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ABSTRACT

Certain applications such as magnetic resonance imagiij)(&hd synthetic aperture radar
(SAR) imaging demand the processing of input data colleictdte spectral domain. While spectral
methods traditionally boast of superior accuracy and efficy, the presence of jump discontinuities
in the underlying function result in the familiar Gibbs plemenon, with an immediate reduction
in the accuracy of the method. This dissertation proposdfode and computational tools for
the efficient and accurate processing of such data, witheghigns to imaging. The relationship
between local features and Fourier measurements is exgbltot address three specific problems
— the detection of jump discontinuities from Fourier datae teconstruction of functions from
non-harmonic or non-uniform Fourier measurements, an@shimation of point-spread functions
(PSFs) from blurred Fourier data.

Jump locations and values are among the most important fieeires of a piecewise-analytic
function. Use of theeoncentration edge detection methisddiscussed, which uses Fourier partial
sums and “filter” factors known as concentration factorspgpraximate this jump information. A
flexible, iterative framework is proposed for the designhede factors, along with the formulation
of a statistical detector to detect the presence of jumps fioisy Fourier data. Extensions of the
method to multiple dimensions as well as non-harmonic Eourieasurements are also provided.
Jump information from this method is shown to play an impurtale in obtaining accurate recon-
structions of functions from non-harmonic Fourier data.isTik a challenging problem, typically
complicated by the acquisition of spectral samples with-aoiform sampling density. The use of
spectral re-projectionrmethods is proposed to reduce the error caused by non-haraaguisitions.
These reconstructions are shown to offer great accuradle vaguiring fewer input measurements
than conventional Fourier methods. Results of an indimmbmstruction method are also provided,
which uses jump information to synthesize “new” high-freqay Fourier coefficients. Simulation
results reveal this framework to yield highly accurate restructions of the underlying function. Fi-
nally, the presence of jump discontinuities in a functioaxploited to construct an efficient scheme
for the estimation of PSFs from blurred Fourier data. Repriadive results are provided, demon-
strating the accurate estimation of Gaussian and outafsf@SFs from blurred and noisy Fourier

coefficients.
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CHAPTER 1
INTRODUCTION

Spectral methods, and Fourier spectral methods in paaticerjoy widespread popularity in several
areas of science and engineering. Besides constitutingahdiasis functions for modeling diverse
natural phenomena, they also possess attractive numgrigarties. For example, it is well known,
[1], that the partial Fourier sum converges exponentiallick]y to the underlying function, if the
function is smooth and periodic. Unfortunately, the appr@tion of piecewise-analytic functions
using spectral methods suffers from the Gibbs phenomerdgn,This manifests as non-physical
oscillations at a local level and a reduced order of convergat a global level. It is this piecewise-
analyticity which presents a problem when processing imlath from the spectral domain. This
is the case in certain imaging modalities such as magnetanesnce imaging (MRI) and synthetic
aperture radar (SAR) imaging. In these applications, tieraaf the measurement process is such
that the input measurements correspond to the Fourier cieei of the specimen being imaged.
The processing of such data therefore requires speciatiatte

This dissertation provides theoretical and computatitoals that address three specific prob-
lems encountered when imaging from Fourier spectral data:

1. The identification of jump or edge information from Foumeeasurements.

2. The reconstruction of piecewise-analytic functionsrfrmon-harmonic or non-uniform Fourier

measurements.

3. The estimation of point-spread functions (psfs) in de+irig problems from Fourier data.
A recurring theme in the ensuing chapters is the often mtgiinterplay between local features and
global expansions. We restrict our attention in this disgien to jump information and Fourier
spectral data. By exploiting this relationship, we are abl&evise algorithms for the accurate
and efficient identification of jump locations and valuestira few, and possibly noisy Fourier
coefficients. Extensions to the case of missing and non-wimourier measurements are also
provided. Moreover, we use this edge information as an iategpmponent of reconstruction
schemes for non-harmonic Fourier data. Non-harmonic Epudconstruction is a challenging
problem, compounded by the acquisition of measurements waih-uniform sample density, and
by the presence of discontinuities in the function. Thelatsdity of jump information, however,

allows for the mitigation of effects caused by non-harmatquisition and accurate, cost-efficient
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function reconstructions. The application of jump detattn blurred Fourier data also allows for
the estimation of blurs using a simple and non-iterativengravork.

An outline of the rest of the dissertation is as follows: Thedtion of jump discontinuities
and their values is addressed in Chapter 2. The framework fosehis is the concentration edge
detection method, [2], which computes an approximatioméosingular support of a function from
its first few Fourier series coefficients. This framework sugseFourier partial sum and “filter”
factors known as concentration factors. Since the qualith@approximation is characterized by
these factors, we present a flexible and iterative framewarthe design of concentration factors.
Sample problem formulations are provided and some of thdtimaal concentration factors are
shown to be solutions to particular formulations. The desifjfactors for missing spectral data is
also addressed.

The concentration method computes a Fourier partial surpgooaimate the singular support
of the function. Since we start with global measurementtaining a localized, accurate and well
resolved approximation to jumps is challenging. Consetlyeme discuss the design of an edge de-
tector that uses a few evaluations of the concentration suarsmall neighborhood of the decision
point to ascertain the presence or absence of a jump. Thigndissan extension and generaliza-
tion of the method described in [3]. Finally, extensions tté toncentration method to multiple
dimensions and non-harmonic Fourier data are presented.

We remark that performance evaluation of these methodsasplicated task, since most ex-
isting edge detection schemes are constructed for physpeade data. Base-lining against these
methods (e.g., divided differences, the Sobel, Prewittanmr@ edge detectors) is to a certain extent
unfair, since they were not designed to handle jump or edtgctien from spectral data. Com-
parisons to results starting from physical, grid point datalso not fair, as this fails to address
the implications of starting with global data. Consequertbmparisons to other post-processing
methods developed specifically in conjunction with the emiation method are made, and our
framework is show to perform well even in the presence of@oiSomparisons to some of the
standard edge detectors such as the Canny edge detectonade@ where appropriate, both as an
illustrative reference and as an indication of the loss tueacy resulting from the use of spectral

data.
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Representative results of these methods are shown in Biguteand 1.2, while a detailed
discussion is deferred to Chapter 2. Figure 1.1 illustrttesconcentration edge detection method
in action. Figure 1.1 (a) plots the acquired measuremerttgsrsimulation, which are the first few
(129) Fourier coefficients of an underlying test function, wittotbands of missing data to simulate
instrumentation errors. Figure 1.1 (b) plots the resultpunip detection. These results use the
concentration factor design framework to compute a custaetof for this missing data problem.
The concentration jump approximation of the function istigld as a solid line in Figure 1.1 (b),
while the precise jump locations and values obtained afiplying the edge detector are plotted as
o’s. The capabilities of the statistical edge detector areerably illustrated by Figure 1.2 (a), which
plots the accurate detection of jumps in a test function sighificant noise. Finally, Figure 1.2 (b)
illustrates the application of this method to images, wiga of the edge map of the Shepp-Logan

brain phantom, [4].
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Fig. 1.1: Accurate identification of jump locations and \ed{from129 Fourier coefficients)

Reconstruction of functions from non-harmonic Fourier sugaments is discussed in Chapter
3. Non-harmonic acquisitions present an immediate prollecause families of non-harmonic ex-
ponentials rarely constitute a basis for functions of pcatinterest. Insight into this phenomenon
may also be attained by comparing the kernel described bypdheharmonic modes to the stan-
dard Dirichlet kernel. It is explained in Chapter 3 that tlmm+#harmonic acquisition manifests as

non-decaying oscillatory sidelobes in the kernel, while4umiform sampling density manifests as
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(a) Jump detection in noise (b) Edge map of the 2D Shepp-Logan
brain phantom

Fig. 1.2: Extensions of the concentration edge detectioihoade

a loss of localization. Existing reconstruction procedui@ non-harmonic data work by mapping
the non-uniform measurements to equispaced modes, falltwetandard Fourier reconstruction.
Two such methods, convolutional gridding, [5], and unifaeprsampling, [6], are discussed, along
with error analysis for gridding reconstructions. Thislges reveals that the primary impediment
to accurate reconstruction is the non-uniform samplingsignSince it is customary to in many

applications to undersample the high modes (which typicadicount for only a small fraction of

the signal energy), this manifests as poor accuracy of tjiiemiode Fourier coefficients.

This situation is similar to the familiar Gibbs phenomenatere a slow decay of the Fourier
coefficients leads to poor accuracy in partial Fourier suaomstructions. Spectral re-projection
schemes, [7], have been previously proposed and sucdgsgiplied to the resolution of the Gibbs
phenomenon in spectral methods. We propose the use of jeefiom methods to mitigate the
effects of non-harmonic acquisition and non-uniform sangptiensity. Analysis of the reconstruc-
tion error for spectral re-projection shows that equival@rbetter accuracy may be attained when
compared to standard Fourier methods, while requiring geeaf far fewer input measurements.
The use of re-projection methods also allows for the elitidmaof Gibbs artifacts, which may be
important in applications such as MR imaging. lllustratresults from such reconstructions are
shown in Figure 1.3. Figure 1.3 (a) plots example non-haimsampling distributions, while Fig-

ure 1.3 (b) confirms that standard Fourier partial sums ypelor results for such data. Figure 1.3
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(c) shows the result of the gridding method, post-procebgalow pass filter, while Figure 1.3 (d)
plots the spectral re-projection reconstruction usingegabguer polynomials.

Re-projection methods work by using the location of jumpcdiginuities to reconstruct the
function in smooth intervals, and subsequently piecingehiatervals together. We also present
preliminary results of a method where we employ not just thrag locations, but also the jump
values to produce highly accurate reconstructions. Thithaaedirectly exploits the relationship
between local jump features and Fourier coefficients tored# the values of the high frequency

Fourier modes. This allows us to obtain far greater resmiutihan that supported by the acquired
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Fig. 1.3: Non-harmonic Fourier reconstruction

Chapter 4 summarizes the estimation of psfs in de-blurrimeglpms from the blurred, and pos-
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sibly noisy Fourier coefficients of piecewise-analytic détions. Blurring problems abound in the
real world, where measurements are often corrupted by éinsrirission channel and instrumenta-
tion effects. A natural task under these circumstanceseisgbovery of the original function. An
accurate estimate of the blur significantly aids in the sssfte inversion of blurring effects. To
obtain such an estimate, we apply the concentration methatleoblurred Fourier coefficients of
the function. The resulting jump approximation yields wdfand scaled replicates of the psf, from
which blur parameters may be obtained. This procedureuistitited in Figure 1.4, where the esti-
mation of Gaussian and motion blurs is plotted. The undsglyunction, in either case, is plotted
using a dotted line, while the true blur is plotted for refeze using a dashed line. The result of
applying the concentration edge detection method to thedalFourier data is plotted using a solid

line, and can be seen to manifest as replicates of the blacat@ the jump locations.

(a) Estimation of Gaussian blurs (b) Estimation of motion blurs

Fig. 1.4: Estimating psfs by applying the concentrationtrodt

Finally, Chapter 5 summarizes the findings of this disseraind describes some avenues for

future investigation.



CHAPTER 2
EDGE DETECTION FROM FOURIER DATA

The detection of jumps in piecewise-analytic functions enmon signal processing operation,
which finds application in several branches of science agthearing. For example, edge detection
is an important image processing operation. Besides beéarglalone entities of interest, edges
often serve an important role in other tasks such as segtintnd pattern recognition. High-

resolution reconstruction schemes, and the solution digbaifferential equations (PDES) are two

other areas where edge detection finds importance. In depé&eewise-analyticity reduces the
reconstruction accuracy, or the accuracy of the solutioRDESs involving such functions. The

availability of edge information, however, can lead to #igant improvements in the quality of the

resulting solutions. The interested reader is referre®t@€hapter 9] for a discussion of one such
reconstruction scheme and its application in the solutidPRES.

Certain applications demand the identification of edgem fr@ourier measurements. This is the
case, for example, in magnetic resonance imaging (MRI) gnthetic aperture radar (SAR). In
these applications, the underlying physical phenomentailethe collection of data in the Fourier
domain. The identification of edges from such data is pddit challenging, since it requires
the accurate identification of a local feature from a glolearesentation. Figure 2.1 illustrates this
problem. In this figure, we plot the edge map of the Shepp-hdgain phantom, [4]. Figure
2.1 (a) plots a 257 grid point phantom, while Figure 2.1 (lmtplthe edge map of this phantom
as obtained using Matlab’s implementation of the Canny efigector, [9]. Figure 2.1 (c) plots
the Fourier reconstruction of the phantom on 257 grid pdmasn its first 101 (Vv = 50) Fourier
coefficients. Note the presence of Gibbs oscillations inrdeonstruction. These non-physical
oscillations, which are a consequence of starting fromajldhta, make edge detection challenging.
The resulting edge map, as generated by the Canny edgeatetecthown in Figure 2.1 (d) and
can be seen to contain numerous false activations.

In this chapter, we present methods and algorithms to amtyrestimate jump locations and
values in piecewise-analytic functions from their first feaurier series coefficients. We utilize the
concentration edge detectianethod as the underlying framework for this purpose. Thithow
computes an approximation to thuenp function(to be defined in Section 2.1) using a Fourier partial

sum and Fourier space “filter” factors known@mcentration factorsThe characteristic features



(a) The Shepp-Logan phantom

(c) Fourier reconstruction of the (d) Canny edge map of the Fourier re-
phantom,N = 50 construction

Fig. 2.1: Edge detection from Fourier data
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of the resulting approximation depend on the design of ticeseentration factors. We therefore
propose a flexible, iterative framework for the design okthéactors, supporting a wide class of
design criteria, including cases such as the design ofrfaétw missing or banded spectral data.
Several sample problem formulations are provided to i&istthe capabilities of the method. A
recurring theme in the development of this material is thigoncof ajump responseAlthough this
will be more formally defined in Section 2.1.1, the jump rasgmis essentially the concentration
jump approximation of a unit amplitude jump. The jump resmolescribes the unique oscilla-
tory form of the jump function approximation both near andagvirom jumps. This becomes
particularly important in the design of an effective edgeedtor, which takes the continuous jump
function approximation and returns the discrete jump locatand values in the function. A sta-
tistical formulation is pursued and a variant of the geneedl matched filter detector is designed.
Several examples illustrating the performance of the detece provided, along with comparisons
to other standard methods of edge detection. A simple artes$ this method to two dimensions
is also described with examples. Finally, and as a specs&, @ee are interested in the detection of
jumps given non-harmonic Fourier data, i.e., Fourier coieffits sampled on non-uniform modes.
A straightforward extension of the concentration edgedi&e method using hon-harmonic expo-
nentials is shown to fail in this case, with an iterative solu proposed to accurately identify jump
values and locations.

The rest of this chapter is organized as follows: Sectiorc@ritains a summary of the concen-
tration edge detection method. The notion of concentrdtictors and admissibility conditions for
the same are introduced, besides tabulation of some ppitatyfamilies of such factors. Example
responses on test functions are also provided. The jummpmespis defined, and the distinction
between low and high-order edge detectors explained. d@e2tR briefly reviews previous and
related work on this topic, while Section 2.3 provides apralitive formulation of the concentra-
tion method. Here, we relate local edge information to dldtmurier measurements, in addition
to expressing the concentration jump approximation in $eainthe jump function and the jump
response. This formulation provides a suitable frameworkte discussion concentration factor
design, with Section 2.4 providing the design framework aeeral illustrative sample problem

formulations. The design of an edge detector using a detettieoretic formulation is pursued in
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Section 2.5. This section includes expressions for theri@wee structure of the noise component,
besides the design of the detector as well as expressionts fperformance. Several examples
and comparisons to standard techniques are given. An éxteaEthe concentration method to
two-dimensional functions is provided in Section 2.6. Hinave discuss the application of the
concentration edge detection method to identifying junfprimation from non-harmonic Fourier

data in Section 2.7.
2.1 THE CONCENTRATION EDGE DETECTION METHOD

Let f be a real-valueld 27-periodic, piecewise-smooth function i, ). Given the firsR N + 1

Fourier series coefficients

= %/ f(x)e~**dy, k=—N,.,N (2.1)

we are interested in identifying the locations and valugsimip discontinuities inf. We start our

discussion by defining the jump function.

