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ABSTRACT

Typical implementations of Fourier methods demand acquisition and evaluation of input and output

data on a Cartesian grid. This presents a problem in applications such as magnetic resonance imaging (MRI),

where non-Cartesian input measurements are available. The reconstruction of support-limited functions from

such non-Cartesian spectral data constitutes the subject matter of this thesis.

A survey of prevalent reconstruction methods is provided, along with a comparison of their compu-

tational cost, implementation steps and reconstruction quality. Several illustrative examples and sampling

schemes are considered, with emphasis toward those encountered in MRI. Additionally, analysis of one

such scheme - uniform re-sampling (URS), which relates non-Cartesian measurements to Cartesian spectral

samples is provided. It is shown that for sampling schemes typically encountered in MRI, high frequency

coefficients are recovered with large error, resulting in reconstruction artifacts. Use of spectral reprojection

methods such as Gegenbauer reconstruction are suggested to overcome this problem. Empirical results are

provided which show that equivalent, or better reconstruction quality can be achieved using only accurate,

low frequency spectral coefficients in conjunction with Gegenbauer reconstruction, as opposed to traditional

Fourier reconstruction employing all spectral samples.

Since high-resolution reconstruction methods require discontinuity data, an elaborate treatment of dis-

continuity detection from spectral data is given. The concentration method of jump detection is employed

and its statistical formulation developed. A noise robust detector is designed and its associated performance

metric provided. Further, an improved jump detection method using combinations of concentration factors

is developed.
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1. INTRODUCTION

Fourier analysis and synthesis methods find widespread application in several branches of science,

mathematics and engineering. For the class of compactly supported functions, application of the Whittaker-

Kotelnikov-Shannon (WKS) sampling theorem permits computation of Fourier integrals using discrete sums,

thereby allowing computer implementations on discrete measurements. Further, use of the fast Fourier trans-

form (FFT) algorithm, [1], provides significant savings in computational cost. However, this framework

poses a stringent constraint on all input and output data, requiring them to be acquired (or evaluated) on a

uniform grid. In many applications, this is either not physically possible or is computationally costly. For

example, in magnetic resonance imaging (MRI), the MR scanner acquires samples in “k-space”, with the

physical image related to k-space data by a two-dimensional Fourier transform. If k-space samples are ac-

quired on a Cartesian grid, the two-dimensional discrete inverse Fourier transform, computed using the FFT

algorithm, would provide the desired image reconstruction. However, for several reasons, including robust-

ness to motion artifacts, reduction of field inhomogeneities, and mechanical constraints, acquiring Cartesian

data is not popular. Instead, samples are acquired along spiral, radial and other non-Cartesian trajectories.

There is no consensus on what constitutes an accurate, yet computationally feasible reconstruction method

under these circumstances.

The theory and results presented in this thesis partially address these issues. In particular, we are inter-

ested in the reconstruction of support-limited functions from their non-uniform spectral samples. Although

MRI constitutes a motivating application, the methods and results presented here are general, and can be

adapted to other problems. For example, these methods may be used to compute the spectral coefficients of a

bandlimited function from non-uniform physical space samples, or to perform edge detection from irregular

spectral data.

A secondary objective of this thesis is the detection of jump discontinuities in such functions, from eq-

uispaced but noisy Fourier spectral data. Jump detection is pursued both as an independent signal processing

task, as well as part of a reconstruction scheme for piecewise-smooth functions.

1.1. Problem Formulation

For ease of analysis, this development assumes a one-dimensional function. However, remarks and

examples on its extension to two dimensions are provided. Let f ∈ L2(R) be supported in [−π, π]; i.e.,

f(x) = 0, ∀ |x| > π with f(−π) = f(π).
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We shall assume that f has a Fourier transform, f̂ , defined by

f̂(ω) =
1

2π

∫ ∞

−∞

f(x)e−iωxdx, ω ∈ R

=
1

2π

∫ π

−π

f(x)e−iωxdx (1.1)

The compact support also permits a Fourier series representation of f (albeit, a 2π-repeated function
∞
∑

p=−∞

f(x − 2πp), p ∈ Z) from the discrete, Fourier series coefficients,

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikxdx, k ∈ Z (1.2)

With a slight abuse of notation, we shall refer to both the function, and its 2π-repeated version as f .

Therefore, given a finite number of arbitrary spectral samples, f̂(ωk), k = 0, ..., N − 1, with ωk not

necessarily integers, our objective is two-fold:

1. To obtain f . This can include recovery of the function’s values

• at equispaced grid-points, f(xk), where xk = −π + 2πk
N

, k = 0, ..., N − 1

• or preferably, over the entire domain, f(x), ∀x ∈ [−π, π]

2. To relate f̂(ωk) to the equispaced Fourier coefficients f̂(k). In addition to enabling function recovery

over the entire domain [−π, π], knowledge of equispaced coefficients is essential to perform certain

other tasks such as high-resolution reconstruction, discontinuity detection from spectral data, etc.

Related to the objective of obtaining the underlying piecewise-smooth function f , is the ability to detect

jump discontinuities, including their locations, magnitudes and signs. In fact, many reconstruction meth-

ods for recovering f require a-priori jump discontinuity location information. We will consider the problem

of obtaining the jump discontinuities of f from a finite number of its equispaced, but noisy Fourier coeffi-

cients, with the assumption that noise is additive, zero-mean and complex Gaussian. The formulation and

corresponding notation for this problem is provided in the concerned chapter.
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1.2. The Need for Spectral Interpolation

Given the equispaced samples f̂(k), we reconstruct f by computing the partial Fourier sum1,

SNf(x) =

N/2−1
∑

k=−N/2

f̂(k)eikx (1.3)

Since we have equispaced data, this sum constitutes a good quadrature, [2], to the inverse Fourier integral,

thereby resulting in a good approximation. Alternatively, it is a simple exercise to show that SNf may be

written as

SNf(x) = (f ∗ DN )(x), DN (η) =

N/2−1
∑

k=−N/2

eikη is the Dirichlet kernel (1.4)

