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ABSTRACT

Certain applications such as magnetic resonance imaging (MRI) and synthetic aperture radar

(SAR) imaging demand the processing of input data collectedin the spectral domain. While spectral

methods traditionally boast of superior accuracy and efficiency, the presence of jump discontinuities

in the underlying function result in the familiar Gibbs phenomenon, with an immediate reduction

in the accuracy of the method. This dissertation proposes methods and computational tools for

the efficient and accurate processing of such data, with applications to imaging. The relationship

between local features and Fourier measurements is exploited to address three specific problems

– the detection of jump discontinuities from Fourier data, the reconstruction of functions from

non-harmonic or non-uniform Fourier measurements, and theestimation of point-spread functions

(PSFs) from blurred Fourier data.

Jump locations and values are among the most important localfeatures of a piecewise-analytic

function. Use of theconcentration edge detection methodis discussed, which uses Fourier partial

sums and “filter” factors known as concentration factors to approximate this jump information. A

flexible, iterative framework is proposed for the design of these factors, along with the formulation

of a statistical detector to detect the presence of jumps from noisy Fourier data. Extensions of the

method to multiple dimensions as well as non-harmonic Fourier measurements are also provided.

Jump information from this method is shown to play an important role in obtaining accurate recon-

structions of functions from non-harmonic Fourier data. This is a challenging problem, typically

complicated by the acquisition of spectral samples with non-uniform sampling density. The use of

spectral re-projectionmethods is proposed to reduce the error caused by non-harmonic acquisitions.

These reconstructions are shown to offer great accuracy, while requiring fewer input measurements

than conventional Fourier methods. Results of an indirect reconstruction method are also provided,

which uses jump information to synthesize “new” high-frequency Fourier coefficients. Simulation

results reveal this framework to yield highly accurate reconstructions of the underlying function. Fi-

nally, the presence of jump discontinuities in a function isexploited to construct an efficient scheme

for the estimation of PSFs from blurred Fourier data. Representative results are provided, demon-

strating the accurate estimation of Gaussian and out-of-focus PSFs from blurred and noisy Fourier

coefficients.
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CHAPTER 1

INTRODUCTION

Spectral methods, and Fourier spectral methods in particular, enjoy widespread popularity in several

areas of science and engineering. Besides constituting natural basis functions for modeling diverse

natural phenomena, they also possess attractive numericalproperties. For example, it is well known,

[1], that the partial Fourier sum converges exponentially quickly to the underlying function, if the

function is smooth and periodic. Unfortunately, the approximation of piecewise-analytic functions

using spectral methods suffers from the Gibbs phenomenon, [1]. This manifests as non-physical

oscillations at a local level and a reduced order of convergence at a global level. It is this piecewise-

analyticity which presents a problem when processing inputdata from the spectral domain. This

is the case in certain imaging modalities such as magnetic resonance imaging (MRI) and synthetic

aperture radar (SAR) imaging. In these applications, the nature of the measurement process is such

that the input measurements correspond to the Fourier coefficients of the specimen being imaged.

The processing of such data therefore requires special attention.

This dissertation provides theoretical and computationaltools that address three specific prob-

lems encountered when imaging from Fourier spectral data:

1. The identification of jump or edge information from Fourier measurements.

2. The reconstruction of piecewise-analytic functions from non-harmonic or non-uniform Fourier

measurements.

3. The estimation of point-spread functions (psfs) in de-blurring problems from Fourier data.

A recurring theme in the ensuing chapters is the often intricate interplay between local features and

global expansions. We restrict our attention in this dissertation to jump information and Fourier

spectral data. By exploiting this relationship, we are ableto devise algorithms for the accurate

and efficient identification of jump locations and values from a few, and possibly noisy Fourier

coefficients. Extensions to the case of missing and non-harmonic Fourier measurements are also

provided. Moreover, we use this edge information as an integral component of reconstruction

schemes for non-harmonic Fourier data. Non-harmonic Fourier reconstruction is a challenging

problem, compounded by the acquisition of measurements with non-uniform sample density, and

by the presence of discontinuities in the function. The availability of jump information, however,

allows for the mitigation of effects caused by non-harmonicacquisition and accurate, cost-efficient
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function reconstructions. The application of jump detection on blurred Fourier data also allows for

the estimation of blurs using a simple and non-iterative framework.

An outline of the rest of the dissertation is as follows: The detection of jump discontinuities

and their values is addressed in Chapter 2. The framework used for this is the concentration edge

detection method, [2], which computes an approximation to the singular support of a function from

its first few Fourier series coefficients. This framework uses a Fourier partial sum and “filter”

factors known as concentration factors. Since the quality of the approximation is characterized by

these factors, we present a flexible and iterative frameworkfor the design of concentration factors.

Sample problem formulations are provided and some of the traditional concentration factors are

shown to be solutions to particular formulations. The design of factors for missing spectral data is

also addressed.

The concentration method computes a Fourier partial sum to approximate the singular support

of the function. Since we start with global measurements, obtaining a localized, accurate and well

resolved approximation to jumps is challenging. Consequently, we discuss the design of an edge de-

tector that uses a few evaluations of the concentration sum in a small neighborhood of the decision

point to ascertain the presence or absence of a jump. This design is an extension and generaliza-

tion of the method described in [3]. Finally, extensions of the concentration method to multiple

dimensions and non-harmonic Fourier data are presented.

We remark that performance evaluation of these methods is a complicated task, since most ex-

isting edge detection schemes are constructed for physicalspace data. Base-lining against these

methods (e.g., divided differences, the Sobel, Prewitt or Canny edge detectors) is to a certain extent

unfair, since they were not designed to handle jump or edge detection from spectral data. Com-

parisons to results starting from physical, grid point datais also not fair, as this fails to address

the implications of starting with global data. Consequently, comparisons to other post-processing

methods developed specifically in conjunction with the concentration method are made, and our

framework is show to perform well even in the presence of noise. Comparisons to some of the

standard edge detectors such as the Canny edge detector are provided where appropriate, both as an

illustrative reference and as an indication of the loss in accuracy resulting from the use of spectral

data.
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Representative results of these methods are shown in Figures 1.1 and 1.2, while a detailed

discussion is deferred to Chapter 2. Figure 1.1 illustratesthe concentration edge detection method

in action. Figure 1.1 (a) plots the acquired measurements inthis simulation, which are the first few

(129) Fourier coefficients of an underlying test function, with two bands of missing data to simulate

instrumentation errors. Figure 1.1 (b) plots the results ofjump detection. These results use the

concentration factor design framework to compute a custom factor for this missing data problem.

The concentration jump approximation of the function is plotted as a solid line in Figure 1.1 (b),

while the precise jump locations and values obtained after applying the edge detector are plotted as

◦’s. The capabilities of the statistical edge detector are more ably illustrated by Figure 1.2 (a), which

plots the accurate detection of jumps in a test function withsignificant noise. Finally, Figure 1.2 (b)

illustrates the application of this method to images, with aplot of the edge map of the Shepp-Logan

brain phantom, [4].
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Fig. 1.1: Accurate identification of jump locations and values (from129 Fourier coefficients)

Reconstruction of functions from non-harmonic Fourier measurements is discussed in Chapter

3. Non-harmonic acquisitions present an immediate problembecause families of non-harmonic ex-

ponentials rarely constitute a basis for functions of practical interest. Insight into this phenomenon

may also be attained by comparing the kernel described by thenon-harmonic modes to the stan-

dard Dirichlet kernel. It is explained in Chapter 3 that the non-harmonic acquisition manifests as

non-decaying oscillatory sidelobes in the kernel, while non-uniform sampling density manifests as
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Fig. 1.2: Extensions of the concentration edge detection method

a loss of localization. Existing reconstruction procedures for non-harmonic data work by mapping

the non-uniform measurements to equispaced modes, followed by standard Fourier reconstruction.

Two such methods, convolutional gridding, [5], and uniformre-sampling, [6], are discussed, along

with error analysis for gridding reconstructions. This analysis reveals that the primary impediment

to accurate reconstruction is the non-uniform sampling density. Since it is customary to in many

applications to undersample the high modes (which typically account for only a small fraction of

the signal energy), this manifests as poor accuracy of the high mode Fourier coefficients.

This situation is similar to the familiar Gibbs phenomenon,where a slow decay of the Fourier

coefficients leads to poor accuracy in partial Fourier sum reconstructions. Spectral re-projection

schemes, [7], have been previously proposed and successfully applied to the resolution of the Gibbs

phenomenon in spectral methods. We propose the use of re-projection methods to mitigate the

effects of non-harmonic acquisition and non-uniform sampling density. Analysis of the reconstruc-

tion error for spectral re-projection shows that equivalent or better accuracy may be attained when

compared to standard Fourier methods, while requiring the use of far fewer input measurements.

The use of re-projection methods also allows for the elimination of Gibbs artifacts, which may be

important in applications such as MR imaging. Illustrativeresults from such reconstructions are

shown in Figure 1.3. Figure 1.3 (a) plots example non-harmonic sampling distributions, while Fig-

ure 1.3 (b) confirms that standard Fourier partial sums yieldpoor results for such data. Figure 1.3
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(c) shows the result of the gridding method, post-processedby a low pass filter, while Figure 1.3 (d)

plots the spectral re-projection reconstruction using Gegenbauer polynomials.

Re-projection methods work by using the location of jump discontinuities to reconstruct the

function in smooth intervals, and subsequently piecing these intervals together. We also present

preliminary results of a method where we employ not just the jump locations, but also the jump

values to produce highly accurate reconstructions. This method directly exploits the relationship

between local jump features and Fourier coefficients to estimate the values of the high frequency

Fourier modes. This allows us to obtain far greater resolution than that supported by the acquired

measurements.
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Chapter 4 summarizes the estimation of psfs in de-blurring problems from the blurred, and pos-
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sibly noisy Fourier coefficients of piecewise-analytic functions. Blurring problems abound in the

real world, where measurements are often corrupted by the transmission channel and instrumenta-

tion effects. A natural task under these circumstances is the recovery of the original function. An

accurate estimate of the blur significantly aids in the successful inversion of blurring effects. To

obtain such an estimate, we apply the concentration method on the blurred Fourier coefficients of

the function. The resulting jump approximation yields shifted and scaled replicates of the psf, from

which blur parameters may be obtained. This procedure is illustrated in Figure 1.4, where the esti-

mation of Gaussian and motion blurs is plotted. The underlying function, in either case, is plotted

using a dotted line, while the true blur is plotted for reference using a dashed line. The result of

applying the concentration edge detection method to the blurred Fourier data is plotted using a solid

line, and can be seen to manifest as replicates of the blur at each of the jump locations.
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Fig. 1.4: Estimating psfs by applying the concentration method

Finally, Chapter 5 summarizes the findings of this dissertation and describes some avenues for

future investigation.



CHAPTER 2

EDGE DETECTION FROM FOURIER DATA

The detection of jumps in piecewise-analytic functions is acommon signal processing operation,

which finds application in several branches of science and engineering. For example, edge detection

is an important image processing operation. Besides being standalone entities of interest, edges

often serve an important role in other tasks such as segmentation and pattern recognition. High-

resolution reconstruction schemes, and the solution of partial differential equations (PDEs) are two

other areas where edge detection finds importance. In general, piecewise-analyticity reduces the

reconstruction accuracy, or the accuracy of the solution ofPDEs involving such functions. The

availability of edge information, however, can lead to significant improvements in the quality of the

resulting solutions. The interested reader is referred to [8, Chapter 9] for a discussion of one such

reconstruction scheme and its application in the solution of PDEs.

Certain applications demand the identification of edges from Fourier measurements. This is the

case, for example, in magnetic resonance imaging (MRI) and synthetic aperture radar (SAR). In

these applications, the underlying physical phenomenon entails the collection of data in the Fourier

domain. The identification of edges from such data is particularly challenging, since it requires

the accurate identification of a local feature from a global representation. Figure 2.1 illustrates this

problem. In this figure, we plot the edge map of the Shepp-Logan brain phantom, [4]. Figure

2.1 (a) plots a 257 grid point phantom, while Figure 2.1 (b) plots the edge map of this phantom

as obtained using Matlab’s implementation of the Canny edgedetector, [9]. Figure 2.1 (c) plots

the Fourier reconstruction of the phantom on 257 grid pointsfrom its first 101 (N = 50) Fourier

coefficients. Note the presence of Gibbs oscillations in thereconstruction. These non-physical

oscillations, which are a consequence of starting from global data, make edge detection challenging.

The resulting edge map, as generated by the Canny edge detector, is shown in Figure 2.1 (d) and

can be seen to contain numerous false activations.

In this chapter, we present methods and algorithms to accurately estimate jump locations and

values in piecewise-analytic functions from their first fewFourier series coefficients. We utilize the

concentration edge detectionmethod as the underlying framework for this purpose. This method

computes an approximation to thejump function(to be defined in Section 2.1) using a Fourier partial

sum and Fourier space “filter” factors known asconcentration factors. The characteristic features
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(a) The Shepp-Logan phantom (b) Canny edge map

(c) Fourier reconstruction of the
phantom,N = 50

(d) Canny edge map of the Fourier re-
construction

Fig. 2.1: Edge detection from Fourier data
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of the resulting approximation depend on the design of theseconcentration factors. We therefore

propose a flexible, iterative framework for the design of these factors, supporting a wide class of

design criteria, including cases such as the design of factors for missing or banded spectral data.

Several sample problem formulations are provided to illustrate the capabilities of the method. A

recurring theme in the development of this material is the notion of a jump response. Although this

will be more formally defined in Section 2.1.1, the jump response is essentially the concentration

jump approximation of a unit amplitude jump. The jump response describes the unique oscilla-

tory form of the jump function approximation both near and away from jumps. This becomes

particularly important in the design of an effective edge detector, which takes the continuous jump

function approximation and returns the discrete jump locations and values in the function. A sta-

tistical formulation is pursued and a variant of the generalized matched filter detector is designed.

Several examples illustrating the performance of the detector are provided, along with comparisons

to other standard methods of edge detection. A simple extension of this method to two dimensions

is also described with examples. Finally, and as a special case, we are interested in the detection of

jumps given non-harmonic Fourier data, i.e., Fourier coefficients sampled on non-uniform modes.

A straightforward extension of the concentration edge detection method using non-harmonic expo-

nentials is shown to fail in this case, with an iterative solution proposed to accurately identify jump

values and locations.

The rest of this chapter is organized as follows: Section 2.1contains a summary of the concen-

tration edge detection method. The notion of concentrationfactors and admissibility conditions for

the same are introduced, besides tabulation of some prototypical families of such factors. Example

responses on test functions are also provided. The jump response is defined, and the distinction

between low and high-order edge detectors explained. Section 2.2 briefly reviews previous and

related work on this topic, while Section 2.3 provides an alternative formulation of the concentra-

tion method. Here, we relate local edge information to global Fourier measurements, in addition

to expressing the concentration jump approximation in terms of the jump function and the jump

response. This formulation provides a suitable framework for the discussion concentration factor

design, with Section 2.4 providing the design framework andseveral illustrative sample problem

formulations. The design of an edge detector using a detection theoretic formulation is pursued in
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Section 2.5. This section includes expressions for the covariance structure of the noise component,

besides the design of the detector as well as expressions forits performance. Several examples

and comparisons to standard techniques are given. An extension of the concentration method to

two-dimensional functions is provided in Section 2.6. Finally, we discuss the application of the

concentration edge detection method to identifying jump information from non-harmonic Fourier

data in Section 2.7.

2.1 THE CONCENTRATION EDGE DETECTION METHOD

Let f be a real-valued1, 2π-periodic, piecewise-smooth function in[−π, π). Given the first2N +1

Fourier series coefficients

f̂(k) =
1

2π

∫ π

−π
f(x)e−ikxdx, k = −N, ...,N (2.1)

we are interested in identifying the locations and values ofjump discontinuities inf . We start our

discussion by defining the jump function.

