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Introduction Motivation

Why do we need edge data?

Solve PDE’s with shocks more
accurately.

Identify tissue boundaries in
medical images and segment them.

Reconstruct piecewise-analytic
functions from Fourier and other
spectral expansion coefficients with
uniform and exponential
convergence properties.
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Introduction Motivation

Application – Magnetic Resonance Imaging
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Figure: MR Imaginga

aSampling pattern courtesy Dr. Jim Pipe, Barrow Neurological Institute,
Phoenix, Arizona
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Introduction Problem Statement

Problem Statement

Objective: To recover location, magnitude and sign of jump discontinuities from a finite
number of spectral coefficients

Assumptions:

f is 2π-periodic and piecewise-smooth function in [−π, π).

Its jump function is defined as

[f ](x) := f(x+)− f(x−)

It has Fourier series coefficients

f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx , k ∈ [−N,N ]

A jump discontinuity is a local feature; i.e., the jump function at any point x only
depends on the values of f at x+ and x−. However, f̂ is a global representation; i.e.,
f̂(k) are obtained using values of f over the entire domain [−π, π).
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Concentration Method

Outline

1 Introduction
Motivation
Problem Statement

2 Jump detection using the Concentration method
The Concentration Method
Concentration Factors
Statistical Analysis of the Concentration Method
Iterative Formulations

3 Applications
PSF Estimation in Blurring Problems
Applications to Fourier Reconstruction
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Concentration Method The Concentration Method

Getting Jump Data from Fourier Coefficients

Let f contain a single jump at x = ζ.

f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx

=
1

2π

 Z ζ−

−π
f(x)e−ikxdx+

Z π

ζ+
f(x)e−ikxdx

!

=
1

2π

 
f(x)

e−ikx

−ik

˛̨̨̨ζ−
−π
−
Z ζ−

−π
f ′(x)

e−ikx

−ik dx

+ f(x)
e−ikx

−ik

˛̨̨̨π
ζ+
−
Z π

ζ+
f ′(x)

e−ikx

−ik dx

«

=
1

2π

 
f(ζ−)e−ikζ − f(−π)eikπ

−ik −
Z ζ−

−π
f ′(x)

e−ikx

−ik dx

+
f(π)e−ikπ − f(ζ+)e−ikζ

−ik −
Z π

ζ+
f ′(x)

e−ikx

−ik dx

«
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Concentration Method The Concentration Method

Getting Jump Data from Fourier Coefficients

f̂(k) =
1

2π

 
f(ζ−)e−ikζ − f(−π)eikπ

−ik −
Z ζ−

−π
f ′(x)

e−ikx

−ik dx

+
f(π)e−ikπ − f(ζ+)e−ikζ

−ik −
Z π

ζ+
f ′(x)
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«

=
`
f(ζ+)− f(ζ−)

´ e−ikζ
2πik

+
f(−π)eikπ − f(π)e−ikπ

2πik
+O

„
1

k2

«
Since f is periodic, f(−π) = f(π) and the second term vanishes.

f̂(k) = [f ](ζ)
e−ikζ
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„
1
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«
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Concentration Method The Concentration Method

Extracting Jump Information

Let us compute a ‘filtered’ partial Fourier sum of the form

SN [f ](x) =

NX
k=−N

„
iπk

N

«
f̂(k)eikx

SN [f ](x) =
NX

k=−N

„
iπk

N

«
f̂(k)eikx

=
NX

k=−N

„
iπk

N

«»
[f ](ζ)

e−ikζ

2πik
+O

„
1

k2

«–
eikx

= [f ](ζ)
1

2N

NX
k=−N

eik(x−ζ) +

NX
k=−N

O
„

1

k

«
eik(x−ζ)

First term is a scaled (by the jump value) Dirac delta localized at x = ζ (the jump
location)

The second term is a manifestation of the global nature of Fourier data
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Concentration Method The Concentration Method

Concentration Method (Gelb, Tadmor)

Generalized conjugate partial Fourier sum:

SσN [f ](x) = i

NX
k=−N

f̂(k) sgn(k)σ

„
|k|
N

«
eikx

where, σk,N (η) = σ( |k|
N

) are known as concentration factors. Concentration factors have
to satisfy certain properties in order to be admissible. These include,