Since the Dirichlet kernel is the Fourier partial sum approximation of the Dirac delta measure, the error

component is purely due to truncation, with SNf → f asN increases. However, the same does not hold

when we are given non-equispaced spectral data f̂(ωk). Consider reconstruction using the “non-equispaced

sum”

f̃(x) ≈
N/2−1
∑

k=−N/2

f̂(ωk)eiωkx (1.5)

With f̂(ωk) non-equispaced, the above sum does not constitute a good quadrature, [2]. It is simple to show

that

f̃(x) = (f ∗ AN )(x), AN (η) =
N−1
∑

k=0

eiωkη (1.6)

Here, AN (η) is a non-harmonic kernel plotted in Figure 1.1 for two sampling distributions

• ωk jittered randomly about equispaced nodes (Figure 1.1(a))

• ωk distributed logarithmically with more samples near the origin and fewer away from the origin

(Figure 1.1(b))

Details of these and other sampling schemes can be found in Appendix A. In either case, we note significant

deviation from the Dirichlet kernel, with AN (η) 9 DN (η) asN increases. This holds for any sampling

distribution deviating from equispaced nodes, with the consequence being non-convergence of f̃ to the true

function, i.e.,

(f ∗ AN )(x) 9 f(x) asN increases

1In this particular passage, we shall ignore presence of the Gibbs phenomenon. While reduced order
of convergence is of concern to us, a bigger issue to address with arbitrary spectral samples is that of non-
convergence of the “non-equispaced sum”.
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A representative reconstruction of the boxcar function using jittered sampling is shown in Figure 1.1(d). In
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Fig. 1.1. Non-harmonic kernels (N = 128)

order to employ a Fourier partial sum reconstruction, we therefore need to interpolate f̂(ωk) to equispaced

nodes. Further, to obtain a good reconstruction, we require the interpolated coefficients to closely approxi-

mate f̂(k).

1.3. Fourier Reconstruction and Piecewise-Smooth Functions

It is well known that Fourier reconstruction offers spectral convergence only for smooth, periodic func-

tions, [3]. Specifically, the approximation error for Fourier reconstruction depends on the number of smooth

derivatives in the function. For piecewise-smooth functions, one encounters the Gibbs phenomenon, [4], that

is, reduced overall convergence to first order and the introduction of non-physical oscillations in the vicinity

of jump discontinuities. Figure 1.2 illustrates this behaviour. Also plotted is the log error of the reconstruc-
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tion for increasing number of coefficients,N . It can be observed that accuracy does not improve significantly

by increasing the number of coefficients. Further, oscillations at the discontinuity still persist. Filtering is

the conventional post-processing method to improve the quality of reconstruction. This is, however, not a

solution, since the resulting reconstruction suffers from smeared jump discontinuities, while the new conver-

gence rate is still not exponential. Methods to overcome the Gibbs phenomenon exist, e.g., [5, 6], and it is

conceivable that their incorporation in our scheme of reconstruction will provide better results.
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Fig. 1.2. Fourier reconstruction of piecewise-smooth functions

1.4. Discontinuity Detection

Detection of jump discontinuities in piecewise-smooth functions is an important signal processing task.

While discontinuity data may be useful in itself, discontinuity detection also constitutes an important pre-

processing step in other tasks such as segmentation and feature extraction in image processing, and spectral

reprojection for high-resolution function reconstruction. For example, accurate jump discontinuity informa-

tion is necessary for an alternative reconstruction procedure outlined in Chapter 3.

The recovery of jump discontinuities from spectral coefficients is complicated due to the fact that

spectral data are global in nature, while a jump is a local phenomenon. This problem is further exacerbated by

the addition of noise to spectral data. Besides, traditional jump detection methods require use of a threshold

which is data dependent and empirically determined. Therefore, there is need to develop a noise-robust jump

detection scheme, with a clearly defined performance metric and ability to determine the threshold based on

desired performance and noise level.
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1.5. Outline

The remainder of this thesis is organized as follows: Chapter 2 provides a survey of popular meth-

ods which address the reconstruction of support-limited functions from non-Cartesian spectral data. These

include convolutional “gridding” reconstruction, uniform-resampling (URS) and its variants, and a class of

iterative methods. Since the non-uniform FFT is extensively utilized in many of these methods, a section

is devoted to its explanation. Remarks about reconstruction error and computational cost for these methods

are provided. Chapter 3 contains an analysis of the uniform-resampling method, which establishes the re-

lationship between f̂(ωk) and f̂(k). The quantum of deviation from regular node spacing is related to the

accuracy of the interpolated coefficients, and illustrative examples for different types of sampling patterns

are provided. Further, variants of traditional Fourier reconstruction and an alternative high-resolution recon-

struction scheme are suggested. Chapter 4 is concerned with determining the location, magnitude and sign

of jump discontinuities from spectral data. The concentration method for jump detection is employed and its

statistical characterization provided. The detection problem is formulated and solved, resulting in a simple

design and performance metric. Using this metric, an improved edge detection method is developed. Several

illustrative examples are included. Finally, Chapter 5 provides some concluding comments and lists avenues

for future work.



2. RECONSTRUCTION METHODS FOR IRREGULARLY SAMPLED SPECTRAL DATA

This chapter begins with an introduction to the non-uniformor non-equispaced FFT algorithm, which is

widely used in computing non-harmonic Fourier partial sums. A brief survey of methods to recover support-

limited functions from non-Cartesian Fourier samples follows, along with illustrative examples. Throughout

this chapter, we shall use the one-dimensional example displayed in Figure 2.1 to illustrate different recon-

struction methods.
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(b) Sampling scheme in Fourier space

Fig. 2.1. Test function and sampling scheme

Samples in Fourier space are acquired at logarithmic intervals, with more samples acquired in lower frequen-

cies. If ωk are the nodes at which measurements are acquired, |ωk| is logarithmically distributed between

10−v and N/2, whereN is the total number of samples. A value of v = 1.5 was used. This sampling scheme

will henceforth be referred to as “log sampling”. Motivation for this sampling scheme can be found in MRI,

where typical data acquisition schemes oversample the low frequencies of k-space, while undersampling the

high frequencies.