Definition 1. (Jump Function) Letf : R → R, with f(x+) andf(x−) denoting the well-defined

right and left-hand limits off for everyx ∈ R. The jump function associated withf and denoted

by [f ] is defined as the difference between the right and left hand limits of the function; i.e.,

[f ](x) := f(x+)− f(x−) (2.2)

Note that the jump function is non-zero only at a jump discontinuity, where it takes the value of

the jump.

The concentration edge detection method, [2, 10], computesan approximation to the jump

function using a partial sum of the form

Sσ
N [f ](x) = i

∑

|k|≤N

f̂(k)sgn(k)σ

( |k|
N

)
eikx (2.3)

1We restrict our attention to real-valued functions, since real-world applications typically require
the estimation of real-valued jumps.
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The choice of the factorσ(η) = σ
(
|k|
N

)
, known as theconcentration factor, decides the con-

vergence properties of the jump approximation. These factors are known to satisfy the following

admissibility conditions2:

1.
N∑

k=1

σ

(
k

N

)
sin(kx)be odd

2.
σ(η)

η
∈ C2(0, 1)

3.
∫ 1

ǫ

σ(η)

η
→ −π, ǫ = ǫ(N) > 0 being small

We note that the concentration sum in (2.3) can be interpreted as the convolution off with a con-

centration kernelCσ
N defined as

Cσ
N (x) := i

∑

|k|≤N

sgn(k)σ

( |k|
N

)
eikx (2.4)

Therefore (2.3) is equivalent to

Sσ
N [f ](x) = (f ∗ Cσ

N )(x) (2.5)

The admissibility conditions essentially state that the concentration kernel is required to be odd,

suitably normalized and satisfy a certain smoothness constraint in order to approximate the jump

function. Table 2.1 lists a selection of concentration factors introduced in [2, 10], while Figure 2.2

plots these factors in the Fourier domain.

Table 2.1: Examples of concentration factors

Factor Expression Remarks

Trigonometric σG(η) =
π sin(πη)

Si(π)
Si(π) =

∫ π

0

sin(x)

x
dx

Polynomial σpP (η) = pπηp p is the order of the factor

α is the order

Exponential σE(η) = C · η · exp
(

1

αη(η − 1)

)
C is a normalizing constant

C =
π

∫ 1− 1

N
1

N

exp
(

1
ατ(τ−1)

)
dτ

2A detailed development and discussion of these conditions can be found in [10].
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Fig. 2.2: Concentration factors plotted in Fourier space

If σ(·) is an admissible concentration factor,Sσ
N [f ] “concentrates” at the singular support off

and the jump approximation obeys the concentration property, [11, Theorem 2.3],

Sσ
N [f ](x) = [f ](x) +





O
(
logN
N

)
d(x) . logN

N

O
(

logN
(Nd(x))s

)
d(x) ≫ 1

N

(2.6)

Here,d(x) denotes the distance between a point in the domain and the nearest discontinuity, while

s > 0 is a parameter which depends on the concentration factor chosen. The value ofs depends

on the order3 of the concentration factor, with a higher-order edge detector associated with a larger

value ofs as compared to a lower-order edge detector.

2.1.1 The Jump Response

As indicated in the previous discussion, the characteristic features of the concentration jump ap-

proximation depend on the choice of the concentration factor. Associated with each concentration

factor is a unique oscillatory pattern in the immediate vicinity and away from jumps. We will re-

fer to this as thejump responseassociated with a concentration factor. Letσ(η) be an admissible

concentration factor. Letr(x) denote the unit ramp function, with a corresponding jump function

3The notion of low and high order edge detectors and their characteristic features will be dis-
cussed with illustrative examples below.
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Fig. 2.3: Jump responses of different concentration factors (N = 32)

[r](x).

r(x) =





−x−π
2π x < 0

π−x
2π x > 0

, [r](x) =





1 x = 0

0 else

Definition 2. (Jump Response) The jump response, denoted byW σ,N
0 (x), is defined as the jump

function approximation of the unit ramp as generated by the concentration sum (2.3). i.e.,

W σ,N
0 (x) := Sσ

N [r](x) = i
∑

|k|≤N

r̂(k) sgn(k)σ

( |k|
N

)
eikx

=
1

2π

∑

0<|k|≤N

σ
(
|k|
N

)

|k| eikx (2.7)

The final equation is obtained by substituting the Fourier coefficients of the ramp function,

r̂(k) =





1
2πik k 6= 0

0 k = 0

The jump responses of each of the concentration factors listed in Table 2.1 are plotted in Figure

2.3. The reader is encouraged to study these plots in association with (2.6). In particular, note

the “concentration” of the jump approximation at the singular support ofr. Further, note the non-

uniform convergence to the true jump function; this is to be expected as we are computing a Fourier

partial sum approximation of the piecewise-defined jump function. The different orders of conver-

gence away from the jump for each of the concentration factors, parameterized bys in (2.6), is also

evident from the plots. For example, the polynomial concentration factor shows slowly decaying
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oscillations for|x| > 0, while the exponential factor shows a vanishing response away from the

jump.

2.1.2 Sample Jump Function Approximations and Low/High-order Edge Detectors

To study the performance of the concentration edge detection method, we introduce the test func-

tionsf1(x) andf2(x), with associated jump functions given in (2.9) and (2.11) respectively.

f1(x) =





3
2 −3π

4 ≤ x < −π
2

7
4 − x

2 + sin(x− 1
4) −π

4 ≤ x < π
8

11
4 x− 5 3π

8 ≤ x < −3π
4

0 else

(2.8)

[f1](x) =





3
2 x = −3π

4

−3
2 x = −π

2

14+π
8 − sin

(
π+1
4

)
≈ 1.28 x = −π

4

sin
(
2−π
8

)
− 28−π

16 ≈ −1.70 x = π
8

33π
32 − 5 ≈ −1.76 x = 3π

8

5− 33π
16 ≈ −1.48 x = 3π

4

0 elsewhere

(2.9)

f2(x) =





sin(6x) −5π
6 ≤ x < 0

1
πe

−2x(π − x) x ≥ 0
(2.10)

[f2](x) =





1 x = 0

0 else
(2.11)

The concentration jump function approximation of the two test functions are provided in Figures

2.4 (a) and (b) respectively. The jump function approximation of f1(x) was generated using the

trigonometric factor while the trigonometric and exponential jump function approximations of

f2(x) are plotted. We draw attention to the jump function approximation of f2(x) in Figure 2.4

(b). The trigonometric jump function approximation has a large non-zero value in the smooth in-

terval (−π, 0). This is characteristic of alow-order edge detector acting on a function with large
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Fig. 2.4: Jump approximations of two test functions

variation. In contrast, the exponential (high-order) jump function approximation contains a van-

ishing response in smooth regions4 at the expense of some additional oscillatory behavior in the

immediate neighborhood of the jump.

2.2 SUMMARY OF PREVIOUS WORK

The concentration edge detection method was first introduced in [2] and extended in [10], with the

introduction of new families of concentration factors and use of the “enhancement of scales” pro-

cedure. This post-processing procedure essentially raises the concentration jump approximation to

thepth power, thereby improving the resolution of jumps and separating regions (or scales) of jump

from smooth regions. Further efforts to improve jump resolution and reduce spurious oscillations

were undertaken in [12], where theminmod5 operator was used. This approach uses jump responses

from multiple concentration factors in conjunction with the minmod operator to reduce oscillations

in the smooth regions and in the immediate vicinity of jumps.Reduction of oscillatory behavior

was also the motivation behind the design of a class of concentration factors known as matching

waveform concentration factors, [13]. These factors are equivalent to computing correlations of

4The small non-zero oscillatory response in the vicinity ofx = −5π
6 is due to a discontinuity in

the derivative off2(x).

5minmod(a1, ..., an) :=

{
sgn(a1) ·min (|a1|, ..., |an|) sgn(a1) = sgn(a2) = ... = sgn(an)

0 else
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the jump function approximation with the jump response, Definition 2. The consequence is a peak

at the jump location and vastly reduced oscillations in the smooth regions. Several works have

also addressed the jump detection in the presence of noise. For example, [11] uses a framework

of breaking the function into scales of smoothness, noise and jumps. An approach at reducing the

variance of the jump function approximation, along with subsequent reconstruction of the function,

is pursued in [14]. A detection theoretic formulation of thejump detection problem, with matched

filter formulations are provided in [3] and [15]. Finally, iterative formulations of this jump detection

method, drawing from recent developments and algorithms for compressive sensing, [16, 17], are

developed in [18]. This framework allows for the identification of jump information from sparse

and possibly randomly sampled Fourier data.

2.3 ANALYSIS OF THE CONCENTRATION SUM

In this section, we provide an alternative formulation of the concentration method by relating the

concentration sum (2.3) to the jump function. We start by studying the relation between Fourier

coefficients and jump locations and values. Consider, without loss of generality, a periodic function

on [−π, π) with a single jump atx = ζ. Fork 6= 0, we have

f̂(k) =
1

2π

∫ ζ−

−π
f(x)e−ikxdx+

1

2π

∫ π

ζ+
f(x)e−ikxdx (2.12)

On integrating by parts, we obtain

f̂(k) =
(
f(ζ+)− f(ζ−)

) e−ikζ

2πik
+

1

ik
·
(

1

2π

∫ ζ−

−π
f ′(x)e−ikx +

1

2π

∫ π

ζ+
f ′(x)e−ikx

)
(2.13)

where we have used the periodicity off . From (2.2), we obtain

f̂(k) = [f ](ζ)
e−ikζ

2πik
+

1

ik
·
(

1

2π

∫ ζ−

−π
f ′(x)e−ikx +

1

2π

∫ π

ζ+
f ′(x)e−ikx

)

Note that the term within parenthesis is the same as (2.12) for f ′. Therefore, by repeated application

of integration by parts, we obtain

f̂(k) =
1

2π

(
[f ](ζ)

ik
+

[f ′](ζ)
(ik)2

+
[f ′′](ζ)
(ik)3

+ ...

)
e−ikζ , k 6= 0 (2.14)

This expression is worth noting because it provides the linkbetween the global Fourier measure-

ments we are given and the local features (edges) we are interested in approximating. Substituting
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this expression in (2.3), we get

Sσ
N [f ](x) =

∑

0<|k|≤N

f̂(k)iσ

( |k|
N

)
sgn(k)eikx

=
∑

0<|k|≤N

[
1

2π

(
[f ](ζ)

ik
+

[f ′](ζ)
(ik)2

+
[f ′′](ζ)
(ik)3

+ ...

)
e−ikζ

]
iσ

( |k|
N

)
sgn(k)eikx

=
[f ](ζ)

2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

k
eik(x−ζ) +

[f ′](ζ)
2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

ik2
eik(x−ζ)

+
[f ′′](ζ)
2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

i2k3
eik(x−ζ) + ... (2.15)

Recall that the first term in the above equation is a shifted and scaled jump response,W σ,N
0 , (Defi-

nition 2). Similarly we may define

1

2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

ik2
eikx :=W σ,N

1 (x) (2.16)

and, in general,

1

2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

iqkq+1
eikx :=W σ,N

q (x) (2.17)

Substituting in (2.15), we obtain

Sσ
N [f ](x) = [f ](ζ)W σ,N

0 (x− ζ) + [f ′](ζ)W σ,N
1 (x− ζ) + [f ′′](ζ)W σ,N

2 (x− ζ) + ... (2.18)

There arises a technical difficulty in using the above formulation for analysis, since the jump “func-

tion” is zero everywhere, except at a finite set of points. Therefore, convolutions involving this

quantity would evaluate to zero. However, this is easily overcome using a regularized equivalent of

the jump function (motivated by the development in [11]), which we denote by[f ]ǫ(x), and define

as

[f ]ǫ(x) =





[f ](ζ) |x− ζ| ≤ ǫ, ǫ > 0, ǫ ∼ O
(

2π
2N+1

)

0 else
(2.19)

Thus, (2.18) becomes

Sσ
N [f ](x) ≈ [f ]ǫ(ζ)W

σ,N
0 (x− ζ) + [f ′]ǫ(ζ)W

σ,N
1 (x− ζ) + [f ′′]ǫ(ζ)W

σ,N
2 (x− ζ) + ...

≈
∫ π

−π
[f ]ǫ(ζ)W

σ,N
0 (x− ζ)dζ +

∫ π

−π
[f ′]ǫ(ζ)W

σ,N
1 (x− ζ)dζ +

∫ π

−π
[f ′′]ǫ(ζ)W

σ,N
2 (x− ζ)dζ + ...

= ([f ]ǫ ∗W σ,N
0 )(x) + ([f ′]ǫ ∗W σ,N

1 )(x) + ([f ′′]ǫ ∗W σ,N
2 )(x) + ... (2.20)
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We note thatW σ,N
i (x) = (B̃i ∗ Cσ

N )(x), whereB̃i(x) are normalized Bernoulli polynomials, [19],

andCσ
N (x) is the concentration kernel (2.4). Since theith Bernoulli polynomial has a discontinuity

in its ith derivative atx = 0, each of these kernels denotes the response of the concentration

sum to jumps in theith derivative of the function. Our attention, however, will berestricted to

the identification of jumps andW σ,N
0 , the jump response. The jump response and the first three

higher-order kernels associated with the polynomial concentration factor are plotted for illustrative

purposes in Figure 2.5. Note the alternating even-odd nature of the kernels and the reduced scale of

the higher order kernel plots.

2.4 CONCENTRATION FACTOR DESIGN

Expression (2.20) provides us with a convenient starting point to discuss concentration factor de-

sign. As previously discussed, the design of a concentration factor is important since it determines

the qualities of the resulting jump function approximation. To accurately approximate the jump

function, it is obvious from (2.20) thatW σ,N
0 (x) has to be emphasized, while simultaneously sup-

pressingW σ,N
i (x), i > 0. Moreover, for a well resolved jump approximation, we require that

W σ,N
0 (x) have properties similar to the indicator function

δ(x) =





1 x = 0

0 else
(2.21)

The design framework therefore consists of solving an iterative program which computes a concen-

tration factorσ for (2.3) such that the above conditions are satisfied. A typical problem formulation

takes the form

min
σ

φ0(σ)

subject to φm(σ) = cm, m = 1, ...,M

ψn(σ) ≤ cn, n = 1, ....N (2.22)

The objective functionφ0 is typically a norm measure ofW σ,N
0 (x). cm, cn are constants or func-

tions independent ofσ while the constraints,φm(σ), ψn(σ), are typically functions ofW σ,N
i (x)

or σ. Note thatσ is an even function (this follows from the admissibility condition requiring the
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Fig. 2.5: The jump response and first three higher order kernels associated with the polynomial
concentration factor (N = 64)

concentration kernel (2.4) to be odd). Consequently, the design problem is an iterative program of

sizeN .

2.4.1 Sample Problem Formulations

In the following discussion, we provide several sample problem formulations. All problem formula-

tions discussed below are convex programs, with most being linear programs or quadratic programs

with linear equalities and inequalities. In broad brush, they can all be formulated as second order

cone programs (SOCPs), which can be solved using a variety ofmethods, [20]. The simulation
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results in this section were computed usingCVX, a package for specifying and solving convex pro-

grams [21, 22]. Programs were implemented in Matlab (version 7.7) withCVX version 1.2 (build

711).

1. Problem Formulation 1 -The (first-order) polynomial concentration factor

We start with a problem formulation minimizing the2-norm of the jump waveformW σ,N
0 (x),

while ensuring its proper normalization.

min
σ

‖W σ,N
0 ‖2

subject to W σ,N
0

∣∣∣
x=0

= 1 (2.23)

This results in a concentration factor and jump response as plotted in Figure 2.6.
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Fig. 2.6: Problem formulation 1,N = 64

By comparing Figure 2.6 with Figures 2.2 and 2.3, it is clear that this problem formulation results in

the first-order polynomial concentration factor. This observation may be formalized in the following

theorem:

Theorem 2.4.1.LetW σ,N
0 be the jump response. The concentration factorσ(η) = σ

(
|k|
N

)
which

solves the problem

min
σ

‖W σ,N
0 ‖2

subject to W σ,N
0

∣∣∣
x=0

= 1 (2.24)
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is the first-order polynomial concentration factor,σ1P (η) = πη.