1

NX
k=1

σ

„
k

N

«
sin(kx) be odd

2
σ(η)

η
∈ C2(0, 1)

3

Z 1

ε

σ(η)

η
→ −π, ε = ε(N) > 0 being small

Under these conditions, we have the following relation (concentration property)

SσN [f ](x) = [f ](x) +O(ε), ε = ε(N) > 0 being small
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Concentration Method The Concentration Method

Illustration of the Concentration Method
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Concentration Method Concentration Factors

Classical Concentration Factors

Factor Expression

Trigonometric σT (η) =
π sin(αη)

Si(α)

Si(α) =

Z α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σE(η) = C η exp

„
1

αη (η − 1)

«
C - normalizing constant; α - order

C =
πR 1− 1

N
1
N

exp
“

1
α τ (τ−1)

”
dτ

Table: Examples of concentration factors
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Concentration Method Concentration Factors

Concentration Factors - Visualization in Fourier Space
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Figure: Envelopes of the Concentration Factors in Fourier Space
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Concentration Method Concentration Factors

Concentration Factors - Typical Responses
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Figure: Characteristic Responses of the Concentration Factors to a Sawtooth Function
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Concentration Method Concentration Factors

Examples
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Figure: Jump Response, N = 128

For images, we apply the concentration
method to each dimension separately

SσN [f ](x(ȳ)) = i
NX

l=−N

sgn(l)σ

„
|l|
N

«

·
NX

k=−N

f̂k,l e
i(kx+lȳ)

where the overbar represents the
dimension held constant.
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NX

l=−N

sgn(l)σ

„
|l|
N

«

·
NX

k=−N

f̂k,l e
i(kx+lȳ)
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Concentration Method Concentration Factors
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Concentration Method Concentration Factors

Concentration Factor Design (Viswanathan, Gelb)

Choose a template function f , eg. the sawtooth function

f(x) =


x−π

2
x < 0

x+π
2

x > 0
[f ](x) =


−π x = 0
0 else

Design σ such that SσN [f ](x) = i
NX

k=−N

f̂(k) sgn(k)σ

„
|k|
N

«
eikx closely matches

[f ].

Typical problem formulation

min
σ

φ0(σ)

subject to φm(σ) = cm,

ψn(σ) ≤ cn

where cm, cn are constants and the objective and constraints are typically norm
measures or the conjugate partial sum evaluated at certain points/intervals in the
domain.
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Concentration Method Concentration Factors

Equivalence of Constraints and Admissibility Conditions

1

NX
k=1

σ

„
k

N

«
sin(kx) be odd ⇐⇒ conjugate kernel real, odd; hence

σ(−η) = σ(η) with σ(0) = 0.

2
σ(η)

η
∈ C2(0, 1) ⇐⇒ include ‖σ‖2 or similar smoothness

metric in objective.

3

Z 1

ε

σ(η)

η
→ −π, ε = ε(N) > 0 ⇐⇒ SσN [f ](ζ) = [f ](ζ)

ζ being a point of discontinuity.

(2) is not really an equivalence, but this turns out be practically inconsequential.
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Concentration Method Concentration Factors

Examples

Problem Formulation 1

min
σ

‖ [f ]− SσN [f ] ‖2

subject to SσN [f ](0) = −π

Problem Formulation 2

min
σ

‖ [f ]− SσN [f ] ‖1

subject to SσN [f ](0) = −π

Problem Formulation 3

min
σ

‖ [f ]− SσN [f ] ‖1

subject to SσN [f ](0) = −π
|SσN [f ](x)| ≤ 10−3, |x| ∈ (0.25, 3)
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Figure: Problem Formulation 1, N = 64
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Figure: Problem Formulation 2, N = 64
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Figure: Problem Formulation 3, N = 64
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Concentration Method Concentration Factors

The Missing Coefficient Problem

Let us assume that mid-range Fourier coefficients are missing (eg., modes |30− 40|
for N = 64).

Since the response and kernel are real, we assume that both f̂(±p) are missing.