2.1. Non-equispaced “FFTs”

Fast Fourier transforms for non-equispaced data (NEFFT), as described in [7–10], are a family of

efficient methods to compute trigonometric sums of the form,

f̂(ωp) =

N−1
∑

k=0

f(xk)e−iωpxk , p = 0, ..., N − 1 (2.1)

Here, xk denote the nodes at which input data are available, and ωp denote the nodes at which the output is

evaluated. The NEFFT allows for the following formulations:
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Formulation (1): equispaced input data, with output evaluated at non-equispaced nodes

Formulation (2): non-equispaced input data, with output evaluated at equispaced nodes

Formulation (3): non-equispaced input and output nodes

It is important to remember that Formulations (2) and (3) do not, in general, constitute valid evaluations of the

discrete Fourier transform. Further, (2.1) computes spectral coefficients from physical space data; however,

the NEFFT is equally applicable for computing function values from spectral data.

Non-equispaced FFT schemes (for example, [8]) result from replacing the non-harmonic exponential

e−iωkx with its Fourier series expansion; i.e.,

e−iωkx =

∞
∑

m=−∞

ame−imx, x ∈ [−π, π]

where

am =
1

2π

∫ π

−π

e−iωkxeimx dx = sinc(m − ωk)

The coefficient am obtains a maximal value at m = [ωk] and decays as |m − [ωk]| increases1. In a practical

computation, one would use a 2q + 1 term truncated sum of the form

e−iωkx ≈
[ωk]+q
∑

m=[ωk]−q

ame−imx (2.2)

If e is the truncation error, we have

‖e‖2 =

∥

∥

∥

∥

∥

∥

∑

|m−[ωk]|>q

ame−imx

∥

∥

∥

∥

∥

∥

2

= 2π





∑

|m−[ωk]|>q

|am|2




1/2

= 2π





∑

|m−[ωk]|>q

|sinc(m − ωk)|2




1/2

(2.3)

where the second step is obtained using Parseval’s identity. Since the sinc function decays as 1/m, a large

number of terms are required in the sum to permit a good approximation. This is counter-productive to

our objective of reducing computational cost. A better solution is obtained by computing the Fourier series

1[y] denotes the nearest integer to y.
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expansion of a composite function φ(x)e−iωkx, with φ(·) satisfying specific properties. This approach yields

φ(x)e−iωkx =

∞
∑

m=−∞

bme−imx, x ∈ [−π, π]

where

bm =
1

2π

∫ π

−π

φ(x)e−iωkxeimx dx = φ̂(m − ωk)

Therefore,

e−iωkx =
1

φ(x)

∞
∑

m=−∞

φ̂(m − ωk)e−imx, x ∈ [−π, π]

Using a 2q + 1 term truncated series, we have

e−iωkx ≈ 1

φ(x)

[ωk]+q
∑

m=[ωk]−q

φ̂(m − ωk)e−imx, x ∈ [−π, π] (2.4)

with truncation error

‖e‖2 =

∥

∥

∥

∥

∥

∥

∑

|m−[ωk]|>q

bme−imx

∥

∥

∥

∥

∥

∥

2

= 2π





∑

|m−[ωk]|>q

∣

∣

∣
φ̂(m − ωk)

∣

∣

∣

2





1/2

(2.5)

For computational cost to be low, we require φ̂(·) to have bounded support in Fourier space. Additionally, φ

should be 2π-periodic and have a Fourier series representation. Further, since we divide by φ(x), we cannot

have φ(x) ≈ 0 in [−π, π]. Since these are contradictory statements, we settle for a compromise solution with

the energy of φ(·) concentrated in a small band in either domain. Some examples of popular interpolating

functions are given below, while more detailed treatments can be found in [9, 11].

• Periodized Gaussian Bell

φ(x) =
1√
πβ

∑

r∈Z

e−
η2(x+r)2

β , φ̂(k) =
1

2πη
e
− k2β

4η2

• Kaiser-Bessel2

φ(x) =











I0

(

β
√

η2 − x2

)

|x| ≤ η

0 |x| > η

, φ̂(k) =
1

π

sinh
(

η
√

β2 − k2

)

√

β2 − k2

2The Kaiser-Bessel function is a computationally simple approximation to a prolate spheroidal wave
function [12] (PSWF).
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Here, β and η are parameters which control the decay of φ(·) in either domain. Let us assume that xk are

equispaced in (2.1). Substituting (2.4) in (2.1), we have

f̂(ωp) ≈
N−1
∑

k=0

f(xk)





1

φ(xk)

[ωp]+q
∑

m=[ωp]−q

φ̂(m − ωp)e
−imxk





≈
[ωp]+q
∑

m=[ωp]−q

φ̂(m − ωp)

(

N−1
∑

k=0

f(xk)

φ(xk)
e−imxk

)

(2.6)

Therefore, the non-equispaced FFT is computed as follows,

Algorithm 1 Computing the NEFFT

Input:

f at the equispaced grid points (xk)

Output evaluation points ωp

Truncation parameter q

Interpolating function φ

Pre-computation: φ(xk) and φ̂(m − ωk), m = [[ωk] − q, [ωk] + q]

1: Compensation for use of the interpolating function: g(xk) =
f(xk)

φ(xk)

2: Standard FFT computation: ĝ(p) =

N−1
∑

k=0

g(xk)eipxk , p = −N/2, ..., N/2− 1

3: Interpolation to the desired grid points: f̂(ωp) =

[ωp]+q
∑

m=[ωp]−q

φ̂(m − ωp)ĝ(p), p = 0, ..., N − 1

While the N -point FFT entails a computational cost of O(N log N), the additional interpolation and

compensation in the NEFFT only require N(2q + 1) and N computations respectively. Since q is small