Proof. By Parseval’s relation, we have

∥∥∥W σ,N
0

∥∥∥
2
=




∑

0<|k|≤N

∣∣∣∣∣∣

σ
(
|k|
N

)
sgn(k)

k

∣∣∣∣∣∣

2



1

2

=




∑

0<|k|≤N

∣∣∣∣∣∣

σ
(
|k|
N

)

|k|

∣∣∣∣∣∣

2



1

2

(2.25)

By definingη = |k|
N , the above expression becomes

∥∥∥W σ,N
0

∥∥∥
2
=

1

N


 ∑

0<η≤1

∣∣∣∣
σ (η)

η

∣∣∣∣
2



1

2

(2.26)

The error is minimized when each term in the sum is minimized.Setting
d

dη

(
σ(η)

η

)2

to zero, we

obtain

2

(
σ(η)

η

)
·
(
ησ′(η) − σ(η)

η2

)
= 0

Sinceη 6= 0, we have

ησ′(η) = σ(η)

The solution of this equation takes the form

σ(η) = C · η (2.27)

whereC is some constant. We determineC using the equality constraint,W σ,N
0

∣∣∣
x=0
= 1.

1

2π

∑

0<|k|≤N

σ
(
|k|
N

)
sgn(k)

k
= 1

1

πN

1∑

η=1/N

σ(η)

η
= 1

C

πN
·N = 1

C = π (2.28)

The result follows.
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2. Problem Formulation 2 -Sparse jump response

A quick study of the jump response of the polynomial concentration factor reveals strong

oscillations in the smooth regions. Therefore, we considera problem formulation where we

minimize the1-norm of the jump waveformW σ,N
0 (x), subject to the usual normalization

constraint.

min
σ

‖W σ,N
0 ‖1

subject to W σ,N
0

∣∣∣
x=0

= 1 (2.29)

This results in a concentration factor and jump response as plotted in Figure 2.7.
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Fig. 2.7: Problem formulation 2,N = 64

As expected, the response in smooth regions is much smaller at the expense of decreased resolution

of the actual jump and strong oscillatory sidelobes in the immediate vicinity of the jump. These

characteristics are in evidence in the plots of Figure 2.8. This figure plots the absolute logarithmic

error between the true jump function and the concentration jump response. The error plots for

different values ofN are provided to infer convergence behavior. The almost flat error profile away

from the jump in Figure 2.8 (a) is a result of the slowly decaying oscillations. In comparison, the

concentration factor from problem formulation 2 shows a vanishing response in the same region in

Figure 2.8 (b).
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Fig. 2.8: Log absolute error between the true jump function and the concentration jump approxima-
tion,N = 64

3. Problem Formulation 3 -Higher order concentration factors

The previous problem formulations imposed no constraints on the magnitude of the higher
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Fig. 2.9: Plot of the higher-order kernels,W σ,N
i , i = 1, .., 4, (N = 64)

order kernels. This can present a problem when computing jump approximations for func-

tions with significant variation. Figure 2.4 (b) provides anexample, where the jump function

approximations off2(x) using the (low-order) trigonometric and (high-order) exponential

concentration factors are plotted. For reference, Figure 2.9 plots the first four higher-order

kernels,W σ,N
i , i = 1, .., 4, for the trigonometric and exponential concentration factors re-
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spectively. Note the logarithmic scale and the significantly reduced values of the kernels for

the exponential concentration factor.

Clearly, there is a lot to gain in this context by imposing constraints on the higher-order

kernels6. Therefore, consider the problem formulation,

min
σ

‖W σ,N
0 ‖1

subject to W σ,N
0

∣∣∣
x=0

= 1

∥∥∥W σ,N
1

∥∥∥
∞

≤ 10−1

∥∥∥W σ,N
2

∥∥∥
∞

≤ 10−3

σ ≥ 0, σ(1) = 0 (2.30)

This results in a concentration factor and jump response as plotted in Figure 2.10.
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Fig. 2.10: Problem formulation 3,N = 64

Figure 2.11 plots the response of the factors from problem formulations2 and3 respectively to the

test functionf2(x), (2.10). Note the significantly improved performance usingproblem formulation

3 with respect to canceling out oscillatory signals. Problem formulation2 had no constraints on

the higher order kernels; consequently, the jump response in Figure 2.11 (a) shows a significant

6Ideally, the higher-order kernels should be vanishingly small. Programming constraints, how-
ever, make it difficult to do so.
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Fig. 2.11: Comparison of low and high-order concentration jump approximations,N = 64
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Fig. 2.12: Logarithmic plot of the higher-order kernels,W σ,N
i , i = 1, .., 4, (N = 64)

non-zero value in the sinusoidal region. The correspondingresponse in Figure 2.11 (b) is near

zero7. Plots of the first four higher-order kernels correspondingto the two concentration factors

are given in Figure 2.12. Note the significantly smaller values for problem formulation 3. Note

that the exponential factor was designed to cancel out as many moments as the order of the factor,

[10]. Problem formulation 3 serves the same purpose by canceling out several higher-order kernels.

The interested reader is also encouraged to compare the performance of the factor from problem

7As before, the small oscillatory response in the vicinity ofx = −5π
6 is due to the discontinuities

in the derivative and higher-order derivatives off2(x).
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formulation 3 to the exponential concentration factor. Thejump function approximations using the

two factors are plotted in Figure 2.4 (b) and Figure 2.11 (b) respectively, while the plots of the

higher-order kernels are provided in Figure 2.9 (b) and Figure 2.12 (b) respectively. It is observed

that the concentration factor from the iterative formulation is more effective in canceling out the

oscillatory response in the sinusoidal region. However, itis entirely possible that a set of similar

constraints in the iterative program exist, which will yield a solution numerically equivalent to the

exponential concentration factor.

It is envisaged that such a concentration factor may be useful in applications where functions

with large variation are encountered, such as the solution of PDEs by spectral methods involving

highly oscillatory solutions.

4. Problem Formulation 4 -Missing or Banded Spectral Data

Consider the problem of identifying jump information from spectral data missing certain

coefficients, perhaps due to instrumentation errors or noise. The use of standard concentration

factors in such cases results in additional spurious oscillations throughout the reconstruction

interval, as illustrated in Figure 2.13. This figure plots the jump response to a unit ramp

using the polynomial factor and the concentration factor designed in problem formulation2.

Fourier modesK ∈ {−40,−39, ...,−30, 30, 31, ..., 40} are assumed missing.
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(b) Concentration factor from problem formu-
lation 2

Fig. 2.13: Use of standard concentration factors with missing data,N = 64

These additional spurious responses can lead to false jump detects, especially in the pres-
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ence of noise. However, explicitly specifying the missing data as a constraint in the problem

formulation allows us to produce much cleaner jump responses. For example, consider:

min
σ

‖W σ,N
0 ‖1

subject to W σ,N
0

∣∣∣
x=0

= 1

σ(K) = 0
∣∣∣W σ,N

0

∣∣∣
|x|≥0.35

≤ 10−3 (2.31)

This results in a concentration factor and jump response as plotted in Figure 2.14. Note the

significantly reduced spurious oscillations away from the jump. The one consequence of the

missing data, however, is the slightly reduced resolution of the jump itself. Also, note that the

envelope of the concentration factor in Fourier space contains no sharp discontinuities. This

implicit smoothness plays a significant role in minimizing spurious oscillations.
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Fig. 2.14: Concentration factor design for missing data,N = 64, modes±(30 − 40) missing.

Figure 2.15 plots the performance of the factor on the following test function.

f3(x) =





sin(x) −π ≤ x < −π
2

− cos
(
3x
2

)
−π

2 < x < π
4

π − x π
4 < x ≤ π

(2.32)
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[f ]3(x) =





√
2+1√
2

≈ 1.707 x = −π
2

3π
4 + 1

2

√
2−

√
2 ≈ 2.734 x = π

4

0 else

(2.33)

The associated jump function is provided for reference in (2.33). As before, we note that the jump

approximation is much cleaner. Moreover, with the standardconcentration factors, the jump heights

are not identified correctly. Recall (Section 2.1, admissibility conditions) that the concentration

factors are required to satisfy a normalization constraint. This constraint is violated in the case of

missing data, i.e., for the standard concentration factors

N∑

k=1
k/∈K

σ
(
|k|
N

)

k
<

N∑

k=1

σ
(
|k|
N

)

k
= 1

Consequently, the jump response has the property thatW σ,N
0 (0) < 1. This results in the jump

height being incorrectly identified. It is only when the missing modes are explicitly modeled in the

design process that the resulting concentration factor is suitably normalized, with

N∑

k=1
k/∈K

σmis

(
|k|
N

)

k
= 1
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Fig. 2.15: Jump approximation off3(x) from its Fourier modes,N = 64, modes±(30 − 40)
missing.
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2.5 OBTAINING SPARSEJUMP FUNCTION APPROXIMATIONS

The concentration edge detection method computes a Fourierpartial sum approximation to the jump

function,[f ]. Since[f ] is piecewise-defined, its approximation suffers from the Gibbs phenomenon,

and its associated slow and non-uniform convergence issues. A binary decision on the presence or

absence of an edge is taken by thresholding this approximation, with optional post-processing oper-

ations. The slow convergence, however, ensures that the final result suffers from poor resolution of

jumps, with several false alarms in the immediate vicinity of a true jump, and spurious activations in

smooth regions. The presence of noise only accentuates the problem, making accurate identification

of jump locations challenging.

In this section, we summarize the design of an edge detector based on the relation in (2.18), and

consider the case when the Fourier data is corrupted by noise. This detector was first introduced in

[3] and extended in [15]. These designs essentially identified unit sized jumps in the data, while the

formulation below accounts for jumps of unknown, but deterministic sizes in the data. The resulting

detector retains the same form of [15], but with modified performance bounds.

For functions with minimal variation, or when using high-order concentration factors, we have

from (2.18),

Sσ
N [f ](x) ≈ [f ](ζ)W σ,N

0 (x− ζ) (2.34)

whereζ denotes the jump location. We will assume that the Fourier modes are corrupted with

additive white complex Gaussian noise8 of varianceρ2, i.e.,

ĝ(k) = f̂(k) + v̂(k) k ∈ [−N,N ], v̂(k) ∼ CN [0, ρ2] (2.35)

We start by characterizing the statistical properties of the jump function approximation. Since the

concentration method is linear, we have

E [Sσ
N [g](x)] = E [Sσ

N [f ](x) + Sσ
N [v](x)] = Sσ

N [f ](x) (2.36)

Moreover, the noise componentSσ
N [v](x) acquires a covariance structure on account of the action

of the concentration factors on the i.i.d. noise coefficients. This covariance structure is given by the

8In this section, we use bold script to denote statistically random quantities.
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following lemma:

Lemma 2.5.1.LetSσp

N [g](xa) denote the jump function approximation computed at location xa us-

ing the concentration factorσp, andSσq

N [g](xb) denote the jump function approximation computed

at locationxb using the concentration factorσq. Then,

(Cv)
xa,xb
p,q = ρ2

N∑

l=−N

σp

( |l|
N

)
σq

( |l|
N

)
eil(xa−xb)

Proof. By definition,

(Cv)
xa,xb
p,q = E

[(
S
σp

N [g](xa)− E
[
S
σp

N [g](xa)
]) (

S
σq

N [g](xb)− E
[
S
σq

N [g](xb)
])∗]

= E
[(
S
σp

N [v](xa)
) (
S
σq

N [v](xb)
)∗]

= E

[(
i

N∑

l=−N

v̂(l) sgn(l)σp(
|l|
N

) eilxa

)(
−i

N∑

m=−N

v̂(m)∗ sgn(m)σq(
|m|
N

) e−imxb

)]

= E

[
N∑

l=−N

|v̂(l)|2σp(
|l|
N

)σq(
|l|
N

) eil(xa−xb)

]

+E




N∑

m=−N

N∑

l=−N
m6=l

v̂(m)∗ v̂(l) sgn(m) sgn(l)σq(
|m|
N

)σp(
|l|
N

) e−imxbeilxa




(Cv)
xa,xb
p,q =

N∑

l=−N

E [|v̂(l)|2]σp(
|l|
N

)σq(
|l|
N

) eil(xa−xb)

+

N∑

m=−N

N∑

l=−N
m6=l

E [v̂(m)∗ v̂(l)] sgn(m) sgn(l)σq(
|m|
N

)σp(
|l|
N

) e−imxbeilxa

where the second equation results from using (2.36). Sincev(l), l ∈ [−N,N ], are independent and

zero mean variates, E[v̂(m)∗ v̂(l)] = E [v̂(m)∗]E [v̂(l)] = 0 for m 6= l. Hence the second term in

the above expression vanishes. Using E[|v̂(l)|2] = ρ2, we have

(Cv)
xa,xb
p,q = ρ2

N∑

l=−N

σp(
|l|
N

)σq(
|l|
N

)eil(xa−xb)
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2.5.1 Detector Design

We consider the design of a detector which takesP evaluations ofSσ
N [g](x) in a neighborhoodP

of a point, and returns one of the following hypotheses:H1 – edge present, orH0 – edge absent.

LetW denote aP -point discretization of the jump response,W σ,N
0 (x), andY = {Sσ

N [g](xp)}p∈P .

If V denotes a lengthP noise vector, we have

H0 : Y = V ∼ CN [0, CV]

H1 : Y = αW +V ∼ CN [αW,CV]

Here,α = [f ](ζ) is the unknown jump height, whileCN [A,C] represents a multivariate Gaussian

distribution with meanA and covariance matrixC. To maximize the probability of detection,PD,

for a given false alarm level,PFA, we employ the Neyman-Pearson (NP) formulation, [23], which

requires

→ H1 :
p(Y;α,H1)

p(Y;H0)
> γ (2.37)

The notation→ H1 means “chooseH1 if”, and γ denotes a threshold. The ratio in the above

relation is often referred to as the likelihood ratio,L. In our problem formulation, the likelihood

ratio is the ratio of two jointly normal vectors, with

L =
N [αW,CV]

N [0, CV]

=

1
(2πCV)P/2 exp

[
−1

2(Y − αW )TC−1
V

(Y − αW )
]

1
(2πCV)P/2 exp

[
−1

2Y
TC−1

V
Y
]

= exp

[
αW TC−1

V
Y − α2

2
W TC−1

V
W

]
(2.38)

Taking the logarithm of the likelihood ratio and substituting in (2.37), we obtain

→ H1 : αW TC−1
V

Y − α2

2
W TC−1

V
W > loge γ (2.39)

Forα > 0, we obtain

→ H1 : W TC−1
V

Y >
loge γ

α
+
α

2
W TC−1

V
W = γ′ (2.40)

We refer to the quantityW TC−1
V

Y as the test statistic and denote it asT (Y). A detector of this

form is commonly known as a generalized matched filter, [23].Straightforward substitution reveals
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that,

H0 : T (Y) ∼ N [0, d2]

H1 : T (Y) ∼ N [αd2, d2]

whered2 :=W TC−1
V
W is known as the “signal to noise” ratio. Further, we have

PFA =

∫ ∞

γ′

p(T |H0)(η)dη = Q

(
γ′

d

)
(2.41)

PD =

∫ ∞

γ′

p(T |H1)(η)dη = Q

(
γ′ − αd2

d

)
(2.42)

whereQ(·) is the complementary (Gaussian) cumulative distribution function, [23], available in

tabular form. Expression (2.41) is particularly useful in setting the threshold value for a given false

alarm level. Moreover, the performance of the detector can be described by the following relation:

PD = Q
(
Q−1(PFA)− α

√
d2
)

(2.43)

The reader is also referred to [15] for a discussion on the choice of concentration factors,σp, σq,

and evaluation point setP, and their effect on detector performance.

