Hydrogen Enhancement of Sediment Microbial Activity and Contaminant Degradation

Peter Adriaens, Ph.D.
Civil and Environmental Engineering
University of Michigan

John Wolfe, Ph.D.
LimnoTech, Inc.

ETC Workshop on In Situ Technology Benchmarking for Sediment and Floodplain Remediation
Ann Arbor, MI
March 25-26, 2004
The Technology

- Hypothesis
- Rationale
- Approach and Methods
- Hydrogen-Impacted Microbial Ecology
- Hydrogen-Enhanced Dechlorination
- Scientific Challenges
- Bench-Scale Technology Development
- Technological Challenges
Hypotheses for Hydrogen-Based Enhancement

- *In situ* amendment with hydrogen can increase metabolic and dechlorination activity.
- The technology is scalable.
- The technology can be cost-effectively applied to large and complex contaminated areas.
Rationale for Hydrogen-Based Technologies

- Ambient carbon and hydrogen fluxes limit *in situ* microbial activity in reducing soils and sediments
 - 5-20% of total extractable population
- Increased hydrogen fluxes enhance total respiratory competence and influence ecological composition
 - 15-80% of total extractable population
- Hydrogen gas is cheap and diffuses rapidly in sediments
Fundamental Process Understanding: Evidence of Dioxin Dechlorination

<table>
<thead>
<tr>
<th>Sediments</th>
<th>Microorganisms</th>
<th>Model DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passaic River cores</td>
<td>Sediment-eluted mixed communities</td>
<td>Monomers:</td>
</tr>
<tr>
<td>Hudson River core</td>
<td></td>
<td>Catechol, resorcinol, 3,4-dihydroxybenzoic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymers:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymaleic acid, Aldrich humic</td>
</tr>
<tr>
<td>Dioxin Source:</td>
<td>Dioxin Source:</td>
<td>Dioxin Source:</td>
</tr>
<tr>
<td>Freshwater-spiked Penta- to octaCDD</td>
<td>Freshwater-spiked OCDD</td>
<td>Estuarine-spiked HpCDD (both isomers)</td>
</tr>
<tr>
<td>Estuarine-historical residues</td>
<td>Freshwater-hist. residues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estuarine-spiked HpCDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(both isomers separately)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marine-spiked HpCDD</td>
<td></td>
</tr>
<tr>
<td>Electron donors/primers:</td>
<td>Electron donors/primers:</td>
<td>Electron donors:</td>
</tr>
<tr>
<td>Organic acids</td>
<td>Organic acids</td>
<td>Sulfide</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>(Hydrogen)</td>
<td>Ti-citrate</td>
</tr>
<tr>
<td>2-MonobromoDD</td>
<td>2-MonobromoDD</td>
<td>Sediment microorganisms</td>
</tr>
<tr>
<td>Electron acceptors:</td>
<td>Electron acceptors:</td>
<td>Electron acceptors:</td>
</tr>
<tr>
<td>Bicarbonate, Natural (river bottom water)</td>
<td>Bicarbonate</td>
<td>DOM</td>
</tr>
<tr>
<td></td>
<td>Sulfate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electron acceptors:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model DOM</td>
<td></td>
</tr>
</tbody>
</table>
Differentiation of peri (1469)- and lateral (2378)- Dechlorination Pathways
Influence of Sediment Geochemistry on Dioxin Reactivity

<table>
<thead>
<tr>
<th>Biogeochemical Designation</th>
<th>Freshwater</th>
<th>Estuarine</th>
<th>Marine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominant dechlorination pathway</td>
<td>PCDD</td>
<td>PCDD</td>
<td>PCDD</td>
</tr>
<tr>
<td>Peri < lateral</td>
<td>peri < lateral</td>
<td>peri << lateral</td>
<td></td>
</tr>
<tr>
<td>Dominant carbon flow</td>
<td>H₂</td>
<td>H₂</td>
<td>H₂</td>
</tr>
<tr>
<td>Acetate</td>
<td>CO₂</td>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>CH₂O</td>
<td>CH₂O</td>
<td>CH₂O</td>
<td></td>
</tr>
<tr>
<td>CH₄-H₂</td>
<td>CH₄-H₂/HS⁻</td>
<td>CH₄/HS⁻</td>
<td></td>
</tr>
<tr>
<td>Nutrient-rich</td>
<td>Oligotrophic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increasing salinity/sulfate concentrations
Impact of Hydrogen on Microbial PCDD Dechlorination in Sediments

- **2378-TCDD (mol%):**
 - Original: 20
 - Hydrogen: 12
 - Acids: 20
- **Endpoint:**
 - Original: tetra
 - Hydrogen: mono
 - Acids: tetra
- **Rate (pmol TCDD/day):**
 - Original: NA
 - Hydrogen: 28.6
 - Acids: -0.4 (net formation)
Hydrogen Technology Scaling: Laboratory Studies (EPA-SITE program)

- **Matrix:**
 - Cell elution
 - Slurry
 - Column

- **Treatment:** H_2 addition, HCB spike

- **Response:**
 - Microbial activity
 - Contaminant degradation
Experimental Matrix (marine harbor sediment)
Methods: Hydrogen Enhancement of Elutions and Slurries

- Sediment-eluted microorganisms are dispensed in the SIXFORS system in sulfate-rich estuarine media.

