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Model Problem

Let f be defined in R with support in [—7, 7). Given
flwr) = (f,e“ "), k=—N,-- N,
(wg not necessarily € Z)

compute

e an approximation to the underlying function f,

e an approximation to the locations and values of jumps in the
underlying function; i.e.,
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Motivating Application — Magnetic Resonance Imaging

t: Homer J. Simpson

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application — Magnetic Resonance Imaging
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e Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.
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Challenges in Non-Uniform Reconstruction

e Computational Issues

e The FFT is not directly applicable.

e Direct versus iterative solvers . ..

e Sampling Issues
Typical MR sampling patterns have non uniform sampling
density; i.e., the high modes are sparsely sampled
(lwi — k| > 1 for k large).

e Other Issues
Piecewise-smooth functions and Gibbs artifacts

30



Why Direct Methods?

e Faster (by a small but non-negligible factor) than iterative
formulations.

¢ Provide good initial solutions to seed iterative algorithms.

e Sometimes used as preconditioners in solving iterative
formulations.
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Model (1D) Sampling Patterns
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Model (1D) Sampling Patterns
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a controls the closest sampling point to the origin.
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Model (1D) Sampling Patterns
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Uniform Re-Sampling (Rosenfeld!)

Consider a two step reconstruction process:

1 Approximate the Fourier coefficients at equispaced modes

2 Compute a standard (filtered) Fourier partial sum

Basic Premise
f is compactly supported in physical space. Hence, the Shannon

sampling theorem is applicable in Fourier space; i.e.,

flw) = Z sinc(w — k) fr, w€R.

k=—00

1 An optimal and efficient new gridding algorithm using singular value
decomposition, D. Rosenfeld, Magn Reson Med. 1998 Jul;40(1):14-23.
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Uniform Re-Sampling — Implementation

We truncate the problem as follows

flow) = > sinc(wr —0)fs, k=-N,--- N

<M
Fflw_n)] T[sinc(w_n +M) ... sinclw_y—M)] [flw_ns)
Flwy) sinc(wy + M) sinc(w']\./.— M) f(war)

measurements Sampling system matrix A € R2N+1 X 2M+1 re-sampled coefficients f

~
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Uniform Re-Sampling — Implementation

The (equispaced) re-sampled coefficients are approximated as
f= ATf,

where A' is the Moore-Penrose pseudo-inverse of A.

e A and its properties characterize the resulting approximation.

e Regularization may be used (truncated SVD, Tikhonov
regularization) in the presence of noise.

o Af is a dense matrix in general. A block variant of this
method exists (Block Uniform Re-Sampling, which constructs
a sparse Af.

~
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Uniform Re-Sampling — Implementation
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Figure : lllustration of Block Uniform Re-Sampling?

2http://ee-classes.usc.edu/ee591 /projects/fall04 /zli.pdf
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Uniform Re-sampling — Examples

Reconstruction from Polynomial (quadratic) samples.

Sampling Pattern
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Uniform Re-sampling — Examples

Reconstruction from Polynomial (quadratic) samples.

URS Reconstruction
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Uniform Re-sampling — Examples

Reconstruction from Polynomial (quadratic) samples.
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Further Reading

o New Approach to Gridding using Regularization and
Estimation Theory, D. Rosenfeld, Magn Reson Med. 2002;

48:193-202

o Applying the uniform resampling (URS) algorithm to a
Lissajous trajectory: Fast image reconstruction with optimal
gridding, Moriguchi H., Wendt M., Duerk JL., Magn Reson
Med. 2000; 44:766—781
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From Uniform Re-sampling to Convolutional Gridding

Recall that for uniform re-sampling, we use the relation
flw) = Zsinc(w — k) fir, = (f * sinc)(w)
k
Since the Fourier transform pair of the sinc function is the
box/rect function (of width 27 and centered at zero), we have
f-+— f* sinc

Now consider replacing the sinc function by a bandlimited function
¢ such that ¢(|w|) = 0 for |w| > ¢ (typically a few modes wide).
We now have

frope— [0
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Convolutional Gridding (Jackson/Meyer/Nishimura ... )

e Gridding is an inexpensive direct approximation to the uniform
re-sampling procedure.