One of the drawbacks of such a detector, however is that the above analysis applies only forα >

0 (orα < 0). For generalα, a uniformly most powerful (UMP) test does not exist. In the simulations

below, we use two separate tests for positive and negativeα and combine the results. Moreover,

the concentration jump function approximation isO
(
logN
N

)
in the immediate neighborhood of a

jump, (2.6). Consequently, theH0 hypothesis is invalid in this region. As a result, there is a strong

possibility of the detector producing false activations inthe immediate vicinity of a true jump. In

our simulation results, we use sidelobe mitigation to avoidthese false positives, with jump locations

identified as the grid points which correspond to the local maximum of the test statisticT (Y).

We remark that the design of a detector based on the Generalized Likelihood Ratio Test (GLRT),

[23], is indeed possible. The design is briefly summarized below.

The GLRT test requires us to declare a jump if

LG =
p(Y; α̂,H1)

p(Y;H0)
> γ (2.44)
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whereα̂ is the maximum likelihood estimate (MLE), [24], of the jump height andγ is a threshold.

Recall thatp(Y;α) ∼ N [αW,CV]. The MLE ofα is obtained by taking the likelihood of this mul-

tivariate normal distribution and setting the derivative with respect toα to zero. Direct evaluation

results in

α̂ =
W TC−1

V
Y

W TC−1
V
W

(2.45)

The likelihood ratio in (2.44) can be written as

LG =
p(Y; α̂,H1)

p(Y;H0)

=

1
(2πCV)P/2 exp

[
−1

2(Y − α̂W )TC−1
V

(Y − α̂W )
]

1
(2πCV)P/2 exp

[
−1

2Y
TC−1

V
Y
]

= exp

[
α̂W TC−1

V
Y − α̂2

2
W TC−1

V
W

]

= exp

[
α̂
W TC−1

V
Y

W TC−1
V
W

·W TC−1
V
W − α̂2

2
W TC−1

V
W

]

= exp

[
α̂2W TC−1

V
W − α̂2

2
W TC−1

V
W

]

= exp

[
α̂2

2
W TC−1

V
W

]
(2.46)

where we have used (2.45) in going from step three to step four. The GLRT then requires

→ H1 : exp

[
α̂2

2
W TC−1

V
W

]
> γ

Taking logs and absorbing the SNR metricW TC−1
V
W into the threshold, we obtain

→ H1 : α̂
2 > γ′

or, → H1 : |α̂| >
√
γ′ (2.47)

While this formulation does provide an elegant and simple form for the detector, experimental

simulations reveal reduced accuracy in jump detection whencompared to the NP tests described

previously. In particular, the GLRT identifies strong sidelobes of the jump waveform as jumps,

which are difficult to remove through post-processing. Consequently, we present results using the

NP formulation in the simulations below.
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Figure 2.16 illustrates the performance of such a detector.This figure considers the case with

no added noise (i.e.,CV = I, the identity matrix). Figure 2.16(a) plots the jump detection of test

functionf4(x) given in (2.48), using101(N = 50) Fourier modes on a257 point equispaced grid.

f4(x) =





−1 −2.5 ≤ x < −π
4

e−x 0 ≤ x < π
4

1 + cos(5x)
2 1.25 ≤ x < 2.75

0 else

(2.48)

[f ]4(x) =





−1 x = −2.5

1 x = −π
4

1 x = 0

e−
π
4 ≈ 0.4559 x = π

4

1.4997 x = 1.25

1.1888 x = 2.75

0 else

(2.49)

The trigonometric factor was used along with a detector sizeof P = 5. The jumps are identified

as◦’s and can be seen to correspond closely with the true jumps. Athreshold9 value of1 was used

in generating this plot. Figure 2.16(b) plots the jump detection of f3(x) using concentration factor

from the missing data iterative formulation, (2.31). A value ofN = 64 was used, with Fourier

modes30 − 40 missing. A length10 detector with a threshold value of1.25 was used to generate

the plot.

We next provide results for edge detection in the presence ofnoise. We consider the detection

of jumps in test functionf1(x) using the trigonometric factor, a detector size ofP = 5 and additive

noise of standard deviations0.01, 0.02 and0.03. The Fourier reconstruction of the function with

101(N = 50) modes is plotted in Figures 2.17 (a), (c) and (e) respectively to provide a visual indi-

cation of the noise levels. The corresponding jump functionapproximations are plotted in Figures

9Ideally, thresholds are to be computed using the desired false alarm level (PFA) and (2.41).
Since this example contains no noise, the threshold is selected to be0.1W TC−1

V
W , i.e., to detect

jumps of amplitude0.1.
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(a) Jump detection off4(x) (N = 50)
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(b) Jump detection off3(x) (N = 64, modes
30− 40 missing)

Fig. 2.16: Jump detection using the matched filter detector (no noise)

Table 2.2: SNR values for the matched filter detector,P = 5, ρ = 0.01

Trigonometric 1st-order polynomial 6th-order exponential

factor factor factor

SNR (dB) 21.1245 19.6650 17.4602

2.17 (b), (d) and (f) respectively. Thresholds of100, 40 and15 were used for each of the three

cases. Correct identification of the jump locations (to the nearest grid point) and good accuracy of

the jump values are seen in the first two cases, while a few false alarms are present in the case of

high noise.

For completeness, we also plot the jump detection results using the exponential and polynomial

concentration factors for the caseρ = 0.01 in Figure 2.18. A detector size ofP = 5 was used

with threshold values of75 and100 respectively. The associated signal to noise values for these

concentration factors are provided in Table 2.2. The trigonometric factor is seen to perform best

among the conventional families of concentration factors.This is not surprising, given that the two

other factors weight the high modes in varying amounts, thereby accentuating noise in the jump

function approximation.

Finally, we compare the performance of this detector with other detection schemes used in

conjunction with the concentration edge detection method.Most popular among these include the
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(a) Noisy Fourier reconstruction,ρ = 0.01

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f,S
Nσ

[f]
,[f

]

 

 

f S
N
σ[f] [f]

(b) Jump detection,ρ = 0.01
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(c) Noisy Fourier reconstruction,ρ = 0.02
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(d) Jump detection,ρ = 0.02
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(e) Noisy Fourier reconstruction,ρ = 0.03
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(f) Jump detection,ρ = 0.03

Fig. 2.17: Jump detection using the matched filter detector (f1(x), N = 50)
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(a) Exponential factor
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(b) First order polynomial factor

Fig. 2.18: Jump detection using the matched filter detector (f1(x), N = 50, ρ = 0.01)

method of enhancement of scales, [10], and minmod post-processing, [12]. For the purposes of this

comparison, we introduce the following test function

f5(x) =





sin(3x) −π ≤ x < −π
3

tanh(x) −π
3 ≤ x < π

2

3− 3x
π

π
2 ≤ x < π

0 else

(2.50)

with a jump function

[f ]5(x) =





−tanh(−π
3 ) ≈ −0.7807 x = −π

3

1.5 − tanh(π2 ) ≈ 0.5828 x = π
2

0 else

(2.51)

Figure 2.19 plots the jump detection off5(x) using129(N = 64) modes on a257 point reconstruc-

tion grid. Additive noise of standard deviationρ = 0.01 was added. Figure 2.19 (a) plots the results

using the enhancement of scales post processing procedure and the trigonometric concentration fac-

tor. The jump function approximation was raised to a power ofep = 2, while a uniform absolute

threshold of13 was utilized. The (scaled) enhanced jump approximation andthe jump locations

obtained after thresholding are plotted in the figure. Falseresponses atx = −π
3 (a result of finite

resolution) and a spurious activation in the sinusoidal region (due to use of a low order factor) are

observed. Figure 2.19 (b) plots the minmod response, obtained by using the three concentration
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factors of Table 2.1 and a threshold of 0.35. Once again, we observe several false activations. The

presence of a small sized jump does not help the robustness ofthe method or the selection of the

threshold level. Finally, Figure 2.19 (c) plots the response of the matched filter detector. AP = 5

point detector was employed with the central measurement computed using the polynomial factor

and the rest computed using the exponential factor. A threshold value of80 was employed to gener-

ate the plot. The responses of the two factors are also plotted for illustration. In contrast to the plots

in Figures 2.19 (a) and (b), the jumps are identified correctly. In particular, the spurious response in

the sinusoidal region is avoided by using a composite detector of high and low order concentration

factors. Moreover, experimental simulations reveal greater robustness and leeway in the selection

of the threshold.
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(a) Enhancement of scales,ep = 2
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(b) Minmod detector
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(c) Matched filter detector,P = 5

Fig. 2.19: Comparison of the matched filter detector with other post-processing methods (N =
64, ρ = 0.01)
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2.6 EXTENSION TO MULTIPLE DIMENSIONS

This section discusses the application of the concentration method to the identification of edges

in multidimensional functions. We provide examples for two-dimensional functions, although the

method holds for functions of any general dimension.

From Section 2.1, it is clear that the concentration method is a partial Fourier sum approximation

of the jump function, (Definition??). A multidimensional equivalent of the jump function, however,

does not exist. Part of the difficulty in defining such a function is the lack of directionality of an

edge in multiple dimensions. Nevertheless, satisfactory results may be obtained by applying the

concentration method dimension by dimension, i.e.,

Sσ
N,M [f ](x, ȳ) = i

∑

|l|≤N

sgn(l)σ

( |l|
N

) ∑

|k|≤M

f̂(k, l) ei(kx+lȳ) (2.52)

The overbar represents the dimension(s) held constant, with the concentration method acting on the

other dimension. Figure 2.20 illustrates the results of such an operation. The edge map of the Shepp

Logan phantom is plotted on a grid of size513 points usingN2 = 3002 Fourier modes and the

trigonometric factor. Figures 2.20 (a) and (b) plot the concentration jump approximations (absolute

value) along each of the dimensions. Note that the two edge maps are distinct, especially in areas

with horizontal and vertical edges. Figure 2.21 plots a cross-section of the horizontal edge map

(absolute value) and shows properties similar to the one-dimensional concentration jump function

approximation. This indicates that the edge locations may be obtained by simple thresholding, or a

detector of the form discussed in Section 2.5.

The two-dimensional edge detection procedure is enumerated in the form of an algorithm below.

It is an extension of the method discussed in Section 2.5. Thealgorithm generates edge maps in

each of the directions independently by applying the concentration method to each row (column)

of the image, followed by matched filter detection. The final edge map is obtained by combining

the results from the horizontal and vertical directions. For example, a pixel in the final edge map

may be declared an edge if either of the directional edge mapscontain an edge in the same pixel.

Optionally, we may choose to enforce multidimensional structure at this stage. If we assume edges

to be continuous curves, disconnected responses are likelyto be false positives. These may be
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(a) Edge Map along the horizontal direction
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(b) Edge Map along the vertical direction

Fig. 2.20: Concentration method applied dimension by dimension (N = 300)
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Fig. 2.21: Cross section of 2D concentration response (N = 300)

easily identified using masks10, and corrected using morphological operators such as erosion11 and

dilation. It is conceivable that a more sophisticated scheme of fusing the individual edge maps may

lead to improvements in the quality of the final result.

Results generated using this algorithm are plotted in Figure 2.22. The concentration jump ap-

proximation of the Shepp Logan phantom usingM = N = 200 coefficients is plotted on a grid of

10A simple3× 3 mask to identify disconnected responses is as follows




1 1 1
1 0 1
1 1 1


.

11Erosion and dilation, [25], are region-wise max/min operators which allow for the “filling-in”
or “thinning out” of features in an image.
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Algorithm 1 Multidimensional edge detection using the concentration method

Given: f̂(k, l), |k| ≤M, |l| ≤ N

1. Generate horizontal (Eh) and vertical (Ev) edge maps by applying the 1D concentration

method to each row and column off respectively, i.e.,

• Compute the concentration jump approximationsSσ
N,M [f ](x, ȳ), Sσ

N,M [f ](x̄, y).

• Apply the matched filter detector of Section 2.5 to each row ofSσ
N,M [f ](x, ȳ) and each

column ofSσ
N,M [f ](x̄, y) to obtain the individual edge maps.

2. Obtain a composite edge mapE . A pixel in E is declared an edge if the corresponding pixel

in eitherEh or Ev is an edge.

3. (Optional) Enforce multidimensional structure on the edge map by removing disconnected

responses and enforcing edges to be continuous curves.

size401 points. The edge map generated using Algorithm 1 with the trigonometric concentration

factor, a matched filter detector of sizeP = 11 and a detector threshold of0.1 is plotted in Fig-

ure 2.22 (a). Comparison plots of the edge maps generated using Matlab’s implementation of the

Prewitt and Canny edge detectors are plotted in Figures 2.22(b) and (c) respectively. We note that

the conventional image processing edge detectors identifysome of the Gibbs oscillations as edges,

while the method of Algorithm 1 does not suffer from these false activations. The quality of the

edge map is good with very few errors, except for a very small number of false activations in the

regions of horizontal and vertical edges.

Representative results in the presence of noise are provided in Figure 2.23. We plot the edge

detection of the Shepp-Logan phantom with additive white complex Gaussian noise of standard

deviationρ = 2 × 10−4. A visual illustration of the level of noise is provided in Figure 2.23 (a),

where the Fourier reconstruction of the phantom usingN = M = 200 coefficients is plotted. The

edge map from the application of Algorithm 1 is plotted in Figure 2.23 (b). These results were

generated using the trigonometric concentration factor, amatched filter detector of sizeP = 5 and

a detector threshold of8× 103.
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Edge Map

(a) Edge Map using Algorithm 1

Edge Map − Prewitt

(b) Prewitt Edge detector

Edge Map − Canny

(c) Canny Edge detector

Fig. 2.22: Edge detection – Shepp Logan phantom (N = 300)

2.7 IDENTIFYING JUMPS FROMNON-HARMONIC FOURIER DATA

In this section , we are interested in the problem of identifying the jumps in a function given non-

harmonic or non-uniform Fourier data. This problem finds application in imaging modalities such

as MRI. The underlying physics in such problems dictates that input data is collected in the Fourier

domain, while instrumentation and other constraints may necessitate the collection of data along

non-uniform modes.