Use of the standard concentration factors results in spurious oscillations in smooth
regions.
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(b) Response – Exponential factor

Figure: Jump approximation with Fourier modes |30− 40| missing, N = 64
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Concentration Method Concentration Factors

Design for Missing Spectral Coefficients

Choose a template function f , eg. the sawtooth function

f(x) =


x−π

2
x < 0

x+π
2

x > 0
[f ](x) =


−π x = 0
0 else

Explicitly set f̂(k)
˛̨̨
30≤|k|≤40

= 0.

Design σ such that SσN [f ](x) = i

NX
k=−N

f̂(k) sgn(k)σ

„
|k|
N

«
eikx closely matches

[f ].

Use the standard problem formulation

min
σ

φ0(σ)

subject to φm(σ) = cm,

ψn(σ) ≤ cn

where cm, cn are constants and the objective and constraints are typically norm
measures or the conjugate partial sum evaluated at certain points/intervals in the
domain.
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Concentration Method Concentration Factors

An Example

min
σ

‖ [f ]− SσN [f ] ‖1

subject to SσN [f ](0) = −π
σ(η) ≥ 0

|SσN [f ](x)| ≤ 10−3, |x| ∈ (0.25, 3)
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Figure: Jump detection with missing spectral data, N = 64
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Concentration Method Statistics

Edge detection in noisy data (Viswanathan, Cochran, Gelb, Cates)

Typically, building an edge detector out of the jump approximation requires
comparing the jump function SN [f ] against a threshold

However, the jump approximations have unique characteristics - mainlobe width,
sidelobe oscillations etc.

Under these circumstances, when deciding whether a point is an edge, it is
advantageous to take into consideration measurements in the vicinity of the point

In the presence of noise, we have to additionally weight the measurements by a
covariance matrix

The final form of the detector (assuming additive white Gaussian noise in Fourier
space) is a weighted inner product of the form

MTC−1
V Y > γ

where Y is the vector of noisy jump function measurements, M is a template or
jump response (noiseless) to a single step edge, CV is the covariance matrix and γ is
a threshold.
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Concentration Method Statistics

The Details

Assume zero-mean, additive complex white Gaussian noise

ĝ(k) = f̂(k) + v̂(k) v̂(k) ∼ N [0, ρ2]

Concentration method is linear, i.e., SσN [g](x) = SσN [f ](x) + SσN [v](x)

Mean: E [SσN [g](x) ] = SσN [f ](x)

Covariance: (Cv)xa,xb
p,q = ρ2

X
l

σp(
|l|
N

)σq(
|l|
N

)eil(xa−xb)

The detection problem is

H0 : Y = V ∼ N [0, CV]

H1 : Y = M + V ∼ N [M,CV]

Solve using Neyman-Pearson Lemma

→ H1 :
Pr(Y|H1)

Pr(Y|H0)
> γ

Detector is a generalized matched filter → H1 : MTC−1
V Y > γ

MTC−1
V M is the “SNR” metric and governs detector performance
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Concentration Method Statistics

A Representative Result
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Figure: Results - Edge Detection with Noisy Data, N = 128, ρ2 = 7.5, 3−point Trigonometric
detector

performs well with the exception of false alarms in the vicinity of an edge

false alarms can be addressed using statistical sidelobe mitigation methods

Use of multiple concentration factors is possible and indeed encouraged; we use
those combinations of concentration factors which yield high SNR
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Concentration Method Iterative Formulations

In Search of Precise Jump Locations (Stefan, Viswanathan, Gelb, Renaut)

Jump approximations using the concentration method are computed using a Fourier
partial sum.

Since the jump function is piecewise-analytic, this approximation suffers from
convergence issues.

In particular, the jump has a minimum, non-zero resolution and there are spurious
responses in smooth regions.

Non Linear Post-processing
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(b) Enhancement of scales

Figure: Non-linear post-processing of the jump approximation
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Concentration Method Iterative Formulations

Problem Formulation

In setting up our iterative formulations,

We will take inspiration from sparsity enforcing regularization routines and their
iterative solutions (Tadmor and Zou).

We will exploit the characteristic responses of the concentration factors in our
problem formulation.

