potency observed
- suggests additivity

TCDD-EQ < TEQ

 suggests antagonistic interactions among components of the sample

TCDD-EQ > TEQ

 suggests the presence of agonists which were not identified by instrumental analysis, or synergistic interactions among components of the sample

IIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Mass (Potency) Balance Analysis

- Ideally the analysis is based on predicted (TEQ) and observed (TCDD-EQ) potency
 - concentration required to induce a defined magnitude of response.
- In cases where TEQ estimates are available but TCDD-EQ estimates are not, mass balance analysis may be based on predicted and observed response magnitudes.

IIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Dioxin-like Activity of Sediment from Masan Bay, Korea Before and After Acid Treatment

IIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

EXAMPLE I

Quensen, J.F., M.A. Mousa, S.A. Boyd, J.T. Sanderson, K.L. Froese and J.P. Giesy. 1998. Reduction in Aryl **Hydrocarbon Receptor-Mediated** Activity of PCB Mixtures Due to **Anaerobic Microbial Dechlorination.** Environ. Toxicol. Chem. 17:806-813.

IGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

TCDD-Equivalents in Sediments Aroclor 1254

Loc/Treat	<u>pmol Teq-assay</u> (umol PCBs)	<u>pmol Teq-calc</u> (umol PCBs)
Non-Dechlorinated	7.5	7.8
SL-Dechlorinated	2.1	1.6
RR-Dechlorinated	<0.6	1.0

IGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Mass (Potency) Balance Analysis: Confirmation

- Interactions between agonists and antagonists could yield an apparent mass balance even when all active compounds have not been identified.
- When possible, mass-balance conclusions should be confirmed empirically.
- Sample fractionation and reconstitution of the sample using analytical standards can be used to help distinguish effects of unidentified compounds from the effects of non-additive interactions between identified compounds.

HIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Vhat Magnitude of Difference is Significant'

- One of the most difficult aspects of mass balance analysis is determining what magnitude of difference between TEQs and TCDD-EQs, or observed and predicted values is significant.
- Dependent on
 - Variability of the assay
 - Uncertainties in the relative potency estimates
 - Uncertainties or assumptions involved in TEQ or predicted magnitude estimation.

AN STATE E R S I T Y Center for Integrative Toxicology, Michigan State University

Hilscherova, K., K. Kannan, Y.-S. Kang, I. Holubek, M. Machala, S. Masunaga, J. Nakanishi and J.P. Giesy. 2001. Characterization of Dioxin-like Activity of Riverine Sediments from the Czech Republic. *Environ. Toxicol. Chem.* 20:2768-2777.

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

IGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

TCDD-EQ in Sediment Extracts from Czech Rivers

Fraction 1 = PCDD/F PCBs

Fraction 2 = PAHs

Fraction 3 = Polar

Zoology Department, National Food Safety and Toxicology Center & Center for Integrative Toxicology, Michigan State University

EXAMPLE III

Hilscherova, K., K. Kannan, H. Nakata, N. Yamashita, P. L. Bradley, J. M. McCabe, A. **B.** Taylor, J. P. Giesy. 2003. **Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentration Profiles in** Sediments and Flood Plain Soils of the Tittabawassee River, Michigan Environ. Sci. Technol. 37:468-474.

IGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

CAN STATE
E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Analysis

IGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Concentrations (pg/g, dry wt) of TEQs and TCDD-Eqs in sediments/soils from the **Tittabawassee River** (Mean & Range)

HIGAN STATE
V E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

Sample (n)	TEQs	TCDD-Eqs
Composite sediment (16)	550	370
	(41-1,810)	(34-2,430)
Transect sediment (18)	440	300
	(6.3-2,770)	(8.6-1450)
FP soil (7)	1150	1100
	(350-1,890)	(290-2,450)
Ups. Comp sediment (3)	8.2	4.3
	(2.5-19)	(0.8-9.8)
Ups. Transect sediment (4)	2.3	7.6
	(0.56-5.5)	(0.4-25)
Ups. Soil (3)	6.2	165
	(2.1-10)	(20-240)

GAN STATE Center for Integrative Toxicology, Michigan State University

 \mathbf{V}

I

Relationship between PCDD/DF - TEQs and bioassay derived TCDD-Eqs in soil/sediments from the Tittabawassee River basin

GAN STATE E R S I T Y Center for Integrative Toxicology, Michigan State University

Questions ??????

HIGAN STATE V E R S I T Y Center for Integrative Toxicology, Michigan State University

Thank You

- John P. Giesy
- Dept. Zoology
- Michigan State University
- East Lansing, Michigan, 48824, USA
- Tel: (517) 353-2000
- Fax: (517) 381-1435
- Email: <u>JGIESY@AOL.COM</u>
- Web Site: http://www.msu.edu/user/giesy

GAN STATE
E R S I T YZoology Department, National Food Safety and Toxicology Center &
Center for Integrative Toxicology, Michigan State University

