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Model Problem

Let f be defined in R with support in [—7, 7). Given
f(wk’):<faeiwkm>v k:_Na"'aN7

(wg not necessarily € Z)

compute
e an approximation to the underlying function f,

e an approximation to the locations and values of jumps in the
underlying function; i.e.,
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Motivating Application — Magnetic Resonance Imaging

t: Homer J. Simpson

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application — Magnetic Resonance Imaging
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e Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.
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Challenges in Non-Uniform Reconstruction

e Computational Issues

e The DFT is not defined for wy # k; the FFT is not directly
applicable.
e Direct versus iterative solvers

e Sampling Issues
Typical MR sampling patterns have non uniform sampling
density; i.e., the high modes are sparsely sampled
(lwk — k| > 1 for k large).
o Other Issues
Piecewise-smooth functions and Gibbs artifacts
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Outline

2 Non-Uniform Fourier Reconstruction
Harmonic Fourier Reconstruction — A Review
Non-Uniform Fourier Reconstruction
Non-Uniform FFTs and Convolutional Gridding
Characterizing Non-Uniform Fourier Reconstructions
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Harmonic Fourier Reconstruction — A Review

Given ) '
fk::<f7elkx>7 k:_Na"'7N7

a periodic repetition of f may be reconstructed using the discrete
partial sum
_ s ik
fi= 2 Jee™™,
|k|<N

where x; denotes the equispaced grid points
rj=-n+j@2n/N), j=0,...,N—-1

e The discrete sum may be interpreted as a (trapezoidal)
quadrature approximation of the inverse Fourier integral.

e The discrete Fourier sum may be evaluated efficiently using
the FFT.
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The Dirichlet Kernel — A Review

The approximation properties of the reconstruction may be
described in terms of the Dirichlet kernel, since

Pyf(x) = fue™ = (f* Dn)(2),

|k|<N

where

— § : e’Lk(E

KI<N

e Dy is the bandlimited (2N + 1 mode) approximation of the
Dirac delta distribution.

e Dy completely characterizes the Fourier approximation Py f.

o Filtered and jump approximations are similarly characterized

by equivalent filtered and (filtered) conjugate Dirichlet kernels.
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The Dirichlet Kernel — A Review
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Non-Uniform Fourier Reconstruction

Extending the quadrature interpretation to the case of non-uniform
Fourier modes, consider the non-uniform sum

fJ: Z ak‘f(wk>€iwk$jv jZOa'-'aN_]-a
|k|<N

where aj, could be quadrature weights corresponding to a
non-uniform trapezoidal quadrature rule.

e In the MR imaging community, these are referred to as density
compensation factors (DCFs).

e For a suitable set of DCFs, the reconstruction procedure
involves computing the above non-uniform sum efficiently
(using, for example, a non-uniform FFT).
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Non-Uniform FFTs (Kunis,Potts/Fessler/Dutt,Rokhlin .. .)

e Non-uniform FFTs (NFFTs) allow for the efficient
computation of trigonometric polynomials involving
non-uniform nodes and/or modes.

e They have a computational cost of O(N log N + M), where
N is the number of nodes and M is the number of modes.

e Most variants of the NFFT involve the use of an oversampled
FFT and a window function which is simultaneously localized
in time/space and frequency.

e deconvolve the trigonometric polynomial with the window
function in physical space

e compute an oversampled FFT

e convolve with the window function in Fourier space and
evaluate this convolution at the non-uniform modes.
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The Non-Uniform Kernel

We may express the non-uniform sum as

Tnf(z) = Z o f(wi)e™ ™ = (f « Ay)(z), with

[k|<N

An(x) = Z e R

lk|<N

e Ay is the kernel associated with the non-uniform modes wy,.

e Choice of oy, as well as the Fourier modes wy, determine the
resolution properties of the kernel.
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The Non-Uniform Kernel

Mon-Harmaonic Kernel
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The Non-Uniform Kernel

Mon-Harmonic Kernel
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Outline

3 Designing Non-Uniform Reconstruction Kernels
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Designing Non-Uniform Reconstruction Kernels

o Recall that the non-uniform reconstruction is characterized by
the non-harmonic kernel

AN (z) = Z e,

<N

e oy, are free design parameters which we choose such that A%,
is compactly supported and a good reconstruction kernel
(such as the Dirichlet kernel) in the interval of interest.
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Design Problem — Formulation

Choose o = {ay,}Vy such that

WL T Z eléx ‘Z” =T
Y e xS
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,

where

e D;; = ™% denotes the (non-harmonic) DFT matrix, and
sin(M+1/2)xy,
sin(xzp/2)
the equispaced grid.

e b, = - II are the values of the Dirichlet kernel on
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Design Problem — Formulation

Choose o = {ay,}Vy such that

‘ g o™ x| <7
D ke R Qi<
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,
where
e D;; = ™% denotes the (non-harmonic) DFT matrix, and

e b, are the values of the (filtered) Dirichlet kernel on the
equispaced grid.
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Numerical Results

Reconstruction

Functien and Approximations in Physical Space -trapezoidalWgts
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e wy, logarithmically spaced
e N = 256 measurements

e |terative weights solved using LSQR
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Numerical Results

Reconstruction Error

o Pointwise Error in Physical Space -trape zoidalWets

o Pointwise Error in Physical Space -12optimal

e wi, logarithmically spaced
e N = 256 measurements

e |terative weights solved using LSQR
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Numerical Results

DCF weights «
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o wy logarithmically spaced
e N = 256 measurements

e |terative weights solved using LSQR
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4 Edge Detection
Concentration Method
Design of Non-Harmonic Edge Detection Kernels
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Concentration Method (Gelb, Tadmor)

e Approximate the singular support of f using the generalized
conjugate partial Fourier sum

) =1 Z F(k)sgn(k <|]I\€/J> eike

e opnN(n) = (| |) are known as concentration factors which
are required to satisfy certain admissibility conditions.

e Under these conditions,

S (x) = [fl(z) + O(e), €=¢€(N)> 0 being small

i.e., S{[f] concentrates at the singular support of f.
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Concentration Factors

Factor Expression
Trigonometric UT(n) = W
a s
Si(a) :/ sin(z) dx
0 X
Polynomial op(n)=—-prn?

p is the order of the factor

Exponential | og(n) = Cnexp { L J

an(n—1)
C - normalizing constant
« - order
C= T x

fi_w exp [ﬁ} dr

Table: Examples of concentration factors

Caoncantration Faclors

Figure:
Envelopes of Factors in k-space
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Some Examples

(a) Trigonometric Factor (b) Exponential Factor

Figure: Jump Function Approximation, N = 128

14 /16



Designing Non-Harmonic Edge Detection Kernels

Choose o = {ay,}Vy such that

. i Y sgn(o(|I[/N)e™ o] <7
D ke A ji<n
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,
where
e D;; = ™% denotes the (non-harmonic) DFT matrix, and

. Bp are the values of the generalized conjugate Dirichlet kernel
on the equispaced grid.
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Numerical Results

Jump Approximation and Corresponding Weights

Jump Furction Approximation in Physical Spacs -I2optimak-Jump
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Summary and Future Directions

1 Applications such as MR imaging require reconstruction from
non-harmonic Fourier measurements.

2 Direct methods such as convolutional gridding are still of
interest to the MR community.

3 A set of free parameters known as the density compensation
factors (DCFs) allow us to design non-uniform reconstruction
kernels with favorable characteristics.

4 To do — compare results with frame theoretic approaches, use
banded DCFs to obtain better gridding approximations.
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