Definition 1. (Jump Function) Lef : R — R, with f(z*) and f(2~) denoting the well-defined
right and left-hand limits off for everyz € R. The jump function associated withand denoted

by [f] is defined as the difference between the right and left hamnidsliof the function; i.e.,

[fl(@) = f(z™) — f(a7) (2.2)

Note that the jump function is non-zero only at a jump discrrity, where it takes the value of
the jump.
The concentration edge detection method, [2, 10], compareapproximation to the jump

function using a partial sum of the form

_ Z K)sor(k)o (’ ‘) (2.3)

LWe restrict our attention to real-valued functions, sirea-world applications typically require
the estimation of real-valued jumps.
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The choice of the factos(n) = o (%) known as theconcentration factqgr decides the con-
vergence properties of the jump approximation. These facice known to satisfy the following

admissibility conditions:

Nk
1LY o (N) sin(kz) be odd

1
3. / o(n) — —m, € = ¢(N) > 0 being small
e M

We note that the concentration sum in (2.3) can be interprasethe convolution of with a con-
centration kernel’}; defined as

CH(z):=1i > sgk)o (‘ﬁ’> etk (2.4)

N
[k|<N

Therefore (2.3) is equivalent to

SKUf(@) = (f * CF)(x) (2.5)

The admissibility conditions essentially state that thacemtration kernel is required to be odd,
suitably normalized and satisfy a certain smoothness @nsin order to approximate the jump
function. Table 2.1 lists a selection of concentrationdexintroduced in [2, 10], while Figure 2.2

plots these factors in the Fourier domain.

Table 2.1: Examples of concentration factors

Factor Expression Remarks
. _ msin(mn) _ T sin(x)
Trigonometric = —— Si(m) = —d
g raln) = g M= =
Polynomial olh(n) = pmn? p is the order of the factor

« is the order

. 1 . .
Exponential | og(n) =C - n-exp <7> C is a normalizing constant
an(n —1)

s

C =

f;_% exp (ﬁ) dr

2A detailed development and discussion of these conditianse found in [10].
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Concentration factors plotted in Fourier space

35 T T T Trigonometric
— — — Polynomial
\ o ’
al N Exponential

o(kIN)

151

0.5

0
-150 -100 -50 0 50 100 150

Fig. 2.2: Concentration factors plotted in Fourier space

If o(-) is an admissible concentration factSf;[f] “concentrates” at the singular support of

and the jump approximation obeys the concentration predért, Theorem 2.3],

N

oQ

(M%) dw) St

S (2.6)
og
O (i) dl) >

SyA() = [f)(x) +

zZ= =

Here,d(x) denotes the distance between a point in the domain and thesteliscontinuity, while
s > 0 is a parameter which depends on the concentration fact@echaorl he value of depends
on the ordet of the concentration factor, with a higher-order edge deteassociated with a larger
value ofs as compared to a lower-order edge detector.

2.1.1 The Jump Response

As indicated in the previous discussion, the characterfstatures of the concentration jump ap-
proximation depend on the choice of the concentration fa&esociated with each concentration
factor is a unique oscillatory pattern in the immediate nityi and away from jumps. We will re-
fer to this as thgump responsassociated with a concentration factor. k€t)) be an admissible

concentration factor. Let(x) denote the unit ramp function, with a corresponding jumpfiom

3The notion of low and high order edge detectors and theiracheristic features will be dis-
cussed with illustrative examples below.
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Fig. 2.3: Jump responses of different concentration fagidr= 32)

—5— <0 1 z2=0
r(z) = : [r](z) =
5F x>0 0 else

Definition 2. (Jump Response) The jump response, denotdd’@ff(m), is defined as the jump

function approximation of the unit ramp as generated by threcentration sum (2.3). i.e.,

W (z) = SZ[r](x) =i > #(k)sgn(k) o (%’) ik

|k|<N

= 1 Z 7 <%> ik 2.7)

27 k|
0<[kI<N

The final equation is obtained by substituting the Fourieffacients of the ramp function,

L k#0
'f'(kf) — 2mik #
0 k=

The jump responses of each of the concentration factoesllistTable 2.1 are plotted in Figure
2.3. The reader is encouraged to study these plots in aisacigith (2.6). In particular, note
the “concentration” of the jump approximation at the sirgldupport of-. Further, note the non-
uniform convergence to the true jump function; this is to kgeeted as we are computing a Fourier
partial sum approximation of the piecewise-defined jumgfiom. The different orders of conver-
gence away from the jump for each of the concentration facfmrameterized byin (2.6), is also

evident from the plots. For example, the polynomial conegiun factor shows slowly decaying
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oscillations for|z| > 0, while the exponential factor shows a vanishing responsgy dvem the

jump.

2.1.2 Sample Jump Function Approximations and Low/HiglepEdge Detectors

To study the performance of the concentration edge deteotiethod, we introduce the test func-

tions f1(x) and fo(z), with associated jump functions given in (2.9) and (2.1%pestively.

fi(z) =

f2()

— 2 tsin(z — 1)
)

€r —

(@) *’;|: ENEN B N[OV

3
2
_3
2
1447 : T+1\ ~
5 S (T) ~
.2 28—
i (557) - B2 ~
33 "y
BT _ 5~ —1.76
337~
B — 3T~ 148
0
sin(6x)
%6_%(7? — )
1
[fol(z) =
0

o<
- 8 (2.8)
HEEEES ¢
else
r=-3z
T = —%
1.28 r=-%
—1.70 r=1 (2.9)
p=3z
z= 3
elsewhere
—%” <zx<0
(2.10)
x>0
=20
(2.11)
else

The concentration jump function approximation of the twst teinctions are provided in Figures

2.4 (a) and (b) respectively. The jump function approxiomatof f;(x) was generated using the

trigonometric factor while the trigonometric and expoma&injump function approximations of

f2(x) are plotted. We draw attention to the jump function appration of f>(z) in Figure 2.4

(b). The trigonometric jump function approximation has géanon-zero value in the smooth in-

terval (—m,0). This is characteristic of bbw-order edge detector acting on a function with large
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(@) Jump approximation of, (), N = 64  (b) Jump approximation of(z), N = 100

Fig. 2.4: Jump approximations of two test functions

variation. In contrast, the exponentidligh-order jump function approximation contains a van-
ishing response in smooth regiéret the expense of some additional oscillatory behavior én th

immediate neighborhood of the jump.
2.2 SUMMARY OF PREVIOUS WORK

The concentration edge detection method was first intratiucg] and extended in [10], with the
introduction of new families of concentration factors arse wf the “enhancement of scales” pro-
cedure. This post-processing procedure essentiallysrfiseconcentration jump approximation to
thep” power, thereby improving the resolution of jumps and serayaegions (or scales) of jump
from smooth regions. Further efforts to improve jump resofuand reduce spurious oscillations
were undertaken in [12], where th@nmod operator was used. This approach uses jump responses
from multiple concentration factors in conjunction witletminmod operator to reduce oscillations

in the smooth regions and in the immediate vicinity of jump&duction of oscillatory behavior
was also the motivation behind the design of a class of cdrateon factors known as matching

waveform concentration factors, [13]. These factors arwgvatent to computing correlations of

4The small non-zero oscillatory response in the vicinity:cf —%’r is due to a discontinuity in
the derivative offs(x).

*minmod(a, ..., a,) = { sgn(ay) - mino(|a1|> o lanl)  sgn(ar) = Sgr((?lle: - = Sgnan)
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the jump function approximation with the jump response, lmifin 2. The consequence is a peak
at the jump location and vastly reduced oscillations in tath regions. Several works have
also addressed the jump detection in the presence of nomeexBmple, [11] uses a framework
of breaking the function into scales of smoothness, noisg@nps. An approach at reducing the
variance of the jump function approximation, along with seduent reconstruction of the function,
is pursued in [14]. A detection theoretic formulation of {henp detection problem, with matched
filter formulations are provided in [3] and [15]. Finallyerative formulations of this jump detection
method, drawing from recent developments and algorithmsdmpressive sensing, [16, 17], are
developed in [18]. This framework allows for the identificat of jump information from sparse

and possibly randomly sampled Fourier data.
2.3 ANALYSIS OF THE CONCENTRATION SUM

In this section, we provide an alternative formulation o ttoncentration method by relating the
concentration sum (2.3) to the jump function. We start bylghg the relation between Fourier
coefficients and jump locations and values. Consider, withass of generality, a periodic function
on [—m, 7) with a single jump at: = {. Fork # 0, we have

R ¢ _ m ,
f(k) = 5%; f(m)e‘”kxdx-+-5%: <+f(gc)e-'““ﬂ‘dg: (2.12)

—Tr

On integrating by parts, we obtain

R —ik( ¢ ) s )
FR) = (FCH) ~ F(C) oo+ (% [rmetee g | f’(m)e—l’fx) (2.13)

where we have used the periodicity of From (2.2), we obtain

~ —ik(C ¢~ ' - ‘

Note that the term within parenthesis is the same as (2.12) f{dherefore, by repeated application

of integration by parts, we obtain

a1 (UAQ) 1) | Q)
ﬂm_i%(ik‘*@@?*(mﬁ

+m>awﬁ k#0 (2.14)

This expression is worth noting because it provides the lhiekween the global Fourier measure-

ments we are given and the local features (edges) we aresigerin approximating. Substituting
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this expression in (2.3), we get
o o R . m ikx
sille) = 3 o () sarte
0<|k|<N
1 / " W ‘ k ik
- S [ (MO O IO Yo () s

0<k|<

o <|—J’§‘> sgn(k)
——

||
) = o (W) sot)
- S 5 pikE—Q) 4 3

™
0<|kI<N 0<|kI<N

(ke =C)

" o (L&l k
L ) 3 Meik<w—<>+.,. (2.15)
0<[k[<N

Recall that the first term in the above equation is a shiftetismaled jump responsg/; N (Defi-

nition 2). Similarly we may define

|%|
1 oy )sank) -
DY —( z'>k‘2 ek = W () (2.16)
0<|k|<N
and, in general,
||
1 o\'N sgnk)
— E —(iqlszrl etk = W;’N(az) (2.17)
0<|k|<N

Substituting in (2.15), we obtain

S%A(@) = [FIOWT™ (@ = ) + [FUOWTN (@ = O + [N OWs N (@ = ¢) + ... (2.18)

There arises a technical difficulty in using the above foatiah for analysis, since the jump “func-
tion” is zero everywhere, except at a finite set of points. réfaee, convolutions involving this
quantity would evaluate to zero. However, this is easilyropme using a regularized equivalent of
the jump function (motivated by the development in [11]),iefhwe denote byf].(z), and define

as

T — €, € €~ .
P BUCRUSHECEES 0 (5%+) 2.19)

0 else
Thus, (2.18) becomes

AW (@ =€)+ [F1OWTN (@ = Q) + [ (OWs N (@ — ) + ...

/_ 1 OWeNe - Q¢ + / 1QOWTNe — Q)¢ + / e OWENa — ¢)dC + .

_[ —

S ()

Q

Q

= ([fle* Wg™) @) + (1 )e * W) (@) + ([f"]e * W) (@) + . (2.20)
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We note thatV”" (x) = (B; * C%)(x), whereB;(z) are normalized Bernoulli polynomials, [19],
andC¢% () is the concentration kernel (2.4). Since iHeBernoulli polynomial has a discontinuity
in its i** derivative atz = 0, each of these kernels denotes the response of the corimemtra
sum to jumps in the!” derivative of the function. Our attention, however, will bestricted to
the identification of jumps anwg’N, the jump response. The jump response and the first three
higher-order kernels associated with the polynomial cotreéon factor are plotted for illustrative
purposes in Figure 2.5. Note the alternating even-odd eatithe kernels and the reduced scale of

the higher order kernel plots.
2.4 CONCENTRATION FACTOR DESIGN

Expression (2.20) provides us with a convenient startingtdo discuss concentration factor de-
sign. As previously discussed, the design of a concentrddictor is important since it determines
the qualities of the resulting jump function approximatiofio accurately approximate the jump
function, it is obvious from (2.20) thdi‘[/’g’N(x) has to be emphasized, while simultaneously sup-
pressingWi"’N(x),z' > 0. Moreover, for a well resolved jump approximation, we reguhat

Wg’N(ac) have properties similar to the indicator function

1 z=0
0 else

The design framework therefore consists of solving antitergrogram which computes a concen-
tration factoro for (2.3) such that the above conditions are satisfied. Acgigiroblem formulation

takes the form

min  ¢o(0)
subjectto ¢, (0) =¢p, m=1,... M
Yp(o) <cp, n=1,..N (2.22)
The objective functionpy is typically a norm measure ¥/ N (x). ¢m, ¢y, are constants or func-

tions independent of while the constraintseg,, (o), ¥, (o), are typically functions OWiU’N(x)

or 0. Note thato is an even function (this follows from the admissibility cton requiring the
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Fig. 2.5: The jump response and first three higher order kem@msociated with the polynomial
concentration factor = 64)

concentration kernel (2.4) to be odd). Consequently, tisggdegoroblem is an iterative program of

size N.

2.4.1 Sample Problem Formulations

In the following discussion, we provide several sample [@abformulations. All problem formula-
tions discussed below are convex programs, with most b&iegd programs or quadratic programs
with linear equalities and inequalities. In broad brusleythan all be formulated as second order

cone programs (SOCPSs), which can be solved using a variatyettiods, [20]. The simulation
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results in this section were computed ust\gX, a package for specifying and solving convex pro-
grams [21, 22]. Programs were implemented in Matlab (var3i@) with CvX version 1.2 (build
711).
1. Problem Formulation 1TFhe (first-order) polynomial concentration factor
We start with a problem formulation minimizing tBenorm of the jump wavefornW(j”N(x),

while ensuring its proper normalization.

min || W5 |

subjectto W =1 (2.23)

This results in a concentration factor and jump responséoteg in Figure 2.6.
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Fig. 2.6: Problem formulation 1y = 64

By comparing Figure 2.6 with Figures 2.2 and 2.3, it is cl&at this problem formulation results in
the first-order polynomial concentration factor. This alzadon may be formalized in the following

theorem:

Theorem 2.4.1.Let WO‘”N be the jump response. The concentration faetof) = o (%) which
solves the problem
min | W5

subjectto WN| =1 (2.24)

z=0
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is the first-order polynomial concentration factet, () = .