e Given measurements f(wk) we compute an approximation to
f * (b at the equispaced modes using

([~ > arflwr)p(l—wy), £=—=M,. .. M

[6—wr|<q

e «y are desity compensation factors (DCFs) and determine the
accuracy of the reconstruction.
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Convolutional Gridding (Jackson/Meyer/Nishimura ... )

Figure : Gridding to a Cartesian Grid3

3http://web.eecs.umich.edu/ fessler/papers/files/talk /06 /isbi,p2,slide,bw.pdf
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Convolutional Gridding (Jackson/Meyer/Nishimura ... )

e Now that we are on equispaced modes, use a (F)DFT to
reconstruct an approximation to f - ¢ in physical space.

e Recover f by dividing out ¢.

e This is typically implemented using a non-uniform FFT.
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Why Do We Need Density Compensation?

Dirichlet Kernel Non-Harmonic Kernel
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Why Do We Need Density Compensation?
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Density Compensation — Examples

Voronoi Cells for Radial and Spiral Sampling®

Figure :

3Modern Sampling Theory: Mathematics and Applications, eds. J. J.

Benedetto, P. J.S.G. Ferreira, Birkhauser, 2001
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Density Compensation — Examples

Choose o = {ay.}Vy such that?

: 1 =0
WL ~
Z ke N{ 0 else

|k|<N

Discretizing on an equispaced grid, we obtain the linear system of
equations

Da = Db,
where
e D;; = ™% denotes the (non-harmonic) DFT matrix, and

¢ b denotes the desired point spread function (Dirac delta).

3See Sampling density compensation in MRI: rationale and an iterative
numerical solution, Pipe JG, Menon P., Magn Reson Med. 1999 Jan;41(1):
179-86 for details and implementation.
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Convolutional Gridding — Representative Reconstructions

Reconstruction from Polynomial (quadratic) samples.

Sampling Pattern
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Convolutional Gridding — Representative Reconstructions

Reconstruction from Polynomial (quadratic) samples.
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Convolutional Gridding — Representative Reconstructions

Reconstruction from Spiral samples (Voronoi weights)*

True Image (Phantom) Reconstruction

*A gridding algorithm for efficient density compensation of arbitrarily
sampled Fourier-domain data, W. Q. Malik et. al., Proc. IEEE Sarnoff Symp.
Princeton, NJ, USA, Apr. 2005



Convolutional Gridding — Representative Reconstructions

Reconstruction from Spiral samples (Voronoi weights)*
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*A gridding algorithm for efficient density compensation of arbitrarily
sampled Fourier-domain data, W. Q. Malik et. al., Proc. IEEE Sarnoff Symp.
Princeton, NJ, USA, Apr. 2005
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Further Reading

e A fast sinc function gridding algorithm for Fourier inversion in
computer tomography, J. O'Sullivan, IEEE Trans Med Imag
1985; MI-4:200-207.

e Selection of a convolution function for Fourier inversion using
gridding, J. Jackson, C. Meyer, D. Nishimura, and A.
Macovski, IEEE Trans Med Imag 1991; 10:473—-478.

o The gridding method for image reconstruction by Fourier
transformation, H. Schomberg and J. Timmer, IEEE Trans
Med Imag 1995; 14:596-607.

o Rapid gridding reconstruction with a minimal oversampling
ratio, P. Beatty, D. Nishimura, and J. Pauly, IEEE Trans Med
Imag 2005; 24:799-808.
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Non-uniform FFTs efficiently evaluate trigonometric sums of the

form
N—-1
1 . M M
(Type 1) F(k):NE%fje J,xje[0,27r),k_—7,...,7—1.
]:
%71
(Type ll)  flz;) = > F(k)e™, z; € [0,27).
k=—M

2

at a computational cost of O(N log N + M).

16
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

The Type | FFT describes the Fourier coefficients of the function

N—

,_.

fio(x — ;)
J=0

viewed as a periodic function on [0, 27].

Note that f is not well resolved by a uniform mesh in x.