Definition 3. (Non-harmonic Fourier Data) Letf ∈ L2(R) be a piecewise-analytic function sup-

ported in(−π, π) and zero elsewhere on the real line. We define non-harmonic Fourier data,f̂(ωk),
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Fig. 2.23: Edge detection in the presence of noise – Shepp Logan phantom (N = 200, ρ = 2×10−4)

to be the inner-products off with the non-harmonic exponentials{eiωkx}, ωk /∈ Z, i.e.,

f̂(ωk) :=
1

2π

∫ π

−π
f(x)e−iωkx, ωk /∈ Z (2.53)

The formulation of the concentration method for non-harmonic Fourier data proceeds in a sim-

ilar fashion to the standard case. Consider a compactly supported functionf . For ease of analysis,

let us assume that there are no jumps near the ends of the domain. We arrive at jump function

approximations by convolvingf with suitable convolutional kernels12, i.e.,

S̃σ
N [f ](x) = (f ∗ C̃σ

N )(x) (2.54)

with

C̃σ
N (x) =





Cσ
N (x) = i

∑

0<|k|≤N

sgn(k)σ

( |k|
N

)
eikx |x| ≤ π

0 else

(2.55)

Note thatS̃σ
N [f ] has a Fourier transform representation in lieu of a point spectrum since it is a

compactly supported function. Its Fourier transform, fromelementary Fourier properties, is given

12We will use the∼ sign in the superscript to denote entities computed using non-harmonic data.
For example, ifSσ

N [f ] denotes the jump function approximation obtained from equispaced Fourier
data, the corresponding approximation obtained from non-harmonic Fourier data will be denoted as
S̃σ
N [f ].
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by

̂̃Sσ
N [f ](ω) = f̂(ω) · ̂̃Cσ

N (ω) (2.56)

where the Fourier coefficients of̃Cσ
N (x) are given by

̂̃Cσ
N (ω) = F

{
Cσ
N (x) · Π

( x
2π

)}∣∣∣
ω

= (Ĉσ
N ∗ sinc)(ω)

=
∑

|k|≤N

Ĉσ
N (k)sinc(ω − k) (2.57)

This relation is particularly useful in computing the Fourier coefficients of the concentration factors

designed using the iterative framework of Section 2.4. For the prototypical factors of Table 2.1,

however, we may use the more direct relation,

̂̃Cσ
N (ω) = i · sgn(ω) · σ

( |ω|
N

)
(2.58)

Given a set of non-harmonic measurements,f̂(ωk), k = −N, ...,N , we may use (2.56) to compute

the coefficients of its jump function approximation. We are then left with the task of recover-

ing S̃σ
N [f ] from its non-harmonic coefficients. A more exhaustive discussion of the non-harmonic

Fourier reconstruction problem is deferred to Chapter 3, while it suffices for the purposes of our cur-

rent discussion to note that this is a challenging problem. This is because the family of exponentials

{eiωkx}, ωk /∈ Z does not form a basis for functions of practical interest, except under very stringent

(and practically unrealistic) circumstances13. The quality of the reconstruction also depends on the

sampling pattern used. The best results are obtained when the deviation of the acquired samples

from equispaced modes is small. As an example, consider the jump function approximation of test

function f1(x), (2.8), using the trigonometric concentration factor and the non-harmonic Fourier

modes of Figure 2.24 (a) and Figure 2.24 (b) respectively. Werefer to the first sampling scheme

asjittered sampling, since the non-harmonic modes are obtained by a uniform random jitter of the

equispaced modes. The sampling scheme in Figure 2.24 (b) will be referred to aslog sampling

since the spacing between successive samples increases logarithmically. A detailed description of

13Kadec’s “one-quarter” theorem, [26], allows for reconstruction in the special case that
supk |ωk − k| < 1

4 .
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these sampling schemes is provided in Section 3.1. The jump function approximations off1(x)

corresponding to these two sampling schemes is plotted in Figure 2.25. A simple variant of the

concentration sum (2.3) involving non-harmonic complex exponentials was used to compute these

plots. We draw attention to the spurious oscillations present throughout the interval in either plot

and the poor localization of the reconstruction in Figure 2.25 (b). It is to be noted that computing

edges from the log sampling pattern is particularly challenging due to the sparse sampling of the

high frequencies, which are particularly important for edge detection.
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Fig. 2.24: Non-harmonic sampling distributions in the right half plane,N = 16
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Fig. 2.25: Jump approximations from non-harmonic Fourier data, (trigonometric factor,N = 64)



46

2.7.1 Iterative Solutions for Non-harmonic Data

The underlying challenge with non-harmonic expansions is the lack of a basis for accurately re-

constructing the jump approximation. Iterative frameworks can be extremely powerful in these

circumstances since their formulation only requires an accurate forward model. Casting the con-

centration method in an iterative framework was initially pursued in [18] with very good results. In

this section, we investigate the use of a similar framework for non-harmonic Fourier data. In ad-

dition, we incorporate the jump waveform, (Definition 2), inthe model formulation, which results

in a more accurate representation of the underlying problem. We start with (2.20) and make the

assumption that the contribution of the higher-order termsis negligible, i.e.,

Sσ
N [f ](x) ≈ ([f ] ∗W σ,N

0 )(x) (2.59)

This is an acceptable assumption for functions with small oscillatory content, or when using high-

order concentration factors. The concentration method essentially computes a least-squares solution

to the above equation. Since jumps are typically sparse in number, we may instead choose to

regularize the solution by penalizing its1-norm14. Further, since we are given data in the Fourier

domain, we solve the following problem

y = argmin
u

‖u‖1 subject to

∥∥∥∥
̂̃Sσ
N [f ](ωk)−F

{
u ∗W σ,N

0

}∣∣∣
ωk

∥∥∥∥
2

2

≤ ρ2 (2.60)

where{ωk}Nk=−N are the non-harmonic measurement modes,ρ2 is a data-fidelity parameter chosen

in accordance with the noise level, andy ∈ RM is a discrete approximation of the jump function

on theM -point equispaced grid

xp = −π +
2πp

M
, p = 0, ...,M − 1 (2.61)

Let ηk, k ∈ K denote the set of jump locations. We have

yp =





[f ](ηk) |ηk − xp| < 2π
M , k ∈ K, p = 0, ...,M

0 else
(2.62)

14Of course, this is a computationally feasible alternative to solving for sparse zero pseudonorm
solutions.
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Using matrix notation, we may rewrite (2.60) in a form more amenable to computation. Let

F ∈ C(2N+1)×M denote the non-harmonic DFT matrix with entriesFjk =
1

M
exp (−iωjxk),

andW ∈ RM×M denote a Toeplitz matrix containing shifted replicates of the jump waveform,

W σ,N
0

(
x− 2πp

M

)
, p = 0, ...,M , in each of its rows. Let the coefficients of the jump functionap-

proximation̂̃Sσ
N [f ] be denoted by the vectorf̃ ∈ C2N+1, with f̃ = f̂(ωk)·̂̃Cσ

N (ωk), k = −N, ...,N .

We may then write

y = argmin
u

‖u‖1 subject to
∥∥∥ f̃ − F ·W · u

∥∥∥
2

2
≤ ρ2 (2.63)

Alternatively, using Lagrange multipliers, we may write

y = argmin
u

‖u‖1 + λ ·
∥∥∥ f̃ − F ·W · u

∥∥∥
2

2
(2.64)

whereλ > 0 is a regularization parameter. It is well known that the above problem can be for-

mulated as an SOCP and can be solved using a variety of methods, including barrier methods and

interior point methods, [20]. We also note that computational efficiency can be improved by using

non-uniform FFT methods, [27, 28], to compute matrix-vector products involving the non-harmonic

DFT matrix.

The performance of this method is illustrated in Figure 2.26, where the jump function ap-

proximation off1(x) obtained by solving the iterative formulation (2.64) is plotted. Results us-

ing all three concentration factors from Table 2.1 are plotted on a grid of257 points and using

101 (N = 50) non-harmonic Fourier modes. Results for the jittered sampling modes are presented

in Figure 2.26 (a), while the results for the log sampling modes are presented in Figure 2.26 (c).

The corresponding pointwise errors to the true jump function are plotted in a logarithmic scale in

Figure 2.26 (b) and Figure 2.26 (d) respectively. The readeris encouraged to compare these plots

with those of Figure 2.25. The significantly greater accuracy of the iterative solution is immediately

obvious. The pointwise errors reveal vanishing responses in the smooth regions and the correct

identification of jump locations. The jump values, however,are incorrectly identified. We believe

that this is related to the selection of the regularization parameter and is earmarked for future inves-

tigations. This is ultimately inconsequential, since jumpvalues may be accurately estimated by the

evaluation of the concentration sum (2.3) at these jump locations. As with Figure 2.25, the relative
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Table 2.3: Regularization parameter values for the jump function approximation off1(x)

Trigonometric 1st-order polynomial 6th-order exponential

factor factor factor

Jittered sampling modes 45 100 100

Log sampling modes 32.5 70 100

quality of the plot for the log sampling modes is poorer, withfalse activations in the linear region

and a few false positives in the vicinity of true jumps. A table of regularization values used in the

generation of these plots is provided for reference in Table2.3.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

 

 
Func. Trig. Poly. Exp.

(a) Jump function approximation, Jittered
sampling

−3 −2 −1 0 1 2 3
−12

−10

−8

−6

−4

−2

0

2

x

lo
g

1
0
|p

oi
nt

w
is
e

er
ro

r
|

 

 

Trig. Poly. Exp.

(b) Log pointwise error, Jittered sampling
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(c) Jump function approximation, Log sam-
pling
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(d) Log pointwise error, Log sampling

Fig. 2.26: Jump function approximations from non-harmonicFourier data using the iterative for-
mulation, (N = 50)



CHAPTER 3

RECONSTRUCTION FROM NON-HARMONIC FOURIER DATA

The reconstruction of functions from Fourier spectral datais a well studied problem in mathematical

literature. In particular, given the first2N +1 Fourier series coefficients of a periodic functionf , it

is well known that the partial Fourier sum

SNf(x) :=
∑

|k|≤N

f(x)eikx, f̂(k) :=
1

2π

∫ π

−π
f(x)e−ikxdx

converges exponentially quickly tof . This rate of convergence, however, only holds for smooth

functions, and piecewise analyticity results in the familiar Gibbs phenomenon, [8]. Additional

post-processing may optionally be performed to recover spectral accuracy in such reconstructions.

Nevertheless, reconstruction fromharmonicspectral data is well known and widely utilized in sev-

eral areas of science and engineering.

The reconstruction of functions from non-harmonic spectral data has attracted relatively lesser

attention. This is a problem of some significance, since it finds application in fields such as MR

imaging and SAR imaging. For example, in MR imaging, the MR scanner acquires samples of

the Fourier transform of the specimen being imaged, and we are faced with the task of recovering

the underlying image. Certain practical constraints such as scanning hardware limitations, and the

necessity to acquire data with decreased susceptibility tomotion and aliasing artifacts have resulted

in the introduction of non-harmonic scan trajectories, i.e., the acquisition of Fourier samples along

non-Cartesian trajectories. The reconstruction of functions from non-harmonic Fourier data is a

challenging problem because the non-harmonic exponentials which correspond to the acquired data

points rarely constitute a basis for functions inL2(−π, π). Additional complications result when

reconstructing piecewise-analytic functions, and with the acquisition of data samples with non-

uniform sampling density.

This chapter addresses the reconstruction of compactly supported functions from non-uniform

samples of their Fourier transform. We start by looking at the consequences of acquiring non-

harmonic data. In particular, the properties of the kernel described by non-uniform modes is inves-

tigated in Section 3.2. Section 3.4 briefly summarizes existing reconstruction methods, including

the convolutional gridding algorithm. Error bounds for regridded coefficients and the resulting re-

construction are derived. The relation between reconstruction error and sampling density is also
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investigated. To mitigate the effects of non-harmonic acquisition, Section3.6 investigates the use of

spectral re-projection methods. Results and error bounds for such reconstructions are provided, with

simulations showing greater reconstruction accuracy and/or reduced points per wave requirements

when compared to traditional reconstruction procedures. Finally, some preliminary results from

incorporating edge locations and values in the reconstruction scheme are summarized in Section

3.7.

3.1 NOTATION AND SAMPLING SCHEMES

Let f ∈ L2(R) be supported in[−π, π). It is common forf to be piecewise-defined since real-

world functions often contain jump discontinuities. Givena finite number of non-harmonic1 Fourier

coefficients,

f̂(ωk) :=
1

2π

∫ π

−π
f(x)e−iωkxdx, k = −N, ...,N, ωk not necessarily inZ (3.1)

our objective will be to recoverf . For the purposes of this discussion, we will consider reconstruc-

tion from the following sampling schemes

1. Jittered Sampling:

ωk = k ± τk, τk ∼ U [0, θ], k = −M,−(M − 1), ...,M (3.2)

HereU [a, b] denotes a uniform distribution on the interval[a, b]. Theτk’s are independent,

identically distributed (i.i.d.) random variables, and represent a uniform jitter about the eq-

uispaced nodes with a maximal jitter ofθ. Further, both positive and negative jitters are

equiprobable, with the sign of jitter at each node being independent of the sign of jitter at any

other node. Figure 3.1 (a) illustrates the jittered sampling scheme.

2. Log Sampling: Samples in Fourier space are acquired at logarithmic intervals, with more

samples acquired in lower frequencies. Ifωk are the nodes at which measurements are

acquired,|ωk| is (deterministically) logarithmically distributed between10−v andN , with

v > 0 and2N + 1 being the total number of samples. Motivation for this sampling scheme

1The terms non-harmonic and non-uniform will be used interchangeably in this discussion.
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can be found in MRI, where typical data acquisition schemes oversample the low frequen-

cies ofk-space while undersampling the high frequencies. Figure 3.1 (b) illustrates the log

sampling scheme.
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(a) Jittered sampling,M = 16, θ = 0.5
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Fig. 3.1: Sampling schemes plotted in the right half plane

3.2 CONSEQUENCES OFACQUIRING NON-UNIFORM SPECTRAL DATA

The reconstruction challenge with non-harmonic spectral data can be understood by looking at the

properties of the kernel described by these non-harmonic modes. As a first attempt, consider the

reconstruction using the non-harmonic Fourier partial sum

PNf(x) =
∑

|k|≤N

f̂(ωk)e
iωkx (3.3)

It is trivial to show that this reconstruction can be writtenas

PNf(x) = (f ∗ AN )(x), AN (η) =
∑

|k|≤N

eiωkη (3.4)

whereAN (η) defines the non-harmonic kernel. Insight into the reconstruction problem may be

obtained by comparing this kernel to the Dirichlet kernel from harmonic Fourier reconstruction.

The non-harmonic kernel is plotted in Figure 3.2 for the two sampling schemes and different val-

ues ofN . One observes the significant deviation from the usual Dirichlet kernel, with distinctive

features including non-diminishing sidelobes and/or a large mainlobe. These features contribute to

artifacts and/or poor localization in the resulting reconstruction, as illustrated in Figure 3.3 where

the reconstruction of test functionsf1(x) andf2(x) are plotted.
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Fig. 3.2: Comparison of the non-harmonic kernel and the Dirichlet kernel using jittered sampling
and log sampling

f1(x) = cos(6x) (3.5)

f2(x) =





3
2 −3π

4 ≤ x < −π
2

7
4 − x

2 + sin(x− 1
4) −π

4 ≤ x < π
8

11
4 x− 5 3π

8 ≤ x < −3π
4

0 else

(3.6)

The reconstruction challenges are independent of the degree of smoothness of the function;

however, presence of jumps can accentuate artifacts in the reconstruction. The poor accuracy is

also not caused by lack of resolution. Both Figure 3.2 and Figure 3.4 illustrate that the underlying

cause is the non-harmonic acquisition of spectral data. Forexample, Figure 3.4 plots the2-norm

and infinity-norm errors for the reconstruction off2(x) from jittered Fourier samples (θ = 2.5).
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(c) Test functionf2(x), jittered sampling

−3 −2 −1 0 1 2 3

0

5

10

15

20

25

30

η

f (
η)

 

 
f
P

N
f

(d) Test functionf2(x), log sampling

Fig. 3.3: Reconstruction using the non-harmonic partial sum,N = 64

The reconstruction grid in each case is of size2049. Note the random variations in the error curves

(for sufficiently largeN ) which manifest from the sampling pattern.

3.3 SUMMARY OF RELATED WORK

Literature on the non-harmonic Fourier reconstruction problem can be traced back to the works

of Paley, Wiener and Levinson, [29], on non-harmonic Fourier series. These results were refined

over the years with the most notable work being the “1/4”-theorem of Kadec, [26]. The interested

reader is referred to [30] for a comprehensive overview and discussion of the subject. Frame the-

oretic approaches to non-harmonic reconstruction have also been pursued. A notable collection of

related literature with applications to medical imaging can be found in [31]. Two methods deserve

special mention for their popularity in medical imaging – convolutional gridding, [5], and uniform

re-sampling, [6]. Gridding is an extremely popular reconstruction procedure for non-harmonic data,
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Fig. 3.4: Reconstruction error‖f − PNf‖, for test functionf2(x) as a function ofN using jittered
sampling

with applications spanning radio astronomy and image processing among several others. Both grid-

ding and uniform re-sampling work by mapping the non-harmonic measurements to uniform modes

and subsequent processing using standard Fourier methods.There are also a large class of iterative

methods, which find successful application in a variety of problem settings. Each work differs in

the type of regularization imposed, such as total variationor l1-type methods. A representative

reference for this class of methods can be found in [32]. Recent developments in the theory of

compressive sensing have also resulted in problem formulations and applications to MR imaging.