(results in [8] use the Kaiser-Bessel function with q = 7), the additional computational burden is insignifi-

cant3. Therefore, evaluation of the NEFFT requires O(N log N + M) computations, where M is a small

multiple of N . Modifications to account for oversampling are straightforward, and can be found, for exam-

ple in [8]. Equation (2.6) is an example of the NEFFT which takes equispaced input data and evaluates the

output at non-equispaced nodes. Formulation (2), or the adjoint NEFFT is an efficient method to compute

3This cost does not include precomputation of the interpolation function φ̂(m − ωk).
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trigonometric sums of the form

f̃(xp) =
N−1
∑

k=0

f̂(ωk)eiωkxp , xp = −π +
2πp

N
, p = 0, ..., N − 1 (2.7)

Using arguments similar to that in Formulation (1), it is possible to show (eg., [8]) that (2.7) can be computed

efficiently as

f̃(xp) ≈
1

φ(xp)

N/2−1
∑

k=−N/2





∑

m st. |k−ωm|≤q

f̂(ωm)φ̂(k − ωm)



 eikxp , xp = −π +
2πp

N
, p = 0, ..., N − 1

(2.8)

Compared to (2.6), it can be observed that compensation, FFT evaluation and interpolation are now per-

formed in reverse order.

Algorithm 2 Computing the adjoint NEFFT

Input:

Non-equispaced measurement nodes ωk

f̂ at the non-equispaced nodes

Truncation parameter q

Interpolating function φ

Pre-computation: φ(xp) and φ̂(k − ωm), m st. |k − ωm| ≤ q

1: Interpolation to equispaced nodes: ĝ(ωk) =
∑

m st. |k−ωm|≤q

f̂(ωm)φ̂(k−ωm), k = −N/2, ..., N/2−1

2: Standard FFT computation: g(xp) =

N/2−1
∑

k=−N/2

ĝ(ωk)eikxp , xp = −π +
2πp

N
, p = 0, ..., N − 1

3: Compensation for use of the interpolating function: f(xp) =
g(xp)

φ(xp)

It is important to emphasize that the NEFFT is a tool to compute trigonometric sums with non-harmonic

exponentials efficiently. Consequently, all error metrics are with respect to the corresponding direct sum eval-

uations. For example, error measurements for the adjoint NEFFT are with respect to the direct computation

in (2.7) (or f̃ ). The NEFFT algorithm makes no guarantees on the relative error between f̃ and the true

function f . That said, accuracy of the NEFFT algorithm (with respect to direct evaluation) is well studied in

literature. For example, [9] provides bounds for approximation error for different φ, besides highlighting the

relation between number of terms in the sum, q and approximation error. A variation of this algorithm can



12

be found in [10], where min-max interpolation techniques are used to compute “optimum” interpolation co-

efficients. Several open source software implementations of non-uniform FFT algorithms are also available

( [13, 14]).

2.2. Convolutional Gridding

Convolutional gridding has its origins in astronomical image reconstruction, [15, 16], with O’Sullivan,

[17], introducing the method in medical imaging. It is by far the most popular method for computing approx-

imate Fourier transforms on arbitrary grids. The method is based on the discretization of the inverse Fourier

integral,

f(x) =

∫ ∞

−∞

f̂(ω)eiωxdx (2.9)

Given N arbitrary spectral samples, f̂(ωk), k = 0, ..., N − 1 with ωk not necessarily integers, the simplest

discretization is given by

f(x) ≈
N−1
∑

k=0

αkf̂(ωk)eiωkx (2.10)

Here, αk are known as density compensation factors (DCFs) which are data independent weighting terms

used to define an appropriate quadrature rule, [2], for approximating the inverse Fourier integral. Further, it is

clear that the standard FFT algorithm cannot be directly applied to evaluate the partial sum. However, Formu-

lation (2) of the NEFFT algorithm (§2.1) can be employed, which computes (2.10) at costO(N log N +M),

where M is a small multiple of N . The only additional computation required over the NEFFT is pre-

multiplication of f̂(ωk) by the DCFs αk.

To understand the need for additional weighting factors, consider evaluation of the non-equispaced sum

as opposed to the DFT. With equispaced data, the DFT describes a trapezoidal quadrature rule with equal

sub-intervals (Figure 2.2(a)), i.e., the integral is approximated as the sum of areas of individual trapeziums

of constant width. Hence, a single weighting factor (equal to the sampling interval) suffices. Moreover,

for smooth, periodic functions, this quadrature rule guarantees exponentially accurate approximations, [3].

However, this is not the case with the non-equispaced sum, which describes a trapezoidal quadrature rule with

unequal sub-intervals (Figure 2.2(b)). To satisfy the quadrature, it is therefore necessary to have additional

weighting factors, αk which are equal to the corresponding sub-interval lengths. i.e.,

αk = ωk+1 − ωk (2.11)
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Fig. 2.2. Trapezoidal quadrature rule

As an illustration of the importance of density compensation, consider Figure 2.3, which shows reconstruc-

tion of the test function using the log sampling scheme. Figure 2.3(a) shows the poor reconstruction as a

result of not using any density compensation, while Figure 2.3(b) shows the reconstruction after using the

DCFs in (2.11). Several other density compensation factors and methods exist, including
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(a) No density compensation
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Fig. 2.3. Comparison of reconstruction with and without density compensation,N = 128

• Voronoi compensation [18]: This method is applicable to two-dimensional problems where Voronoi

tessellation of the non-Cartesian nodes is performed, and each sample is weighted by the area of its

Voronoi cell. This can be interpreted as a direct extension of the DCFs introduced in (2.11). An

illustration of Voronoi tessellation is provided in Figure 2.4 for spiral and radial sampling trajectories.
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• DCF of Jackson et al. [11]: An expression for the DCF is

αk =
1

(f̆ ∗ φ̂)(ωk)

Here, f̆ :=
N−1
∑

k=0

f̂(ω)δ(ω − ωk) is the set of discrete measurements, while φ̂ is the interpolating

window function (§2.1, §2.2.2). In regions of oversampling, f̆ ∗ φ̂ takes large values (due to the large

number of measurements contributing to the convolution sum), with relatively smaller values in regions

of undersampling due to the smaller number of measurements contributing to the convolution sum.

