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Abstract

We present a new method for estimating the edges in a piecewise smooth function from
blurred and noisy Fourier data. The proposed method is constructed by combining the so called
concentration factor edge detection method, which uses a finite number of Fourier coefficients
to approximate the jump function of a piecewise smooth function, with compressed sensing
ideas. Due to the global nature of the concentration factor method, Gibbs oscillations feature
prominently near the jump discontinuities. This can cause the misidentification of edges when
simple thresholding techniques are used. In fact, the true jump function is sparse, i.e. zero
almost everywhere with non-zero values only at the edge locations. Hence we adopt an idea
from compressed sensing and propose a method that uses a regularized deconvolution to remove
the artifacts. Our new method is fast, in the sense that it only needs the solution of a single l1
minimization. Numerical examples demonstrate the accuracy and robustness of the method in
the presence of noise and blur.

1 Introduction

We are concerned with the accurate and robust detection of jump discontinuities (edges) in piecewise
smooth functions where only a finite number of Fourier coefficients are available. Such information
can be used to improve the reconstructions, restorations and classifications of signals. For instance,
knowing the edge locations, or more precisely the intervals of smoothness, is necessary for high order
reconstruction of a signal from a truncated Fourier series, see e.g. [12, 21]. As another example, [22]
uses edge information to eliminate the stair case effect typical for total variation (TV) restorations
and reconstructions. Finally, in [15] edge data is used to decrease the number of samples needed
for reconstructions from partial Fourier data.

The so called concentration factor (CF) method, proposed in [9, 10], directly uses the given
Fourier data to detect the location of edges. A good overview can be found in [25]. The method
approximates the corresponding jump function1 of a piecewise smooth function by converging to
its singular support. One advantage of the CF method is that it can be made to be high order,
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1The jump function is a function that is zero away from jump locations (edges) and takes on the value of the jump

at the jump locations
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in the sense that it converges quickly to zero away from jump locations when certain high order
concentration factors are chosen. However, since the method is global, it suffers from the Gibbs
phenomenon. Specifically, when high order CFs are used, the resulting ringing artifacts near the
jump discontinuities can lead to the misidentification of edges when simple thresholding is used to
differentiate the edges from smooth regions. (Low order CFs may not properly resolve the function
variation in smooth regions, causing the misclassification of edges there.) Nonlinear filtering is able
to remove or suppress some of the oscillations, [11, 25, 8, 6]. Unfortunately these techniques become
less effective when the Fourier data is at all corrupted (e.g. by noise or blurring), or when some of
the data is missing. In particular, additional ringing artifacts and aliasing affect the results.

In [26], the authors describe three extensions of the CF method to combat the effects of partial
and/or noisy Fourier data. One extension “fills” in missing Fourier coefficients and suppresses os-
cillations by minimizing the TV semi-norm. Here we expand on this minimization technique, but
propose an alternative to the TV semi-norm in order to exploit the structure of the oscillations
generated by the original CF method. Our new method can be applied when only partial Fourier
coefficients are available as well as when the given data is contaminated by blurring or noise. The
proposed method approximates the associated jump function of a piecewise smooth function and
removes the Gibbs oscillations and aliasing effects that are introduced by the CF method by per-
forming a deconvolution with its so called matching waveform, [8], and imposing sparseness on the
jump function approximation. The jump function approximation is found in a single l1 minimiza-
tion step. As with the compressive sensing (CS) edge detection method in [26], we combine ideas
from CS with the CF method [9, 10]. However we do not suppress the oscillations introduced by
the CFs by minimization of the TV semi-norm, but rather remove them by a regularized decon-
volution step. We also use the concept of the matching waveform introduced in [8] to estimate
the point spread function (PSF) of the oscillations and solve a sparse deconvolution problem. The
method can be applied to any CF that satisfies an admissibility condition and provides sparse and
robust results for the test cases we have considered. Finally, our method naturally handles data
that contains blurring because it is based on Fourier data rather than data in physical space.

We solve the edge detection problem for a one-dimensional test function and consider four
different cases:

Case 1: Clean Fourier Data: This is the best case scenario in which acquired Fourier data is
assumed to be uncorrupted by undersampling (case 2), blur (case 3) or noise (case 4). Note
that since we are only considering a finite number of Fourier coefficients, the problem is still
non-trivial due to truncation error and Gibbs phenomenon.

Case 2: Undersampling: Here we assume that only partial Fourier data is available. Fourier
coefficients are deleted from the middle of the spectrum (symmetrically), i.e. both low as well
as high frequencies are still present. We vary the size of the bandwidth of missing Fourier
data. In the context of minimization problems, the missing band of Fourier data corresponds
to the classic case of undersampling.

Case 3: Blur: We assume that the data is blurred by application of a spatially invariant blur
applied directly to the Fourier coefficients. In this case the edges in the signal are “smoothed
out” making edge detection using classical methods very difficult.

Case 4: Noise: We explore the impact of additive independent and identically distributed (i.i.d.)
complex Gaussian noise in the Fourier coefficients, which is also in general a challenge for
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edge detection by classical methods.

