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The Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• b ∈ RD are the magnitude or intensity measurements.

• M ∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.

Note: We are interested in recovering the signal modulo trivial
ambiguities such as multiplication by a unimodular constant.
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Applications of Phase Retrieval

Important applications of Phase Retrieval

• X-ray crystallography

• Diffraction imaging

• Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.

Indeed, the design of such detectors is often significantly simpler
than those that capture phase information.
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The Importance of Phase – An Illustration

• The phase encapsulates vital information about a signal

• Key features of the signal are retained even if the magnitude
is lost
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The Importance of Phase – An Illustration
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The Importance of Phase – An Illustration
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Objectives

• Computational Efficiency – Can the recovery algorithm A be
computed in O(d)-time?

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Alternating Projection Methods

• These methods operate by alternately projecting the current
iterate of the signal estimate over two sets of constraints.

• One of the constraints is the magnitude of the measurements.

• The other constraint depends on the application – positivity,
support constraints, . . .
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Gerchberg – Saxton Algorithm

• Oversampled Fourier magnitude measurements {b[ω]}ω∈Ω

• Known support T (supp(x) ⊂ T )

1 Choose initial guess x0. Set

ŷ0[ω] = b[ω] · x̂0[ω]

|x̂0[ω]|

2 For k = 1, 2, . . .

xk[t] =

{
(F−1ŷk−1)[t] t ∈ T

0 else

ŷk[ω] = b[ω] · x̂k[ω]

|x̂k[ω]|
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Gerchberg – Saxton Algorithm

• Convergence is slow – the algorithm is likely to stagnate at
stationary points

• Requires careful selection of and tuning of the parameters

• Mathematical aspects of the algorithm not well known. If
there is proof of convergence, it is only for special cases.
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PhaseLift

• Modify the problem to that of finding the rank-1 matrix
X = xx∗

• Let wm be a mask. Then the measurements may be written
as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(AmX).

• Let A be the linear operator mapping positive semidefinite
matrices into {Tr(AmX) : k = 0, . . . , L}.

• The phase retrieval problem then becomes

find X

subject to
A(X) = b
X � 0
rank(X) = 1
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• Unfortunately, this problem is NP hard!
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PhaseLift

• Modify the problem to that of finding the rank-1 matrix
X = xx∗

• Let wm be a mask. Then the measurements may be written
as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(AmX).

• Let A be the linear operator mapping positive semidefinite
matrices into {Tr(AmX) : k = 0, . . . , L}.

• Use the convex relaxation

minimize trace(X)

subject to
A(X) = b
X � 0

• Implemented using a semidefinite program (SDP).
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Overview of the Computational Framework

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)| −→ xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k −→ xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)
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Correlations with Support-Limited Functions

• Let x = [x0 x1 . . . xd−1]T ∈ Cd be the unknown signal.

• Let w = [w0 w1 . . . wδ 0 . . . 0]T denote a support-limited
mask. It has δ + 1 non-zero entries.

• Define the shift operator

τ(x) = [xd−1 x0 x1 . . . xd−2]T

vk = τk(w) denotes a (circular) k-shift of the mask.

• Then, the entries of corr(w,x) are given by

〈vk,x〉 , k = 0, . . . , d− 1.
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Correlation Measurements

Now consider the correlation measurements

|〈vmk ,x〉| = bmk , k = 0, . . . , d− 1, m = 0, . . . , L.

Here, L+ 1 distinct masks are used.

We have

(bmk )2 = |〈vmk ,x〉|
2 =

∣∣∣〈τk(wm),x
〉∣∣∣2 =

∣∣∣∣∣∣
δ∑
j=0

wmj · xk+j

∣∣∣∣∣∣
2

=

δ∑
i,j=0

wmi w
m
j xk+jxk+i =:

δ∑
i,j=0

wiwjZk+j,i−j

where Zn,l := xnxn+l, −δ ≤ l ≤ δ.
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Solving for Phase Differences
Ordering {Zn,l} lexicographically, second index first, we obtain a
linear system of equations.