Therefore, as in the case of Voronoi compensation,αk assumes small values in regions of oversampling

and large values in regions of undersampling.

• Pipe-Menon density compensation [19]: From Chapter 1, we know that use of a “non-equispaced sum”

of the form (2.10) results in the reconstruction being corrupted or blurred by a non-harmonic kernel.

In two dimensions, this kernel is referred to as a point spread function (PSF). The Pipe-Menon method

computes weights such that the weighted kernel or PSF is a close approximation to the Dirac delta

measure. Let W (ω) =

N−1
∑

k=0

αkδ(ω − ωk) denote the weights and φ̂ denote the interpolating window

function. The Pipe-Menon DCFs are the solution to

φ(x)F−1{W (ω)} ≈ δ(x) (2.12)

with an iterative formulation as follows

W (ω)|i+1
=

W (ω)|i
(φ̂ ∗ W )(ω)

(2.13)

Details and examples of the method can be found in [19, 20]. This approach has the additional advan-

tage of not requiring the compensation step (§2.1, §2.2.2) while reconstructing the gridding solution.

Other notable density compensation methods include Jacobian based methods [21] and the Sedarat-

Nishimura DCFs [22].

2.2.1. Accuracy of the Gridding Solution

A comprehensive error analysis for the gridding method is beyond the scope of this thesis due to the

wide variety of density compensationmethods in use. However, it is instructive to work out the nature of error
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Fig. 2.4. Voronoi tessellation for spiral and radial sampling trajectories, N = 16

for the simplest of cases: a one-dimensional function with DCFs as in (2.11). Consider a single sub-interval

of Fourier space, [ωp, ωp+1]. If ep denotes the approximation error in this sub-interval, we have

ep =

∫ ωp+1

ωp

f̂(ω)eiωxdω − 1

2
(ωp+1 − ωp)

(

f̂(ωp)e
iωpx + f̂(ωp+1)e

iωp+1x
)

Note that ep is a function of x, and the sub-interval bounds, ωp, ωp+1. From error analysis of the trapezoidal

quadrature rule, [2], we know that the (leading order) error in each sub-interval obeys

ep ≤ (ωp+1 − ωp)
3vp

12
, p = 0, ..., N − 2 (2.14)

where

vp =
d2(f̂(ω)eiωx)

dω2

∣

∣

∣

∣

∣

ω=ζ

, ζ ∈ [ωp, ωp+1]

= −x2f̂(ζ)eiζx + 2ix
∂f̂

∂ω
eiωx

∣

∣

∣

∣

∣

ω=ζ

+
∂2f̂

∂ω2
eiωx

∣

∣

∣

∣

∣

ω=ζ

Consequently, the total approximation error is the sum of errors incurred in each sub-interval, i.e.,

e ≤
N−2
∑

p=0

ep ≤
N−2
∑

p=0

(ωp+1 − ωp)
3vp

12

Let ∆p = ωp+1 − ωp. Then,

e ≤
N−2
∑

p=0

∆3

pvp

12
(2.15)

Therefore, the error depends on two factors – the inter-sample intervals ∆p, and the data-dependent term vp.

We may make the following observations:
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• The data dependent term, vp, is a function of the Fourier transform f̂ and ω. Due to the decay of f̂ (f̂

decays as O
(

1

ω

)

for piecewise-smooth f ), vp → 0 as |ω| → ∞. Therefore, the dominant contribution

to e is from terms corresponding to the low frequency samples, i.e.,

e ≈
∑

p st. |ωp|<η

∆3

pvp

12

where η is a parameter which depends on the decay rate of Fourier coefficients.

• For a given function, convergence of the gridding approximation therefore depends on ∆p, and con-

sequently, the sampling scheme employed. Consider ∆p corresponding to the low frequency co-

efficients. In the case of jittered sampling (Appendix A), in which acquired samples are jittered

about the equispaced nodes, ∆p remains approximately constant as N increases (Figure 2.5), while

for the log sampling scheme, which has more low frequency samples than high frequency samples,

∆p → 0 as N → ∞ (quadrature convergence). Unsurprisingly, empirical results in Figure 2.6 suggest

that the gridding approximation with DCFs of (2.11) shows poor convergence properties for jittered

sampling, while better convergence behavior can be expected for the log sampling case. Similar argu-

ments can be made for the popular Voronoi compensation scheme in two dimensions.

Gridding reconstruction is particularly popular in MRI, where sampling schemes similar to the above men-

tioned log sampling are encountered. Oversampling of the lower frequencies in k-space is typical, with

undersampling of high frequency regions. For such schemes, as noted previously, we can expect good con-

vergence behavior.

2.2.2. Implementation Steps

Although computation of the gridding solution shares several steps with the adjoint NEFFT algorithm,

investigation of the constituent steps provides additional intuition behind the method. Further, an alternative

interpretation of the adjoint NEFFT is given. We start with the N arbitrary spectral samples, f̂(ωk), k =

0, ..., N − 1 with ωk not necessarily integers.