The reader is referred to [33] for an overview of the theory and computational tools of the same.
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3.4 CONVOLUTIONAL GRIDDING

Most conventional reconstruction procedures for non-harmonic Fourier data involve mapping the

non-harmonic modes to harmonic coefficients, followed by standard Fourier reconstruction. We

describe below the most popular of such methods, convolutional gridding, [5].

Gridding refers to the process of moving from the non-uniform modes to a uniform grid. When

this process is accomplished by evaluating a convolution integral (or an approximation of the con-

volutional integral), the method is called convolutional gridding. Letf̂ denote the Fourier transform

of f . For compactly-supported functions, this is a smooth function of unbounded support. Let us

denote byφ̂ a smooth function whose properties are chosen to minimize reconstruction error and

cost. It is common to refer to this function as a window function; its choice will be discussed shortly.

The convolution of these two functions,ĝ(ω) = (f̂ ∗ φ̂)(ω) remains smooth and may evaluated at

equispaced grid points. The gridding process involves computing a discrete approximation to this

convolution integral

ˆ̃g(k) =
∑

p∈P
αpf̂(ωp)φ̂(k − ωp) (3.7)

Here,αk are known as density compensation factors (DCFs) and may be thought of weights nec-

essary to evaluate a non-uniform trapezoidal quadrature rule. Several methods of computing these

DCFs exist such as [34], but for ease of analysis, we restrictour immediate attention to the simple

weights

αk = ωk+1 − ωk (3.8)

The measurement setP necessary to evaluate the sum depends on the properties ofφ̂ and will be

discussed shortly. Nevertheless, once we obtain the coefficientsˆ̃g(k), we may compute a Fourier ap-

proximationSN g̃(x) from which we divide out the window functionφ to obtain our approximation

to f . These steps are formally enumerated in Algorithm 2.

3.4.1 The Window Functionφ

The requirements on the gridding or window functionφ are:

1. The choice ofφ should minimize the computational cost of evaluating (3.7).

2. The choice ofφ should reduce artifacts due to aliasing in the reconstruction.

3. φ 6= 0 in the reconstruction interval[−π, π).
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Algorithm 2 The convolutional gridding algorithm

Given: f̂ at the Non-equispaced measurement nodesωk

Choose: Truncation parameterq

Interpolating functionφ

1. Interpolation to equispaced nodes:

ˆ̃g(k) =
∑

m st. |k−ωm|≤q

αmf̂(ωm)φ̂(k − ωm), k = −N, ...,N

2. Standard FFT computation:

SN g̃(x) =
N∑

k=−N

ˆ̃g(ωk)e
ikx

3. Compensation for use of the interpolating function:

f̃(x) =
g̃(x)

φ(x)

One way to ensure computational efficiency is by constraining φ̂ to be of finite support. Similarly,

aliasing may be prevented by requiringφ to be supported in[−π, π). However, these are contra-

dictory requirements since a function cannot be compactly supported in both physical and spectral

domains. Practical window functions therefore attempt to beessentially bandlimited; i.e.,

φ̂(ω) ≈ 0 |ω| > q, q ∈ R, small

φ(x) ≈ 0 |x| > π

with φ(x) 6= 0 x ∈ [−π, π]

(3.9)

Popular window functions include the Gaussian and Kaiser Bessel functions. The window function

is in addition to and independent of filtering, which is always applied since the underlying functions

are generally piecewise-smooth and can contain noise.

The gridding process can be computed using one of several non-uniform FFT (NUFFT) software

packages, [27, 28]. These packages implement all steps of convolutional gridding except for density

compensation. Hence, by pre-multiplying the non-harmonicFourier measurements by appropriate

DCFs and then computing the NUFFT, we may obtain fast function reconstructions. Representative

examples of convolutional gridding reconstructions from log-sampled spectral data are provided in
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Figure 3.5.

f3(x) =





sin(3x) x < 0

e−2x x ≥ 0
(3.10)

Figure 3.5(a) shows the gridding reconstruction of test functionf3(x) given by (3.10). Figure 3.5(b)

shows the reconstruction of a cross-section of a brain scan obtained from the McGill BrainWeb

database, [35, 36, 37, 38, 39]. The brain scan was a T1 scan of anormal brain of1mm slice

thickness with no noise and RF field non-uniformities. Thesereconstructions were post-processed

using a fourth-order exponential filter. We notice the significantly improved quality over the plots

in Figure 3.3. The filtering operation, however, introducessome smearing artifacts and the non-

harmonic acquisition manifests as some ringing artifacts near the ends of the domain.
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Fig. 3.5: Reconstruction using convolutional gridding, processed using a fourth-order exponential
filter

3.4.2 Error in Convolutional Gridding Reconstruction

We now provide error bounds for the gridding process and the resulting reconstruction.

Definition 4. (Minimum sampling densitydk) Let theq-vicinity of k (q > 0) be the set

{P = ω st. |k − ω| ≤ q, k ∈ Z, ω, q ∈ R}

The q-vicinity refers to the region around any equispaced coefficient. Let∆k be the maximum

distance between sampling points in theq-vicinity of k; i.e., ∆k = max
p∈P

|ωp+1 − ωp|. In this q-
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vicinity, we define theminimum sample “density”dk to be the number of sample points per unit

interval; i.e.,dk = 1
∆k

.

Theorem 3.4.1. (Convolutional gridding error)Let ωk denote the non-uniformly sampled modes

and f̂(ωk) the Fourier transform measurements at these modes. Letφ̂ denote the gridding window

function and̂g = f̂ ∗ φ̂ denote the true gridding coefficients. Letˆ̃g denote the approximate gridding

coefficients obtained by using a finite sum and the DCFs in (3.8). Let q be the window function

truncation parameter; i.e.,̂φ(ω) = 0 for |ω| > q. Let dk be the minimum sample density in the

q-vicinity of k. Then, the gridding error, defined ase(k) = ĝ(k) − ˆ̃g(k) at modek is bounded by

|e(k)| ≤ C
1

d2k
, k = −N, ...,N , for some positive constantC.

Proof. The error in each of the equispaced Fourier coefficients after gridding is given by

ĝ(k)− ˆ̃g(k) =

∫ ∞

−∞
f̂(ω)φ̂(k − ω)dω −

∑

p st. |k−ωp|≤q

αpf̂(ωp)φ̂(k − ωp) (3.11)

Let us evaluate the errorep in approximating the integral in the interval(ωp, ωp+1). Substituting

(3.8) for the density compensation factorsαp and using the trapezoidal quadrature rule, we have

ep =

∫ ωp+1

ωp

f̂(ω)φ̂(k − ω)dω − |ωp+1 − ωp|
2

(
f̂(ωp)φ̂(k − ωp) + f̂(ωp+1)φ̂(k − ωp+1)

)

The trapezoidal quadrature rule, [40], yields

ep ≤ |ωp+1 − ωp|3 vp
12

(3.12)

where

vp =
d2
(
f̂(ω)φ̂(k − ω)

)

dω2

∣∣∣∣∣∣
ω=ζ

, ζ ∈ [ωp, ωp+1]

= f̂(ω)φ̂(2)(k − ω)
∣∣∣
ω=ζ

− 2 f̂ (1)(ω)φ̂(1)(k − ω)
∣∣∣
ω=ζ

+ f̂ (2)(ω)φ̂(k − ω)
∣∣∣
ω=ζ

We note thatf̂ , φ̂ and their derivatives are finite in the interval(ωp, ωp+1); hencevp is bounded. In

particular, we may setmax
p∈P

|vp| to some positive constantA.

The total gridding error is the error over all intervals of integration; i.e.,

e(k) =
∑

p

ep ≈
∑

p st. |k−ωp|≤q

ep
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|e(k)| =
∣∣∣ĝ(k)− ˆ̃g(k)

∣∣∣ ≤
∑

p st. |k−ωp|≤q

|ωp+1 − ωp|3 |vp|
12

≤ A

12

∑

p st. |k−ωp|≤q

|ωp+1 − ωp|3

=
A

12

∑

p st. |k−ωp|≤q

|ωp+1 − ωp| · |ωp+1 − ωp|2

≤ A

12
∆2

k

∑

p st. |k−ωp|≤q

|ωp+1 − ωp|

. 2q
A

12

1

d2k

= C
1

d2k
, C = 2q

A

12
(3.13)

This error bound is plotted in Figure 3.6. Figure 3.6(a) plots the true2 error3 and the error

bound for reconstructingf2(x) from jittered samples while Figure 3.6(b) plots the error and the

error bound for reconstructingf3(x) from log samples. In each case, a value ofN = 128 was used

along with a Gaussian window function with truncation parameterq = 12 to satisfy (3.9).

The physical-space reconstruction error can now be writtenas

e(x) = f(x)− SN g̃(x)

φ(x)
≈ g(x)− SN g̃(x) = g(x)− SNg(x) + SNg(x)− SN g̃(x)

=
∑

|k|>N

ĝ(k)eikx +
∑

|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eikx(3.14)

The first component is the standard Fourier truncation error. Since we are primarily interested in

piecewise-smooth functions,SNg suffers from the Gibbs phenomenon. The maximum error occurs

in the vicinity of a jump and is approximately1.09 of the jump value. There is also a reduced order

2The “true” coefficients were computed by approximating the convolution using an equispaced
sum on a fine grid (> 2000 points).

3There is numerical evidence to suggest that the constantC scales as the magnitude ofĝ(k).
This behaviour will be investigated in future work. The trueerror plots in Figure 3.6 are plotted
normalized by|ĝ(k)|.
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|ĝ

(k
)−

ˆ̃ g
(k

) |
|ĝ
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Fig. 3.6: Gridding error and the associated error bound

of convergence with‖g − SNg‖2 = O
(
N−1/2

)
. The second term in (3.14) is the gridding error.

|SNg(x)− SN g̃(x)| =

∣∣∣∣∣∣
∑

|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eikx

∣∣∣∣∣∣

≤
∑

|k|≤N

∣∣∣ĝ(k)− ˆ̃g(k)
∣∣∣

≤ C
∑

|k|≤N

1

d2k
(3.15)

LetH(dk, N) :=
∑

|k|≤N

1

d2k
. This term is plotted as a function ofN for the log sampling pattern in

Figure 3.7. We observe that it increases rapidly withN , indicating that the error in the reconstruc-

tion would increase at a similar rate.
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Fig. 3.7: Plot ofH(dk, N) as a function ofN for log sampling

It is important to note that the two error components in (3.15) have differing characteristics,
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with the gridding error increasing withN and the Fourier truncation error decreasing withN . In

sampling schemes such as log sampling, where the sampling density decreases significantly at the

high modes, the gridding error dominates to the point where it is no longer advantageous to use all

the regridded coefficients in the reconstruction.

3.5 AN ALTERNATE RECONSTRUCTIONPROCEDURE– UNIFORM RE-SAMPLING

A more intuitive understanding of the reconstruction problem may be attained by studying the

uniform re-sampling algorithm. This algorithm, introduced in [6, 41], provides a least-squares

solution to the reconstruction problem. It is a two-step reconstruction method involving

1. Recovery of Fourier coefficients at equispaced nodes.

2. Partial Fourier sum reconstruction using the recovered equispaced modes.

Of course, the final step may be accelerated by application ofthe FFT algorithm. The algorithm

has its roots in the application of the Whittaker-Kotelnikov-Shannon sampling theorem. Forf ∈

L2(−π, π), application of the sampling theorem in Fourier space allows us to relate the harmonic

Fourier modes to the non-harmonic measurements. In particular, we have

f̂(ω) =

∞∑

k=−∞
f̂(k)sinc(ω − k), ω ∈ R (3.16)

Since this is essentially a convolution with shifted sinc interpolants, we may write a truncated

version of the above relation as a linear system of equations. Let y = f̂(m), m = −N, ...,N ,

denote the equispaced Fourier coefficients we seek. Ifb = f̂(ωk), k = 0, ...,M − 1, are the set

of measurements andA is the matrix with elementsaij = sinc(ωi − j), i = 0, ...,M − 1, j =

−N, ...,N , we may write

Ay ≈ b (3.17)

We compute a least-squares minimum norm solutionỹ of the form

ỹ = A+ b, (3.18)

whereA+ is the Moore-Penrose pseudoinverse computed using the singular value decomposition

(SVD). Invariably,A has a high condition number, necessitating use of regularization in computing

the solution. Results in this dissertation use the truncated SVD, implemented using Matlab’spinv
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command. The regularization threshold for thepinv command was chosen as per the discrete Picard

condition, [42, Chapter 4]. The final approximation off is obtained by using a Fourier partial sum.

Reconstruction of test functionf2(x) (3.6) using this method from its log spectral samples is

illustrated in Figure 3.8. Figure 3.8a plots the high-mode recovered equispaced Fourier coefficients,

while Figure 3.8b plots the corresponding error in recovering these coefficients. The function re-

construction is shown in Figure 3.8c. The recovered equispaced coefficients are observed to show

a similar error trend as that of convolutional gridding. Similar arguments as in Section 3.4 may be

made with regard to the number of “good” or accurate coefficients and their use in function recon-

struction. For completeness, we plot the recovery off3(x) from its jittered Fourier coefficients in
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Fig. 3.8: Reconstruction using URS,N = 128

Figure 3.9. Here, we find that the reconstruction accuracy ismuch better than the previous example.
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Table 3.1: Dependence of the sinc matrix condition number onthe sampling pattern (Jittered sam-
pling,N = 128)

Maximal jitter,θ 0.1 0.5 1 5 10

Condition number 1.371 27.806 1.690 × 103 1.137 × 108 1.875 × 109

The Gibbs artifact remains and filtering or other techniquesare required to mitigate this problem,

but the error due to non-uniform spectral sampling is small.
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Fig. 3.9: Reconstruction off3(x) using URS,N = 128

It is obvious from the two examples that the quality of reconstruction depends on the sampling

pattern. The sampling density of the acquired coefficients is reflected in the condition number of

the sinc matrix. Jittered sampling results in a well conditioned matrix which can be inverted easily.

Log sampling, however, results in a large condition number (O(1017)), with the result being that

the system of equations cannot be solved accurately. The artifacts seen in Figure 3.8 are a direct

consequence of this. The singular values of the system matrices for the two sampling schemes

are shown in Figure 3.10. Further corroboration of this dependence of the condition number on

sampling density is provided in Table 3.1, where the condition number of the sinc matrix for jittered

sampling is tabulated for different values of the jitter (parameterθ (in 3.2)). It can be seen that as

the jitter increases, i.e., the samples get more irregular,the condition number increases.
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Fig. 3.10: Plot of singular values of the sinc system matrix,N = 128

3.6 SPECTRAL RE-PROJECTION

It is well known that spectral approximations of piecewise-smooth functions, such as the brain

scan cross-section of Figure 3.5(b) suffer from the Gibbs phenomenon. This manifests as non-

uniform convergence at a local level and reduced order of convergence at a global level. The non-

uniform convergence leads to oscillations in the vicinity of discontinuities (or smearing in filtered

reconstructions), which can cause loss of detail in MR scans. In addition to affecting the diagnostic

quality of the scan, these artifacts also affect the accuracy of subsequent image processing tasks

such as segmentation, edge detection and feature recognition. The reduced order of convergence in

the reconstruction necessitates acquiring a large number of k-space samples, resulting in increased

scan time. Other consequences include increased patient discomfort and motion artifacts in the

scan. Spectral re-projection has previously been applied (for example, [43]) in the context of post-

processing MR scans to improve resolution and segmentationperformance. Here, we discuss the

utility of spectral re-projection in the non-harmonic reconstruction problem.

A detailed explanation of spectral re-projection is beyondthe scope of this dissertation. Instead,

we restrict ourselves to a brief summary, while pointing theinterested reader to [8] for a more

comprehensive treatment of the topic. The cause of the Gibbsphenomenon can be traced to using

global data in the reconstruction. Fourier coefficients arerepresentative of the function values over

the entire domain. Consequently, the reconstruction of a discontinuous function at any point in the
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domain uses information from either side of a discontinuity, leading to loss of localization and non-

physical oscillations. Spectral re-projection schemes, by contrast, require reconstruction in each

smooth interval. While the task of identifying intervals ofsmoothness is a challenging problem, we

have found the concentration method of edge detection (Chapter 2) to be adequate in identifying

jump information.

