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Model Problem

Let f be defined in R with support in [−π, π). Given

f̂(ωk) =
〈
f, eiωkx

〉
, k = −N, · · · , N,

(ωk not necessarily ∈ Z)

compute

• an approximation to the underlying function f ,

• an approximation to the locations and values of jumps in the
underlying function; i.e.,

[f ](x) := f(x+)− f(x−).
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Motivating Application – Magnetic Resonance Imaging

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application – Magnetic Resonance Imaging

• Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.
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Challenges in Non-Uniform Reconstruction

• Computational Issues

• The DFT is not defined for ωk 6= k; the FFT is not directly
applicable.

• Direct versus iterative solvers

• Sampling Issues
Typical MR sampling patterns have non uniform sampling
density; i.e., the high modes are sparsely sampled
(|ωk − k| > 1 for k large).

• Other Issues
Piecewise-smooth functions and Gibbs artifacts
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Harmonic Fourier Reconstruction – A Review

Given
f̂k :=

〈
f, eikx

〉
, k = −N, · · · , N,

a periodic repetition of f may be reconstructed using the discrete
partial sum

f̄j =
∑
|k|≤N

f̂ke
ikxj ,

where xj denotes the equispaced grid points

xj = −π + j (2π/N) , j = 0, . . . , N − 1.

• The discrete sum may be interpreted as a (trapezoidal)
quadrature approximation of the inverse Fourier integral.

• The discrete Fourier sum may be evaluated efficiently using
the FFT.

4 / 16



The Dirichlet Kernel – A Review

The approximation properties of the reconstruction may be
described in terms of the Dirichlet kernel, since

PNf(x) =
∑
|k|≤N

f̂ke
ikx = (f ∗DN )(x),

where
DN (x) =

∑
|k|≤N

eikx.

• DN is the bandlimited (2N + 1 mode) approximation of the
Dirac delta distribution.

• DN completely characterizes the Fourier approximation PNf .

• Filtered and jump approximations are similarly characterized
by equivalent filtered and (filtered) conjugate Dirichlet kernels.
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The Dirichlet Kernel – A Review
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Non-Uniform Fourier Reconstruction

Extending the quadrature interpretation to the case of non-uniform
Fourier modes, consider the non-uniform sum

f̄j =
∑
|k|≤N

αkf̂(ωk)e
iωkxj , j = 0, . . . , N − 1,

where αk could be quadrature weights corresponding to a
non-uniform trapezoidal quadrature rule.

• In the MR imaging community, these are referred to as density
compensation factors (DCFs).

• For a suitable set of DCFs, the reconstruction procedure
involves computing the above non-uniform sum efficiently
(using, for example, a non-uniform FFT).
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Non-Uniform FFTs (Kunis,Potts/Fessler/Dutt,Rokhlin . . . )

• Non-uniform FFTs (NFFTs) allow for the efficient
computation of trigonometric polynomials involving
non-uniform nodes and/or modes.

• They have a computational cost of O(N logN +M), where
N is the number of nodes and M is the number of modes.

• Most variants of the NFFT involve the use of an oversampled
FFT and a window function which is simultaneously localized
in time/space and frequency.

• deconvolve the trigonometric polynomial with the window
function in physical space

• compute an oversampled FFT
• convolve with the window function in Fourier space and

evaluate this convolution at the non-uniform modes.
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The Non-Uniform Kernel

We may express the non-uniform sum as

TNf(x) =
∑
|k|≤N

αkf̂(ωk)e
iωkx = (f ∗AN )(x), with

AN (x) =
∑
|k|≤N

αke
iωkx.

• AN is the kernel associated with the non-uniform modes ωk.

• Choice of αk as well as the Fourier modes ωk determine the
resolution properties of the kernel.
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The Non-Uniform Kernel

Jittered Modes

ωk = k ± U [0, µ], µ = 1.5
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The Non-Uniform Kernel

Log Modes
ωk logarithmically spaced
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Designing Non-Uniform Reconstruction Kernels

• Recall that the non-uniform reconstruction is characterized by
the non-harmonic kernel

AαN (x) =
∑
|k|≤N

αke
iωkx.

• αk are free design parameters which we choose such that AαN
is compactly supported and a good reconstruction kernel
(such as the Dirichlet kernel) in the interval of interest.
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Design Problem – Formulation

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈


∑
|`|≤M

ei`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b,

where

• D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

• bp =
sin(M+1/2)xp

sin(xp/2)
·Π are the values of the Dirichlet kernel on

the equispaced grid.
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Design Problem – Formulation

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈


∑
|`|≤M

σ`e
i`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b,

where

• D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

• bp are the values of the (filtered) Dirichlet kernel on the
equispaced grid.
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Numerical Results

Reconstruction

• ωk logarithmically spaced

• N = 256 measurements

• Iterative weights solved using LSQR
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Numerical Results

Reconstruction Error

• ωk logarithmically spaced

• N = 256 measurements

• Iterative weights solved using LSQR
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Numerical Results

DCF weights α

• ωk logarithmically spaced

• N = 256 measurements

• Iterative weights solved using LSQR
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Concentration Method (Gelb, Tadmor)

• Approximate the singular support of f using the generalized
conjugate partial Fourier sum

SσN [f ](x) = i

N∑
k=−N

f̂(k) sgn(k)σ

(
|k|
N

)
eikx

• σk,N (η) = σ( |k|N ) are known as concentration factors which
are required to satisfy certain admissibility conditions.

• Under these conditions,

SσN [f ](x) = [f ](x) +O(ε), ε = ε(N) > 0 being small

i.e., SσN [f ] concentrates at the singular support of f .
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Concentration Factors

Factor Expression

Trigonometric σT (η) =
π sin(αη)

Si(α)

Si(α) =

∫ α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σE(η) = Cη exp
[

1
αη (η−1)

]
C - normalizing constant

α - order
C = π∫ 1− 1

N
1
N

exp
[

1
α τ (τ−1)

]
dτ

Table: Examples of concentration factors

Figure:
Envelopes of Factors in k-space
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Some Examples
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(b) Exponential Factor

Figure: Jump Function Approximation, N = 128
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Designing Non-Harmonic Edge Detection Kernels

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈

 i
∑
|`|≤M

sgn(l)σ(|l|/N)ei`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b̃,

where

• D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

• b̃p are the values of the generalized conjugate Dirichlet kernel
on the equispaced grid.
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Numerical Results

Jump Approximation and Corresponding Weights

• ωk logarithmically spaced

• N = 256 measurements

• Iterative weights solved using LSQR
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Summary and Future Directions

1 Applications such as MR imaging require reconstruction from
non-harmonic Fourier measurements.

2 Direct methods such as convolutional gridding are still of
interest to the MR community.

3 A set of free parameters known as the density compensation
factors (DCFs) allow us to design non-uniform reconstruction
kernels with favorable characteristics.

4 To do – compare results with frame theoretic approaches, use
banded DCFs to obtain better gridding approximations.
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