Our numerical results for these four cases demonstrate the robustness of our proposed method
with respect to how the regularization parameter for the minimization process is chosen. The
method correctly identifies edges in the test signal for a large range of regularization parameters.
Not surprisingly, how that range is chosen depends on the quality of Fourier coefficients with respect
to noise and blurring, as well as the amount of missing Fourier data.

Finally, as an extension of these four cases, we also consider the situation where the given
Fourier data is nonuniform. Non-Cartesian Fourier data is sometimes collected in applications
such as magnetic resonance imaging (MRI), [1]. While the standard CF method may fail in this
case, [28], our proposed method is able to capture the edges in a one-dimensional piecewise smooth
function given nonuniform Fourier data.

The paper is organized as follows: In Section 2 we give a brief review of the results in [9, 10]
that are relevant for this paper. In Section 3 we combine CS with the CF method to remove
the oscillations from the jump function approximation. Numerical results demonstrate the success
of the method when applied to each of the four cases. Section 4 discusses the recovery of edges
from non-harmonic spectral data. The challenge posed by non-harmonic acquisitions is briefly
described, along with a variant of the formulation in Section 3 applicable to non-harmonic spectral
data. Section 5 provides some concluding remarks and ideas for future investigations.

2 The concentration factor edge detection method

2.1 Background

Let

f̂k =
1

2π

π∫

−π

f(x)e−ikxdx, k = −N, · · · , N, (1)

be the first 2N +1 Fourier coefficients of a piecewise continuous [−π, π] periodic function, f , where
i =

√
−1 . We define the corresponding jump function as

[f ](x) = f(x+)− f(x−). (2)

Note that the jump function is zero everywhere except at the jump discontinuities where it takes
on the corresponding jump value. Our goal is to approximate (2) assuming that we are given the
first 2N + 1 blurred, noise-corrupted Fourier coefficients,

ĝk = f̂kĥk + n̂k, k = −N, · · · , N, (3)

where ĥk are Fourier coefficients of a known point spread function and {n̂k}Nk=−N is i.i.d. complex
Gaussian noise. We first consider edge detection for a function that is free of noise and blur (case
1).

The concentration factor (CF) edge detection method, [9, 10], approximates the jump function,
(2), as

Sσ
N [f ](x) = i

N∑

k=−N

σ(
|k|
N

)sgn(k)f̂ke
ikx = (f ∗ Cσ

N (x)), Cσ
N (x) :=

N∑

k=1

σ(
k

N
) sin (kx). (4)
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The convergence properties of (4) depend on the choice of the concentration factor used, σ(η) =

σ( |k|N ), which must satisfy the admissibility conditions (see [10] for more details):

1. Cσ
N (x) is odd

2. σ(η)
η ∈ C2(0, 1)

3.
∫ 1
ǫ

σ(η)
η → −π, ǫ = ǫ(N) > 0 is small

These admissibility conditions require that Cσ
N is odd and suitably normalized in order to approx-

imate [f ](x), and that σ(η) have some regularity.
If d(x) denotes the distance between a point in the domain and the nearest discontinuity, then

(4) converges to [f ](x) as

Sσ
N [f ](x) = [f ](x) +

{
O( logNN ) d(x) ≤ logN

N

O( logN
(Nd(x))s ) d(x) >> 1

N .
(5)

The convergence rate s > 0 depends upon the concentration factor chosen [10, 6].
Two examples of CFs derived in [9, 10] include

σpoly(η) = πpηp

σexp(η) = πγηexp
(

1
αη(η−1)

)
where γ =

∫ 1−1/N
1/N exp( 1

αρ(ρ−1) )dρ,
(6)

where p ∈ N+ and α > 0 denote the order of the CF. While there are other admissible CFs, this
investigation will focus on the difference between higher and lower order methods, in particular
between a lower order polynomial CF with p = 1, a higher order polynomial CF with p = 2,
and the higher order exponential CF. Figure 1 illustrates the two polynomial CFs σ1(η) = η, and
σ2(η) = 2η2, and the exponential CF σexp(η). Notice that the polynomial CFs only filter out low
frequencies, while the exponential CF also filters out high frequency components. We emphasize
that high order refers to the convergence to zero away from the jump discontinuities, since O(1)
oscillations form as the jump discontinuities of [f ](x) are approached, and is expected since we are
using a high order global method to approximate piecewise smooth [f ](x). We illustrate this with
the following example:

f(x) =





3/2 for −3π
4 ≤ x < −π

2
7/4 − x/2 + sin(7x− 1/4) for −π

4 ≤ x < π
8

x11/4 − 5 for 3π
8 ≤ x < 3π

4
0 otherwise.

(7)

Figure 2 shows the CF method jump function approximation to (7) using different CFs and
demonstrates that the price to be paid for fast convergence to zero away from a jump discontinuity
is more oscillations around the jump.

As shown in [11], one way of mitigating the oscillations is to apply the minmod function,

minmod{a1, a2, . . . , an} :=

{
smin(|a1|, |a2|, . . . , |an|) if sgn(a1) = · · · = sgn(an) := s
0 otherwise

,

(8)
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Figure 1: Illustration of the CFs σ1 (dash), σ2 (dash dot) and σexp (pluses for α = 1 and solid line
for α = 6). Here and throughout the paper, in the definition for σexp, α = 1 is chosen.