The key to spectral re-projection is to reconstruct using analternate, specifically chosen basis

known as aGibbs complementarybasis. This basis is orthonormal, supports exponential reconstruc-

tion accuracy, and has the property that high modes of the Fourier basis have exponentially small

projections on low modes of the reconstruction basis. Let{ψl} , l = 0, 1, ... be such an orthonormal

basis with respect to the weightw. Them-term approximation of a functionf using{ψl} is given

by

Pmf(x) =
m∑

l=0

clψl(x), cl =
〈f, ψl〉w
‖ψl‖2w

(3.19)

The method obtains its name from the fact thatf can be replaced by its(2N + 1)-term Fourier

expansionfN in the inner product; i.e., the reconstruction is computed by projecting the Fourier

data to the Gibbs-complementary basis. The significance of this scheme is that a poorly converging

(2N + 1)-term Fourier expansion contains sufficient information torecover exponentially conver-

gent reconstructions in the new basis. It is shown in [8] thatthe Gegenbauer polynomials form a

Gibbs-complementary basis for Fourier data.

In reconstructing functions from non-harmonic spectral samples such as the log sampling scheme,

we require similar properties in the reconstruction scheme. In Theorem 3.4.1, it was shown that the

regridded coefficients at a particular mode have an error inversely proportional to the square of the

sampling density. Therefore, sampling schemes such as log sampling, where the sampling density

decreases at the high frequencies, result in large errors inthe high-mode coefficients. The spectral

re-projection of these high-mode Fourier coefficients ontoa Gibbs-complementary basis allows us

to exponentially damp the error in the spectral re-projection reconstruction. Moreover, the rapid

convergence of the reconstruction allows us to start with a much smaller set of coefficients.

Let us assume that we use Gegenbauer polynomialsCλ
l (x) for reconstruction4. We will assume

4See [8] for basic properties ofCλ
l (x) and admissibility requirements forλ andm in (3.19).
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that smooth intervals in the function can be identified without error. The reconstruction process is

summarized in Algorithm 3.

Algorithm 3 Spectral re-projection for non-uniform Fourier data

Given: f̂ at the non-equispaced measurement nodesωk

Choose: Gegenbuer reconstruction parametersm,λ

1. Perform convolutional gridding (Algorithm 2) to obtain coefficients on the equispaced grid

(ˆ̃g).

2. Identify smooth regions ing using methods such as the concentration method of edge detec-

tion (Chapter 2).

3. In each smooth interval:

a) Compute Gegenbauer expansion coefficientszl.

zl = 〈SN g̃, Cλ
l 〉w =

1

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)
∑

|k|≤N

ˆ̃g(k)eiπkηdη

b) Function reconstruction using the Gegenbauer partial sum PmSN g̃.

PmSN g̃(x) =
m∑

l=0

zlC
λ
l (x)

3.6.1 Error Analysis for Spectral Re-projection Reconstructions

If we assume that the compensation step where we divide out the window function in (3.9) can be

performed without error; i.e.,‖f − PmSN f̃‖ ≈ ‖g − PmSN g̃‖, we have:

‖g − PmSN g̃‖ ≤ ‖g − Pmg‖+ ‖Pmg − PmSNg‖+ ‖PmSNg − PmSN g̃‖ (3.20)

The first term is known as theregularization error. The classical result, [8], is that forλ = γm,

γ > 0, constant,

‖g − Pmg‖∞ ≤ AζmR (3.21)

whereA is some positive constant and

ζR =
(1 + 2γ)1+2γ

21+2γ ρ γγ (1 + γ)1+γ
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For ρ ≥ 1, ζR can be shown to be less than one. The second term in (3.20) is the truncation error

and classical results (e.g., [8]) show that forλ = αN,m = βN , α, β constants, this error can be

bounded as

‖Pmg − PmSNg‖∞ = ‖Pm (g − SNg) ‖∞ ≤ AζNT (3.22)

whereA grows at most as a fixed degree polynomial ofN and

ζT =
(β + 2α)β+2α

(2π)α αα ββ

For carefully chosenλ,m (α = β ≤ 2π
27 ), we haveζT < 1. The third term in (3.20) is due to

gridding. For ease of analysis, we shall assume we are given aFourier partial expansion in the

interval [−1, 1]. This result can, however, be generalized to any other interval by suitable scaling.

Solving for the gridding error, we have,

‖PmSNg − PmSN g̃‖∞ = ‖Pm (SNg − SN g̃) ‖∞

We note thatSNg(x)−SN g̃(x) =
∑

|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eiπkη. Substituting this in (3.19) and using

Gegenbauer polynomials for the Gibbs complementary basis,we obtain

‖PmSNg − PmSN g̃‖∞ =
∥∥∥∥∥∥

m∑

l=0

Cλ
l (x)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)
∑

|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eiπkηdη

∥∥∥∥∥∥
∞

≤ max
−1≤x≤1

∣∣∣∣∣∣

m∑

l=0

Cλ
l (x)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)
∑

|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eiπkηdη

∣∣∣∣∣∣

≤
m∑

l=0

∑

|k|≤N

∣∣∣∣
Cλ
l (1)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)
(
ĝ(k)− ˆ̃g(k)

)
eiπkηdη

∣∣∣∣

≤ C
m∑

l=0

∑

|k|≤N

1

d2k

∣∣∣∣
Cλ
l (1)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)e
iπkηdη

∣∣∣∣ (3.23)

whereC is some positive constant. Note that we have usedmax
x∈[−1,1]

Cλ
l (x) = Cλ

l (±1) in the

penultimate step. The integral in the above expression has been evaluated in closed form in [44].

This result states that

1

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)e
iπkηdη =





Γ(λ)
(

2
πk

)λ
il(l + λ)Jl+λ(πk) k 6= 0

δ0l k = 0
(3.24)



68

whereΓ(·) is the gamma function andJv(x) is thevth-order Bessel function of the first kind. Since

|Jv(x)| ≤ 1,∀x, v > 0, we have fork 6= 0

∣∣∣∣
Cλ
l (1)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)e
iπkηdη

∣∣∣∣ ≤ Cλ
l (1)Γ(λ)(l + λ)

(
2

π|k|

)λ

=
Γ(λ)(l + λ)Γ(l + 2λ)

l!Γ(2λ)

(
2

π|k|

)λ

(3.25)

where the second step is obtained for substituting forCλ
l (1). Summing over allk we obtain

∑

|k|≤N

1

d2k

∣∣∣∣
Cλ
l (1)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)e
iπkηdη

∣∣∣∣ ≤

δ0l
1

d20
+

Γ(l + 2λ)Γ(λ)(l + λ)

l!Γ(2λ)

∑

0<|k|≤N

1

d2k

(
2

π|k|

)λ

(3.26)

DefineH(ωk, N, λ) :=
∑

0<|k|≤N

1

d2k

(
1

|k|

)λ

. This term is plotted in Figure 3.11 as a function ofN

for different values ofλ. A direct comparison with the Figure 3.7 (standard Fourier reconstruction)

reveals the reduced impact on the error as a function ofN . Inequality (3.26) therefore becomes

∑

|k|≤N

∣∣∣∣
Cλ
l (1)

hλl

∫ 1

−1
(1− η2)λ−1/2Cλ

l (η)e
ikπηdη

∣∣∣∣

≤ δ0l
d20

+
Γ(l + 2λ)Γ(λ)(l + λ)

l!Γ(2λ)

(
2

π

)λ

H(ωk, N, λ) (3.27)

Substituting in (3.23), we obtain

‖PmSNg − PmSN g̃‖∞ ≤ C

m∑

l=0

(
δ0l
d20

+
Γ(l + 2λ)Γ(λ)(l + λ)

l!Γ(2λ)

(
2

π

)λ

H(ωk, N, λ)

)

= C

(
1

d20
+

Γ(λ)

Γ(2λ)

(
2

π

)λ

H(ωk, N, λ)

m∑

l=1

Γ(l + 2λ)(l + λ)

l!

)

= C

(
1

d20
+H(ωk, N, λ)ρ(m,λ)

)
, ρ(m,λ) =

Γ(λ)

Γ(2λ)

(
2

π

)λ m∑

l=1

Γ(l + 2λ)(l + λ)

l!

. C H(ωk, N, λ) ρ(m,λ) (3.28)

where the final step is obtained by assuming that
1

d20
. H(ωk, N, λ) ρ(m,λ). This is true for

most problems since the low frequencies contain a significant portion of the signal energy and are

therefore well sampled; i.e.,1
d2
0

is usually small.
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A cursory inspection will reveal that this bound is very conservative5. In particular,ρ(m,λ)

grows rapidly withm,λ. However, our primary objective here is to investigate the dependence of

the reconstruction error on sampling density. While the error does increase with increase inN ,

a comparison with standard Fourier reconstruction error (3.15) reveals that this increase is signif-

icantly damped by the termH(ωk, N, λ). AlthoughH(ωk, N, λ) is an increasing function inN ,

Figure 3.11 shows that the rate of increase for largeN is small.
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Fig. 3.11: Plots ofH(dk, N, λ) as a function ofN for log sampling

To illustrate the effectiveness of spectral re-projection, consider the plots in Figure 3.12, where

5The bound in (3.25) is too conservative; the presence of the Bessel function and the imaginary
term is bound to result in cancellations.
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test functionf4(x) given by (3.29) is reconstructed from its log spectral samples.

f4(x) =





−1 −2.5 ≤ x < −π
4

e−x 0 ≤ x < π
4

1 + cos(5x)
2 1.25 ≤ x < 2.75

0 else

(3.29)

Convolutional gridding was used to obtain the regridded coefficients. For reference, second-order

exponentially filtered reconstructions are plotted. Figures 3.12(a) and (b) plot the filtered Fourier

and spectral re-projection (using Gegenbauer polynomials) reconstructions respectively while Fig-

ure 3.12(c) plots the physical-space log reconstruction errors. Equivalent error performance is ob-

served for the Gegenbauer reconstruction with no Gibbs or filtering artifacts. Additionally, the

Gegenbauer reconstruction was computed using85 coefficients, as opposed to the256 coefficients

required for the filtered Fourier reconstruction. The vastly improved performance of the Gegen-

bauer reconstruction can be explained by the decay rate of the expansion coefficients. Figure 3.13

plots the magnitude of the regridded Fourier coefficients alongside the Gegenbauer expansion co-

efficients. The Gegenbauer expansion is computed using a fiveterm partial sum, and the several

orders of magnitude reduction in the value of the coefficients indicates a significantly accelerated

decay rate over the standard Fourier case.

The performance of spectral re-projection is independent of the regridding method used. For

example, similar results can be obtained when using the URS algorithm to obtain equispaced coeffi-

cients. Figure 3.14(a) and (b) plot the2-norm and maximum norm errors respectively as a function

of N for the reconstruction of test functionf4(x) (3.29). Log spectral samples were used with eq-

uispaced coefficients recovered using the URS algorithm. Wenote that the error curve flattens out

after a certain value ofN , indicating that the high-mode coefficients do not contribute to the recon-

struction. The first to flatten out and indeed the plot with theleast error is the Gegenbauer curve,

indicating that there are strong advantages to using spectral re-projection methods for reconstruction

from sampling schemes similar to log sampling.

It is to be mentioned that no effort was made to optimize the values ofm andλ. These were

chosen proportional to the length of the reconstruction interval withm,λ taking a minimum value of
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Fig. 3.12: Comparison of filtered Fourier and spectral re-projection reconstructions, log sampling
scheme

two and capped to a maximum of six and four respectively. It was noted in the course of simulations

that the reconstruction is more sensitive to parameter selection than re-projection with the harmonic

Fourier coefficients.

3.7 INCORPORATINGEDGE INFORMATION

The non-harmonic Fourier reconstruction problem is just one example of a challenging, ill-posed

inverse problem. Methods such as uniform re-sampling and convolutional gridding attempt to solve

this problem in a least-squares framework. This is successful, as we have seen in Section 3.5, for

cases where the sampling modes do not deviate significantly from the equispaced samples (e.g.,

jittered sampling with small jitter). In other cases, however, we see significant artifacts and loss of

resolution. The spectral re-projection reconstructions of Section 3.6, on the other hand, use edge
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Fig. 3.14: Reconstruction error as a function ofN (Test functionf4(x), log sampling)

detection schemes to enforce the location of jump discontinuities in the reconstruction. This leads

to improved reconstruction quality and resolution. We now investigate the use of not only the jump

locations, but also jump values in the reconstruction.

From (2.14), we have

f̂(k) =
1

2π

[f ](η)

ik
e−ikη +O

(
1

|k|2
)
, k 6= 0 (3.30)

Given the jump locations,ηk, k ∈ K and the corresponding jump valsues,[f ](ηk), k ∈ K, we may

approximate the equispaced Fourier modes of the function using the above expression. We note that

the approximation quality improves ask increases. This is particularly useful in the case of sam-
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pling schemes such as log sampling, because the high mode recovered coefficients show significant

error when employing traditional reconstruction schemes.In the preliminary results presented be-

low, we use jump information obtained using the concentration method. The results below use only

jump information to synthesis accurate high mode coefficients. However, we may also use jump in-

formation from higher-order derivatives to improve the accuracy of the reconstruction. Information

about jumps in each of the derivatives of the function will yield upto an order of magnitude improve-

ment in the reconstruction accuracy. Note that methods similar to the concentration edge detection

scheme have to be used to obtain information about the jumps in derivatives of the function.

Preliminary numerical results using this procedure are shown in Figures 3.15–3.16. We start

with a simple example and41(N = 20) harmonic Fourier coefficients of test functionf1(x). Using

the concentration edge detection method, the trigonometric concentration factor and the matched

filter detector of Section 2.5, we compute the jump locationsand values. The jump detection is plot-

ted in Figure 3.15 (a). Using this edge information and (3.30), we synthesize216(N = 128) high

frequency coefficients. The reconstruction using these synthesized coefficients is plotted in Figure

3.15 (b). Note the significantly improved reconstruction quality. Physical space log reconstruction

errors and filtered reconstructions are also plotted for reference.

This procedure is particularly useful in the case of non-harmonic Fourier reconstruction. We

provide representative results below of the reconstruction of test functionsf4(x), (3.29), andf5(x),

(3.31), from their log spectral samples using edge information. We acquire the first61(Nc = 30)

low frequency coefficients out of a257(N = 128) point log spectral sampling series, and recover

71 equispaced coefficients using the uniform re-sampling method. Using these coefficients, we

apply the concentration edge detection procedure to identify jump locations and values. This jump

information is used to synthesize452 (to provide a total of513 modes) additional high-frequency

coefficients. Reconstruction plots using these coefficients for the two test functions are provided in

Figure 3.16 (a) and (b) respectively. Both plots have been processed using fourth order exponential

filters. Note the significantly enhanced accuracy when usingedge information. We may optionally

choose to perform spectral re-projection using the synthesized coefficients. An illustrative result

using Gegenbauer polynomials with parameter choicesm = λ = 4 is shown in Figure 3.16 (c) with
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Fig. 3.15: Reconstruction using edge information

an associated error plot in Figure 3.16 (d).

f5(x) =





sin(x) −π ≤ x < −π
2

− cos
(
3x
2

)
−π

2 < x < π
4

π − x π
4 < x ≤ π

(3.31)
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Fig. 3.16: Reconstruction from non-harmonic Fourier data using edge information



CHAPTER 4

POINT-SPREAD FUNCTION ESTIMATION IN DE-BLURRING PROBLEMS

Piecewise-smooth functions are distinct in that there is anintricate interplay between their spec-

tral expansions and the presence of local features such as jump discontinuities. The use of such

local information in the accurate reconstruction of functions has been discussed in Chapter 3. In

this chapter, we describe another example of this interplaybetween local jump features and global

expansions, and exploit this relationship in the estimation of point spread functions (psfs) in de-

blurring problems.