We may write
SσN [f ](x) = (f ∗Kσ

N )(x) ≈ ([f ] ∗Wσ
N )(x)

SσN [f ] is the jump approximation computed using the concentration method and
concentration factor σ(η).

Wσ
N is the characteristic response to a unit jump using the concentration factor σ(η).

Iterative Problem Formulation

min
p

‖Wp− SN [f ] ‖22 + λ‖ p ‖1

where W is a Toeplitz matrix containing shifted replicates of the characteristic response.
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Concentration Method Iterative Formulations

Representative Examples
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Figure: Jump detection – Iterative Formulation (N = 40, Exponential factor)

Works well with even a small number of measurements

Works with missing coefficients and non-harmonic Fourier coefficients, i.e.,

f̂(ωk) :=
1

2π

Z π

−π
f(x)e−iωkxdx

Can be extended to blurred data (g = f ∗ h+ n) by modifying the problem
formulation

min
p

‖H ·W · p− SN [g] ‖22 + λ‖ p ‖1

where H is a Toeplitz matrix containing shifted replicates of the blur or psf.
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Figure: Jump detection – Iterative Formulation (N = 128, Exponential factor, Gaussian Blur)

Works well with even a small number of measurements

Works with missing coefficients and non-harmonic Fourier coefficients, i.e.,

f̂(ωk) :=
1

2π

Z π

−π
f(x)e−iωkxdx

Can be extended to blurred data (g = f ∗ h+ n) by modifying the problem
formulation

min
p

‖H ·W · p− SN [g] ‖22 + λ‖ p ‖1

where H is a Toeplitz matrix containing shifted replicates of the blur or psf.
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Applications

Outline

1 Introduction
Motivation
Problem Statement

2 Jump detection using the Concentration method
The Concentration Method
Concentration Factors
Statistical Analysis of the Concentration Method
Iterative Formulations

3 Applications
PSF Estimation in Blurring Problems
Applications to Fourier Reconstruction
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Applications PSF Estimation

Convolutional Blurring (Viswanathan, Stefan, Cochran, Gelb, Renaut)

Often, the input data we observe has been subjected to a distorting physical process
during measurement, transmission or instrumentation.

A large class of these distortions can be explained using a convolutional blurring
model.

Corrective actions often require an accurate estimate of the distortion or blur.

The convolutional blurring model can be written as

g = f ∗ h+ n

f is the true function

h is the blur or the point-spread function (psf)

n is noise

g is the observed function

Let f ∈ L2(−π, π) be piecewise-smooth. We estimate the psf starting with 2N + 1
blurred Fourier coefficients ĝ(k), k = −N, ..., N .
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Applications PSF Estimation

PSF Estimation using Edge Detection

Given the blurring model
g = f ∗ h+ n

Principle:
Apply a linear edge detector. We shall assume that the edge detector can be written as a
convolution with an appropriate kernel

SσN [g] = T (f ∗ h+ n)

= (f ∗ h+ n) ∗K
= f ∗ h ∗K + n ∗K
= (f ∗K) ∗ h+ n ∗K
≈ [f ] ∗ h+ ñ

Hence, we observe shifted and scaled replicates of the psf.
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Applications PSF Estimation

Example (No Noise)
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Figure: Function subjected to Gaussian blur, N = 128
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Applications PSF Estimation

Example (No Noise)
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Figure: Function subjected to motion blur, N = 128
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Applications PSF Estimation

Representative Examples
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(a) Noisy blur estimation
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(b) After low-pass filtering

Figure: Function subjected to Gaussian blur, N = 128

Noise distribution – n̂ ∼ CN (0, 1.5
(2N+1)2

)

Second picture subjected to low-pass (Gaussian) filtering

It is conceivable that the parameter estimation can take into account the effect of
Gaussian filtering
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Applications PSF Estimation

Representative Examples
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(b) After TV denoising

Figure: Function subjected to Motion blur, N = 128

Cannot perform conventional low-pass filtering since blur is piecewise-smooth

We compute the noisy blur estimate SN [g] ≈ [f ] ∗ h+ n ∗KN

Denoising problem formulation

min
p

‖ p− SN [g] ‖22 + λ‖Lp ‖1

where L is a derivative matrix.
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Applications Fourier Reconstruction