16
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Instead, let us compute an approximation to f. defined as

21

fr(x) = (f *g:)(x) = ; f(@)g-(x —y)dy,

where g, (z) is a periodic one-dimensional heat kernel on [0, 27]
given by

o0

gT(x): Z e(x—2l7r)2/4fr‘

l=—o0

fr may be approximated on a uniform grid using

N-1
fr(2mrm/M,.) Z figr(2mm/M, — x;).
7=0

16
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Figure : Non-Uniform FFT using Gaussian Window Functions®

fr is a 2m-periodic C'*° function and can be well-resolved by a
uniform mesh in = whose spacing is determined by 7.

®See Accelerating the Nonuniform Fast Fourier Transform, L. Greengard, J.
Lee, SIAM Rev., Vol. 46, No. 3, pp. 443-454.
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

The Fourier coefficients of f; can be computed with high accuracy
using a standard FFT on an oversampled grid. For example,

1 2m ) 1 My—1 ‘
Fr(kf) = % ; fT(x)e—kadx ~ MT Z f7(277m/Mr)€_Zk27rm/Mr.
m=0

We may then obtain F'(k) by a deconvolution; i.e.,

F(k) = /7 /7" T, (k).

Typical parameters: M, = 2M,7 = 12/M?. Gaussian spreading of
each source to the nearest 24 points yields 12 digits of accuracy.

16 /30



Other Implementations and Further Reading

o Accelerating the Nonuniform Fast Fourier Transform, L.
Greengard and J. Lee, SIAM Rev., 46:3(2004), pp. 443-454.

e Fast Fourier Transforms for Nonequispaced Data, A. Dutt and
V. Rokhlin, SIAM J. Sci. Comput., 14 (1993), pp.
1368-1393.

e Nonuniform Fast Fourier Transforms using Min-Max
Interpolation, J. A. Fessler and B. P. Sutton, IEEE Trans.
Signal Process., 51 (2003), pp. 560-574.

e Fast Fourier Transforms for Nonequispaced Data: A Tutorial,
D. Potts, G. Steidl, and M. Tasche, in Modern Sampling
Theory: Mathematics and Applications, J. J. Benedetto and
P. Ferreira, eds., Appl. Numer. Harmon. Anal., Birkhauser,
Boston, 2001, pp. 249-274.
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3 Edge Detection
Concentration Method
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Why are Edges Important?

e Edges are important descriptors of underlying features in a
function.

e Edges are often necessary to perform operations such as
segmentation and feature recognition.

e Edges may also be incorporated in function reconstruction
schemes (for example, spectral re-projection methods)

18 /30



Detecting Edges from Fourier Data

o Edge detection from Fourier data is non-trivial — it requires
the estimation of local features from global data.

e Applying conventional edge detectors (Sobel, Prewitt,
Canny ...) is not optimal — they can pick up Gibbs oscillations
as edges.

19/30



Edge Detection from Non-Uniform Fourier Data

Two approaches (direct methods)

o Edge detection on re-sampled Fourier data

(B)URS - Edge Detection
S

——— f(0)eez Edges

f(wk)wkeZZ

e Edge detection using convolutional gridding

Gridding

k) gz 2, (F s ) (£)peg, —B PN, Eges
F k) gz, —228 (7] % 3)(€)gez. T Edges

wigL Special DCFs
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Concentration Method (Gelb, Tadmor)

e Define the jump function as follows

(@) = f(@™) = f(a7)

[f] identifies the singular support of f.

e Approximate the singular support of f using the generalized
conjugate partial Fourier sum

) =i Z f ) sgn(k (b@) etk

k .
. O'k’N(’)”]) =0 (%) are known as concentration factors.
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Concentration Method (Gelb, Tadmor)
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(@) = f(@™) = f(a7)
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Concentration Method (Gelb, Tadmor)

Admissibility conditions for o

N
1 Za( >sm kz) is odd.
=1

2 Uk’];;(n) € C%(0,1)

1
, / TN e Z (N) > 0 being small
€

21/30



Concentration Method (Gelb, Tadmor)

Theorem (Concentration Property, (Tadmor, Zou))

Assume that f(-) € BV[—m,n] is a piecewise C2—smooth function
and let oy, v be an admissible concentration factor. Then,
S [f](x) satisfies the concentration property

SG [f] (w) 3 O lo]gVN ’ d(fL‘) ,S IOJgVN
N = log N
O (835): d@)> 4,

where d(x) denotes the distance between x and the nearest jump
discontinuity and s = s, > 0 depends on our choice of o.