(a) Polynomial p = 1 (σ1) (b) Polynomial p = 2 (σ2) (c) Exponential (σexp)

Figure 2: Edge detection using different CFs. The test function, (7), is plotted as a thick gray line
and the jump function approximation as a thin black line. The low order method in panel (a) has
relatively large non-zero entries in parts of the function with steep gradients but no oscillations
close to the jumps, while the higher order methods in panels (b) and (c) have smaller entries in
regions with steep gradients, but have oscillations close to the jumps. Here N = 64.
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(a) Case 1: Minmod edge detection

(b) Case 2: 10% Fourier coefficients
missing

(c) Case 3: Gaussian blur (d) Case 4: Additive noise

(e) Case 2: Minmod (f) Case 3: Minmod (g) Case 4: Minmod

Figure 3: Panel (a): Minmod post-processing, (9), is applied to the jump function reconstructions
in Figure 2 in an attempt to remove unwanted oscillations. Panels (b)-(d): One example for each
of the cases 2-4 applied to the test function, (7). The plots shows the partial Fourier sum for the
given Fourier coefficients. Panels (e)-(g) show that the minmod method produces many false edges.
Here N = 64.
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to (4) using different CFs. Hence the final result is

SMM
N [f ](x) = minmod{Sσ1

N [f ](x), Sσ2

N [f ](x), . . . , Sσn

N [f ](x)}. (9)

Figure 3(a) shows the results using (9) by combining the three results in Figure 2. In these
experiments, and throughout, the coefficients of blur ĥk and noise n̂k in (3) are given by ĥk =
exp((−k2τ2)/2) with n̂k drawn from CN(0, ν2)2, respectively. Moreover, throughout the paper
when results for a single case of blur and/or noise are presented, the parameters chosen are τ = .05
and ν = .015. To count the number of false positive and negative jump detections, we apply
an absolute uniform threshold of 0.05 to the absolute value of the jump function approximation.
While this choice is somewhat arbitrary, and the performance of the minmod does depend on this
threshold, this particular choice appropriately illustrates the impact of the minmod method. In
particular, the minmod method works well if a full (finite) set of uncontaminated Fourier coefficients
is available, as illustrated in Panel (a). As is evident in this figure, it is the nonlinear combination
of the different CFs approximations of various orders that enables its success. Using any individual
jump function approximation, whether based on a high or low order CF, would result in more false
positive and negative jump detections. Panels (e)-(g) show the results for cases 2-4, where the
minmod method fails to provide accurate edge detection results, demonstrating the need to modify
the method when Fourier coefficients are missing, or if blurring or noise is present3.

2.2 Matching waveform of the CF method

In order to improve the CF method, we first analyze the structure of the oscillations around
the jump discontinuities. Following the derivation in [9], we assume a periodic piecewise smooth
function f(x) with a single jump discontinuity at x = ξ. The jump function approximation for a
given CF σ(η) is

Sσ
N [f ](x) =

[f ](ξ)

π

N∑

k=1

σ

(
k

N

)
cos k(x− ξ)

k
+O

(
logN

N

)
.

Hence we see that for large N , the jump function approximation depends only on the size and the
location of the jump, but not on the function itself. This formulation was exploited in [8], where
the authors introduced a family of CFs based on the definition of the matching waveform

W σ
N (x) =

N∑

k=1

σ

(
k

N

)
cos kx

k
. (10)

Specifically, convolution is used to determine the strongest correlation between the waveform pro-
duced by the CF method and the one that results from applying the CF method to an indicator
function, yielding (see [8] for details)

Sσmw

N [f ](x) =
1

γmw
(Sσ

N [f ] ∗W σ
N )(x). (11)

2Here CN(0, ν2) denotes the complex normal distribution with mean 0 and variance ν2.
3In [29], it is shown that it is possible to construct concentration factors when Fourier data is missing.
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Here γmw = 1
π

∑N
k=1

(σ( k
N
)

k

)2
is used to normalize the approximation. It is straightforward to show

that (11) can be rewritten as (4), with σmw

(
|k|
N

)
an admissible CF defined as

σmw

( |k|
N

)
:=

1

γmw
σ
( |k|
N

)∫ π

−π
W σ

N (ρ) exp (−ikρ) dρ. (12)

While (11) performs better in the presence of noise, the corresponding kernel Cσ
N in (4) is still os-

cillatory, and hence there are still oscillations in the jump function approximation. Its performance
also deteriorates when more jump discontinuities are present, as they start to interfere with the
approximation of nearby jumps. However, this approach is useful in constructing the minimization
method that we develop in Section 3.