The acquisition of blurred data is often unavoidable in several signal processing tasks, since

real world measurements are typically distorted by underlying physical phenomena, instrumen-

tation processes and other artifacts. For example, imagingsystems have a finite resolution and

consequently capture point sources as blobs or blurs. Similar distortions occur when an object is

in motion and the process of image acquisition is slow. A large class of such distortions can be

explained using the convolutional blurring model. Letf denote the undistorted signal andh denote

the blur or psf. Ifn denotes stochastic noise, the convolutional blurring model (Figure 4.1) states

that the distorted signal can be written in its most general form as

g = f ∗ h+ n (4.1)

The recovery of the undistorted signalf or an approximation tof is, of course, of significant

- - i? -
f(x)

h(x) + g(x)

n(x)

Fig. 4.1: Convolutional blurring model

importance. The methods to accomplish this are both numerous and diverse, with the best results

obtained when an accurate estimate of the psf is available. This chapter discusses the estimation

of psfs from one-dimensional piecewise-smooth functions subject to convolutional blurring. The

principal tool employed is edge detection and we assume, as in the previous chapters, that we start

with a finite number of Fourier spectral measurements.
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The rest of this chapter is organized as follows: Section 4.1summarizes the principle behind

this estimation scheme. Application of the concentration edge detector on the blurred Fourier data is

shown to yield scaled and shifted replicates of the psf at each of the jump locations. Some comments

on the effect of noise and choice of the concentration factoron the psf estimate are made in Section

4.2. Finally, examples of the method applied to Gaussian andout-of-focus blurs are discussed in

Section 4.3.

4.1 PRINCIPLE – PSF ESTIMATION USING CONCENTRATION EDGE DETECTION

We assume that we are given a finite number of equispaced1 Fourier coefficients of a piecewise-

smooth function subject to convolutional blurring. Further, we will assume (for simplicity of analy-

sis) that corrupting noise is additive, white complex Gaussian. Moreover, for the accurate estimation

of psfs, we require that jumps in the underlying function be well separated, i.e., distance between

successive jumps≫ logN
N . The psfs are estimated to within a scale factor in amplitudeusing this

formulation.

This PSF estimation scheme exploits the linearity of the convolutional blurring process and that

of the concentration edge detection method. Let us start with the convolutional blurring expression

in (4.1). By applying a linear edge detectorT , such as the convolutional edge detector of the

concentration edge detection method (Chapter 2), we obtain

Sσ
N[g] = T (f ∗ h+ n)

= (f ∗ h+ n) ∗ Cσ
N

= f ∗ h ∗ Cσ
N + n ∗ Cσ

N

= (f ∗ Cσ
N ) ∗ h+ n ∗ Cσ

N

= Sσ
N [f ] ∗ h+ ñ, ñ = n ∗ Cσ

N

≈ [f ] ∗ h+ ñ (4.2)

Therefore, the application of the concentration (and in general, a linear) edge detector on the blurred

1If non-harmonic measurements are collected, equispaced coefficients may be obtained by meth-
ods such as gridding or re-sampling (Chapter 3).
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data allows us to observe shifted and scaled replicates of the psf. The output takes the form

T [ĝ] =
∑

j

αjh(x− ηj) + ñ(x) (4.3)

whereαj denote the jump heights andηj denote the jump locations. The noise componentñ usu-

ally has specific characteristics depending on the initial noise distribution and the form of the edge

detector. If the jump discontinuities are sufficiently separated, we may devise a suitable method to

estimate the parameters of the PSF. The principle is illustrated in Figures 4.2 and 4.3. In either case,

the first plot illustrates the true function,f1(x), (4.4), and the blurred observation. Starting with

2N+1 Fourier coefficients of this blurred observation, the result of concentration jump approxima-

tion (using he trigonometric concentration factor) is plotted in the second plot. For comparison, the

true blur is also plotted. Both the jump approximation and true blur have been normalized for ease

of viewing. We see in both cases that the psf replicates manifest themselves at the jump locations

and are scaled by the jump values.

f1(x) =





3
2 −3π

4 ≤ x < −π
2

7
4 − x

2 + sin(x− 1
4) −π

4 ≤ x < π
8

11
4 x− 5 3π

8 ≤ x < −3π
4

0 else

(4.4)
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Fig. 4.2: Estimation of psfs by applying edge detectors – Gaussian blur,N = 128, trigonometric
concentration factor
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Fig. 4.3: Estimation of psfs by applying edge detectors – Out-of-focus blur,N = 128, trigonometric
concentration factor

4.2 EFFECT OFNOISE AND THE CHOICE OF CONCENTRATION FACTORS

We will assume that the Fourier coefficientsĝ(k) are corrupted by zero mean, additive white com-

plex Gaussian noise of varianceρ2. As discussed in Section 2.5, the concentration method is linear,

and the physical-space noise componentñ remains Gaussian with zero mean. However, the noise

component acquires a covariance structure due to the use of the concentration factors. Let̃n(xa)

denote the noise component at locationxa and ñ(xb) denote the noise component at locationxb.

From Lemma 2.5.1, and when using a single concentration factor σ, we have

Cn(xa, xb) = E [(Sσ
M [ñ](xa)− E [Sσ

M [ñ](xa) ]) (S
σ
M [ñ](xa)− E [Sσ

M [ñ](xa) ])
∗]

= ρ2
M∑

l=−M

σ2
( |l|
M

)
eil(xa−xb) (4.5)

For optimal results, this covariance structure has to be incorporated in any subsequent PSF param-

eter estimation method.

Simulation results also reveal that it is best to use low-order edge detectors for psf estimation.

Not only do they reduce the impact of high-frequency noise, their jump waveformsW σ,N
0 (x) are

more agreeable with subsequent parameter estimation routines. Substituting (2.20) in (4.2), we have

Sσ
N [g](x) = (Sσ

N [f ] ∗ h)(x) + ñ

≈ ([f ] ∗W σ,N
0 ∗ h)(x) + ñ (4.6)
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Clearly, we require that(W σ,N
0 ∗ h)(x) be a close approximation toh(x). It has been observed

that this is indeed the case for low-order edge detectors, while high-order edge detectors do not

satisfy this criterion. Figures 4.4 and 4.5 illustrate thisphenomenon. Figure 4.4(a) plots the jump

response of the trigonometric concentration factor along with a Gaussian blur. Figure 4.4(b) plots

the result of convolving this response with the blur, and is seen to closely approximate the true blur.

In contrast, the plots in Figure 4.5 reveal that the presenceof strong sidelobes in the jump response

of the exponential (high-order) concentration factor result in the convolution output bearing no

resemblance to the actual blur.
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Fig. 4.4: Use of low-order edge detectors in psf estimation,N = 128

High-order edge detectors may be used only when iterative deconvolution schemes are used to

extract and/or denoise the psf replicates. There is also theoption of using the concentration factor

design procedure outlined in Section 2.4 to design factors which specifically minimize the error
∥∥∥W σ,N

0 ∗ h− h
∥∥∥ for template blurs.

4.3 NUMERICAL RESULTS

This section provides simulation results of Gaussian and out-of-focus blur estimation.

4.3.1 Gaussian Blur

The estimation procedure can be summarized as follows:

1. Low-pass filter the noisy Fourier coefficients.
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Fig. 4.5: Use of high-order edge detectors in psf estimation, N = 128

2. Apply the concentration edge detector.

3. Identify edge vicinities with psf replicates.

4. Identify psf parameters.

Consider the estimation of the Gaussian psf from the test function f1(x) in Figure 4.6 (a). This

figure plots the true function as well as the blurred, noisy observation. The noise is assumed to be

additive white complex Gaussian of variance0.25 and acting in Fourier space. Since edge detection

enhances the noise component in the signal, we first perform low-pass filtering. In this example, we

use a Fourier space Gaussian filter. The result of jump approximation on these coefficients is plotted

in Figure 4.6(b)2. The primary artifacts are spurious responses in smooth regions; this however, is

unavoidable when using low-order factors. The next step is to isolate regions where the psf occurs.

Several methods may be used, including enhancement of scales or minmod, [10, 12], followed by

thresholding. The example below uses enhancement of scales; i.e.,

Senh
N [g](x) =





Sσ
N [g](x) |Sσ

N [g](x)|p > γ

0 else
(4.7)

Here,p is usually of the order2−4, whileγ is an empirically chosen threshold. The edge regions ob-

tained by this procedure are plotted in Figure 4.7 (a). Note that some spurious regions are identified

2The jump response has been normalized for easy viewing.
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Fig. 4.6: Gaussian psf estimation,N = 128

and some regions (closely spaced jumps or small jumps) may bemissed; however, the multiplicity

of psf replicates allows us to overcome these errors. We now proceed to estimate the variance of

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x)

 

 

Edge regions
S

N
σ[g] −− Trigonometric

f

(a) Identifying edge regions

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

h(
x)

 

 
True
Estimate

(b) PSF estimate

Fig. 4.7: Gaussian parameter estimation,N = 128

the Gaussian in each of these regions. Assuming the blur to beof the formexp
(
− (dx)2

2

)
, we may

linearize the data fit problem as follows

log(|S̃σ
M [g](x)|) = −d

2

2
x2 (4.8)

HereS̃σ
N [g](x) denotes the jump function normalized by its maximum value ineach region. Com-

puting the mean value ofd leads to a table of variance estimates for each region, as given in Table

4.1. The mean value from the table is used to plot the psf estimate in Figure 4.7 (b). The estimate
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can be seen to agree quite well with the true psf. The2-norm of the error was computed to be0.44.

We note, however, that better parameter estimation schemescan be devised such as a leave-one-out

cross validation scheme to reduce the impact of the spuriousresponses in the jump approximation.

Table 4.1: Variance estimates from different regions (MeanValue is 7.361; Actual value is 8.660)

Region 1 2 3 4 5 6 7

Value 7.5356 7.1962 7.2665 6.9605 8.1978 4.2334 9.1826

4.3.2 Out-of-focus Blur

The challenge with piecewise-smooth blurs is that use of conventional low-pass filtering smears the

psf replicates. While this may be tolerable for low noise levels, a more robust procedure would

be to utilize edge-preserving filtering schemes such as total-variation (TV) denoising. Consider

the estimation of the out-of-focus blur from the blurred andnoisy function in Figure 4.8 (a). The

concentration jump response computed using the trigonometric factor is plotted in Figure 4.8 (b).

f2(x) =





−1 −2.5 ≤ x < −π
4

e−x 0 ≤ x < π
4

1 + cos(5x)
2 1.25 ≤ x < 2.75

0 else

(4.9)

We now compute the solution of the following iterative program

min
p

‖Sσ
N [g] −Wp ‖22 + λ‖p‖TV (4.10)

whereW denotes a Toeplitz matrix whose rows contain shifted replicates of the jump response

W σ,N
0 (x). We may also combine the solutions from using different factors using the minmod op-

erator. Such a result is shown in Figure 4.9 (a). This plot is the consequence of using the minmod

operator on the TV-denoising solutions of the trigonometric and exponential factors. The resulting

psf estimate, computed by taking the mean of the widths of each of the psf replicates is plotted in

Figure 4.9 (b).
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we have introduced theory, algorithms and computational tools for the process-

ing of piecewise-analytic data from Fourier measurements.In particular, the previous chapters have

addressed three problems,

• The detection of jump discontinuities from spectral data.

• The reconstruction of piecewise-analytic functions from non-harmonic Fourier measurements.

• The estimation of point-spread functions (psfs) from blurred Fourier data.

The processing of piecewise-analytic functions from Fourier data is challenging and deserves spe-

cial attention, since local features cannot be well approximated from global measurements. We have

exploited the relationship between jump discontinuities and Fourier coefficients to arrive at efficient

and accurate jump detection, function reconstruction and psf estimation schemes. Numerical results

were primarily presented using one-dimensional test functions and image phantoms, although appli-

cations for these results exist in other domains such as the solution of partial differential equations.

Some of the numerical simulations were motivated by problems in magnetic resonance imaging,

where it is required to reconstruct images from Fourier measurements.

Fundamental to all these results is the accurate extractionof jump information from Fourier

measurements. This problem was addressed in Chapter 2, where the concentration edge detec-

tion method was used to compute jump information. Although the concentration method is a well

developed topic in literature, this dissertation introduced several new ideas and tools for the ac-

curate and localized detection of jumps using this framework. In particular, the notion of ajump

responsewas formally defined and used to relate the concentration jump approximation to jumps in

the function and its higher-order derivatives. Moreover, adesign framework for the computation of

concentration or “filter” factors was developed. This framework allows for the design of concen-

tration factors applicable to a wide variety of problem settings, including those involving missing

bands of spectral data. Analytical and empirical results were also provided to relate some of the

standard concentration factors with particular problem formulations of this framework. Extensions

and improvements, with some original contributions were also proposed to an existing method of

statistical edge detector design. Finally, use of the concentration method for the detection of jumps

from non-harmonic Fourier data was investigated, and a variational formulation proposed for the
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accurate approximation of jump information under this problem setting.

Chapter 3 addressed the reconstruction of functions from non-harmonic Fourier measurements.

The problems posed by non-harmonic acquisition were identified by studying the properties of the

kernel described by these non-harmonic modes. A brief summary of two prevalent reconstruction

methods – convolutional gridding and uniform re-sampling –was provided, along with error analy-

sis for gridding reconstructions. While an analysis of computational cost and selection of gridding

parameters have previously been addressed in literature, the study of non-uniform sampling density

and its effect on reconstruction error is an original contribution of this dissertation. Based on this

study, two new schemes were proposed for the mitigation of errors due to non-harmonic acquisition:

• Spectral re-projection methods, where we use knowledge about the location of jump discon-

tinuities to reconstruct in the smooth intervals of the function. Analysis of the reconstruction

error for re-projection methods was provided, along with a comparison with results from

gridding. This analysis, supported by simulation results revealed improved accuracy in the

reconstruction, as well as reduced input data requirements.

• An indirect reconstruction method incorporating edge information, where we use both jump

values and locations to synthesize “new” high-frequency coefficients.

Finally, the presence of jumps in a function was exploited toconstruct a scheme for the estima-

tion of psfs from blurred Fourier data. A discussion of this method, along with numerical results

showing the estimation of Gaussian and out-of-focus blurs was presented in Chapter 4.

5.1 FUTURE DIRECTIONS

Among the topics discussed in this dissertation, some are particularly amenable for future investi-

gation. For example, an extension of the concentration method to the approximation of jumps in

derivatives and higher-order derivatives is of great interest. A framework for the design of con-

centration factors similar to that in Section 2.4, but for the identification of jumps in derivatives,

will find great utility. The multi-dimensional edge detection method of Section 2.6 essentially

computes edge maps along individual dimensions and fuses them to a composite map. A truly

multi-dimensional edge detection scheme for Fourier data will is of great importance in several

fields.
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While new methods have been proposed for the reconstructionof functions from non-harmonic

Fourier data, there are indications that information aboutedges may be utilized to improve the re-

construction accuracy in traditional reconstruction schemes. For example, new gridding window

functions may be defined using local edge information to improve reconstruction accuracy and/or

reduce computational cost. Further, there is no reason to limit ourselves to the use of jump informa-

tion. The use of jump information in the higher-order derivatives of the function are bound to yield

greater reconstruction accuracy.

Similar areas of investigation exist in the psf estimation problem. A multidimensional extension

of the procedure, especially for the case of non-separable blurs will find great application. More

robust parameter estimation schemes, incorporating the statistical characteristics of noise are bound

to yield improvements in the quality of the psf estimate.

A prominent theme in the topics discussed in this dissertation is the interplay between local

features and global expansions. This is a fascinating topicwhich holds plenty of promise, with

applications spanning several domains. It is conceivable,for example, that methods such as re-

projection and those incorporating edge information may beused to significantly improve current

image coding and compression schemes. The possibilities are plentiful, and it is hoped that the

future holds news of exciting discoveries and developments.
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