Proof. By Parseval’s relation, we have

|k\> 2
oy )sank)
o,N o (N
L R D P e
0<|k|<N
1
([
_ Z p (2.25)
0<|k|<N ]
By definingn = % the above expression becomes
1
1 UIRE
o,N _ g
HWO H2_ N Z n ‘ (2.26)
0<n<l

a(n)

o . o 2
The error is minimized when each term in the sum is mlnlmlmttmgd— <—> to zero, we
n n

5 <a§777)> , (na’(n)n?— 0(n)> _

no'(n) = a(n)

obtain

Sincen # 0, we have

The solution of this equation takes the form

o(n)=C-n (2.27)
whereC' is some constant. We determifieusing the equality constrainty/; AV fol.
o (%) sgnk)
> S
k
0<|k|<N
1
1 o(n) _
Ny L
n=1/N
C
— _ .N =
TN
C=m (2.28)

The result follows. O
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2. Problem Formulation 2Sparse jump response
A quick study of the jump response of the polynomial concditn factor reveals strong
oscillations in the smooth regions. Therefore, we consideroblem formulation where we
minimize thel-norm of the jump wavefornW(f’N(:c), subject to the usual normalization

constraint.

min [ W5 |

subjectto WV =1 (2.29)

=0

This results in a concentration factor and jump responséoteg in Figure 2.7.

a(|k|I/N)
P
o

[f(x)
’

-80 —éo —4‘0 —26 0 26 4‘0 6‘0 80 —é —é —i 6 i 2‘ é
(a) Concentration Factor (b) Jump Response

Fig. 2.7: Problem formulation 2y = 64

As expected, the response in smooth regions is much smutler axpense of decreased resolution
of the actual jump and strong oscillatory sidelobes in thenediate vicinity of the jump. These
characteristics are in evidence in the plots of Figure 2t8s Tigure plots the absolute logarithmic
error between the true jump function and the concentrationpj response. The error plots for
different values ofV are provided to infer convergence behavior. The almostiitat erofile away
from the jump in Figure 2.8 (a) is a result of the slowly deoayoscillations. In comparison, the
concentration factor from problem formulation 2 shows aislaing response in the same region in

Figure 2.8 (b).
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Fig. 2.8: Log absolute error between the true jump functiwhtae concentration jump approxima-
tion, N = 64

3. Problem Formulation 3Higher order concentration factors

The previous problem formulations imposed no constraintthe magnitude of the higher

005 \
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=
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_0.2501 L . . L
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(a) Trigonometric concentration factor (b) Exponential concentration factor

Fig. 2.9: Plot of the higher-order kerneW,f’N,z‘ =1,..,4, (N =64)

order kernels. This can present a problem when computing japproximations for func-
tions with significant variation. Figure 2.4 (b) providesetample, where the jump function
approximations offs(z) using the (low-order) trigonometric and (high-order) exeotial

concentration factors are plotted. For reference, Figu@eplts the first four higher-order

kernels,Wi"’N ,i = 1,..,4, for the trigonometric and exponential concentration detre-
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spectively. Note the logarithmic scale and the signifigargduced values of the kernels for
the exponential concentration factor.

Clearly, there is a lot to gain in this context by imposing stoaints on the higher-order

kernel$. Therefore, consider the problem formulation,

min || W5 |

subjectto W =1

z=0

g <10

| <107
0>0,0(1)=0 (2.30)

This results in a concentration factor and jump responséoteg in Figure 2.10.
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Fig. 2.10: Problem formulation 3y = 64

Figure 2.11 plots the response of the factors from problemdtations2 and3 respectively to the
test functionf,(z), (2.10). Note the significantly improved performance ugingblem formulation
3 with respect to canceling out oscillatory signals. Probfermulation2 had no constraints on

the higher order kernels; consequently, the jump respan$agure 2.11 (a) shows a significant

S1deally, the higher-order kernels should be vanishinglanProgramming constraints, how-
ever, make it difficult to do so.
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Fig. 2.11: Comparison of low and high-order concentratiomp approximationsN = 64
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Fig. 2.12: Logarithmic plot of the higher-order kerndl’B’f’N,z' =1,..,4, (N = 64)

non-zero value in the sinusoidal region. The correspondisponse in Figure 2.11 (b) is near

zerd. Plots of the first four higher-order kernels correspondimghe two concentration factors

are given in Figure 2.12. Note the significantly smaller ealdor problem formulation 3. Note

that the exponential factor was designed to cancel out ay maments as the order of the factor,

[10]. Problem formulation 3 serves the same purpose by tiagaaut several higher-order kernels.

The interested reader is also encouraged to compare tharmparice of the factor from problem

’As before, the small oscillatory response in the vicinity: 6f —% is due to the discontinuities

in the derivative and higher-order derivativesfefx).
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formulation 3 to the exponential concentration factor. jurep function approximations using the
two factors are plotted in Figure 2.4 (b) and Figure 2.11 @éspectively, while the plots of the
higher-order kernels are provided in Figure 2.9 (b) and fegul2 (b) respectively. It is observed
that the concentration factor from the iterative formwatis more effective in canceling out the
oscillatory response in the sinusoidal region. Howeveg éntirely possible that a set of similar
constraints in the iterative program exist, which will giel solution numerically equivalent to the
exponential concentration factor.

It is envisaged that such a concentration factor may be useapplications where functions
with large variation are encountered, such as the solutid?Dis by spectral methods involving
highly oscillatory solutions.

4. Problem Formulation 4Missing or Banded Spectral Data
Consider the problem of identifying jump information fromegtral data missing certain
coefficients, perhaps due to instrumentation errors oendibe use of standard concentration
factors in such cases results in additional spurious asioifis throughout the reconstruction
interval, as illustrated in Figure 2.13. This figure plotg fhmp response to a unit ramp
using the polynomial factor and the concentration factaigieed in problem formulation.

Fourier modeX € {—40, -39, ..., —30, 30, 31, ...,40} are assumed missing.

120 T T T T T iy 12F

()

(a) Polynomial factor (b) Concentration factor from problem formu-
lation 2

Fig. 2.13: Use of standard concentration factors with mgsiata,V = 64

These additional spurious responses can lead to false jeteptd, especially in the pres-
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ence of noise. However, explicitly specifying the missimagedas a constraint in the problem

formulation allows us to produce much cleaner jump respmriser example, consider:

min [ W5 |

subjectto WY =1
o(K)=0
o,N -3
bl < .
( T | 10 (2.31)

This results in a concentration factor and jump responséadie@ in Figure 2.14. Note the
significantly reduced spurious oscillations away from thmp. The one consequence of the
missing data, however, is the slightly reduced resolutidh@jump itself. Also, note that the
envelope of the concentration factor in Fourier space @mtdo sharp discontinuities. This

implicit smoothness plays a significant role in minimizimmsous oscillations.
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Fig. 2.14: Concentration factor design for missing dafas= 64, modest(30 — 40) missing.

Figure 2.15 plots the performance of the factor on the falgwest function.

fs(@) =9 —cos () -Z<a<Z (2.32)
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@51 ~ 1.707 r=-1
[fla(@)={ F+iv2-v2m2734 2=1 (2.33)
0 else

The associated jump function is provided for reference iB3R As before, we note that the jump
approximation is much cleaner. Moreover, with the standarttentration factors, the jump heights
are not identified correctly. Recall (Section 2.1, admiigibconditions) that the concentration

factors are required to satisfy a normalization constraliitis constraint is violated in the case of

missing data, i.e., for the standard concentration factors

ol
haik

=1
k

N o (&
< Z (N)

k=1
Consequently, the jump response has the propertngj‘afV(O) < 1. This results in the jump

height being incorrectly identified. It is only when the niigsmodes are explicitly modeled in the

design process that the resulting concentration factarifatsly normalized, with

k
N Omis <|_N‘>
_ 1

[f(x)

(a) Concentration factor from problem form(l) Concentration factor from solving (2.31)
lation 2

Fig. 2.15: Jump approximation gf(x) from its Fourier modesN = 64, modes+(30 — 40)
missing.
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2.5 OBTAINING SPARSEJUMP FUNCTION APPROXIMATIONS

The concentration edge detection method computes a Fparigal sum approximation to the jump
function,[f]. Since[f] is piecewise-defined, its approximation suffers from thieGiphenomenon,
and its associated slow and non-uniform convergence isgubmary decision on the presence or
absence of an edge is taken by thresholding this approximatiith optional post-processing oper-
ations. The slow convergence, however, ensures that tHedmat suffers from poor resolution of
jumps, with several false alarms in the immediate vicinitg true jump, and spurious activations in
smooth regions. The presence of noise only accentuatesahlem, making accurate identification
of jump locations challenging.

In this section, we summarize the design of an edge deteatmdoon the relation in (2.18), and
consider the case when the Fourier data is corrupted by.nbise detector was first introduced in
[3] and extended in [15]. These designs essentially idedtifinit sized jumps in the data, while the
formulation below accounts for jumps of unknown, but detiarstic sizes in the data. The resulting
detector retains the same form of [15], but with modified perfance bounds.

For functions with minimal variation, or when using higkder concentration factors, we have

from (2.18),
S%[1() = [FOWE™ (& =) (2.34)
where ( denotes the jump location. We will assume that the Fouriedenaare corrupted with

additive white complex Gaussian ndiss variancep?, i.e.,
g(k) = f(k) +v(k) ke [-N,NJ, ¥(k) ~ CN[0,p* (2.35)

We start by characterizing the statistical properties efjtimp function approximation. Since the

concentration method is linear, we have
E[S%[gl(x)] = E[SY[f](z) + SK[VI(z)] = S [f](z) (2.36)

Moreover, the noise compones§if;[v](z) acquires a covariance structure on account of the action

of the concentration factors on the i.i.d. noise coeffigeihis covariance structure is given by the

8In this section, we use bold script to denote statisticallydlom quantities.
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following lemma:

Lemma 2.5.1.Let Sy’ [g](x,) denote the jump function approximation computed at locatipus-
ing the concentration factar,, ande'\;l [g](z) denote the jump function approximation computed

at locationz;, using the concentration facter,. Then,

N
( ma,mb :p2 Z o |l| |l| 2 (za—2p)
-N ’ N

Proof. By definition,

(Cy)pme = E [(S¥lgl(za) —E [S¥[8l(za)]) (S3[8)(zs) — E [S¥F[el(s)])7]

N
SIS T il ey
FE| DD DT Vlm) v () sgrtm) sgrt) og () o () ¢ el

M) 6il(xa—xb)

£ ENm) v(0)] sgrtm) sgrtt) oy (1) o (L) e it

where the second equation results from using (2.36). Sife ! € [—N, N], are independent and
zero mean variates, [E(m)* v(l)] = E[v(m)*] E[¥(I)] = 0 for m # [. Hence the second term in
the above expression vanishes. UsingviEl)|?] = p?, we have

N

( :ca,xb _p2 Z Up ’l’ zl (za—2p)
I=—N
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2.5.1 Detector Design

We consider the design of a detector which takesvaluations of5;[g](x) in a neighborhoodP
of a point, and returns one of the following hypothesgs: — edge present, dy — edge absent.
Let W denote aP-point discretization of the jump responWé”N(m), andY = {S%/[g](zp)},cp-

If V denotes a lengtl? noise vector, we have

Ho: Y =V NCN[O,CV]

Hi: Y = aW+V ~ CN[aW,Cy]

Here,a = [f](¢) is the unknown jump height, whil@éN A, C] represents a multivariate Gaussian
distribution with meam and covariance matri€’. To maximize the probability of detectiot)p,
for a given false alarm levePr 4, we employ the Neyman-Pearson (NP) formulation, [23], Whic

requires
p(Y;a, Hi)
p(Y;Ho)

The notation— #; means “choosé{; if”, and v denotes a threshold. The ratio in the above

5 H, (2.37)

relation is often referred to as the likelihood rati®, In our problem formulation, the likelihood
ratio is the ratio of two jointly normal vectors, with

NaW, Cy)
N0, Cv]
W exp [—1(Y — aW)TCL (Y — aW)]

1 1 —1
GGy IPTE XD [—3YTCL'Y]

L=

2
= exp |aWTCG'Y — %WTC;,lw (2.38)

Taking the logarithm of the likelihood ratio and substibgtiin (2.37), we obtain

2
Sy aWTCOGY — %WTC{,lw > log, (2.39)
Fora > 0, we obtain
1
S H o WICGY > % n %WTC(,lW — (2.40)

We refer to the quantity¥’ ’C,' Y as the test statistic and denote it/BEY). A detector of this

form is commonly known as a generalized matched filter, [38faightforward substitution reveals
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that,

Ho: T(Y)~ NI0,d?
Hi: T(Y) ~Nad?, d?]

whered? := WTCL W is known as the “signal to noise” ratio. Further, we have

Pra = > TIH dn = 7_/> 2.41
P A /7 p(T|Ho)(n)dn Q<d (2.41)
Pr — = TIH dn = M) 242
D A p(T|H1)(n)dn Q< y (2.42)

whereQ(-) is the complementary (Gaussian) cumulative distributianction, [23], available in
tabular form. Expression (2.41) is particularly useful étting the threshold value for a given false

alarm level. Moreover, the performance of the detector eaddscribed by the following relation:
Pp=0Q <Q‘1(PFA) - aV®) (2.43)

The reader is also referred to [15] for a discussion on thécehof concentration factorsy,, o,
and evaluation point sé?, and their effect on detector performance.

One of the drawbacks of such a detector, however is that theadnalysis applies only for >
0 (or a < 0). For generaty, a uniformly most powerful (UMP) test does not exist. In thewdations
below, we use two separate tests for positive and negati@ed combine the results. Moreover,
the concentration jump function approximatior@s(“%) in the immediate neighborhood of a
jump, (2.6). Consequently, tié, hypothesis is invalid in this region. As a result, there isrargy
possibility of the detector producing false activationghia immediate vicinity of a true jump. In
our simulation results, we use sidelobe mitigation to atiase false positives, with jump locations
identified as the grid points which correspond to the locatimam of the test statisti@'(Y).

We remark that the design of a detector based on the Gereetdlizelihood Ratio Test (GLRT),
[23], is indeed possible. The design is briefly summarizddvie

The GLRT test requires us to declare a jump if

_p(Y;4. )

0= ) (249
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whered is the maximum likelihood estimate (MLE), [24], of the jumpight andy is a threshold.
Recall thaip(Y; a) ~ NaW, Cy]. The MLE of« is obtained by taking the likelihood of this mul-
tivariate normal distribution and setting the derivativithwespect tax to zero. Direct evaluation

results in
wTcy'y

2.45
WTCoG'w (2.43)

& =
The likelihood ratio in (2.44) can be written as

o= PG &)
p(Y;Ho)
ey o [5(Y = aW)TCH (Y —am)]

(27TC\1/)P/_2 exp [-3YTCLY]

r 2
= exp |[aWTCF'Y — %WTC{fW}

| wTey'y

)
T ~—1 o T ~—1
O — WO, W — W Oy, W

WTCVW 2

= exp

r A2
= exp |a2WTCGW — %WTC\?W}
)

= exXp 7

WTC{,1W] (2.46)
where we have used (2.45) in going from step three to step Tow GLRT then requires
&
— Hj s exp 7W Cy W| >~
Taking logs and absorbing the SNR mefii¢” C{,1W into the threshold, we obtain

—Hi: 62>

o, —Hi:la|> VY (2.47)

While this formulation does provide an elegant and simplenféor the detector, experimental

simulations reveal reduced accuracy in jump detection widmenpared to the NP tests described
previously. In particular, the GLRT identifies strong sads of the jump waveform as jumps,
which are difficult to remove through post-processing. @ouently, we present results using the

NP formulation in the simulations below.
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Figure 2.16 illustrates the performance of such a detedtois figure considers the case with
no added noise (i.eGv = I, the identity matrix). Figure 2.16(a) plots the jump detactof test

function f,(z) given in (2.48), usind01(/N = 50) Fourier modes on 357 point equispaced grid.

-1 —25<z< -1
e % 0<zx< %
fa(x) = (2.48)
14900 95 <2 <275
0 else
—1 r=—2.5
1 r=-7
1 z=0
[fla(x) =9 e T ~04559 z=7 (2.49)
1.4997 x=1.25
1.1888 x =275
0 else

The trigonometric factor was used along with a detector gfz8 = 5. The jumps are identified
aso’s and can be seen to correspond closely with the true jumpkreshold value of1 was used
in generating this plot. Figure 2.16(b) plots the jump diétecof f3(x) using concentration factor
from the missing data iterative formulation, (2.31). A valof N = 64 was used, with Fourier
modes30 — 40 missing. A lengthl0 detector with a threshold value 25 was used to generate
the plot.