3 Edge detection in blurred signals by means of l1 minimization

3.1 The variational approach

We propose to remove the oscillations and at the same time remove the blur by means of an l1
minimization. Based on our previous discussion of the matching waveform and in particular, (11),
we seek a sparse spike train y such that

W σ
N ∗ y ≈ Sσ

N [f ]. (13)

More flexibility is built into (13), however. Clearly, we cannot expect to replace y directly with
[f ](x), because [f ](x) is bounded and has support on a set of measure zero, meaning that the left
hand side of (13) would be exactly zero. However, we can expect y to approximate a spike train,
which is zero away from the jumps and non-zero at the jump positions (e.g. in (11), y = 1

γmw
Sσ
N [f ].)

Without loss of generality we assume that f has a single jump at x = 0. If y in (13) is replaced by
the approximation of delta distribution

δN (x) = [f ](0)
2N + 1

2π

{
1 for |x| ≤ π

2N+1

0 for otherwise
,

the left hand side of (13) becomes

W σ
N ∗ δN (x) =

π∫
−π

W σ
N (ν)δN (π − ν)dν

= W σ
N (ξ)

∆x∫
−∆x

δN (π − ν)dν

= [f ](0)W σ
N (ξ),

for some ξ ∈ [−∆x,∆x] and ∆x = 2π
2N+1 . Thus by setting y = δN (x) the approximation holds

with equality in the limit for a single jump at the origin. Therefore we conclude that W σ
N ∗ y is a

good approximation of Sσ
N [f ] for N → ∞, if y is a spike train which is zero away from the jump

locations and non-zero at the jump locations. However for N < ∞, equality can not be required
because we seek a sparse representation of a function that identifies the jump locations which does
not necessarily follow an equality constraint (e.g. (11) is not sparse).
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Next we derive the discrete l1 minimization problem that is solved in the numerical implemen-
tation in Section 3.2. From (4) we see that the concentration kernel Cσ

N has the Fourier coefficients

(Ĉσ
N )k = iσ

( |k|
N

)
sgn(k). (14)

The Fourier transform of the matching waveform W σ
N , (10), is given by

(Ŵ σ
N )k =

π∫
−π

WN (x)e−ikxdx

=
π∫

−π

N∑
l=1

σ
(

l
N

) cos(lx)
l e−ikxdx

=
N∑
l=1

σ( l
N )
l

π∫
−π

cos(lx)e−ikxdx

=
N∑
l=1

σ( l
N )
l

{
π for |k| = l 6= 0
0 otherwise

=

{
π
|k|σ

(
|k|
N

)
for |k| ≤ N, k 6= 0

0 for otherwise
,

and therefore applying Sσ
N to (3) yields

(Ŝσ
N [g])k = iσ

(
|k|
N

)
sgn(k)ĝk

= (Ĉσ
N )kĝk

≈ (Ĉσ
N )kf̂kĥk

= ĥk(Ĉ
σ
N )kf̂k

≈ ĥk(Ŵ
σ
N )kŷk

= ĥk
π
|k|σ

(
|k|
N

)
ŷk,

(15)

where ŷk denotes the k-th Fourier coefficient of the spike train y. Between lines one and two we
use (14), between lines two and three we apply (3) without the noise term, and between lines four
and five we employ (13). Note that if an equality constraint would be imposed in line 5 then the

equation can be multiplied by σ
(
|k|
N

)
and y would be independent of the CF. Our goal is to relax

the equality in (13) enough so that a sparse function y fits the given data in the presence of noise.
It is known that minimization with respect to the l1 norm yields a sparse solution with very

high probability, if the restricted isometry property (RIP) is satisfied [3, 4, 2]. It is very difficult
to verify the RIP of l1 minimization problems except for very few special cases. Even though it is
beyond the scope of this paper to prove that the RIP holds, our numerical experiments in section
3.2 indicate that the solution of the minimization problem is stable. For numerical computations
we first replace {ŷk}Nk=−N in (15) by the discrete Fourier coefficients {ŷk}Nk=−N . Assume an equally
spaced reconstruction grid

xj =
jπ

N
− π with j = 0, . . . , 2N − 1,

and let

ŷk =
1

2N

2N−1∑

j=0

yje
−ikxj (16)
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be the discrete Fourier coefficients4 of y for k = −N, . . . ,N −1 and f̂ = F f , where F ∈ R(2N)×(2N),
such that

Fkj =
1

2N
(−1)k exp(

−iπjk

N
).

We find the discrete approximation of y by solving

y = argmin
u

‖u‖1 subject to
N−1∑

k=−N

σ

( |k|
N

)2

|( π

|k| ĥkûk)− isgn(k)ĝk|2 < δ, (17)

where δ > 0 is a regularization parameter. Let

Σ = diag

(
σ

( | −N |
N

)
, · · · , 0, · · · , σ

( |N − 1|
N

))
, (18)

and suppose H = diag( π
|−N | ĥ−N , · · · , 0, · · · , π

|N−1| ĥN−1), then (17) has the form

y = argmin
u

‖u‖1 subject to ‖Σ(HFu− b)‖22 ≤ δ, (19)

where b = (−iĝ−N , · · · , 0, · · · , iĝN−1). This problem can be formulated as a second order cone
problem (SOCP) and solved by barrier function or dual interior point methods [14, 13, 24, 27].
Alternatively a Lagrange multiplier λ can be introduced yielding

y = argmin
u

{λ‖u‖1 +
1

2
‖Σ(HFu− b)‖22}, (20)

which can be efficiently solved by operator splitting methods (see e.g. [30]). Here we are mainly
interested in introducing this new method and not about an optimal implementation. We also note
that in this formulation λ takes over the role of the regularization parameter δ in (17).