Example: x ∈ Rd, d = 4, δ = 1
System Matrix

(w0
0)2 2w0

0w
0
1 (w0

1)2 0 0 0 0 0
0 0 (w0

0)2 2w0
0w

0
1 (w0

1)2 0 0 0
0 0 0 0 (w0

0)2 2w0
0w

0
1 (w0

1)2 0
(w0

1)2 0 0 0 0 0 2w0
0w

0
1 (w0

1)2

(w1
0)2 2w1

0w
1
1 (w1

1)2 0 0 0 0 0
0 0 (w1

0)2 2w1
0w

1
1 (w1

1)2 0 0 0
0 0 0 0 (w1

0)2 2w1
0w

1
1 (w1

1)2 0
(w1

1)2 0 0 0 0 0 2w1
0w

1
1 (w1

1)2


Unknowns: [Z0,0 Z0,1 Z1,0 Z1,1 Z2,0 Z2,1 Z3,0 Z3,1]T

Measurements:
[
b00 b

0
1 b

0
2 b

0
3 b

1
0 b

1
1 b

1
2 b

1
3

]T
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Angular Synchronization

Re-ordering the phase difference variables {Zn,l}, we obtain entries
of the rank-1 matrix xxT along a band.


|x0|2 x0x1 . . . x0xδ 0 0 0

0 |x1|2 x1x2 . . . x1xδ+1 0 0
. . . . . . . . .

. . . . . . . . .
xd−1x0 . . . xd−1xδ−1 . . . . . . . . . |xd−1|2


• The magnitudes of each component of the signal can be

estimated from the diagonal entries.

• The phase of each entry can be computed as the phase of the
leading eigenvector of this matrix.

• A few iterations of least-squares can also be performed to
correct for magnitude errors on the diagonal entries.
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Block Circulant Matrices

Rewriting the system matrix from before,

(w0
0)2 2w0

0w
0
1 (w0

1)2 0 0 0 0 0
(w1

0)2 2w1
0w

1
1 (w1

1)2 0 0 0 0 0
0 0 (w0

0)2 2w0
0w

0
1 (w0

1)2 0 0 0
0 0 (w1

0)2 2w1
0w

1
1 (w1

1)2 0 0 0
0 0 0 0 (w0

0)2 2w0
0w

0
1 (w0

1)2 0
0 0 0 0 (w1

0)2 2w1
0w

1
1 (w1

1)2 0
(w0

1)2 0 0 0 0 0 2w0
0w

0
1 (w0

1)2

(w1
1)2 0 0 0 0 0 2w1

0w
1
1 (w1

1)2


This a block circulant matrix.
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Spectral Properties of Block Circulant Matrices

Consider the block circulant matrix

M =


A0 A1 . . . . . . . . . Ad−1

Ad−1 A0 . . . . . . . . . Ad−2
...

...
...

...
...

...
...

...
...

...
...

...
A1 A2 . . . . . . . . . A0


• Here, Ak ∈Mp×q(C) are the constituent blocks.

• We are interested in the singular values of M , and, in
particular, the condition number of M .
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A Simple Reduction

Let ωd = e2πi/d be the primitive n-th root of unity.
Denote τk := ωkd , k = 0, 1, . . . , n− 1. Then

Un,r =
1√
n


Ir Ir . . . . . . . . . Ir
Ir τ1Ir . . . . . . . . . τd−1Ir
...

...
...

...
...

...
...

...
...

...
...

...

Ir τd−1
1 Ir . . . . . . . . . τd−1

d−1 Ir

 , r ≥ 1

is unitary. Moreover, we can easily show that

U∗d,p M Ud,q = block-diag [J(1), J(τ1), . . . , J(τd−1)] ,

where J(t) := A0 + tA1 + · · ·+ tn−1Ad−1.
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FFT Implementation

• The unitary matrix Ud,r in the previous reduction can be
efficiently computed using r FFTs.

• Therefore, the linear system for the phase differences {Zn,l}
can be solved using FFTs in conjunction with a block diagonal
solve.

• Operation count is

(δ + 1)O(d log d)︸ ︷︷ ︸
to evaluate Ud,q

+ (L+ 1)O(d log d)︸ ︷︷ ︸
to evaluate U∗

d,p

+O ((δ + 1)(L+ 1)d)︸ ︷︷ ︸
block-diagonal solve

• δ + 1 is the number of non-zero entries in a mask
• L+ 1 is the number of masks used
• Typical values for δ and L are 8 and 12 respectively.
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Singular Value Decomposition

Assume that for each t ∈ C the SVD of J(t) is given by

Q(t) diagp×q [σ1(t), . . . , σr(t)] R(t), r = min(p, q)

where Q(t) is p× p and unitary, R(t) is q × q and unitary, and

diag [c1, c2, . . . , cr] =


[diag [c1, c2, . . . , cr] 0] , q ≥ p[

diag [c1, c2, . . . , cr]
0

]
, q < p.

Then, we have the following theorem
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Singular Value Decomposition

Theorem 1

M has the following singular value decomposition

M = Q Ud,p D U∗d,q R
∗,

where
Q = block-diag [Q(1), Q(τ1), . . . , Q(τd−1)] ,

R = block-diag [R(1), R(τ1), . . . , R(τd−1)] ,

D = block-diag
[
diagp×q (σ1(1), . . . , σr(1)) , . . . ,

. . . diagp×q (σ1(τn−1), . . . , σr(τd−1))
]
.

