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Motivating Application

From Huang, Xiaojing, et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging
modalities, including

• X-ray crystallography

• Ptychography

Other applications can be found in optics, astronomy and speech
processing.
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Mathematical Model

find1 x ∈ Cd given yi = |〈ai,x〉|2 + ηi i ∈ 1, . . . , D,

where

• yi ∈ R denotes the phaseless (or magnitude-only) measurements (D
measurements acquired),

• ai ∈ Cd are known (by design or estimation) measurement vectors,
and

• ηi ∈ R is measurement noise.

1(upto a global phase offset)
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Existing Computational Approaches

• Alternating projection methods
[Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012]

and many others. . .

• Methods based on semidefinite programming
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], . . .

• Others
• Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

• (Spectral) initialization + gradient descent (Wirtinger Flow) [Candes
et al., 2014]

Most methods (with provable recovery guarantees) require impractical
(global, random) measurement constructions.
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Today. . .

• We discuss a recently introduced fast (essentially linear-time) phase
retrieval algorithm based on realistic (deterministic)2 local
measurement constructions.

• We provide rigorous theoretical recovery guarantees and present
numerical results showing the accuracy, efficiency and robustness of
the method.

• (Time Permitting) extensions to 2D and compressive phase retrieval.

2for a large class of real-world signals
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Local Correlation Measurements

From Qian, Jianliang, et al. “Efficient algorithms for ptychographic phase retrieval.” Inverse Problems Appl., Contemp. Math 615 (2014).

Each ai is a shift of a locally-supported vector (mask or window)

m(j) ∈ Cd, supp(m(j)) = [δ] ⊂ [d], j = 1, . . . ,K

Define the discrete circular shift operator

S` : Cd → C
d with (S`x)j = x`+j .

Our measurements are then

(y`)j = |〈x, S∗`m(j)〉|2 + ηj,`, (j, `) ∈ [K]× P, P ⊂ {0, ..., d− 1}

We will consider K ≈ δ and P = [d]0 := {0, ..., d− 1}
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What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗0m(j)m(j)∗S0〉| =

〈
xx∗,


0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗1m(j)m(j)∗S1〉| =

〈
xx∗,


0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗2m(j)m(j)∗S2〉| =

〈
xx∗,


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗3m(j)m(j)∗S3〉| =

〈
xx∗,


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗4m(j)m(j)∗S4〉| =

〈
xx∗,


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

|〈xx∗, S∗5m(j)m(j)∗S5〉| =

〈
xx∗,


0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0


〉

6 / 21



What are we measuring?

Lifted System: |〈x, S∗`m(j)〉|2 = 〈xx∗, S∗`m(j)m(j)∗S`〉.

Example: (6× 6 system, δ = 2, blue denotes non-zero entries)

Observation: The only entries of xx∗ we can hope to recover (via linear
inversion) are supported on a (circulant) band


0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0


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Useful Observations (I)

Tδ(C
d×d): Let

Tk : Cd×d → C
d×d

Tk(A)ij =

{
Aij , |i− j| mod d < k

0, otherwise.

Lifted System Revisited: |〈x, S∗`m(j)〉|2 = 〈Tδ(xx∗), S∗`m(j)m(j)∗S`〉.

Bottom Line: If we can find m(j) such that

Span
{
S∗`m

(j)m(j)∗S`
}
`,j

= Tδ(C
d×d),

then we can recover Tδ(xx
∗).
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Useful Observations (II)
Why this is useful:

(a) Diagonal entries of Tδ(xx
∗) are |xi|2.

(b) Off-diagonals give the relative phases

X̃ :=
xx∗

|xx∗|

Tδ(X̃)(j,k) = e
i(arg(xj)−arg(xk)), |j − k| mod d < δ

Phase Synchronization:

(a) The leading eigenvector (appropriately normalized) of

Tδ(X̃) = diag

(
x

|x|

)
Tδ(11

∗) diag

(
x∗

|x|

)
= diag

(
x

|x|

)
FΛF ∗ diag

(
x∗

|x|

)
is the vector of phases of x.

Note:
x

|x|
= [eiφ1 eiφ2 . . . eiφd ]T is the (unknown) phase vector!

F ∈ Cd×d is the discrete Fourier transform (DFT) matrix
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Recovery Algorithm

Define the map A : Cd×d → CD

A(Z)(`,j) = 〈Z, S∗`m(j)m(j)∗S`〉(`,j).

and its restriction A|Tδ(Cd×d) to our subspace.
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Recovery Algorithm

Define the map A : Cd×d → CD

A(Z)(`,j) = 〈Z, S∗`m(j)m(j)∗S`〉(`,j).

and its restriction A|Tδ(Cd×d) to our subspace.

In the noisy setting:

Step 1: Estimate Tδ(xx
∗) by the banded matrix

Z = Tδ(Z) :=
(
A|−1

Tδ(Cd×d)

y

2

)
+
(
A|−1

Tδ(Cd×d)

y

2

)∗
.

Step 2: Estimate the phase by computing the leading eigenvector

of Tδ
(
Z
|Z|

)
.

Step 3: Combine phase with
√
· of diagonal entries of Tδ(Z) to

estimate x.
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Recovery Algorithm

Define the map A : Cd×d → CD

A(Z)(`,j) = 〈Z, S∗`m(j)m(j)∗S`〉(`,j).

and its restriction A|Tδ(Cd×d) to our subspace.

In the noisy setting:

Step 1: Estimate Tδ(xx
∗) by Cost: O(d · δ3 + δ · d log d) flops

Z = Tδ(Z) :=
(
A|−1

Tδ(Cd×d)

y

2

)
+
(
A|−1

Tδ(Cd×d)

y

2

)∗
.