3.2 Numerical experiments

We consider cases 2-4 again, where the classical minmod method fails to accurately determine the
edge locations of the test function, (7). To solve the edge detection problem with our proposed
method, we solve (19) using the CVX software package [13] under MATLAB R©.

First we consider case 2 with N = 64 and Fourier coefficients missing from the middle of the
spectrum. To determine the jump locations we again apply a constant, uniform threshold of 0.05
to the output y of (19). Locations where the result is above the threshold are counted as detected
edge locations. The detected edge locations are compared to the true edge locations as we count
false negatives (missed jumps) and false positives.

Figure 4 shows the edge detection results for various regularization parameters λ (x-axis) as
the percentage of available Fourier data decreases (y-axis). The number of false positive counts
is illustrated as the gray level of the horizontal lines while the number of false negative counts
are illustrated as gray levels of the vertical lines. There are four regions in the plot labeled by
(a),(b),(c) and (d). Region (a), with only vertical lines, corresponds to solutions of the edge
detection problem where false edges are detected. The false detections originate from two sources.

4Because we use an even number of grid points, (4) is also taken over an even number of discrete Fourier coefficients
resulting in N − 1 for the upper bound of the sum in the discrete case.
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First, the deconvolution problem is very ill posed and therefore small errors are amplified, and
second, there are errors in Sσ

N [f ], (4), as for example in regions with steep gradients. These errors
can be controlled by the size of the regularization parameter, which is illustrated in the figure by
the decreasing gray values of the vertical lines from left to right. The plot labeled (a) on the right
hand side shows one example of the approximation (20) in this region. Clearly false positive edge
detection occurs in the steep parts of the test signal. These false positives are due to the error
introduced by the assumption that the CF jump function approximation, Sσ

N [f ], is equivalent to the
sparse spike train, y, convolved with the watching waveform, W σ

N . That is, there is an equality sign
in (13). This assumption implies in particular that the steep parts of the test function should result
in zero-values in Sσ

N [f ] away from the jumps, which is clearly not the case for N < ∞, and can
be easily be seen from (5). Therefore false positive jumps are detected in the steep regions of the
signal. The false positive detections decrease with larger N , which is demonstrated in later figures.
Region (b) in the plot on the left hand side contains the results of (20) when the regularization
parameter is too large. The solutions are over-regularized, so that true jumps are missed. The plot
labeled (b) on the right side shows that y is virtually zero, i.e., all six true jumps are missed. Both
plots (a) and (b) on the right hand side are produced with 30% of the available Fourier coefficients
removed. If the regularization parameter is chosen between about 10−7 and about 10−4 all jumps
are identified correctly with no false positive or negative detections, which is also true for all other
points in the region (d). Region (c) illustrates that if there are not enough Fourier coefficients
available, then both false positive and false negative detections are present.

Figure 5 summarizes the edge detection results using concentration factors σ1 and σ2. Together
with Figure 4, the results illustrate the effect that different CFs have on the proposed edge de-
tection method when bands of Fourier data are missing (case 2). In the standard CF method,
higher order concentration factors lead to higher order, i.e. faster convergence away from the jump
discontinuities. In our proposed inverse formulation, the effects of the higher order CF are less dra-
matic. In numerical experiments, not shown here, we also observed that higher order concentration
kernels can lead to more false jump detections unlike the approach in [9, 10] where higher order
kernels generally result in more accurate jump function approximations. This is in part due to the
oscillatory responses near the jump discontinuities.5 The effect is also likely a consequence of the
ill posedness of the deconvolution problem, in particular for the higher order kernels. The RIP and
the size of associated constant δs which determines the accuracy of the l1 solution might play a role
as well, see [2] for details. Further investigation is necessary to fully understand this phenomenon.
However, the figures show a clear advantage, in the sense that a much larger range of λ-values lead
to zero false edge detections (white regions), of σ2, in Figure 5(b), and σexp, Figure 4, over σ1, in
Figure 5(a).

Figure 6 summarizes edge detection results using σexp with N = 32 and N = 128. Figures 4 and
6 illustrate that more Fourier data improves the method’s ability to detect the true edges without
increasing the number of false positives.

To summarize case 2, the proposed method is able to recover the jump positions when the
classical CF method fails, see Figure 3(e). In particular, notice that the CF method fails even
when 90% of the Fourier data is available. We note that concentration factors were specifically
designed for the missing bandwidth case in [28, 29].