1. Density Compensation: The first step (Figure 2.7(a)) involves weighting the measured coefficients by

precomputed density compensation factors yielding

f̂α(ωk) = f̂(ω) · αk · δ(ω − ωk), k = 0, ..., N − 1
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2. Gridding: To be able to use the FFT algorithm for reconstruction, we need to have data on equispaced

nodes; however, the above function is a discrete set of scaled Dirac delta measures at non-equispaced

nodes. To overcome this difficulty, we convolve f̂α with a specifically chosen interpolating function φ̂

to yield a continuous function ĝ, which can then be sampled at the desired equispaced nodes,

ĝ(k) = (f̂α ∗ φ̂)(k) ≈
∑

m st. |k−ωm|≤q

f̂α(ωm)φ̂(k − ωm), k ∈ Z

The properties of φ̂ for efficient computation of the above sum have already been enumerated while

discussing the NEFFT (§2.1). Figure 2.7(b) illustrates gridding with a Gaussian interpolating function,

and shows evaluation of (f̂α ∗ φ̂)(k)
∣

∣

∣

k=−10

. The discrete measurements f̂α(ωk) and the continuous

interpolating function φ̂ can be observed. From the decay of φ̂, it is seen that a small number of terms

is sufficient to approximate the convolution sum.

3. FFT Reconstruction: This is followed by reconstruction of g using the standard FFT algorithm4.

g(xp) =

N/2−1
∑

k=−N/2

ĝ(k)eikxp , xp = −π +
2πp

N
, p = 0, ..., N − 1

4. Compensation: Finally, to recover f , we compensate for the Fourier space convolution by dividing out

the corresponding transform (Figure 2.7(d)). We note that for the Pipe-Menon density compensation

4g can be theoretically recovered ∀x ∈ [−π, π]; however, use of the FFT algorithm necessitates recon-
struction at discrete grid points xp.
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(b) Jittered sampling, N = 512
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(c) Jittered sampling, N = 2048
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(d) Log sampling, N = 256
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(e) Log sampling, N = 512
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(f) Log sampling, N = 2048
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Fig. 2.6. Convergence behavior of gridding reconstruction for different sampling schemes

method, this step is not required.

f(xp) ≈
g(xp)

φ(xp)
, xp = −π +

2πp

N
, p = 0, ..., N − 1

Figure 2.7(d) also highlights a possible issue with compensation. Given that φ(x) → 0 as |x| → π, it

is possible for the reconstruction to suffer from artifacts in the vicinity of |x| = π. These artifacts result from

dividing by a very small number (φ can be of the order of machine precision at |x| ≈ π). The traditional

solution to this is oversampling, wherein g is reconstructed in the domain x = [−cπ, cπ), where c > 1 is

an oversampling factor. In this case, φ(x/c) → 0 as |x/c| → π. No artifacts due to compensation occur

in [−π, π], where our function exists, and the reconstruction for |x| > π can be safely ignored. Figure
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Fig. 2.7. Illustration of convolutional gridding, N = 128

2.8 provides a comparison of reconstructions with and without oversampling. The reconstruction without

oversampling can be seen to have “winging” artifacts in the vicinity of |x| = π. While oversampling does

improves the quality of reconstruction, the price paid is an increase in computational cost to O(cN log cN +

cM).

2.3. Uniform Re-Sampling (URS)

The uniform re-sampling algorithm, [23], was first introduced by Rosenfeld in 1998, and improved in

further articles (e.g. [24]) by Rosenfeld and others. Reconstruction by this method involves two steps:

1. recovery of Fourier coefficients at equispaced nodes

2. partial Fourier sum reconstruction using the FFT algorithm
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Fig. 2.8. Comparison of reconstruction with and without oversampling,N = 128

To recover the equispaced Fourier coefficients, we employ the WKS sampling theorem. Since f(x) is com-

pactly supported in [−π, π], the Fourier transform f̂(ω) may be reconstructed at any point ω ∈ R from the

discrete, equispaced samples f̂(k) using

f̂(ω) =

∞
∑

k=−∞

f̂(k)sinc(ω − k), ω ∈ R (2.16)

Let y =
(

f̂(m)
)N/2−1

m=−N/2

denote the equispaced Fourier coefficients we seek. If b =
(

f̂(ωk)
)M−1

k=0

are

the set of measurements and A is the matrix with elements aij = sinc(ωi − j), i = 0, ..., M − 1, j =

−N/2, ..., N/2− 1, we may write

Ay = b (2.17)

Since y is a finite-length vector, the inverse problem associated with (2.17) is inherently ill-posed. We

therefore proceed by computing the least-squares, minimum norm solution ỹ, given by

ỹ = A+ b (2.18)

where A+ is the Moore-Penrose pseudoinverse, [25], computed using the singular value decomposition.

Further, depending on the sampling scheme, A may have a high condition number, necessitating use of

regularization, [26], in computing the solution. Depending on the problem requirements, truncated SVD,

Tikhonov regularization, or an iterative method may be used5. Having computed the equispaced Fourier

5Error analysis for this method is provided in Chapter 3.
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coefficients, we may then proceed to reconstruct f using a Fourier partial sum. Reconstruction using this

method is illustrated in Figure 2.9. Figure 2.9(a) plots the recovered, equispaced Fourier coefficients, while

Figure 2.9(b) plots the corresponding error in recovering these coefficients. The function reconstruction,

after post-processing using a second-order exponential filter, is shown in Figure 2.9(c).
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Fig. 2.9. Reconstruction using URS, N = 256

2.3.1. Implementation Notes

For large N and in multi-dimensional problems, computing the pseudoinverse of a large matrix be-

comes infeasible. Block uniform re-sampling (BURS), [23], was designed to use a block based algorithm

with smaller system size and reduced computational cost. The underlying principle is as follows: Due to

decay of the sinc function in (2.16), the value of f̂(ωi) is largely determined by the nearest equispaced
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coefficients in the vicinity of ωi, i.e.,

f̂(ωi) ≈
∑

k st. |ωi−k<ζ|

f̂(k)sinc(ω − k)

where ζ is a neighbourhood parameter. Bounds on the error caused by ignoring other terms (truncation

error) can be found, for example, in [27]. A set of measurements f̂(ωi), i = 0, ...P − 1, in a local region

of Fourier space can therefore be modelled using a smaller system of equations which can be inverted at

reduced computational cost. The global solution is then obtained by integrating all the local solutions. It

is to be emphasized that use of this block implementation is inherently sub-optimal, because we replace the

global approximation in (2.16) by a local approximation. However, experimental results reveal that the error

incurred due to block implementation is smaller, or, of the same order as that of the regularization error.