Remark: D is in fact not true diagonal if p 6= q. The true SVD will
require permutations to make D a diagonal matrix. But this is just
academic.

17 / 27



Singular Value Decomposition

Corollary 1

The singular values of M are

ΣM = {σj(τk) : 1 ≤ j ≤ min(p, q), 0 ≤ k ≤ d− 1} .

The condition number of M when p ≥ q is

C =
max (ΣM )

min (ΣM )
.

Corollary 2

Let σ1(t) ≥ σ2(t) ≥ · · · ≥ σq(t) be the singular values of J(t). Let

σ∗1 = max
t∈C,|t|=1

σ1(t), σ∗q = min
t∈C,|t|=1

σq(t).

Then the condition number C of M is

C ≤ σ∗1/σ∗q
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Block Circulant Matrices – Banded Case

• Of particular interest is the case with Ak = 0 for k > L.
Assuming that A0, . . . , AL are given and fixed (the size d may
vary), the condition number of M is (assuming p ≥ q)

max
k

σ1(τk)

min
k

σq(τk)

• Since τk = ωkd , 0 ≤ k ≤ d− 1, as d→∞, the set {τk}
becomes increasingly dense on |z| = 1.

• Now, σ1(t), σq(t) are that largest and smallest singular values
of J(t) = A0 + tA1 + · · ·+ tL−1AL, and they are continuous
functions of t.
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Condition Number

• In the banded case, the condition number of M is
asymptotically

max
|t|=1

σ1(t)

min
|t|=1

σq(t)
as d becomes large.

Representative Condition Numbers

q = 3 q = 6 q = 9

p = q 34.89 124.05 465.32

p = 2q 3.73 11.73 13.30

p = 3q 3.29 6.08 8.60
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Angular Synchronization

The Angular Synchronization Problem
Estimate n unknown angles θ1, θ2, . . . , θn ∈ [0, 2π) from m noisy
measurements of their differences θij := θi − θj mod 2π.

• Applications include time synchronization in distributed
computer networks and computer vision.

• Problem formulation similar to that of partitioning a weighted
graph.

• Problem can be cast as a semidefinite program (SDP).

• There also exists an eigen-problem formulation.
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The Eigenvector Method (Singer, 2011)

Let S be the {i, j} indices for which the phase angle differences
are known. Start with the n× n matrix H

Hij =

{
eiθij {i, j} ∈ S

0 {i, j} /∈ S

Since θij = −θij , H is Hermitian. Now consider the maximization
problem

max
θ1,...,θn∈[0,2π)

n∑
i,j=1

e−iθiHije
iθj . (1)

Each correctly determined phase difference contributes

e−iθiei(θi−θj)eiθj = 1

to the sum.
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The Eigenvector Method (Singer, 2011)

Unfortunately, (1) is non-convex. Instead, we solve the following
relaxation

max
z1,...,zn∈C∑n
i=1 |zi|2=n

zi Hij zj .

i.e., max
||z||2=n

z∗ H z.

This is a quadratic maximization problem whose solution is the
leading eigenvector of H.
The phase angles are then given by

eıθ̂i =
v1(i)

|v1(i)|
, i = 1, . . . , n,

where v1 is the eigenvector corresponding to the largest eigenvalue
of H.
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Numerical Results

• Test signals – iid Gaussian, uniform random, sinusoidal signals

• Noise model
b̃ = b + ñ, ñ ∼ U [0, a].

Value of a determines SNR

SNR = 10 log10

(
noise power

signal power

)
= 10 log10

(
a2/3

||b||2/d

)
• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖2

‖x‖2

)
(x̂ – recovered signal, x – true signal)
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Noiseless Case

• iid Gaussian signal

• d = 128

• δ = 1
(2d measurements)

• No noise

• Reconstruction Error

‖x̂− x‖2

‖x‖2
= 1.214×10−16
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Efficiency
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Robustness

• iid Gaussian signal

• d = 256

• δ = 8

• oversampling factor – 1.5
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Robustness

• iid Gaussian signal

• d = 1024

• δ = 8

• oversampling factor – 1.5
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Robustness

• iid Gaussian signal

• d = 64

• 4d measurements

• (oversampling factor of
1.5 for our method)
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Current and Future Research Directions

• Use deterministic masks. This will also allow us to write out
the condition number explicitly.

• Efficient implementations for two dimensional signals.

• Extension to sparse signals – number of required
measurements can be reduced.

• Formulation and prescriptions for Fourier measurements –
convolutions, bandlimited window/mask functions.
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