5In [5] a concentration kernel was designed to enforce a more uniform approximation error without oscillations
near the jumps. While not as effective for functions with a lot of variation between jumps, the kernel is well suited
for noisy data. Future investigations will incorporate this kernel into the variational approach developed here.
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Figure 4: Erroneous edge detection results for case 2 using σexp. In region (a) false positive edge
detections are present, in region (b) false negative edge detections and in region (c) both false
positive and negative edge detections. In region (d) the edge detection problem is solved without
false counts. Here N = 64.
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(a) Case 2, N=64, σ1 (b) Case 2, N=64, σ2

Figure 5: Case 2: Edge detection on undersampled data, polynomial concentration factors. The
y−axis is the percentage of Fourier coefficients available. Here N = 64.

Figure 7 shows edge detection results for case 3, where the Fourier coefficients are contaminated
by blur with ĥk = exp(−(k2τ2)/2), and the range for τ is indicated on the y−axis. Notice that
application of the blur represents filtering of the coefficients. Likewise, the case of missing Fourier
coefficients, case 2, corresponds to a filter, but with a band pass indicator function in the Fourier
domain. The results demonstrate that the proposed method can handle blurring where the classical
CF method fails under the same level of blur, compare to Figure 3(f). As in case 2, we observe
that the higher order CFs perform better than the lower order CF, which is indicated by the larger
white regions in Panel (b) and (c) as compared to Panel (a).

Finally, we consider case 4 where the Fourier coefficients are contaminated by noise. These
results are illustrated in Figure 8 and show that our proposed method can handle noise, where the
classical CF method fails. For either σ1 and σexp, a regularization parameter λ can be found which
correctly detects all edges at a noise level of ν = .015. Recall that the CF method fails in this case.
In fact, Figure 3(g) shows many false positive detections. In this case σexp performs better than
σ2, which is probably a consequence or the high frequency filtering associated with the exponential
CF.

4 Extension to non-harmonic Fourier data

In this section we are interested in the detection of jump discontinuities given non-harmonic or
nonuniform Fourier measurements. This is a problem of interest in applications such as MR imag-
ing, where it has been empirically observed that images processed from non-Cartesian spectral
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(a) Case 2, N = 32 (b) Case 2, N = 128

Figure 6: Case 2: Edge detection on undersampled data using σexp. The y−axis is the percentage
of Fourier coefficients available.
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Figure 7: Case 3: Edge detection for blurred signals. The y−axis indicates the extent of the blur
as measured by log 10(τ). Here N = 64.
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(a) σ1 (b) σ2 (c) σexp

Figure 8: Case 4: Edge detection for noise contaminated Fourier coefficients. The y−axis indicates
standard deviation ν for noise n̂k ∈ CN(0, ν2). Here N = 64.

data have improved robustness to aliasing and motion artifacts. Non-harmonic Fourier reconstruc-
tion, however, is a challenging problem, [31], with the reconstruction quality depending on the set
of measurement modes. The acquisition of data at nonuniform sampling densities, for example,
presents complications to the reconstruction process.

Definition 1 (Non-harmonic Fourier Data) Let f ∈ L2(R) be a piecewise-analytic function sup-
ported in (−π, π) and zero elsewhere on the real line. We define non-harmonic Fourier data, f̂(ωk),
to be the inner-products of f with the non-harmonic exponentials {eiωkx}, ωk /∈ Z, i.e.,

f̂(ωk) :=
1

2π

∫ π

−π
f(x)e−iωkxdx, ωk /∈ Z. (21)

We now present a formulation of the concentration method applicable to non-harmonic Fourier
data. Consider a compactly supported function f . For ease of analysis, we assume that there are
no jumps near the ends of the interval. As in (4) we arrive at jump function approximations by
convolving f with suitable convolutional kernels6, i.e.,

S̃σ
N [f ](x) = (f ∗ C̃σ

N )(x) (22)

with

C̃σ
N (x) =





Cσ
N (x) = i

N∑

k=−N

sgn(k)σ

( |k|
N

)
eikx |x| ≤ π

0 otherwise.

(23)

Since S̃σ
N [f ] is a compactly supported function, it has a Fourier transform representation with

̂̃Sσ
N [f ](ω) = f̂(ω)̂̃Cσ

N (ω). (24)

6We use a superscript ∼ to distinguish quantities computed from non-harmonic Fourier data from their standard
Fourier equivalents.
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The Fourier coefficients of the concentration kernel, C̃σ
N (x) are given by

̂̃Cσ
N (ω) = F

{
C̃σ
N (x)Π

( x

2π

)}∣∣∣
ω

= (Ĉσ
N ∗ sinc)(ω)

=

∞∑

k=−∞

Ĉσ
N (k)sinc(ω − k). (25)

Here Π(x) denotes the rectangular window function of width 2π and height 1.
The Fourier coefficients of the concentration jump function approximation corresponding to a

set of non-harmonic measurements, f̂(ωk), k = −N, ...,N , may then be computed using (24). We
are then left with the task of recovering S̃σ

N [f ] from its non-harmonic coefficients. Standard Fourier
formulations, such as the concentration sum of (4) are no longer applicable, since the non-harmonic
modes violate the quadrature rules for discrete Fourier expansions. However, the following extension
of the concentration sum may be employed to compute jump function approximations in this case:

S̃σ
N [f ](x) := i

N∑

k=−N

βkf̂(ωk)sgn(ωk)σ

( |ωk|
N

)
eiωkx. (26)

This expression arises from interpreting the Fourier partial sum as a quadrature formula for the
inverse Fourier integral. Given non-harmonic Fourier data, we use a nonuniform trapezoidal quadra-
ture and appropriate quadrature weights, βk. One simple choice for βk is the inter-sample distance
ωk+1 − ωk, although other methods exist for the selection of these weights. We also note that (26)
is no longer amenable to FFT computations on account of the nonuniform input data distribution;
nevertheless, it can be computed efficiently using nonuniform FFT schemes [23, 7]. The interested
reader is referred to literature from the MR imaging community, where this procedure is known
as convolutional gridding, [18, 20], and the weights are known as density compensation factors,
[19, 16].