Step 2: Estimate the phase by computing the leading eigenvector

of Tδ
(
Z
|Z|

)
. Cost: O(δ2 · d log d) flops

Step 3: Combine phase with
√
· of diagonal entries of Tδ(Z) to

estimate x. Total Cost: O(δ2 · d log d+ d · δ3) flops
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Well-Conditioned Linear Systems

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask (m(i)) as follows:

(m(i))` =

{
e
−`/a

4√2δ−1 · e
2πi·i·`
2δ−1 , ` ≤ δ

0, ` > δ
,

a := max
{

4, δ−12
}
,

i = 1, 2, . . . , N.

Then, the resulting system matrix for the phase differences (step 1),
A|Tδ , has condition number

κ(A|Tδ) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

• Deterministic (windowed DFT-type) measurement masks!

• δ is typically chosen to be c log2 d with c small (2–3).

• Extensions: oversampling, random masks . . . .
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Well-Conditioned Linear Systems

Mask Construction II (Iwen, Preskitt, Saab, V. 2016)

Choose entries of the measurement mask (mi) as follows:
For i = 1, 2, . . . , δ − 1

m1 = e1

m2i = e1 + ei+1

m2i+1 = e1 − iei+1

Then, the resulting system matrix for the phase differences, M ′, has
condition number

κ(M ′) < cδ.
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Recovery Guarantee

Theorem (Iwen, Preskitt, Saab, V. 2016)

Let xmin := minj |xj | be the smallest magnitude of any entry in x.
Then, the estimate z produced by the proposed algorithm satisfies

min
θ∈[0,2π]

∥∥x− eiθz∥∥
2
≤ C

(
‖x‖∞
x2min

)(
d

δ

)2

κ‖η‖2 + Cd
1
4

√
κ‖η‖2,

where C ∈ R+ is an absolute universal constant.

• This result yields a deterministic recovery result for any signal x
which contains no zero entries.

• A randomized result can be derived for arbitrary x by right
multiplying the signal x with a random “flattening” matrix.
(this is also useful for performing sparse phase retrieval!)
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Main Elements of the Proof

1 Well-conditioned measurements:

• Linear system for the lifted variables is block-circulant

• Bound condition number of each block to find κ.

2 (Reconstruction error) ≈ (Phase error) + (Magnitude error)

• Magnitude error (second term in error guarantee) – follows from
error in inverting linear system for lifted variables

• Phase error (first term in error guarantee) – evaluate eigenvalue gap
+ Cheeger inequality of [Bandeira et al. 2013] + adaptation of proof
method from [Alexeev et al. 2014]

Note: Bound not optimized; for example, magnitude estimation can be
improved!
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Efficiency – FFT–time phase retrieval

10 1 10 2 10 3 10 4 10 5
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O(d log2 d)
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Robustness to Measurement Errors
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Robustness to Measurement Errors
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Reconstruction Error vs. No. of Measurements
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Local vs Global Measurements
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Summary and Current/Future Research Directions

Today

• Phase retrieval is an immensely challenging problem seen in
important applications such as x-ray crystallography.

• Proposed mathematical framework: Essentially linear-time robust
phase retrieval from deterministic local correlation measurement
constructions with rigorous recovery guarantee.

Current and Future Directions

• More robust measurement constructions

• Compressive phase retrieval

• Extensions to 2D and Ptychographic datasets

• Continuous problem formulation
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Extension – 2D Phase Retrieval
• Preliminary results for 2D masks with tensor product structure

• Results from 1D extend to 2D; 2D linear system is a tensor product
of the 1D linear system (up to row permutations)

• Eigenvector-based phase synchronization also works – calculation of
spectral gap and error analysis pending

Test Image (256× 256 pixels) Recon. (Rel. error 2.857× 10−16)
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Extension – Compressive Phase Retrieval

Model find x ∈ Cd given |Mx|2 + n = y ∈ RD

where x is k-sparse, with k � d,

| · | is entry-wise absolute value, and

M is a measurement matrix.

Measurement Design Assume M = PC where

P ∈ CD×d̃ is an admissible phase retrieval matrix with an associated

recovery algorithm ΦP : RD → Cd̃, and

C ∈ Cd̃×d is an admissible compressive sensing matrix with an

associated recovery algorithm ∆C : Cd̃ → Cd.

Recovery Algorithm (Two-stage) ∆C ◦ ΦP : RD → Cd

Performance Metrics No. of measurements required is O(k ln(d/k))

Computational cost (sub-linear) is O(k lnc k ln d)
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Pubs./Preprints/Code (see www-personal.umich.edu/~adityavv)

M. Iwen, B. Preskitt, R. Saab and A. Viswanathan. “Phase Retrieval from

Local Measurements: Improved Robustness via Eigenvector-Based Angular

Synchronization.” arXiv:1612.01182, 2016.

M. Iwen, A. Viswanathan, and Y. Wang. “Fast Phase Retrieval from Local

Correlation Measurements.” SIAM J. Imag. Sci., Vol. 9(4), pp. 1655–1688,

Oct. 2016.

Compressive Phase Retrieval
M. Iwen, A. Viswanathan, and Y. Wang. “Robust Sparse Phase Retrieval Made

Easy.” Appl. Comput. Harmon. Anal., Vol. 42(1), pp. 135–142, Jan. 2017.

2D Phase Retrieval
Mark Iwen, Brian Preskitt, Rayan Saab and A. Viswanathan. “Phase Retrieval

from Local Measurements in Two Dimensions.”, Proc. SPIE 10394, Wavelets

and Sparsity XVII, 103940X, Aug. 2017.

Code https://bitbucket.org/charms/{blockpr,sparsepr}
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Questions?
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