We next provide results for edge detection in the presencmisk. We consider the detection
of jumps in test functiory; (x) using the trigonometric factor, a detector sizeof= 5 and additive
noise of standard deviatioris01, 0.02 and0.03. The Fourier reconstruction of the function with
101(N = 50) modes is plotted in Figures 2.17 (a), (c) and (e) respegtigeprovide a visual indi-

cation of the noise levels. The corresponding jump funcéipproximations are plotted in Figures

9deally, thresholds are to be computed using the desiree falarm level Pr4) and (2.41).
Since this example contains no noise, the threshold isteeléa bed.1 W2C,'W, i.e., to detect
jumps of amplitude).1.
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(a) Jump detection of,(z) (N = 50)  (b) Jump detection ofs3(x) (N = 64, modes

30 — 40 missing)
Fig. 2.16: Jump detection using the matched filter detectomnpise)

Table 2.2: SNR values for the matched filter detectos: 5, p = 0.01

Trigonometric
factor

15t-order polynomial
factor

6"-order exponential
factor

SNR (dB)

21.1245

19.6650

17.4602

2.17 (b), (d) and (f) respectively. Thresholds10,40 and 15 were used for each of the three
cases. Correct identification of the jump locations (to tharast grid point) and good accuracy of
the jump values are seen in the first two cases, while a few &Ems are present in the case of
high noise.

For completeness, we also plot the jump detection resuitig tise exponential and polynomial
concentration factors for the cagpe= 0.01 in Figure 2.18. A detector size @¢f = 5 was used
with threshold values of5 and 100 respectively. The associated signal to noise values faethe
concentration factors are provided in Table 2.2. The trigoetric factor is seen to perform best
among the conventional families of concentration fact®tss is not surprising, given that the two
other factors weight the high modes in varying amounts,etheraccentuating noise in the jump
function approximation.

Finally, we compare the performance of this detector witteotdetection schemes used in

conjunction with the concentration edge detection metiddst popular among these include the
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(a) Exponential factor (b) First order polynomial factor

Fig. 2.18: Jump detection using the matched filter detegidre(, N = 50, p = 0.01)

method of enhancement of scales, [10], and minmod posepsing, [12]. For the purposes of this

comparison, we introduce the following test function

sin(3x) —r<z<-%
tanh(z) —Z<z<?%
fs(x) = ’ ’ (2.50)
3 37;‘” slz<m
0 else
with a jump function
—tanh(—%) ~ —-0.7807 =z =—3%
[fls(z) = 1.5 —tanh(Z) ~0.5828 =1 (2.51)

0 else

Figure 2.19 plots the jump detection ff(x) using129(N = 64) modes on 57 point reconstruc-
tion grid. Additive noise of standard deviatipn= 0.01 was added. Figure 2.19 (a) plots the results
using the enhancement of scales post processing procatiiteeatrigonometric concentration fac-
tor. The jump function approximation was raised to a powet,,0f= 2, while a uniform absolute
threshold of13 was utilized. The (scaled) enhanced jump approximationtaeqump locations
obtained after thresholding are plotted in the figure. Fedsponses at = =" (a result of finite
resolution) and a spurious activation in the sinusoidaioreg¢due to use of a low order factor) are

observed. Figure 2.19 (b) plots the minmod response, dutday using the three concentration
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factors of Table 2.1 and a threshold of 0.35. Once again, wergb several false activations. The
presence of a small sized jump does not help the robustndbg afiethod or the selection of the
threshold level. Finally, Figure 2.19 (c) plots the resgoasthe matched filter detector. R = 5
point detector was employed with the central measuremanpuated using the polynomial factor
and the rest computed using the exponential factor. A tlotdslalue of80 was employed to gener-
ate the plot. The responses of the two factors are also glfuitellustration. In contrast to the plots
in Figures 2.19 (a) and (b), the jumps are identified coryettl particular, the spurious response in
the sinusoidal region is avoided by using a composite dateéthigh and low order concentration

factors. Moreover, experimental simulations reveal gnesibustness and leeway in the selection

of the threshold.
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(c) Matched filter detecto? = 5
Fig. 2.19: Comparison of the matched filter detector witheotpost-processing methodd’ (=

64, p = 0.01)
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2.6 EXTENSION TOMULTIPLE DIMENSIONS

This section discusses the application of the conceniratiethod to the identification of edges
in multidimensional functions. We provide examples for f@imensional functions, although the
method holds for functions of any general dimension.

From Section 2.1, itis clear that the concentration meth@daartial Fourier sum approximation
of the jump function, (Definitior??). A multidimensional equivalent of the jump function, hoxee
does not exist. Part of the difficulty in defining such a fumatis the lack of directionality of an
edge in multiple dimensions. Nevertheless, satisfactesylts may be obtained by applying the
concentration method dimension by dimension, i.e.,

Stalfl(en) =i 3 sa)o () 30 et 252

l<N |k|<M

The overbar represents the dimension(s) held constatttwgtconcentration method acting on the
other dimension. Figure 2.20 illustrates the results ofisucoperation. The edge map of the Shepp
Logan phantom is plotted on a grid of sizé3 points usingN? = 3002 Fourier modes and the
trigonometric factor. Figures 2.20 (a) and (b) plot the @nration jump approximations (absolute
value) along each of the dimensions. Note that the two edges @i distinct, especially in areas
with horizontal and vertical edges. Figure 2.21 plots a ssEction of the horizontal edge map
(absolute value) and shows properties similar to the omedsional concentration jump function
approximation. This indicates that the edge locations neagtidained by simple thresholding, or a
detector of the form discussed in Section 2.5.

The two-dimensional edge detection procedure is enunteiratee form of an algorithm below.

It is an extension of the method discussed in Section 2.5. ald@rithm generates edge maps in
each of the directions independently by applying the cotnaéan method to each row (column)
of the image, followed by matched filter detection. The firdge map is obtained by combining
the results from the horizontal and vertical directionsr &mample, a pixel in the final edge map
may be declared an edge if either of the directional edge roap®in an edge in the same pixel.
Optionally, we may choose to enforce multidimensionaldtite at this stage. If we assume edges

to be continuous curves, disconnected responses are tikddg false positives. These may be
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(a) Edge Map along the horizontal direction(b) Edge Map along the vertical direction

Fig. 2.20: Concentration method applied dimension by dsien(V = 300)

1.2

15,

—02lt

Fig. 2.21: Cross section of 2D concentration respofiée=(300)

easily identified using mask% and corrected using morphological operators such asogfésind
dilation. It is conceivable that a more sophisticated sahefrfusing the individual edge maps may
lead to improvements in the quality of the final result.

Results generated using this algorithm are plotted in Ei@u22. The concentration jump ap-

proximation of the Shepp Logan phantom usiig= N = 200 coefficients is plotted on a grid of

1 11
10A simple 3 x 3 mask to identify disconnected responses is as follpws 0 1
1 1 1

YErosion and dilation, [25], are region-wise max/min oparawhich allow for the “filling-in”
or “thinning out” of features in an image.
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Algorithm 1 Multidimensional edge detection using the concentratiethmd
Given: f(k,1), |k| < M,|I| < N

1. Generate horizontalff) and vertical £,) edge maps by applying the 1D concentration
method to each row and column gfrespectively, i.e.,
e Compute the concentration jump approximatisifs ,,[f](x, ¥), S 1 [f1(Z, v)-
e Apply the matched filter detector of Section 2.5 to each rowf,,[f](z,y) and each
column of S%; 5, [f1(,y) to obtain the individual edge maps.
2. Obtain a composite edge mép A pixel in £ is declared an edge if the corresponding pixel
in either&, or &, is an edge.
3. (Optiona) Enforce multidimensional structure on the edge map by wémgodisconnected

responses and enforcing edges to be continuous curves.

size401 points. The edge map generated using Algorithm 1 with tlyptometric concentration
factor, a matched filter detector of siZe = 11 and a detector threshold 6f1 is plotted in Fig-
ure 2.22 (a). Comparison plots of the edge maps generated Mstlab’s implementation of the
Prewitt and Canny edge detectors are plotted in Figures(B)2and (c) respectively. We note that
the conventional image processing edge detectors idestifye of the Gibbs oscillations as edges,
while the method of Algorithm 1 does not suffer from thesedahctivations. The quality of the
edge map is good with very few errors, except for a very smathlmer of false activations in the
regions of horizontal and vertical edges.

Representative results in the presence of noise are prbuideigure 2.23. We plot the edge
detection of the Shepp-Logan phantom with additive whitenglex Gaussian noise of standard
deviationp = 2 x 10~%. A visual illustration of the level of noise is provided ingtire 2.23 (a),
where the Fourier reconstruction of the phantom ugihg- M = 200 coefficients is plotted. The
edge map from the application of Algorithm 1 is plotted in tiig 2.23 (b). These results were
generated using the trigonometric concentration factoratched filter detector of sizé = 5 and

a detector threshold &f x 103.
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Edge Map

(a) Edge Map using Algorithm 1

Edge Map - Prewitt Edge Map - Canny

il _ | i

(b) Prewitt Edge detector (c) Canny Edge detector
Fig. 2.22: Edge detection — Shepp Logan phantdm= 300)

2.7 IDENTIFYING JUMPS FROMNON-HARMONIC FOURIER DATA

In this section , we are interested in the problem of ideimt@fythe jumps in a function given non-
harmonic or non-uniform Fourier data. This problem findsligagion in imaging modalities such
as MRI. The underlying physics in such problems dictatesitipaut data is collected in the Fourier
domain, while instrumentation and other constraints mayessitate the collection of data along

non-uniform modes.

Definition 3. (Non-harmonic Fourier Data) Lef € L?(R) be a piecewise-analytic function sup-

ported in(—, 7) and zero elsewhere on the real line. We define non-harmonidetaata, f (wy,),
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Edge Map

Fourier Reconstruction

(a) Noisy Fourier reconstruction (b) Edge Map using Algorithm 1
Fig. 2.23: Edge detection in the presence of noise — SheparLplgantomy = 200, p = 2x107%)

to be the inner-products ¢f with the non-harmonic exponentiafg™+*}, w; ¢ 7Z, i.e.,

flo =5 [ f@er o gz 253

The formulation of the concentration method for non-hariméiourier data proceeds in a sim-
ilar fashion to the standard case. Consider a compactlyostggpfunctionf. For ease of analysis,
let us assume that there are no jumps near the ends of the doMé& arrive at jump function

approximations by convolving with suitable convolutional kernéf i.e.,

S (@) = (f * CF)(x) (2.54)
with "
~ cxe) =i Y sao () lol <7
C{(x) = 0<|k|<N (2.55)
0 else

Note thatSj‘V[f] has a Fourier transform representation in lieu of a pointspm since it is a

compactly supported function. Its Fourier transform, frelementary Fourier properties, is given

12\We will use the~ sign in the superscript to denote entities computed usinghawmonic data.
For example, ifS,[f] denotes the jump function approximation obtained from gpated Fourier
data, the corresponding approximation obtained from remmbnic Fourier data will be denoted as

S L),
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by

o — —

S%flw) = f(w) - C(w) (2.56)

where the Fourier coefficients 61 (z) are given by

C%(w) = J—“{CX;(HU) -1 (%>}‘w

= ) CX(k)sincw — k) (2.57)

This relation is particularly useful in computing the Faurcoefficients of the concentration factors
designed using the iterative framework of Section 2.4. Rerprototypical factors of Table 2.1,

however, we may use the more direct relation,

C ) = i-sam) o () (2,59

Given a set of non-harmonic measuremegﬁ(ak), k= —N,..., N, we may use (2.56) to compute
the coefficients of its jump function approximation. We dnert left with the task of recover-
ing S [f] from its non-harmonic coefficients. A more exhaustive diséen of the non-harmonic
Fourier reconstruction problem is deferred to Chapter 3lgatsuffices for the purposes of our cur-
rent discussion to note that this is a challenging problehis 1§ because the family of exponentials
{er®} wy. ¢ 7 does not form a basis for functions of practical interestegk under very stringent
(and practically unrealistic) circumstané&sThe quality of the reconstruction also depends on the
sampling pattern used. The best results are obtained wieetiethation of the acquired samples
from equispaced modes is small. As an example, consideuthe junction approximation of test
function f(z), (2.8), using the trigonometric concentration factor amel mon-harmonic Fourier
modes of Figure 2.24 (a) and Figure 2.24 (b) respectively.r&¥er to the first sampling scheme
asjittered sampling since the non-harmonic modes are obtained by a unifornoranitter of the
equispaced modes. The sampling scheme in Figure 2.24 (bbevileferred to asog sampling

since the spacing between successive samples increasesghiogcally. A detailed description of

B3Kadec’s “one-quarter” theorem, [26], allows for reconstion in the special case that
supy, |wy, — k| < 1.
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these sampling schemes is provided in Section 3.1. The jumgtibn approximations of;(z)
corresponding to these two sampling schemes is plottedguar&i2.25. A simple variant of the
concentration sum (2.3) involving non-harmonic complepanentials was used to compute these
plots. We draw attention to the spurious oscillations presieroughout the interval in either plot
and the poor localization of the reconstruction in Figu2s2b). It is to be noted that computing
edges from the log sampling pattern is particularly chajieg due to the sparse sampling of the

high frequencies, which are particularly important for edigtection.

‘ ‘ ‘ ‘ ‘ __‘ Equisp‘aced ‘ ‘ ‘ ‘ ‘ __‘ Equisp‘aced
0.8+ + Non-harmonic |{ 0.8+ + Non-harmonic |
0.6 0.6
0.4F 0.4
0.2 0.2

0 2 0
-0.21 -0.2
-04 -0.4
-0.61 -0.6
-0.8fF -0.8
= . . . . . . . = . . . . . . .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
w w
(a) Jittered sampling (b) Log sampling

Fig. 2.24: Non-harmonic sampling distributions in the tighlf plane,N = 16

o
f‘SNf

T L L L L
-3 -2 -1 0 1 2 3
X

(a) Jittered sampling modes (b) Log sampling modes

Fig. 2.25: Jump approximations from non-harmonic Fouraad(trigonometric factory = 64)
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2.7.1 lterative Solutions for Non-harmonic Data

The underlying challenge with non-harmonic expansionféslack of a basis for accurately re-
constructing the jump approximation. lterative framevgodan be extremely powerful in these
circumstances since their formulation only requires amuate forward model. Casting the con-
centration method in an iterative framework was initiallyrgued in [18] with very good results. In
this section, we investigate the use of a similar frameworknbn-harmonic Fourier data. In ad-
dition, we incorporate the jump waveform, (Definition 2).tire model formulation, which results
in a more accurate representation of the underlying problé/a start with (2.20) and make the

assumption that the contribution of the higher-order teésmgligible, i.e.,

S%Lf(@) = ([f] = Wy™)(x) (2.59)

This is an acceptable assumption for functions with smatillasory content, or when using high-
order concentration factors. The concentration methoehtisdly computes a least-squares solution
to the above equation. Since jumps are typically sparse inbew, we may instead choose to
regularize the solution by penalizing itsnorm*. Further, since we are given data in the Fourier
domain, we solve the following problem

2
< p? (2.60)

y = argmin ||ul|; subjectto
u
2

i

S5 1ewn) = F {ux gV

Wi

Where{wk}{f:_N are the non-harmonic measurement mogéss a data-fidelity parameter chosen
in accordance with the noise level, apds R is a discrete approximation of the jump function

on theM -point equispaced grid

27p

Z'p:—ﬂ+ﬁ, p:O,7M—1 (261)

Letny, k € K denote the set of jump locations. We have

21
— <_’k€IC7 :O,...,M
”y = [F10m) e — xp| < 57 p (2.62)

0 else

140f course, this is a computationally feasible alternativedlving for sparse zero pseudonorm
solutions.
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Using matrix notation, we may rewrite (2.60) in a form moreea@ble to computation. Let
. . 1

F € C@N+UxM denote the non-harmonic DFT matrix with entriBg, = Mexp(—inxk),

andW ¢ RM*M denote a Toeplitz matrix containing shifted replicateshaf jump waveform,

WS”N <:13 — %) ,p=0,...., M, in each of its rows. Let the coefficients of the jump functagp

proximationS%[f] be denoted by the vectére C2N+1, with f = f(w;,)-C$(wi),k = —N, ..., N.