- The reactors are amended with varying H₂ fluxes to prime cells.
 - Sparged with H₂/N₂ mix including up to 1% H₂

- Organic acid cocktail added at t=0: 10 mg/L benzoic + 15 mg/L butyric + 75 mg/L acetic

This 6-reactor system is equipped with a H₂/N₂ gas mixing/delivery system, temperature, and pH control.
Microbial Metabolic Response to Hydrogen: Redox dye (CTC) measurements

- **Microscope analysis:**
 - Green - nonactive cell
 - Green/red - active cell
Flow Cytometry: Cell number and activity quantification

- Automates cell counting
 - Density with green fluorescence (FL1) gives total cells
 - Density with red fluorescence (FL3) gives active cells
 - About 5% of cells typically CTC active (Marine Harbor sample)
Ecological Response to Hydrogen: Flow Cytometry Analysis (Passaic R.)

- Microbial population density (measured using PicoGreen™): R1 = total eluted bacteria; R3 = bacteria present at elevated hydrogen concentrations (above CTC enhancement threshold)
- R3 represents less than 10% of total cell density, but is 80% CTC active
- Microbial community was analyzed using T-RFLP
Ecological Response to Hydrogen: T-RFLP Analysis (Passaic River)

- Amendments of microbial elutions with nitrogen gas (no H2) and H2 fluxes not impacting CTC activity result in 20-30% emerging T-RFs
- Amendments above threshold of CTC activity result in emergence of 20% distinct RFs
- No populations (out of a total of 74 T-RFs) could be identified using MspI
- Cross-referencing and multi-database search using three restriction enzymes is underway
Activity Enhancement for Three Sites - Based on Cell Elutions

- 1.0 - 3.5 µM H₂ increases CTC activity ~ 3-fold

![Activity Enhancement Experiments Graph]

- Marine Harbor
- Passaic
- San Diego
Activity Results - Slurry Study (Marine Harbor)

- CTC activity increased about 3 fold
- Cells counts increased about 8 fold
H₂ Amendment, Column Study (Marine Harbor)

- **Porewater H₂ limited by diffusion**
 - Leading edge advanced ~ 0.5’/month
 - Annual zone of influence up to ~6 feet
CTC activity increased about 4-fold in bottom layer

Cell counts increased about 3-fold in bottom layer
HCB Results - Cell Elution Study (Marine Harbor)

- **H₂ treatment increased HCB degradation rate by ~ 50%**

<table>
<thead>
<tr>
<th>Hydrogen Amendment</th>
<th>Degradation Rate (1/hr)</th>
<th>Initial HCB Concentration (ppb)</th>
<th>HCB Concentration after 48 hrs (ppb)</th>
<th>Change in HCB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below threshold (< 0.5 µM H₂)</td>
<td>0.0135</td>
<td>5.6 (std dev 0.17)</td>
<td>3.2 (std dev 0.01)</td>
<td>43%</td>
</tr>
<tr>
<td>Above threshold (0.6 µM H₂)</td>
<td>0.0201</td>
<td>8.7 (std dev 0.09)</td>
<td>3.2 (std dev 0.05)</td>
<td>63%</td>
</tr>
<tr>
<td>Above threshold (1.8 µM H₂)</td>
<td>0.0214</td>
<td>6.8 (std dev 0.12)</td>
<td>2.5 (std dev 0.05)</td>
<td>63%</td>
</tr>
</tbody>
</table>
HCB Results: Slurry and Column Studies (Marine Harbor)

- **Slurry (at 2 months)**
 - Treatment effects not yet statistically significant
 - Two future sampling events

- **Column (at 1 month)**
 - Treatment effects not yet statistically significant
 - Two more columns
Scientific Challenges

◆ Better understanding of hydrogen diffusion in sediment, including spatial distribution
◆ Development of correlation between hydrogen enhancement, ecological response and dechlorination activity
◆ Temporal effect:
 - Amendment to CTC activity increase
 - CTC to dechlorination activity increase
 - Pulsed vs. continuous amendment
 - Limiting ratios of carbon to hydrogen
 - Impact of bioavailability on long term activity
Future Steps for Technology Development

- Translate/scale effects on spiked HCB to effects on target contaminants

- Key issues for introducing H₂ in field:
 - As dissolved H₂?
 - To what depth?
 - How to minimize resuspension?
 - Spacing of injection points?

- What’s next?
 - Slurry and column studies to completion
 - Bench studies of H₂ injection grid (H2-GRID) to refine design parameters
 - Scale-up cost analysis
 - Design and conduct field pilot
Acknowledgements

Authors:
- Peter Adriaens, Timothy Towey, Nicole Dolney, University of Michigan
- Cyndee Gruden, University of Toledo

Sponsors:
- EPA/SITE
- NOAA-CICEET

Disclaimer: Nothing in this presentation should be interpreted to imply that any product or service is endorsed or preferred by our research sponsors, or considered by those sponsors to be superior to other products or services.