Illustrative jump function approximations using two representative sets of non-harmonic Fourier
data are now provided. The associated sampling distributions are plotted in Fourier space in
Figure 9. Figure 9(a) illustrates the jittered sampling pattern, where the non-harmonic modes are
obtained by uniformly jittering the equispaced Fourier modes,

ωk = k ± ζk, ζk ∼ U [0, θ], k = −N,−(N − 1), ..., N. (27)

The ζk’s are i.i.d. uniform random variables drawn from U [0, θ], where θ represents the maximal
jitter. Both positive and negative jitters are equiprobable, with the sign of jitter at each node
being independent of the sign of jitter at any other node. Figure 9(b) illustrates the log sampling
pattern, where samples are acquired at logarithmic intervals, with more samples acquired in lower
frequencies. If ωk are the nodes at which measurements are acquired, |ωk| is logarithmically dis-
tributed between 10−v and N , with v > 0 and 2N + 1 being the total number of samples. This
sampling scheme is useful in understanding performance when measurements are acquired with
variable sample density, such as the spiral, [1], and radial sampling schemes in MR imaging.

We use the following test function to compute simulation results:

f(x) =





sin(3x) −π ≤ x < −π
3

tanh(x) −π
3 ≤ x < π

2
−3x

π + 3 π
2 ≤ x < π.

(28)
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Figure 9: Non-harmonic sampling distributions (right half plane), N = 16

Its associated jump function is

[f ](x) =





tanh
(
−π

3

)
≈ −0.7807 x = −π

3
1.5 − tanh

(
π
2

)
≈ 0.5828 x = π

2
0 otherwise.

(29)

We note that this test function has a combination of small jumps and signal variation. In combi-
nation with non-harmonic data, blurring and noise, this makes for a particularly challenging jump
detection problem. The corresponding jump function approximations for the two sampling schemes
are plotted in Figure 10. Figure 10(a) plots the jump function approximation from jittered spectral
data using 2N + 1 = 129 Fourier modes. Approximations using the first order polynomial factor
(σ1) and the exponential concentration factor with α = 1 (σexp) are provided. In both cases, note
the presence of artifacts throughout the domain. A comparison with the plots of Figure 2 reveals
that the smooth regions, where the response is supposed to be vanishingly small, are filled with
spurious responses. Note that these oscillations are not from the concentration method; rather,
they are caused by the non-harmonic acquisition. As before, the higher-order factor helps mitigate
some of the spurious response in the oscillatory region (away from the jumps). Figure 10(b) plots
the corresponding results for log spectral data. Note the relatively poor approximation quality with
strong oscillations and poor localization. Simulation results also reveal that the approximation does
not converge to the true jump function when using an increased number of measurements.

The underlying cause of these artifacts is the acquisition of non-harmonic spectral data. In
particular, families of non-harmonic exponentials {eiωkx}, ωk /∈ Z do not form a basis for functions
of practical interest, [31], except under very stringent circumstances7. A model for the accurate
inversion of such data is difficult to obtain, with the problem compounded by the acquisition
of data deviating significantly from the uniform modes. Under these circumstances, variational
formulations along the lines of Section 3, which only require an accurate forward model, form an
attractive and powerful framework for computing jump function approximations.

7Kadec’s “one-quarter” theorem, [17], allows for reconstruction in the special case that supk |ωk − k| < 1

4
.
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Figure 10: Jump approximations from non-harmonic Fourier data using the non-harmonic concen-
tration sum, N = 64

4.1 Variational solutions for non-harmonic Fourier data

As in Section 3, we solve for a discrete representation, y, of the jump function [f ] on an equispaced
grid xj = πj

N − π, j = 0, ..., 2N − 1. Let g denote the set of non-harmonic measurements of the
blurred and possibly noisy Fourier data, i.e., g = (ĝ(ω−N ), ..., ĝ(ωN−1))

T . Let Σ be the diagonal
matrix of concentration factors on the non-harmonic modes,

Σ = idiag

(
sgn(ω−N )σ

( |ω−N |
N

)
, ..., 0, ..., sgn(ωN−1)σ

( |ωN−1|
N

))
. (30)

Let H denote the diagonal matrix of blur coefficients on the non-harmonic modes,

H = diag
(
ĥ(ω−N ), ..., ĥ(ωN−1)