We may then write

- 2
y = argmin ||ul[; subject to H f—F-W-u H2 < p? (2.63)

Alternatively, using Lagrange multipliers, we may write

- 2
yzargminHqu—F)\-Hf—IF‘-V\V'uH2 (2.64)

whereX > 0 is a regularization parameter. It is well known that the abproblem can be for-

mulated as an SOCP and can be solved using a variety of metholigling barrier methods and
interior point methods, [20]. We also note that computatiafficiency can be improved by using
non-uniform FFT methods, [27, 28], to compute matrix-vegi@ducts involving the non-harmonic
DFT matrix.

The performance of this method is illustrated in Figure 2.@8Bere the jump function ap-
proximation of f;(x) obtained by solving the iterative formulation (2.64) istf@d. Results us-
ing all three concentration factors from Table 2.1 are pbbtbn a grid of257 points and using
101 (N = 50) non-harmonic Fourier modes. Results for the jittered samgphodes are presented
in Figure 2.26 (a), while the results for the log sampling e®dre presented in Figure 2.26 (c).
The corresponding pointwise errors to the true jump fumctoe plotted in a logarithmic scale in
Figure 2.26 (b) and Figure 2.26 (d) respectively. The re&lencouraged to compare these plots
with those of Figure 2.25. The significantly greater accycdhe iterative solution is immediately
obvious. The pointwise errors reveal vanishing responsdbhe smooth regions and the correct
identification of jump locations. The jump values, howeweeg incorrectly identified. We believe
that this is related to the selection of the regularizatiarameter and is earmarked for future inves-
tigations. This is ultimately inconsequential, since juvafues may be accurately estimated by the

evaluation of the concentration sum (2.3) at these jumpilmts As with Figure 2.25, the relative
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Table 2.3: Regularization parameter values for the jumptfan approximation off; (x)

Trigonometric | 1%*-order polynomial | 6!"-order exponential
factor factor factor
Jittered sampling modes 45 100 100
Log sampling modes 325 70 100

quality of the plot for the log sampling modes is poorer, Wilse activations in the linear region
and a few false positives in the vicinity of true jumps. A &bl regularization values used in the

generation of these plots is provided for reference in Tal8e
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CHAPTER 3
RECONSTRUCTION FROM NON-HARMONIC FOURIER DATA
The reconstruction of functions from Fourier spectral datawell studied problem in mathematical
literature. In particular, given the fir8tV + 1 Fourier series coefficients of a periodic functipnit
is well known that the partial Fourier sum
— O A 1 /” ik
Sxf(x) %Nf(w)e o W) =g | f@)eTda
converges exponentially quickly tb. This rate of convergence, however, only holds for smooth
functions, and piecewise analyticity results in the faanilGibbs phenomenon, [8]. Additional
post-processing may optionally be performed to recovettsgleaccuracy in such reconstructions.
Nevertheless, reconstruction frdmrmonicspectral data is well known and widely utilized in sev-
eral areas of science and engineering.

The reconstruction of functions from non-harmonic spédaga has attracted relatively lesser
attention. This is a problem of some significance, since ddfiapplication in fields such as MR
imaging and SAR imaging. For example, in MR imaging, the MBmser acquires samples of
the Fourier transform of the specimen being imaged, and wéaaed with the task of recovering
the underlying image. Certain practical constraints swchcanning hardware limitations, and the
necessity to acquire data with decreased susceptibilityaiton and aliasing artifacts have resulted
in the introduction of non-harmonic scan trajectories, the acquisition of Fourier samples along
non-Cartesian trajectories. The reconstruction of femsifrom non-harmonic Fourier data is a
challenging problem because the non-harmonic exponsmiiaich correspond to the acquired data
points rarely constitute a basis for functionsfia(—=, 7). Additional complications result when
reconstructing piecewise-analytic functions, and with #tquisition of data samples with non-
uniform sampling density.

This chapter addresses the reconstruction of compactlyostgul functions from non-uniform
samples of their Fourier transform. We start by looking & tionsequences of acquiring non-
harmonic data. In particular, the properties of the kereskdbed by non-uniform modes is inves-
tigated in Section 3.2. Section 3.4 briefly summarizes iexjsteconstruction methods, including
the convolutional gridding algorithm. Error bounds fornidded coefficients and the resulting re-

construction are derived. The relation between reconstruerror and sampling density is also



50

investigated. To mitigate the effects of non-harmonic &itijan, Section3.6 investigates the use of
spectral re-projection methods. Results and error bowrdsith reconstructions are provided, with
simulations showing greater reconstruction accuracyaandtiuced points per wave requirements
when compared to traditional reconstruction procedurasallly, some preliminary results from

incorporating edge locations and values in the reconstruccheme are summarized in Section

3.7.
3.1 NOTATION AND SAMPLING SCHEMES

Let f € L?(R) be supported ii—=, 7). It is common forf to be piecewise-defined since real-

world functions often contain jump discontinuities. Givefinite number of non-harmori&ourier

coefficients,
A 1 4 . -
flwg) = o flx)e ™™ dx, k= —N,...,N, wynotnecessarily ilZ (3.1)
7T —T

our objective will be to recovef. For the purposes of this discussion, we will consider reto-
tion from the following sampling schemes

1. Jittered Sampling:
wp=kx1, 7~U[0,0],k=—-M—(M-1),...M (3.2)

HereUla, b] denotes a uniform distribution on the interyal b]. Ther;’s are independent,
identically distributed (i.i.d.) random variables, anghnesent a uniform jitter about the eg-
uispaced nodes with a maximal jitter 8f Further, both positive and negative jitters are
equiprobable, with the sign of jitter at each node being preaelent of the sign of jitter at any
other node. Figure 3.1 (a) illustrates the jittered sangpicheme.

2. Log Sampling: Samples in Fourier space are acquired aritbgic intervals, with more
samples acquired in lower frequencies. «if are the nodes at which measurements are
acquired,|wy| is (deterministically) logarithmically distributed betden10~" and N, with

v > 0 and2N + 1 being the total number of samples. Motivation for this sangpscheme

1The terms non-harmonic and non-uniform will be used intengfeably in this discussion.
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can be found in MRI, where typical data acquisition schemassample the low frequen-
cies of k-space while undersampling the high frequencies. Figur€l8.illustrates the log

sampling scheme.

0.2+ + Non-equispaced samples | 0.2+ + Non-equispaced samples |
0.151 1 0.151 q
0.1 0.1
0.05 0.05
OF b + + 4 o 4k bbb e 4 e Of ke + + + 4+ + + + 4+ e+ + + + 4 o+
-0.05 -0.05
0.1 0.1
0.15 0.15
0.2 0.2
0.25 L L L L L L L . . -0.25 L L L L L L L L
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
(a) Jittered samplingy/ = 16,0 = 0.5 (b) Log samplingM = 16,v = 1.5

Fig. 3.1: Sampling schemes plotted in the right half plane

3.2 CONSEQUENCES OFACQUIRING NON-UNIFORM SPECTRAL DATA

The reconstruction challenge with non-harmonic spectgd dan be understood by looking at the
properties of the kernel described by these non-harmonigesi0As a first attempt, consider the
reconstruction using the non-harmonic Fourier partial sum
Pyf() =Y flwp)e™ (3.3)
|k|<N

It is trivial to show that this reconstruction can be written

Pyf(x) = (f = AN)(x), An(n) = ) e (3.4)

k| <N

where Ay (n) defines the non-harmonic kernel. Insight into the reconsbtm problem may be
obtained by comparing this kernel to the Dirichlet kerneinfrharmonic Fourier reconstruction.
The non-harmonic kernel is plotted in Figure 3.2 for the t@mpling schemes and different val-
ues of N. One observes the significant deviation from the usual Bleickernel, with distinctive
features including non-diminishing sidelobes and/or gdanainlobe. These features contribute to
artifacts and/or poor localization in the resulting recaindion, as illustrated in Figure 3.3 where

the reconstruction of test functiorfs(x) and f2(x) are plotted.
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Fig. 3.2: Comparison of the non-harmonic kernel and thecBiet kernel using jittered sampling
and log sampling

fi(x) = cos(6x) (3.5)
3 3 s
2 T ST<—3
7 z : 1 s s
1~ 5 tsin(zx — 3 -1l <g
o) = 172 ( 1) 1 8 (3.6)
%w -5 %’r <z< _%Tﬂ
0 else

The reconstruction challenges are independent of the degfremoothness of the function;
however, presence of jumps can accentuate artifacts inettenstruction. The poor accuracy is
also not caused by lack of resolution. Both Figure 3.2 andr€i@.4 illustrate that the underlying
cause is the non-harmonic acquisition of spectral data.ekample, Figure 3.4 plots ttienorm

and infinity-norm errors for the reconstruction ff(x) from jittered Fourier sampled (= 2.5).
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(c) Test functionf,(z), jittered sampling (d) Test functionf2(x), log sampling

Fig. 3.3: Reconstruction using the non-harmonic partied, s = 64

The reconstruction grid in each case is of sl2¢9. Note the random variations in the error curves

(for sufficiently largeN) which manifest from the sampling pattern.
3.3 SUMMARY OF RELATED WORK

Literature on the non-harmonic Fourier reconstructiorbfmm can be traced back to the works
of Paley, Wiener and Levinson, [29], on non-harmonic Fawg&ries. These results were refined
over the years with the most notable work being thg4"-theorem of Kadec, [26]. The interested
reader is referred to [30] for a comprehensive overview dadudsion of the subject. Frame the-
oretic approaches to non-harmonic reconstruction hawebaen pursued. A notable collection of
related literature with applications to medical imaging && found in [31]. Two methods deserve
special mention for their popularity in medical imaging -neolutional gridding, [5], and uniform

re-sampling, [6]. Gridding is an extremely popular recamsion procedure for non-harmonic data,
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Fig. 3.4: Reconstruction errdf — Py f||, for test functionf,(z) as a function ofV using jittered
sampling

with applications spanning radio astronomy and image @$ng among several others. Both grid-
ding and uniform re-sampling work by mapping the non-harimameasurements to uniform modes
and subsequent processing using standard Fourier methloelee are also a large class of iterative
methods, which find successful application in a variety afbpem settings. Each work differs in
the type of regularization imposed, such as total variatioiy -type methods. A representative
reference for this class of methods can be found in [32]. Redevelopments in the theory of
compressive sensing have also resulted in problem formotaand applications to MR imaging.

The reader is referred to [33] for an overview of the theorgt aamputational tools of the same.
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3.4 CONVOLUTIONAL GRIDDING

Most conventional reconstruction procedures for non-leaimFourier data involve mapping the
non-harmonic modes to harmonic coefficients, followed tandard Fourier reconstruction. We
describe below the most popular of such methods, convolaitigridding, [5].

Gridding refers to the process of moving from the non-umifenodes to a uniform grid. When
this process is accomplished by evaluating a convolutitegial (or an approximation of the con-
volutional integral), the method is called convolutionatiging. Let f denote the Fourier transform
of f. For compactly-supported functions, this is a smooth fioncbf unbounded support. Let us
denote bys a smooth function whose properties are chosen to minimizensgruction error and
cost. Itis common to refer to this function as a window fuaoiatiits choice will be discussed shortly.
The convolution of these two functiong(w) = (f * ¢)(w) remains smooth and may evaluated at
equispaced grid points. The gridding process involves ciimg a discrete approximation to this

convolution integral

glk) = apf(wp)dlk — wp) (3.7)

pEP
Here,«; are known as density compensation factors (DCFs) and malydoght of weights nec-

essary to evaluate a non-uniform trapezoidal quadratlee 8everal methods of computing these
DCFs exist such as [34], but for ease of analysis, we regiticimmediate attention to the simple
weights

Qfp = Wht1 — Wk (3.8)

The measurement s@t necessary to evaluate the sum depends on the propertiearaf will be
discussed shortly. Nevertheless, once we obtain the deeillﬁ;ﬁ(k), we may compute a Fourier ap-
proximationSy g(z) from which we divide out the window functiof to obtain our approximation
to f. These steps are formally enumerated in Algorithm 2.

3.4.1 The Window Functiog

The requirements on the gridding or window functip@are:
1. The choice ofp should minimize the computational cost of evaluating (3.7)
2. The choice ofs should reduce artifacts due to aliasing in the reconstrcti

3. ¢ # 0in the reconstruction intervagh-m, ).
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Algorithm 2 The convolutional gridding algorithm

Given: f at the Non-equispaced measurement nages
Choose: Truncation parametgr
Interpolating functiony

1. Interpolation to equispaced nodes:

g(k) = > amflom)ek—wn), k=-N,..,N
m St [k—wm|<q
2. Standard FFT computation:
N

Sni(x) = Y Glwr)e™”
k=—N
3. Compensation for use of the interpolating function:

R (C)
0~ o

One way to ensure computational efficiency is by constrgid;imo be of finite support. Similarly,
aliasing may be prevented by requiriggto be supported if—m, 7). However, these are contra-
dictory requirements since a function cannot be compadaibpasrted in both physical and spectral

domains. Practical window functions therefore attemptaedsentially bandlimited.e.,

pw)~0  |w|>gq qeR,small
¢(z) =0 |z| > 7 (3.9)
with ¢(x) #0 x € [—m, 7]

Popular window functions include the Gaussian and Kaises8dunctions. The window function
is in addition to and independent of filtering, which is alwapplied since the underlying functions
are generally piecewise-smooth and can contain noise.

The gridding process can be computed using one of severalmiform FFT (NUFFT) software
packages, [27, 28]. These packages implement all stepsedledional gridding except for density
compensation. Hence, by pre-multiplying the non-harméiiarier measurements by appropriate

DCFs and then computing the NUFFT, we may obtain fast funataonstructions. Representative

examples of convolutional gridding reconstructions frag-sampled spectral data are provided in
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Figure 3.5.

sin(3z) x <0

fa(z) = (3.10)

e~ 2 z>0
Figure 3.5(a) shows the gridding reconstruction of testfion f5(z) given by (3.10). Figure 3.5(b)
shows the reconstruction of a cross-section of a brain sb&ained from the McGill BrainWeb
database, [35, 36, 37, 38, 39]. The brain scan was a T1 scamofnaal brain ofimm slice
thickness with no noise and RF field non-uniformities. Thes®nstructions were post-processed
using a fourth-order exponential filter. We notice the digantly improved quality over the plots

in Figure 3.3. The filtering operation, however, introdusesne smearing artifacts and the non-

harmonic acquisition manifests as some ringing artifaetw the ends of the domain.

True
151 : : 7] 16| — — — reconstruction

1(x)
9(x)

True
— — — Gridding reconstruction
T T T

I I I I
-3 -2 -1 0 1 2 3
X

(a) Reconstruction of test functiofy(z), N = (b) Reconstruction of a brain cross-section
128, jittered sampling from log spectral samples

Fig. 3.5: Reconstruction using convolutional griddingpqassed using a fourth-order exponential
filter

3.4.2 Error in Convolutional Gridding Reconstruction

We now provide error bounds for the gridding process anddhelting reconstruction.
Definition 4. (Minimum sampling densityi;,) Let theg-vicinity of k (¢ > 0) be the set
{P=wst|k—w|<q, k€Z,w,qeR}

The g-vicinity refers to the region around any equispaced coefficient. Agtbe the maximum

distance between sampling points in #hgicinity of k; i.e., A = max lwp+1 — wp|. In this g-
pe
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vicinity, we define theninimum sample “densityd;. to be the number of sample points per unit

interval; i.e.,dj, = x-.