Further, ease of implementation and drastic savings in computational cost provide compelling arguments to

adopt this implementation.

For completeness, specifics of the algorithm are given below. We shall assume that we are given

an M -vector b =
(

f̂(ωj)
)M−1

j=0

of non-equispaced Fourier samples and that we seek an N -vector y of

equispaced coefficients at the grid points k = (kl)
N−1

l=0
. For multi-dimensional problems, we shall assume

that vectorization of data has been performed. We are looking to construct an N × M matrix A+, with its

entries representing interpolation coefficients. For each equispaced node kl, l = 0, ..., N − 1, the following

is performed,

1. The P closest measurements to node kl, denoted by β are located

{β = b | |ωj − kl| < δ}

2. The Q closest equispaced nodes to kl, denoted by κ are located

{κ = k | |k − kl| < ∆}

3. The P × Q reduced sinc matrixA is constructed from the P non-equispaced nodes and Q equispaced

nodes

A = (sinc(ωj − κ))
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4. Let γ represent the equispaced Fourier coefficients. Then Aγ ≈ β models a local region of Fourier

space. The corresponding solution is γ ≈ A+β, where A+ is the pseudoinverse of A.

5. The row in A+ which yields the equispaced coefficient at node kl is transferred to A+, ensuring that

appropriate columns of A+ are filled.

Here, δ and∆ are neighborhood parameters selected empirically. From formulation of the sampling theorem,

it is obvious that ∆ has to be greater than δ. Results in [23] indicate that ∆ ≈ 1.5δ provides the best

results, with no significant improvement in performance observed by increasing ∆ beyond 1.5δ. Figure

2.10 illustrates the selection of β and κ for a two dimensional problem with spiral sampling. Equispaced

coefficient recovery at the node (−2, 0) (denoted by a ×) is highlighted. The circles denote elements of the

non-equispaced measurement vector β, while the squares denote elements of the equispaced node vector κ.

Here values of P = 5 and Q = 10 were used.
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Fig. 2.10. Illustration: block uniform re-sampling (BURS)

After constructing the matrix A+, we may compute the approximate solution as

y∗ = A+b

We note that computation of A+ only depends on the sampling trajectory, and can therefore be performed

offline. Further, the matrix A+ has only P non zero entries in each row, resulting in an interpolation cost of

NP . Adding the cost of standard FFT reconstruction, we require a total of N log N + NP computations to

perform BURS reconstruction.
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2.4. Iterative Methods

The class of iterative methods [28, 29] is based on discretization of the Fourier integral (1.1). These

methods recover the function at equispaced grid points xk = −π+ 2πk
N

, k = 0, ..., N −1. Given M arbitrary

spectral samples, f̂(ωk), k = 0, ..., M − 1 with ωk not necessarily integers, we may write

f̂(ωp) ≈
N−1
∑

k=0

f(xk)e−iωpxk , p = 0, ..., M − 1 (2.19)

We note that xk are equispaced grid points, and hence this is a valid quadrature for the Fourier integral, [3].

Further, since f̂(ω) is a smooth function, the partial sum approximates f̂(ωp) with exponential accuracy.

However, to recover f , we have to invert the system of equations described by (2.19). For this reason, this

formulation is sometimes referred to as the “inverse” method or implicit discretization. In matrix notation,

we may write

b ≈ Ay (2.20)

where,

b =
(

f̂(ωj)
)M−1

j=0

y = (f(xk))
N−1

k=0
, xk = −π +

2πk

N

A =
(

e−iωjxk
)

, j = 0, ..., M − 1; xk = −π +
2πk

N
, k = 0, ..., N − 1

As a result of using finite N , this system is inherently ill-posed and we compute a least-squares, minimum

norm solution. Further, it is typical to have more non-equispaced samples than equispaced nodes, resulting

in an overdetermined system. Since the system matrix, A can be badly conditioned depending on sampling

trajectory, the above system of equations is solved using an iterative method such as conjugate gradient [25]

(CG) or one of its many variants. Since CG requires a symmetric system matrix, it is typically applied on the

normal form

AT b ≈ AT Ay

Each iteration of the CG method requires a matrix-vector multiplication, resulting in prohibitively large com-

putational cost. Since ωj are not equispaced, the FFT algorithm cannot be applied; however, Formulation (1)

of the NEFFT, (§2.1), which is only marginally more expensive than a standard FFT, can be employed. Func-

tion recovery using this method is illustrated in Figure 2.11. All reconstructions have been processed with a
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second-order exponential filter. In general, the reconstruction is seen to improve as the number of iterations

increase. However, beyond a certain number of iterations (8 in the example), no significant improvement in

reconstruction quality is seen.
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Fig. 2.11. Iterative reconstruction computed using the conjugate-gradient method

To illustrate the applicability to MR image reconstruction, Shepp-Logan phantom reconstruction using

BURS from spectral data acquired along a spiral k-space trajectory is shown in Figure 2.12. Spectral samples
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of the Shepp-Logan phantom were computed analytically using the method outlined in [30]. The spiral

sampling scheme used to obtain the samples is detailed in Appendix A. 65536 spiral samples were acquired

and reconstruction was performed on a 128 × 128 grid. The BURS reconstruction was computed using a

precomputed pseudoinverse (calculated using the TSVD) and the following parameters: δ = 2, ∆ = 5, P =

20.
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Fig. 2.12. Shepp-Logan phantom reconstruction from spiral k-space samples using BURS
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TABLE 2.1

