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The Phase Retrieval Problem

The finite dimensional phase retrieval problem may be written as:
find x ∈ Cd given |Mx| = b ∈ RD,

where
• b ∈ RD are the magnitude or intensity measurements.
•M ∈ CD×d is a measurement matrix associated with these measurements.

Let A : RD → Cd denote the recovery method. The phase retrieval problem involves
designing measurement matrix and recovery method pairs.

Typical objectives in designing phase retrieval algorithms:
•Computational Efficiency – Can the recovery algorithm A be computed in
O(d)-time?
•Computational Robustness: The recovery algorithm, A, should be robust to
additive measurement errors (i.e., noise).
•Minimal Measurements: The number of linear measurements, D, should be
minimized to the greatest extent possible.

Important applications of phase retrieval include X-ray crystallography, diffraction imag-
ing and transmission electron microscopy (TEM).
In these (and many other molecular imaging applications), the underlying physics or in-
strumentation constraints mean that the detectors only capture intensity measurements.

Why is Phase Important?

Existing Methods

Two popular classes of methods for phase retrieval are

1 Greedy Alternating Projection Methods, [1]
• Operate by alternately projecting the current iterate of the signal over two sets of constraints.
• One of the constraints is the magnitude of the measurements.
• The other constraint depends on the application – positivity, support constraints, . . .
• Efficient to implement, but convergence is slow.

2 Methods Employing Semi-Definite Programming (SDP), [2–3]
• Representative example is the PhaseLift formulation.
• Modify the problem to that of finding the rank-1 matrix X = xx∗

• Use multiple random illuminations or masks; if w denotes a mask, measurements are of the form
|〈w,x〉|2 = Tr(x∗ww∗x)

• The phase recovery problem may be formulated as a trace minimization SDP.

Phase Retrieval Using Compactly–Supported Masks

1 Obtain phase differences using correlation measurements
|corr(wm,x)| −→ xjxj+k, k = 0, . . . , δ, m = 0, . . . , L

• w is a mask or window function with δ + 1 non-zero entries.
•L + 1 distinct masks are used.
• xjxj+k gives us the (scaled) difference in phase between entries xj and xj+k.
• Setting Zn,l := xnxn+l, −δ ≤ l ≤ δ, we may write:
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• Ordering {Zn,l} lexicographically, second index first, we obtain a linear system of equations.
• Example: for x ∈ R4, δ = 1, L = 1, we obtain:
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• The system matrix is block circulant, with the blocks indicated by dashed lines.
• There are only δ + 1 non-zero blocks (2δ + 1 in the complex case).
• Block circulant structure allows for efficient FFT implementations.
• Deterministic (and random) prescriptions for masks available. For example
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• System matrix can be shown to be well conditioned.

2 Solve an angular synchronization problem on the phase differences to obtain the
unknown signal.

xjxj+k −→ xj

By definition, |xj|2 = Zi,i, i = 0, . . . , d− 1. The unknown phases (modulo a global
phase offset) may be obtained by solving a simple greedy algorithm.

• Set the largest magnitude component to have zero phase angle; i.e.,
∠xj = 0, j = argmax

i
Zi,i.

• Use this entry to set the phase angles of the next δ entries; i.e.,
∠xk = ∠xj − ∠Zj,k, k = 1, . . . , δ.

• Use the largest magnitude component from these δ entries to repeat the process.
Finally, a few iterations of an alternating projections algorithm may be used to
post-process the resulting solution.

Numerical Results and Discussion

•Left panel figure shows execution time as a function of problem dimension. The
overall execution time is O (d log d). This figure was generated using δ = 8, L = 17,
deterministic masks and no added noise.
•The right panel illustrates robustness in the presence of noise. Also plotted for
comparison is the SDP-based PhaseCut ([3]) result. The problem size is d = 64.
•Our reconstruction algorithm requires a small number of additional measurements
(2×–4×) while being several orders of magnitude faster than SDP-based methods.
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