Concentration Factors

Factor Expression
Trigonometric or(n) = w
a
Si(a) = / sin(z) dx
0 X
Polynomial op(n) =—-prn?

p is the order of the factor

Exponential (TE(U) = Cnexp {ﬁJ
C' - normalizing constant
« - order

C =g
fﬁ exp[m]d’r

Table : Examples of concentration factors

Concentration Factors

Figure :
Envelopes of Factors in k-space



Some Examples

(a) Trigonometric Factor (b) Exponential Factor

Figure : Jump Function Approximation, N = 128
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Statistical Formulation

Objective

Design a statistically optimal edge detector which accepts a noisy
concentration sum approximation and returns a list of jump
locations and jump values

/—\- EDGE DETECTOR
syl "z,
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Statistical Formulation

e This is a binary detection theoretic problem — is any given
point in the domain an edge (hypothesis 1) or not
(hypothesis Hg)?

e The Neyman—Pearson lemma tells us that the statistically
optimal construction in this case is a correlation detector,
which computes correlations of S[f] with a template
waveform .

e Uses a small number of measurements in a neighborhood of
the given point®; for example, to see if the grid point zg is an
edge, use

S f](zo — h)
Y = | S{[fl(xo)
S [f](zo + h)

>This will identify the closest grid point to an edge.

24 /30



Statistical Formulation
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Resulting edge detector takes the form
— Hyi: MTOY'Y >~

e Cv is the covariance matrix (depends on the noise
characteristics and stencil).

e 7 is a threshold which controls the probability of correct
detection.
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Examples — Edge Detection with Noisy Fourier Data
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Figure : Edge Detection with Noisy Data, N = 50, p = 0.02, 5—point
Trigonometric detector
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Examples — Edge Detection with Noisy Fourier Data
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Figure : Edge Detection with Noisy Data, N = 50, p = 0.02, 5—point
Trigonometric detector
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Two Dimensional Extensions
For images, apply the method to each dimension separately
N

o . Y <~ ; i(kz+17)
S =i 3 seno () 3 et

I=—N k=—N

(overbar represents the dimension held constant.)

26
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DCF Design for Edge Detection

Choose a = {ay.} Yy such that

, iy sgn(o(|Il/N)e |z <
P R T
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Do = Db,
where
e D is the (non-harmonic) DFT matrix with Dy ; = €™*%, and

e bis a vector containing the values of the generalized
conjugate Dirichlet kernel on the equispaced grid.



Numerical Results

Jump Approximation and Corresponding Weights

Jump Furction Approximation in Physical Spacs -I2optimak-Jump
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4 Spectral Re-Projection
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Spectral Re-projection

e Spectral reprojection schemes were formulated to resolve the
Gibbs phenomenon. They involve reconstructing the function
using an alternate basis, ¥ (known as a Gibbs complementary

basis).
e Reconstruction is performed using the rapidly converging
series
m
Snf,
f(z) ~ Zcﬂﬂl(ﬂb), where ¢ = <72>“’
1=0 19l

e Reconstruction is performed in each smooth interval. Hence,
we require jump discontinuity locations

e High frequency modes of f have exponentially small
contributions on the low modes in the new basis

29/30



Gegenbauer Reconstruction — Representative Result

Function Log Error in
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Figure : Gegenbauer reconstruction

o Filtered Fourier reconstruction uses 256 coefficients
e Gegenbauer reconstruction uses 64 coefficients
e Parameters in Gegenbauer Reconstruction - m =2, A = 2
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Some Open Problems

1 Design of Density Compensation Factors and Gridding
Windows

2 Exploiting piecewise-smooth structure and edges in
reconstruction schemes

3 Parallel imaging

4 Dynamical sampling models and reconstruction schemes for
motion corrected imaging
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