)
, (31)

and F ∈ C2N×2N be the discrete non-harmonic Fourier matrix with elements

Fkj = exp

[
i

(
−π +

πj

N

)
ωk

]
, k = −N, ....,N − 1, j = 0, ..., 2N − 1. (32)

Let W be a Toeplitz matrix whose rows contain shifted replicates of the jump waveform W σ
N (x),

(10).8 We may now compute jump approximations by solving

y = arg min
u

‖u‖1 subject to ‖HFWu− Σg‖22 < δ. (33)

Alternately, using a Lagrange multiplier, we may write

y = arg min
u

{λ‖u‖1 +
1

2
‖HFWu− Σg‖22}. (34)

8Note that W σ
N (x) is large only in the immediate vicinity of x = 0. Hence, W can be well approximated by a

banded Toeplitz matrix, reducing the overall computational cost.
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As before, this problem can be formulated as a SOCP, whose solution can be computed using one of
several methods such as barrier methods or dual interior point methods. Computational efficiency
may be improved by computing matrix-vector products involving the non-harmonic Fourier matrix
F using nonuniform FFT schemes. The notable distinction from the formulation of Section 3 is the
modeling of the jump waveform in physical space for the non-harmonic case. This is necessitated
by the discontinuity in the Fourier coefficients of the jump waveform, ŵσ

N (k), at k = 0 (Section

3). Interpolating the given discrete data f̂(ωk) yields oscillations around ω = 0. As a result, there
is a model mismatch between the physical space jump waveform, W σ

N , and its corresponding non-
harmonic Fourier coefficients. We mitigate the problem by approximating the jump waveform in
physical space as a convolution (the Toeplitz matrix W ).

Numerical results using this formulation are provided in Figure 11. Figures 11(a) and (b) plot
the jump function approximation of f(x), (4), using 2N = 128 jittered and log spectral modes
respectively. Results for the jittered spectral data are processed using σ1, while those for the log
spectral data are processed using σexp. We note that the use of low order concentration factors in
the log sampling case results in increased false positives, or a higher probability of missed detection
of the jump at x = π

2 . Results for both sampling schemes reveal a marked improvement over
the quality of the forward methods in Figure 10. The jump function approximations are highly
localized and show minimal spurious responses. Regularization parameter values of 1.6× 10−3 and
2×10−3 respectively were used in the generation of the plots. The variational solutions suffer from
incorrect approximation of the jump heights, as this depends on the choice of the regularization
parameter λ. However, once the jump locations are identified by thresholding, the correct jump
values may be recovered by a simple evaluation of the concentration sum.
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Figure 11: Jump approximations from non-harmonic Fourier data using the variational formulation,
N = 64

Although exhaustive simulations of the effect of the regularization parameter λ on the final
solution have not been performed, there are strong indications that parameter selection is more
sensitive in the case of non-harmonic Fourier data, as compared to the standard Fourier case. More-
over, the parameter selection problem is more challenging when reconstructing from log spectral
samples than jittered samples.
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(b) Jittered spectral data, σ1
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Figure 12: Jump detection from blurred and noisy non-harmonic Fourier data, N = 64

For completeness, representative results of edge detection from blurred and noisy non-harmonic
spectral data are provided in Figure 12. A visual illustration of the blur and noise is provided in
Figure 12(a), where the Fourier reconstruction of the function is provided. Figures 12(b) and (c)
plot the solution of the variational formulation (34) for the jittered and log sampling acquisitions
respectively. In either case, the jump function was estimated from 2N = 128 Fourier coefficients.
For jittered data σ1 was used to compute results, with a regularization parameter value of λ =
2.05 × 10−3. For the log sampled data, σexp with α values of 1 and 6 were used to generate
the plots. The corresponding regularization parameter values were λ = 1 × 10−3 and 1.5 × 10−3

respectively. In this case, with few high frequency Fourier measurements available, and corruption
by noise and blur, the higher order CF outperforms the lower order CF, which misses jumps or
registers false positives.

5 Concluding remarks

We have presented a new approach to detect edges in piecewise smooth functions from partial
Fourier data, that might also be corrupted by noise or blurred by a PSF. The method combines
the CF method for edge detection with ideas from compressed sensing. The oscillations introduced
by the CF method can be removed by a regularized deconvolution. The method is robust under
noise and blurring of the signal, and works even when the Fourier data is given on a nonuniform
grid.The exponential CF usually outperform lower order polynomial CFs, in particular when only a
limited number of Fourier coefficients are available. Similarly they appear to perform better when
the nonuniform Fourier data is sampled more erratically, as in the log-sampling case. Further test
cases with fewer jumps and more variation in the test signal confirm this pattern. The method seems
to be very promising and more research should be conducted into understanding its limits in the
presence of noise and blurring. In particular the method is based on the estimation of the matching
waveform, which is derived from a ramp function approximation of general jumps. Therefore we
can expect that the accurate edge detection becomes more difficult as the jumps move closer to
each other. A more comprehensive computational investigation as well as theoretical results based
on the reconstruction probability using the compressive sensing framework, as in [3], should be able
to answer this question. A two dimensional extension is possible and subject to a companion paper
that is currently in preparation.
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