Theorem 3.4.1. (Convolutional gridding error).et w;, denote the non-uniformly sampled modes
and f (wg) the Fourier transform measurements at these mode&;@ denote the gridding window
function andj = f * ¢ denote the true gridding coefficients. lgetienote the approximate gridding
coefficients obtained by using a finite sum and the DCFs in.(3.8t ¢ be the window function
truncation parameter; i.e.$(w) = 0 for |w| > ¢. Letd, be the minimum sample density in the
g-vicinity of k. Then, the gridding error, defined a$k) = g(k) — g(k) at modek is bounded by

1 -
le(k)] < Cﬁ’ k= —N,..., N, for some positive constant.
k

Proof. The error in each of the equispaced Fourier coefficients gftdding is given by
i) -5 = [ fdk-wdo— 3 apf@)iti-w) (1D
- p St. [k—wp|<q
Let us evaluate the erret, in approximating the integral in the interval,,w,,1). Substituting

(3.8) for the density compensation factersand using the trapezoidal quadrature rule, we have

o= [ Al ot~ L (k=) + Fpen)lk — )

The trapezoidal quadrature rule, [40], yields

3
e, < W (3.12)
where
& (f(@)dik - )
Up = a2 , C€ [wp7wp+1]
w=¢
= J@)dPk—w)| _ ~2 0@k —w)| _ + [P )dk-w)|

We note thatf, ¢ and their derivatives are finite in the intenal,, w,+1); henceu, is bounded. In
particular, we may seha% |vp| to some positive constant.
pe
The total gridding error is the error over all intervals afeigration; i.e.,

e(k) = Zep ~ Z ep

p St [k—wp|<q



59

3
g(k) _ ‘é(k)‘ < Z ’wp-i-l - wp‘ ’Up‘
p St [k—wpl<q 12

A 3
<5 E |lwpt1 — wp‘
12
p St [k—wp|<q

A 2
=1 Z |wp1 — wpl - [wp1 — wp
p St. [k—wp|<q

A
—A7 Z |wp1 — wpl

<
=12
p St [k—wp|<q
<ul
1243
1 A
— (- = 20— 3.13
Cdz’ C 13 (3.13)

O

This error bound is plotted in Figure 3.6. Figure 3.6(a) pltite trué erro and the error
bound for reconstructing,(z) from jittered samples while Figure 3.6(b) plots the errod &me
error bound for reconstructings () from log samples. In each case, a valué\of= 128 was used
along with a Gaussian window function with truncation pagteng = 12 to satisfy (3.9).

The physical-space reconstruction error can now be wrégen

~g(z) — Sng(z) = g(x) - Sng(x) + Sng(x) — Sng(x)
= > ame 4+ Y (k) — (k) ) d8r14)
|k|>N k| <N
The first component is the standard Fourier truncation e8ioice we are primarily interested in
piecewise-smooth functions,; g suffers from the Gibbs phenomenon. The maximum error occurs

in the vicinity of a jump and is approximately09 of the jump value. There is also a reduced order

2The “true” coefficients were computed by approximating thevolution using an equispaced
sum on a fine grid*$ 2000 points).

3There is numerical evidence to suggest that the constasttales as the magnitude @fk).
This behaviour will be investigated in future work. The trereor plots in Figure 3.6 are plotted
normalized by|g(k)|.
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Fig. 3.6: Gridding error and the associated error bound

of convergence witljg — Sng||, = O (N~Y/2). The second term in (3.14) is the gridding error.

|Sng(z) — Sngla) = | > <g(k) _ §(l<:)) pika

<C Z — (3.15)

Let H(dg,N) := Z ok This term is plotted as a function of for the log sampling pattern in
|k|<N "k

Figure 3.7. We observe that it increases rapidly withindicating that the error in the reconstruc-
tion would increase at a similar rate.

0 20 40 60 80
N

100 120 140

Fig. 3.7: Plot ofH (dx, N) as a function ofV for log sampling

It is important to note that the two error components in (Bl&ve differing characteristics
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with the gridding error increasing witlv and the Fourier truncation error decreasing with In
sampling schemes such as log sampling, where the samplitgifyldecreases significantly at the
high modes, the gridding error dominates to the point whagerio longer advantageous to use all

the regridded coefficients in the reconstruction.
3.5 AN ALTERNATE RECONSTRUCTIONPROCEDURE— UNIFORM RE-SAMPLING

A more intuitive understanding of the reconstruction peoblmay be attained by studying the
uniform re-sampling algorithm. This algorithm, introddcen [6, 41], provides a least-squares
solution to the reconstruction problem. It is a two-sterestruction method involving

1. Recovery of Fourier coefficients at equispaced nodes.

2. Partial Fourier sum reconstruction using the recovegeispaced modes.
Of course, the final step may be accelerated by applicatidtheoFFT algorithm. The algorithm
has its roots in the application of the Whittaker-Kotelni®hannon sampling theorem. Fpre
L?(—m, ), application of the sampling theorem in Fourier space allow to relate the harmonic
Fourier modes to the non-harmonic measurements. In pkticue have

0
flw)y= > f(k)sinqw —k), weR (3.16)
k=—o0

Since this is essentially a convolution with shifted sintefpolants, we may write a truncated
version of the above relation as a linear system of equatitesy = f(m), m = —N,...,N,
denote the equispaced Fourier coefficients we seek.:lff’(wk), k=0,...M — 1, are the set
of measurements and is the matrix with elements;; = sinqw; — j),i = 0,...,.M — 1, j =
—N, ..., N, we may write

Ay ~ b (3.17)

g = Atb, (3.18)

where A™ is the Moore-Penrose pseudoinverse computed using thelaingalue decomposition
(SVD). Invariably, A has a high condition number, necessitating use of regaléwizin computing

the solution. Results in this dissertation use the trunc&eD, implemented using Matlabfsnv
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command. The regularization threshold for gfiev command was chosen as per the discrete Picard
condition, [42, Chapter 4]. The final approximationfofs obtained by using a Fourier partial sum.
Reconstruction of test functiof, (=) (3.6) using this method from its log spectral samples is
illustrated in Figure 3.8. Figure 3.8a plots the high-maslmorered equispaced Fourier coefficients,
while Figure 3.8b plots the corresponding error in recovgthese coefficients. The function re-
construction is shown in Figure 3.8c. The recovered equegbaoefficients are observed to show
a similar error trend as that of convolutional gridding. $#&marguments as in Section 3.4 may be
made with regard to the number of “good” or accurate coefiisi@nd their use in function recon-

struction. For completeness, we plot the recoverys9f:) from its jittered Fourier coefficients in

0.06f —+—True H
O Recovered

F(k)
Log | Ey |

-0.01r

-0.02-

30 40 50 60 70 80 90 100 110 120 130 -100 -50 0 50 100
k k

(a) Recovered high-mode equispaced Fourier  (b) Error in the interpolated coefficients
coefficients

(c) Reconstructed function

Fig. 3.8: Reconstruction using URS, = 128

Figure 3.9. Here, we find that the reconstruction accuranyuch better than the previous example.
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Table 3.1: Dependence of the sinc matrix condition humbahersampling pattern (Jittered sam-
pling, N = 128)

Maximal jitter, 6 0.1 0.5 1 5 10
Condition numbern 1.371 | 27.806 | 1.690 x 103 | 1.137 x 108 | 1.875 x 10

The Gibbs artifact remains and filtering or other technicaeesrequired to mitigate this problem,

but the error due to non-uniform spectral sampling is small.

T T
True
— — —URS|{

0.5

Log coefficient error
f

—0.5F

-100 -50 0 50 100 -3 -2 -1 0 1 2 3
k X

(a) Error in the interpolated coefficients (b) Function reconstruction

Fig. 3.9: Reconstruction of;(z) using URSN = 128

It is obvious from the two examples that the quality of re¢nrtion depends on the sampling
pattern. The sampling density of the acquired coefficiemteflected in the condition nhumber of
the sinc matrix. Jittered sampling results in a well condiéid matrix which can be inverted easily.
Log sampling, however, results in a large condition numig1('7)), with the result being that
the system of equations cannot be solved accurately. Thactstseen in Figure 3.8 are a direct
consequence of this. The singular values of the system amatfor the two sampling schemes
are shown in Figure 3.10. Further corroboration of this depace of the condition number on
sampling density is provided in Table 3.1, where the cooditiumber of the sinc matrix for jittered
sampling is tabulated for different values of the jitterr@paeterd (in 3.2)). It can be seen that as

the jitter increases, i.e., the samples get more irregiilarcondition number increases.
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(a) Jittered sampling (b) Log sampling

Fig. 3.10: Plot of singular values of the sinc system mathix= 128

3.6 SPECTRAL RE-PROJECTION

It is well known that spectral approximations of piecewsseeoth functions, such as the brain
scan cross-section of Figure 3.5(b) suffer from the Gibbsnpimenon. This manifests as non-
uniform convergence at a local level and reduced order ofargence at a global level. The non-
uniform convergence leads to oscillations in the vicinifydscontinuities (or smearing in filtered
reconstructions), which can cause loss of detail in MR sclnaddition to affecting the diagnostic
quality of the scan, these artifacts also affect the acguohcubsequent image processing tasks
such as segmentation, edge detection and feature recognitne reduced order of convergence in
the reconstruction necessitates acquiring a large nunibespace samples, resulting in increased
scan time. Other consequences include increased patggtnaiort and motion artifacts in the
scan. Spectral re-projection has previously been appi@dekample, [43]) in the context of post-
processing MR scans to improve resolution and segmentpgdiormance. Here, we discuss the
utility of spectral re-projection in the non-harmonic rastruction problem.

A detailed explanation of spectral re-projection is beythrscope of this dissertation. Instead,
we restrict ourselves to a brief summary, while pointing ithterested reader to [8] for a more
comprehensive treatment of the topic. The cause of the Gibesomenon can be traced to using
global data in the reconstruction. Fourier coefficientsrapgesentative of the function values over

the entire domain. Consequently, the reconstruction ofeoditinuous function at any point in the
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domain uses information from either side of a discontinuégding to loss of localization and non-
physical oscillations. Spectral re-projection schemgsgdntrast, require reconstruction in each
smooth interval. While the task of identifying intervalssmhoothness is a challenging problem, we
have found the concentration method of edge detection (€h&p to be adequate in identifying
jump information.

The key to spectral re-projection is to reconstruct usingléernate, specifically chosen basis
known as &ibbs complementatyasis. This basis is orthonormal, supports exponentiahstouc-
tion accuracy, and has the property that high modes of thedfduasis have exponentially small
projections on low modes of the reconstruction basis{lg}, [ = 0, 1, ... be such an orthonormal

basis with respect to the weight Them-term approximation of a functioyi using{«;} is given

by
Puf@) =Y (), = L0 (3.19)
lzo l

The method obtains its name from the fact tlfiatan be replaced by it N + 1)-term Fourier

expansionfy in the inner product; i.e., the reconstruction is computegitojecting the Fourier
data to the Gibbs-complementary basis. The significandei®stheme is that a poorly converging
(2N + 1)-term Fourier expansion contains sufficient informatiomeicover exponentially conver-
gent reconstructions in the new basis. It is shown in [8] thatGegenbauer polynomials form a
Gibbs-complementary basis for Fourier data.

In reconstructing functions from non-harmonic spectraigles such as the log sampling scheme,
we require similar properties in the reconstruction schem&heorem 3.4.1, it was shown that the
regridded coefficients at a particular mode have an err@rgmly proportional to the square of the
sampling density. Therefore, sampling schemes such astoglsg, where the sampling density
decreases at the high frequencies, result in large errdreihigh-mode coefficients. The spectral
re-projection of these high-mode Fourier coefficients antgibbs-complementary basis allows us
to exponentially damp the error in the spectral re-propectieconstruction. Moreover, the rapid
convergence of the reconstruction allows us to start withualmsmaller set of coefficients.

Let us assume that we use Gegenbauer polynorﬁiléas) for reconstructiof. We will assume

4See [8] for basic properties dff(:n) and admissibility requirements forandm in (3.19).
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that smooth intervals in the function can be identified witherror. The reconstruction process is

summarized in Algorithm 3.

Algorithm 3 Spectral re-projection for non-uniform Fourier data

Given: f at the non-equispaced measurement nages
Choose: Gegenbuer reconstruction parameters
1. Perform convolutional gridding (Algorithm 2) to obtainefficients on the equispaced grid
9)-
2. Identify smooth regions i using methods such as the concentration method of edge detec
tion (Chapter 2).
3. In each smooth interval:

a) Compute Gegenbauer expansion coefficients

~ 1 ! — = T
2= (S50, P = [ (=P ) 3 i)™
b k|<N

b) Function reconstruction using the Gegenbauer partial BY.Sy g.

m

PnSng(x) = 20 (x)
=0

3.6.1 Error Analysis for Spectral Re-projection Recongliens

If we assume that the compensation step where we divide ewvitidow function in (3.9) can be

performed without error; i.e|lf — P,Sx f| ~ |lg — PnSnd|, we have:

lg — PnSngll < llg = Pmgll + [|Pmg — PnSngll + | PmSng — PnSnG|| (3.20)

The first term is known as theegularization error The classical result, [8], is that for = ~m,
v > 0, constant,

whereA is some positive constant and

_ (1 + 27)14—27
- 21+2y Py (1 + 7)1+’Y

Cr
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Forp > 1, (g can be shown to be less than one. The second term in (3.2@® tisititation error
and classical results (e.g., [8]) show that for= aN,m = BN, «, 5 constants, this error can be

bounded as

1Png — PrSNnGlloo = |1 P (9 — SN G) [loo < A (3.22)

whereA grows at most as a fixed degree polynomiahofind

(B +2a)*22

(r = e
(2m)7 a2 B?

For carefully choser\,m (o = 8 < 3—’;), we have(r < 1. The third term in (3.20) is due to

gridding. For ease of analysis, we shall assume we are gilesuger partial expansion in the

interval [—1, 1]. This result can, however, be generalized to any otheniakdry suitable scaling.

Solving for the gridding error, we have,
”PmSNg - PmSNguoo = HPm (SNQ - SN@) HOO

We note thatSyg(z) — Sng(x) = Y (Q(k) - §(k)> '™ Substituting this in (3.19) and using
k| <N
Gegenbauer polynomials for the Gibbs complementary basisbtain

| P SNg — PrnSNGlloo =

m oA () [ R 4
S [ a2 S (90— 50 e

-
1 1 |k|<N

[e.e]

™A () [ X ‘
S LD [ - X (a0 - 60)

<
_{%%};1 =0 W |k|<N
n - QW [ ] N
<Y AR [ am e (a - i09) etray
1=0 |k|<N ! -
- 1 |cra) ! ~ -
<CY. >, 2 lh; ) /_1(1—772)A V2C) (m)e ’“"dn‘ (3.23)

1=0 |k|<N

where C' is some positive constant. Note that we have usa[ﬁhx }C}(az) = CM1) in the
ze[—1,1

penultimate step. The integral in the above expression &as bvaluated in closed form in [44].
This result states that
T(A) (Z) i1+ A\ Jga(rk) & #0

1 ™
o1 k=0

1
o [ =Ry -
1 J—-1
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wherel'(-) is the gamma function and, () is thev'"-order Bessel function of the first kind. Since

| Jo ()] < 1,Vz,v > 0, we have fork # 0

A
G [ = pporcdmem i < crarea+n ()
1 -1 T
T+ +2)) [ 2\
I'T(2)) (ﬂk;) (3.25)

where the second step is obtained for substituting’fdf1). Summing over alk we obtain

> 2

d
k|<n Tk

A 1
Cl (1) / (1 _ ,’72))\—1/201)\(77)ei7rknd,’7‘ <
-1

hy

1 TI+20TN) (1 + ) 1/ 2\

bz T2 2 & \ 7k (3.26)
0<|k|<N

A
, 1 . . _— :
Define H (wy, N, \) := Z <—> . This term is plotted in Figure 3.11 as a function/éf
0<|k|<N dj, \IK
for different values of\. A direct comparison with the Figure 3.7 (standard Fougepnstruction)

reveals the reduced impact on the error as a functiaN .dihequality (3.26) therefore becomes

>

[k|<N

crM1) 1 B .
l E\ ) /_1(1 _772)>\ 1/2Cl)\(77)62k7md77‘

hl
_Su T+ 20TN(+ ) (2 A
< d2 - Ty <;> H(wg, N, \) (3.27)