Fourier Reconstruction of Piecewise-smooth functions

SNf(x) =
NX

k=−N

f̂(k)eikx, f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx

Consequences of Gibbs

Non-uniform convergence – presence of non-physical oscillations in the vicinity of
discontinuities
Reduced order of convergence – first order convergence even in smooth regions of
the reconstruction

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

2

x

S
N

f(
x)

Fourier Reconstruction

 

 
True
Fourier

(a) Reconstruction

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−7

−6

−5

−4

−3

−2

−1

0

x

Lo
g 10

 |e
|

Log Error in Reconstruction

(b) Reconstruction error

Figure: Gibbs Phenomenon, N = 32
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Applications Fourier Reconstruction

Filtered Fourier Reconstructions

Filtering helps to ameliorate the effects of Gibbs, but does not eliminate it. In fact, it
introduces a smearing artifact in the vicinity of a discontinuity.
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Figure: Exponentially Filtered Reconstruction, p = 2, N = 64
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Applications Fourier Reconstruction

Spectral Re-projection (Gottlieb and Shu)

Spectral re-projection schemes were formulated to resolve the Gibbs phenomenon.
They involve reconstructing the function using an alternate basis, Ψ (known as a
Gibbs complementary basis).

Reconstruction is performed using the rapidly converging series

f(x) ≈
mX
l=0

clψl(x), where cl =
〈fN , ψl〉w
‖ψl‖2w

, fN is the Fourier expansion of f

Reconstruction is performed in each smooth interval. Hence, we require jump
discontinuity locations

High frequency modes of f have exponentially small contributions on the low modes
in the new basis
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Applications Fourier Reconstruction

Spectral Re-projection – An Example
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Figure: Spectral Reprojection Reconstructions
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Applications Fourier Reconstruction

Non-harmonic Fourier Reconstruction (Viswanathan, Gelb, Cochran, Renaut)
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Figure: A motivating example

Fourier samples violate the quadrature rule for discrete Fourier expansion

Computational issue – no FFT available

Mathematical issue – given these coefficients, can we/how do we reconstruct the
function?

Resolution – what accuracy can we achieve given a finite (usually small) number of
coefficients?
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Applications Fourier Reconstruction

Non-harmonic Fourier Reconstruction (Viswanathan, Gelb, Cochran, Renaut)
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Figure: A template example

Fourier samples violate the quadrature rule for discrete Fourier expansion

Computational issue – no FFT available

Mathematical issue – given these coefficients, can we/how do we reconstruct the
function?

Resolution – what accuracy can we achieve given a finite (usually small) number of
coefficients?
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Applications Fourier Reconstruction

Non-harmonic Fourier Reconstruction (Viswanathan, Gelb, Cochran, Renaut)
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Figure: A template example

Fourier samples violate the quadrature rule for discrete Fourier expansion

Computational issue – no FFT available

Mathematical issue – given these coefficients, can we/how do we reconstruct the
function?

Resolution – what accuracy can we achieve given a finite (usually small) number of
coefficients?
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Applications Fourier Reconstruction

Reconstruction Procedure

1 recover equispaced coefficients f̂(k)

2 partial Fourier reconstruction using the FFT algorithm

Equispaced coefficients are obtained by inverting a model derived from application of the
sampling theorem.
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Figure: Reconstruction result, N = 128
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Applications Fourier Reconstruction

Reconstruction Procedure
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Figure: Reconstruction result, N = 128
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Applications Fourier Reconstruction

Incorporating Edge Information

Compute the high frequency modes using the relation

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik
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Figure: Reconstruction of a test function using edge information
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Summary

Summary

We summarized the concentration method of edge detection.

We looked at routines to design concentration factors.

We showed iterative routines for accurate detection of edges.

We briefly surveyed the statistical properties of concentration edge detection.

We looked at applications of edge detection to
Point spread function estimation in blurring problems.
Fourier reconstruction of piecewise-smooth functions – spectral re-projection.
Non-harmonic Fourier reconstruction.
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