Substituting in (3.23), we obtain

N (S TU+20)TN @+ ) 2\
PaSyg — Pusille <O ( g L2 (2 H . A))
1=0 ’

1 T A T4+ 20) (1 + A
:C<d_3+%£)<E> H('“’N’A)Z( u)( )>

=1

:C<;2+H(wk,N Np (m,)\)>7 S 2) = (_)<_>A§:rz+n I+ )

=1

< CH(wg, N, X) p(m, ) (3.28)

. . . . 1 o
where the final step is obtained by assuming tg,;tg H(wg, N, ) p(m, ). This is true for
0
most problems since the low frequencies contain a signifigartion of the signal energy and are

therefore well sampled; i.ec.% is usually small.
0

S
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A cursory inspection will reveal that this bound is very camnative. In particular, p(m, \)
grows rapidly withm, A. However, our primary objective here is to investigate tapahdence of
the reconstruction error on sampling density. While theredoes increase with increase M,

a comparison with standard Fourier reconstruction errd5j3reveals that this increase is signif-
icantly damped by the termil (wy, N, A). Although H (wy, N, ) is an increasing function iV,

Figure 3.11 shows that the rate of increase for la¥gis small.
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Fig. 3.11: Plots off (dx, N, \) as a function ofV for log sampling

To illustrate the effectiveness of spectral re-projectimonsider the plots in Figure 3.12, where

5The bound in (3.25) is too conservative; the presence of #ss@& function and the imaginary
term is bound to result in cancellations.
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test functionf,(z) given by (3.29) is reconstructed from its log spectral sasipl

-1 —25<zr< -1

e " 0<z<7
falz) = i (3.29)
1460 195 <z <275

\ 0 else

Convolutional gridding was used to obtain the regriddedfaments. For reference, second-order
exponentially filtered reconstructions are plotted. FeguB.12(a) and (b) plot the filtered Fourier
and spectral re-projection (using Gegenbauer polynojmiatonstructions respectively while Fig-
ure 3.12(c) plots the physical-space log reconstructioorgr Equivalent error performance is ob-
served for the Gegenbauer reconstruction with no Gibbs terifig artifacts. Additionally, the
Gegenbauer reconstruction was computed u8ingoefficients, as opposed to the6 coefficients
required for the filtered Fourier reconstruction. The wastiproved performance of the Gegen-
bauer reconstruction can be explained by the decay rateapansion coefficients. Figure 3.13
plots the magnitude of the regridded Fourier coefficientmgside the Gegenbauer expansion co-
efficients. The Gegenbauer expansion is computed using &efirepartial sum, and the several
orders of magnitude reduction in the value of the coeffisiéntlicates a significantly accelerated
decay rate over the standard Fourier case.

The performance of spectral re-projection is independétheregridding method used. For
example, similar results can be obtained when using the UdRBitam to obtain equispaced coeffi-
cients. Figure 3.14(a) and (b) plot thenorm and maximum norm errors respectively as a function
of N for the reconstruction of test functiofy(z) (3.29). Log spectral samples were used with eg-
uispaced coefficients recovered using the URS algorithmndte that the error curve flattens out
after a certain value aW, indicating that the high-mode coefficients do not contelo the recon-
struction. The first to flatten out and indeed the plot with ldeest error is the Gegenbauer curve,
indicating that there are strong advantages to using sppeetprojection methods for reconstruction
from sampling schemes similar to log sampling.

It is to be mentioned that no effort was made to optimize tHaesofm and\. These were

chosen proportional to the length of the reconstructioeriral withm, A taking a minimum value of
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(c) Physical space log reconstruction errors

Fig. 3.12: Comparison of filtered Fourier and spectral i@ggation reconstructions, log sampling
scheme

two and capped to a maximum of six and four respectively. & m@ed in the course of simulations
that the reconstruction is more sensitive to parametectsghethan re-projection with the harmonic

Fourier coefficients.
3.7 INCORPORATINGEDGE INFORMATION

The non-harmonic Fourier reconstruction problem is jus ekample of a challenging, ill-posed
inverse problem. Methods such as uniform re-sampling andadotional gridding attempt to solve
this problem in a least-squares framework. This is sucakss$ we have seen in Section 3.5, for
cases where the sampling modes do not deviate significanathy the equispaced samples (e.g.,
jittered sampling with small jitter). In other cases, hoeewe see significant artifacts and loss of

resolution. The spectral re-projection reconstructiohSexction 3.6, on the other hand, use edge
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Fig. 3.13: Comparison of decay rates of Fourier and Gegarl@gpansion coefficients
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Fig. 3.14: Reconstruction error as a functiondfTest functionf,(z), log sampling)

detection schemes to enforce the location of jump discoitigs in the reconstruction. This leads
to improved reconstruction quality and resolution. We novestigate the use of not only the jump
locations, but also jump values in the reconstruction.

From (2.14), we have

f ! Me‘”“ﬂ-(’)< =

iy = - W) k£0 (3.30)

Given the jump locationsy,, k € K and the corresponding jump valsu€g(nx), k € K, we may
approximate the equispaced Fourier modes of the functimg tise above expression. We note that

the approximation quality improves &sincreases. This is particularly useful in the case of sam-
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pling schemes such as log sampling, because the high maaleered coefficients show significant
error when employing traditional reconstruction schemighe preliminary results presented be-
low, we use jump information obtained using the concemtratnethod. The results below use only
jump information to synthesis accurate high mode coefftsieHowever, we may also use jump in-
formation from higher-order derivatives to improve thewecy of the reconstruction. Information
about jumps in each of the derivatives of the function willgiupto an order of magnitude improve-
ment in the reconstruction accuracy. Note that methoddasina the concentration edge detection
scheme have to be used to obtain information about the jumgbsrivatives of the function.

Preliminary numerical results using this procedure aravshim Figures 3.15-3.16. We start
with a simple example antll (N = 20) harmonic Fourier coefficients of test functign(x). Using
the concentration edge detection method, the trigonometmcentration factor and the matched
filter detector of Section 2.5, we compute the jump locatemd values. The jump detection is plot-
ted in Figure 3.15 (a). Using this edge information and (B.8@ synthesiz16(N = 128) high
frequency coefficients. The reconstruction using theséhegized coefficients is plotted in Figure
3.15 (b). Note the significantly improved reconstructiorliy. Physical space log reconstruction
errors and filtered reconstructions are also plotted faresfce.

This procedure is particularly useful in the case of nomvtaric Fourier reconstruction. We
provide representative results below of the reconstroatfdest functionsf,(z), (3.29), andfs(x),
(3.31), from their log spectral samples using edge infoilmnatWe acquire the first1(N. = 30)
low frequency coefficients out of 257(N = 128) point log spectral sampling series, and recover
71 equispaced coefficients using the uniform re-sampling otethUsing these coefficients, we
apply the concentration edge detection procedure to fggotnp locations and values. This jump
information is used to synthesizé2 (to provide a total 0613 modes) additional high-frequency
coefficients. Reconstruction plots using these coeffisiémtthe two test functions are provided in
Figure 3.16 (a) and (b) respectively. Both plots have beengssed using fourth order exponential
filters. Note the significantly enhanced accuracy when usdge information. We may optionally
choose to perform spectral re-projection using the syitbdscoefficients. An illustrative result

using Gegenbauer polynomials with parameter chaices A = 4 is shown in Figure 3.16 (c) with
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an associated error plot in Figure 3.16 (d).
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(d) Filtered reconstructionss{*-order expo-

(3.31)
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CHAPTER 4
POINT-SPREAD FUNCTION ESTIMATION IN DE-BLURRING PROBLEMS

Piecewise-smooth functions are distinct in that there isn&icate interplay between their spec-
tral expansions and the presence of local features suchhgs giscontinuities. The use of such
local information in the accurate reconstruction of fuoct has been discussed in Chapter 3. In
this chapter, we describe another example of this interp&ween local jump features and global
expansions, and exploit this relationship in the estinmatd point spread functions (psfs) in de-
blurring problems.

The acquisition of blurred data is often unavoidable in smvsignal processing tasks, since
real world measurements are typically distorted by undwglyphysical phenomena, instrumen-
tation processes and other artifacts. For example, imagystems have a finite resolution and
consequently capture point sources as blobs or blurs. &imlistortions occur when an object is
in motion and the process of image acquisition is slow. Adactass of such distortions can be
explained using the convolutional blurring model. lfedenote the undistorted signal ahdlenote
the blur or psf. Ifn denotes stochastic noise, the convolutional blurring mfeigure 4.1) states

that the distorted signal can be written in its most genenahfas
g=f+h+n (4.1)

The recovery of the undistorted signAlor an approximation tg is, of course, of significant

Fig. 4.1: Convolutional blurring model

importance. The methods to accomplish this are both nurseand diverse, with the best results
obtained when an accurate estimate of the psf is availalidés chapter discusses the estimation
of psfs from one-dimensional piecewise-smooth functiangexct to convolutional blurring. The

principal tool employed is edge detection and we assume e iprevious chapters, that we start

with a finite number of Fourier spectral measurements.
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The rest of this chapter is organized as follows: Sectionsdrhmarizes the principle behind
this estimation scheme. Application of the concentratidgesdetector on the blurred Fourier data is
shown to yield scaled and shifted replicates of the psf dt eithe jump locations. Some comments
on the effect of noise and choice of the concentration famtthe psf estimate are made in Section
4.2. Finally, examples of the method applied to Gaussiancaaf-focus blurs are discussed in

Section 4.3.
4.1 PRINCIPLE — PSF BBSTIMATION USING CONCENTRATION EDGE DETECTION

We assume that we are given a finite number of equispa€edrier coefficients of a piecewise-
smooth function subject to convolutional blurring. Furthee will assume (for simplicity of analy-
sis) that corrupting noise is additive, white complex GarssMoreover, for the accurate estimation
of psfs, we require that jumps in the underlying function kedlweparated, i.e., distance between

lo

successive jumps> %VN . The psfs are estimated to within a scale factor in ampliuslag this

formulation.

This PSF estimation scheme exploits the linearity of thevoluional blurring process and that
of the concentration edge detection method. Let us stalttwé convolutional blurring expression
in (4.1). By applying a linear edge detectdr such as the convolutional edge detector of the

concentration edge detection method (Chapter 2), we obtain

S%lg] = T(f +h +n)
=(fxh+n)xC%
=fxhxCy+nxCf
=(f+xC{)xh+n*xCf
=S%[fl*h+n, n=nxCf}

~|[f]xh+n (4.2)

Therefore, the application of the concentration (and iregalna linear) edge detector on the blurred

Lif non-harmonic measurements are collected, equispacasftiacients may be obtained by meth-
ods such as gridding or re-sampling (Chapter 3).
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data allows us to observe shifted and scaled replicateqigh The output takes the form
T[g) =Y ajh(z —n;) + fi(z) (4.3)
J

whereca; denote the jump heights amd denote the jump locations. The noise comporiensu-
ally has specific characteristics depending on the initiéden distribution and the form of the edge
detector. If the jump discontinuities are sufficiently sepad, we may devise a suitable method to
estimate the parameters of the PSF. The principle is iitestrin Figures 4.2 and 4.3. In either case,
the first plot illustrates the true functiorf; (z), (4.4), and the blurred observation. Starting with
2N + 1 Fourier coefficients of this blurred observation, the restitoncentration jump approxima-
tion (using he trigonometric concentration factor) is fgdtin the second plot. For comparison, the
true blur is also plotted. Both the jump approximation ane tblur have been normalized for ease
of viewing. We see in both cases that the psf replicates mstnifiemselves at the jump locations

and are scaled by the jump values.

3 3
: <a<-g
7 T : 1 ™ s
£ —Z +sin(x — 7) —r<z<Z
VD) i 1 = 3
filz) = (4.4)
%m—5 3%§$< %T’T
0 else

Jump approximation
- = True blur
True function

(a) True function and blurred observation (b) After edge detection

Fig. 4.2: Estimation of psfs by applying edge detectors —gSiam blur,N = 128, trigonometric
concentration factor
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(a) True function and blurred observation (b) After edge detection

Fig. 4.3: Estimation of psfs by applying edge detectors —@fbcus blur,V = 128, trigonometric
concentration factor

4.2 EFFECT OFNOISE AND THE CHOICE OF CONCENTRATION FACTORS

We will assume that the Fourier coefficie@ék) are corrupted by zero mean, additive white com-
plex Gaussian noise of varianpé. As discussed in Section 2.5, the concentration methodesiti

and the physical-space noise compongememains Gaussian with zero mean. However, the noise
component acquires a covariance structure due to the use @bhcentration factors. Lét(x,)
denote the noise component at locationandn(x;) denote the noise component at location

From Lemma 2.5.1, and when using a single concentrationrfagtve have
Cn(@a,x0) = E[(ST[)(za) — E[SY[Al(xa)]) (STs[)(za) — E [ST,[7)(2a)])"]
M
= 23 ()t (4.5)
I=—M
For optimal results, this covariance structure has to berparated in any subsequent PSF param-
eter estimation method.
Simulation results also reveal that it is best to use loweprtige detectors for psf estimation.

Not only do they reduce the impact of high-frequency noikeijrtjump Waveforméfffo"’N(x) are

more agreeable with subsequent parameter estimatiomesutsubstituting (2.20) in (4.2), we have

S¥lgl(x) = (SKLf]+ h)(x) + 0

~ ([f]* W™ «h)(z) + & (4.6)
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Clearly, we require thastW(j”N « h)(x) be a close approximation to(z). It has been observed

that this is indeed the case for low-order edge detectordewigh-order edge detectors do not
satisfy this criterion. Figures 4.4 and 4.5 illustrate thienomenon. Figure 4.4(a) plots the jump
response of the trigopnometric concentration factor aloitg & Gaussian blur. Figure 4.4(b) plots
the result of convolving this response with the blur, anceEnsto closely approximate the true blur.
In contrast, the plots in Figure 4.5 reveal that the preseihs&ong sidelobes in the jump response
of the exponential (high-order) concentration factor itesuthe convolution output bearing no

resemblance to the actual blur.

WErhe)

(@) Characteristic responseV{ ™ (z) - (b) Plot of (W™ « ) (x)
Trigonometric factor

Fig. 4.4: Use of low-order edge detectors in psf estimations 128

High-order edge detectors may be used only when iteratigerd®lution schemes are used to
extract and/or denoise the psf replicates. There is alsoghen of using the concentration factor
design procedure outlined in Section 2.4 to design factdrehvspecifically minimize the error
HWS”N xh— hH for template blurs.

4.3 NUMERICAL RESULTS
This section provides simulation results of Gaussian atabbtocus blur estimation.

4.3.1 Gaussian Blur

The estimation procedure can be summarized as follows:

1. Low-pass filter the noisy Fourier coefficients.
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Wm0

(a) Characteristic responwg’N(m) — Expo- (b) Plot of(WO"’N x h)(x)
nential factor

Fig. 4.5: Use of high-order edge detectors in psf estimathdna= 128

2. Apply the concentration edge detector.

3. Identify edge vicinities with psf replicates.

4. Identify psf parameters.
Consider the estimation of the Gaussian psf from the tegttifom f; (z) in Figure 4.6 (a). This
figure plots the true function as well as the blurred, noisyeptation. The noise is assumed to be
additive white complex Gaussian of varian25 and acting in Fourier space. Since edge detection
enhances the noise component in the signal, we first performaphss filtering. In this example, we
use a Fourier space Gaussian filter. The result of jump appadion on these coefficients is plotted
in Figure 4.6(b}. The primary artifacts are spurious responses in smootbrrggthis however, is
unavoidable when using low-order factors. The next step isdlate regions where the psf occurs.
Several methods may be used, including enhancement oksmateinmod, [10, 12], followed by

thresholding. The example below uses enhancement of scales

S%lgl(x)  |S%[gl(x)|P
) = N[z]u rN[gMI)r >4 wn
else

Here,p is usually of the orde2—4, while ~y is an empirically chosen threshold. The edge regions ob-

tained by this procedure are plotted in Figure 4.7 (a). Nt $ome spurious regions are identified

2The jump response has been normalized for easy viewing.
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(a) Blurred noisy function (b) Jump approximation — trigonometric factor

Fig. 4.6: Gaussian psf estimatiaN, = 128

and some regions (closely spaced jumps or small jumps) mayissed; however, the multiplicity

of psf replicates allows us to overcome these errors. We nmogeed to estimate the variance of

— = —Tre
Estimate

n()

Edge regions
“151 — — —S}[a] - Trigonometric| 1 0

f

-3 -2 -1 [ 1 2 3 -3 -2 -1 [ 1 2 3

(a) Identifying edge regions (b) PSF estimate

Fig. 4.7: Gaussian parameter estimatidh= 128

the Gaussian in each of these regions. Assuming the blur ¢f the formexp (— (d§)2>, we may

linearize the data fit problem as follows

~ 2
log(155, 6] (2)]) = —5-? (4.8)

HereS‘j‘V[g] () denotes the jump function normalized by its maximum valuedoh region. Com-
puting the mean value af leads to a table of variance estimates for each region, as givTable

4.1. The mean value from the table is used to plot the psf agtiin Figure 4.7 (b). The estimate
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can be seen to agree quite well with the true psf. Z4m®rm of the error was computed to be4.
We note, however, that better parameter estimation scheamelse devised such as a leave-one-out

cross validation scheme to reduce the impact of the spurespmonses in the jump approximation.

Table 4.1: Variance estimates from different regions (Méalne is 7.361; Actual value is 8.660)

Region 1 2 3 4 5 6 7
Value | 7.5356| 7.1962| 7.2665| 6.9605| 8.1978| 4.2334| 9.1826

4.3.2 Out-of-focus Blur

The challenge with piecewise-smooth blurs is that use of@ational low-pass filtering smears the
psf replicates. While this may be tolerable for low noiseeley a more robust procedure would
be to utilize edge-preserving filtering schemes such a$vat&ation (TV) denoising. Consider
the estimation of the out-of-focus blur from the blurred awwisy function in Figure 4.8 (a). The

concentration jump response computed using the trigonanattor is plotted in Figure 4.8 (b).

-1 —25<ar< -1

e " 0<z<7
falz) = i (4.9)
1460 195 < <275

0 else

We now compute the solution of the following iterative pragr
min || S%[g] = Wpll3 + Allplwv (4.10)

where W denotes a Toeplitz matrix whose rows contain shifted raef@s of the jump response
WS”N(:U). We may also combine the solutions from using differentdiecusing the minmod op-
erator. Such a result is shown in Figure 4.9 (a). This pldhésdonsequence of using the minmod
operator on the TV-denoising solutions of the trigononeseaind exponential factors. The resulting
psf estimate, computed by taking the mean of the widths dfi eathe psf replicates is plotted in
Figure 4.9 (b).
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Fig. 4.9: Out-of-focus parameter estimation,= 128



CHAPTER 5
SUMMARY AND FUTURE DIRECTIONS
In this dissertation, we have introduced theory, algorgland computational tools for the process-
ing of piecewise-analytic data from Fourier measuremdntparticular, the previous chapters have
addressed three problems,

e The detection of jump discontinuities from spectral data.

e The reconstruction of piecewise-analytic functions framn4tarmonic Fourier measurements.

e The estimation of point-spread functions (psfs) from l@drFourier data.

The processing of piecewise-analytic functions from Feudiata is challenging and deserves spe-
cial attention, since local features cannot be well appnaxed from global measurements. We have
exploited the relationship between jump discontinuitied Bourier coefficients to arrive at efficient
and accurate jump detection, function reconstruction afdgiimation schemes. Numerical results
were primarily presented using one-dimensional test fanstand image phantoms, although appli-
cations for these results exist in other domains such asothéa of partial differential equations.
Some of the numerical simulations were motivated by probl@mmagnetic resonance imaging,
where it is required to reconstruct images from Fourier meaments.

Fundamental to all these results is the accurate extraofigmmp information from Fourier
measurements. This problem was addressed in Chapter 2e wheeiconcentration edge detec-
tion method was used to compute jump information. Althoughdoncentration method is a well
developed topic in literature, this dissertation introgllicseveral new ideas and tools for the ac-
curate and localized detection of jumps using this fram&wdn particular, the notion of gump
responsavas formally defined and used to relate the concentratiomp japproximation to jumps in
the function and its higher-order derivatives. Moreoveteaign framework for the computation of
concentration or “filter” factors was developed. This framek allows for the design of concen-
tration factors applicable to a wide variety of problemigghi, including those involving missing
bands of spectral data. Analytical and empirical resultsevadso provided to relate some of the
standard concentration factors with particular problemmigdations of this framework. Extensions
and improvements, with some original contributions wes® gdroposed to an existing method of
statistical edge detector design. Finally, use of the cainggon method for the detection of jumps

from non-harmonic Fourier data was investigated, and atranal formulation proposed for the
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accurate approximation of jump information under this peabsetting.

Chapter 3 addressed the reconstruction of functions framh@asmonic Fourier measurements.
The problems posed by non-harmonic acquisition were ifiedtby studying the properties of the
kernel described by these non-harmonic modes. A brief susnofawo prevalent reconstruction
methods — convolutional gridding and uniform re-samplingas provided, along with error analy-
sis for gridding reconstructions. While an analysis of catafional cost and selection of gridding
parameters have previously been addressed in literahgrsfudy of non-uniform sampling density
and its effect on reconstruction error is an original cdmition of this dissertation. Based on this
study, two new schemes were proposed for the mitigationrof€due to non-harmonic acquisition:

e Spectral re-projection methods, where we use knowledgatabe location of jump discon-

tinuities to reconstruct in the smooth intervals of the tiorc Analysis of the reconstruction
error for re-projection methods was provided, along withomnparison with results from

gridding. This analysis, supported by simulation reswtgealed improved accuracy in the
reconstruction, as well as reduced input data requirements

e An indirect reconstruction method incorporating edge limfation, where we use both jump

values and locations to synthesize “new” high-frequenaffaments.

Finally, the presence of jumps in a function was exploiteddostruct a scheme for the estima-
tion of psfs from blurred Fourier data. A discussion of thisthod, along with numerical results

showing the estimation of Gaussian and out-of-focus bluars presented in Chapter 4.
5.1 FRJUTURE DIRECTIONS

Among the topics discussed in this dissertation, some ateplarly amenable for future investi-
gation. For example, an extension of the concentration adeth the approximation of jumps in
derivatives and higher-order derivatives is of great gger A framework for the design of con-
centration factors similar to that in Section 2.4, but fag thentification of jumps in derivatives,
will find great utility. The multi-dimensional edge detemti method of Section 2.6 essentially
computes edge maps along individual dimensions and fuses th a composite map. A truly
multi-dimensional edge detection scheme for Fourier daliaisvof great importance in several

fields.
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While new methods have been proposed for the reconstruatifumctions from non-harmonic
Fourier data, there are indications that information alsalgles may be utilized to improve the re-
construction accuracy in traditional reconstruction sebg. For example, new gridding window
functions may be defined using local edge information to awerreconstruction accuracy and/or
reduce computational cost. Further, there is no reasomtbdurselves to the use of jump informa-
tion. The use of jump information in the higher-order deliix@s of the function are bound to yield
greater reconstruction accuracy.

Similar areas of investigation exist in the psf estimatioolyien. A multidimensional extension
of the procedure, especially for the case of non-separdbts will find great application. More
robust parameter estimation schemes, incorporating iistgtal characteristics of noise are bound
to yield improvements in the quality of the psf estimate.

A prominent theme in the topics discussed in this disserias the interplay between local
features and global expansions. This is a fascinating tephich holds plenty of promise, with
applications spanning several domains. It is conceivdbleexample, that methods such as re-
projection and those incorporating edge information mawdged to significantly improve current
image coding and compression schemes. The possibiliteplantiful, and it is hoped that the

future holds news of exciting discoveries and developments



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

D. Gottlieb and S. A. OrszadNumerical Analysis of Spectral Methods: Theory and Applica
tions Society for Industrial and Applied Mathematics, 1977.

A. Gelb and E. Tadmor, “Detection of edges in spectrahdatppl. Comput. Harmonic Anal.
vol. 7, pp. 101-135, 1999.

D. M. Cates, “Edge detection using Fourier data with aggions,” Dept. Math. Stat., Ph.D.
dissertation, Arizona State Univ., Tempe, Arizona, 2007.

L. A. Shepp and B. F. Logan, “The Fourier reconstructidradiead section,JEEE Trans.
Nucl. Sci, vol. 21, no. 1, pp. 21-43, 1974.

J. D. O’Sullivan, “Fast sinc function gridding algorith for Fourier inversion in computer
tomography,”IEEE Trans. Med. Imagvol. 4, no. 4, 1985.

D. Rosenfeld, “An optimal and efficient new gridding algbm using singular value decom-
position,” Magnetic Resonance Medol. 40, no. 1, pp. 14-23, 1998.

D. Gottlieb and C. W. Shu, “On the Gibbs phenomenon andeig®lution,” SIAM Rev. pp.
644-668, 1997.

J. Hesthaven, S. Gottlieb, and D. Gottliekpectral Methods for Time-Dependent Problems
Cambridge University Press, 2007.

J. Canny, “A computational approach to edge detectitBEE Trans. Pattern Anal. Mach.
Intell., vol. 8, pp. 679-698, 1986.

[10] A. Gelb and E. Tadmor, “Detection of edges in spectrdhdd— nonlinear enhancement,”

SIAM J. Num. Ana).vol. 38, no. 4, pp. 1389-1408, Sep.-Oct. 2000.

[11] S. Engelberg and E. Tadmor, “Recovery of edges fromtspledata with noise — a new per-

spective,"SIAM J. Num. Ana).vol. 46, no. 5, pp. 2620-2635, 2008.

[12] A. Gelb and E. Tadmor, “Adaptive edge detectors for pigise smooth data based on the

minmod limiter,”J. Sci. Comp.vol. 28, no. 2, pp. 279-306, 2006.

[13] A. Gelb and D. M. Cates, “Detection of edges in spectedhdlIl — refinement of the concen-

tration method,"J. Sci. Comp.vol. 36, no. 1, pp. 1-43, 2008.

[14] R. Archibald and A. Gelb, “Reducing the effects of noiseimage reconstruction,J. Sci.

Comp, vol. 17, no. 1, pp. 167-180, 2002.

[15] A.Viswanathan, D. Cochran, A. Gelb, and D. Cates, "Dt of signal discontinuities from

noisy Fourier data,” ifProc. 42nd Asilomar Conf. Sig. Sys. Con08, pp. 1705-1708.



89

[16] E.J. Candes, J. Romberg, and T. Tao, “Robust unceytpiiticiples: exact signal reconstruc-
tion from highly incomplete frequency informatiodZEE Trans. Inf. Theoryvol. 52, no. 2,
pp. 489-509, 2006.

[17] ——, “Stable signal recovery from incomplete and inaete measurementZommun. Pure
Appl. Math, vol. 59, pp. 1207-1223, 2005.

[18] E. Tadmor and J. Zou, “Novel edge detection methodstooinplete and noisy spectral data,”
J. Fourier Anal. Appl.vol. 14, no. 5, pp. 744-763, 2008.

[19] K. S. Eckhoff, “Accurate and efficient reconstructiohdiscontinuous functions from trun-
cated series expansionsfath. Comp,.vol. 61, no. 204, pp. 745-763, 1993.

[20] S. Boyd and L. Vandenbergh€pnvex Optimization Cambridge University Press, 2004.

[21] (2008, Dec.) CVX: Matlab software for disciplined camsvprogramming (web page and
software). M. Grant and S. Boyd. [Online]. Available: hitgtanford.edu/boyd/cvx

[22] M. Grant and S. Boyd, “Graph implementations for nonsthaconvex programs,” ilRecent
Advances in Learning and Control (a tribute to M. Vidyasggaer. Lecture Notes in Control
and Information Sciences, V. Blondel, S. Boyd, and H. Kimiizds. Springer, Dec. 2008,
pp. 95-110.

[23] S. M. Kay,Fundamentals of Statistical Signal Processing — Deteclibaory Prentice Hall
Signal Processing Series, 1993.

[24] ——, Fundamentals of Statistical Signal Processing — Estinmafibeory  Prentice Hall
Signal Processing Series, 1993.

[25] R. C. Gonzalez and R. E. Wood3igital Image Processing3rd ed. Addison-Wesley Pub-
lishing, 1992.

[26] M. Kadec, “The exact value of the Paley-Wiener constaSov. Math., Dok].vol. 5, pp.
559-561, 1964.

[27] J. A. Fessler and B. P. Sutton, “Nonuniform fast Foutiansforms using min-max interpola-
tion,” IEEE Trans. Sig. Progvol. 51, no. 2, pp. 560-574, 2003.

[28] G. Steidl, “A note on fast Fourier transforms for nonisgaced grids,’/Adv. Comp. Math.
vol. 9, no. 3, pp. 337-352, 1998.

[29] N. Levinson,Gap and Density Theorems American Mathematical Society, 1940.

[30] R. R. M. Young,An Introduction to Nonharmonic Fourier Analysis Academic Press, New
York, 2001.



90

[31] J.Benedetto and P. J. S. G. FerrelMamdern Sampling Theory: Mathematics and Applications
Birkhauser, 2001.

[32] T. Knopp, S. Kunis, and D. Potts, “Fast iterative redamgtion for MRI from nonuniform
k-space data fevised Preprint A-05-10, Universitat zu Lube2K05.

[33] M. Lustig, “Sparse MRI,” Dept. Elect. Eng., Ph.D. digsdion, Stanford Univ., 2008.

[34] J. G. Pipe and P. Menon, “Sampling density compensatidviRI: rationale and an iterative
numerical solution,Magnetic Resonance Medol. 41, no. 1, pp. 179-186, 1999.

[35] McConnell Brain Imaging Center, “BrainWeb: simulatecbrain  database,”
http://www.bic.mni.mcgill.ca/brainweb/.

[36] C. A. Cocosco, V. Kollokian, R. K. S. Kwan, and A. C. EvafBrainweb: Online interface to
a 3D MRI simulated brain databas&/eurolmagevol. 5, no. 4, p. 425, 1997.

[37] R. K. S. Kwan, A. C. Evans, and G. B. Pike, “"MRI simulatibased evaluation of image-
processing andclassification method&EE Trans. Med. Imag.vol. 18, no. 11, pp. 1085—
1097, 1999.

[38] K. S.K.Remi, A. C. Evans, and G. B. Pike, “An extensibl&Msimulator for post-processing
evaluation,” inProc. 4th Int. Conf. Visualization Biomed. Com@pringer, 1996, pp. 135-140.

[39] D. L. Coallins, A. P. Zijdenbos, V. Kollokian, J. G. Slel, J. Kabani, C. J. Holmes, and A. C.
Evans, “Design and construction of a realistic digital byathantom,"EEE Trans. Med. Imag.
vol. 17, no. 3, pp. 463—-468, 1998.

[40] K. E. Atkinson,An Introduction to Numerical Analysis John Wiley & Sons, 1978.

[41] D. Rosenfeld, “New approach to gridding using reguation and estimation theoryiflag-
netic Resonance Mediol. 48, no. 1, pp. 193-202, 2002.

[42] P. C. HansenRank-deficient and Discrete lll-posed Problems: Numerispects of Linear
Inversion Society for Industrial and Applied Mathematics, 1998.

[43] R. Archibald and A. Gelb, “A method to reduce the Giblgying artifact in MRI scans while
keeping tissue boundary integrityZEE Trans. Med. Imagvol. 21, pp. 305-319, 2002.

[44] H. Bateman and A. ErdelyHigher Transcendental Functions McGraw-Hill, New York,
1953.