COMPARISON OF RECONSTRUCTION METHODS

Governing Relation Cost Remarks

Gridding f(x) ≈
N−1
∑

k=0

αkf̂(ωk)eiωkx O(cN log cN + cM) Accuracy of reconstruction depends on

Approximates the inverse Fourier integral c is a oversampling factor sampling scheme and αk

αk are DCFs M is a small multiple of N

Compute sum using the NEFFT

URS Obtain equispaced coefficients f̂(k) as the O(N log N + NP ) System can be solved using iterative

& least-squares solution of methods or computing the pseudoinverse

BURS f̂(ωp) =

N/2−1
∑

k=−N/2

f̂(k)sinc(ωp − k) Pseudoinverse methods with block

Reconstruct f using standard FFT implementation allow for reduced

For large problems, obtain global solution as computational cost on account of

union of local solutions, with each local system precomputation of the pseudoinverse

being of (reduced) order P × Q, (Q > P ) Use of regularization is recommended

Iterative f̂(ωp) =

N−1
∑

k=0

f(xk)e−iωpxk O(κ(N log N + M)) Only recovers f at grid points

Solution Obtain f as the least-squares solution to the κ is the iteration count

above system

Typically solved using conjugate gradient



3. ANALYSIS OF UNIFORM RE-SAMPLING AND HIGH RESOLUTION RECONSTRUCTION

The uniform re-sampling scheme (URS) provides a theoretical framework to relate non-Cartesian mea-

surements f̂(ωk) to the equispaced Fourier coefficients f̂(k). URS reconstruction is typically carried out in

two stages,

1. recovery of equispaced Fourier coefficients f̂(k)

2. recovery of f using partial Fourier reconstruction

To summarize, we have the following governing relation as a result of the WKS sampling theorem,

f̂(ω) =

∞
∑

k=−∞

f̂(k)sinc(ω − k), ω ∈ R (3.1)

Here, f̂(ω) is the Fourier transform and f̂(k) are the Fourier series coefficients. Let y =
(

f̂(m)
)N/2−1

m=−N/2

denote the equispaced Fourier coefficients we seek. If b =
(

f̂(ωk)
)M−1

k=0

is the set of measurements and A

is the matrix with elements aij = sinc(ωi − j), i = 0, ..., M − 1, j = −N/2, ..., N/2− 1, we may write

Ay ≈ b (3.2)

The least-squares minimum norm solution y to (3.2) is given by

yLS = A+ b (3.3)

whereA+ is the Moore-Penrose pseudoinverse, [25]. Using the singular value expansion, [25], we may write

A+ =

r−1
∑

p=0

vpu
H
p

σp

where up and vp are the left singular vectors and right singular vectors respectively of A, σp are the singular

values of A and r is the rank of A. Therefore, the least-squares minimum norm solution is given by

yLS =
r−1
∑

p=0

(

uH
p b

σp

)

vp (3.4)

Further, it is possible to show (e.g., [25]) that the norm of the error between the true solution and the least-

squares solution is given by,

‖AyLS − b‖2

2
=

N
∑

p=r

∣

∣uH
p b
∣

∣

2

(3.5)

URS allows us to reconstruct f in the entire domain x ∈ [−π, π) and allows for efficient implementation in

the case of precomputed interpolation coefficients and block implementation.
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3.1. Error Analysis of URS Reconstruction

There are two principal error components in URS reconstruction,

1. error in recovering equispaced Fourier coefficients

2. error in partial Fourier reconstruction

The latter error component is common to all reconstruction schemes and is treated in (§3.2). To account

for the former, we shall assume that the system of equations in (3.2) is inverted using the truncated SVD

(TSVD), [25], or Tikhonov regularization, [31]. Regularized solutions such as those mentioned above are

necessary because the system described by (3.2) is numerically ill-posed for many sampling schemes of

interest. Susceptibility to finite precision effects is accentuated in the presence of measurement noise, leading

to spurious solutions.

As an illustration of the need for regularization, consider the system matrix for the “log sampling”

scheme, which results in a rank deficient matrix with singular values as shown in Figure 3.1(a). It can be

observed that roughly half the singular values are of the order of machine precision. A solution computed

using no regularization is shown in Figure 3.1(b). The true function is the test example of Chapter §2 (Figure

2.1(a)).
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In such cases, it is preferable to compute the solution using a regularized pseudoinverse, taking the

following form

A+

reg =

r−1
∑

p=0

φp

(

vpu
H
p

σp

)

(3.6)

Here φ is a regularization function specific to each method. For the truncated SVD, φ takes the form

φp =











1 p = 0, ..., r − 1

0 otherwise

(3.7)

Ideally, r is the true rank of the matrix A. For numerically ill-posed systems, determining r is a considerable

challenge. One solution is to choose r such that uH
p b is of the same order as σp. This bounds the ratio

vpuH
p

σp

and ensures that spurious solutions do not result. Figure 3.2 plots σp and uH
p b for the log sampling scheme.

The plot indicates that choosing r ≈ 110, which corresponds to a threshold of 10−3 would prevent solution

blowup.
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Fig. 3.2. Plot of σp and uH
p b for log sampling, N = 256

For Tikhonov regularization [31], we have

φp =
σ2

p

σ2
p + α2

(3.8)

where, α is a regularization parameter. Selection of optimum α is an open research problem, with several

popular methods including the discrepancy principle [26], L-curve [32] and generalized cross validation

(GCV) [33].

Let µ be the measurement error in acquiring spectral samples, and b∗ the acquiredmeasurements. Then,

Ay = b∗ = b + µ (3.9)
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Consequently, the computed solution is

ỹ = A+

regb
∗

=

r−1
∑

p=0

φp

(

vpu
H
p

σp

)

(b + µ)

ỹ =

r−1
∑

p=0

φp

(

uH
p b

σp

)

vp +

r−1
∑

p=0

φp

(

uH
p µ

σp

)

vp (3.10)

Let e be the error between the computed solution and the least-squares solution of (3.3). Then,

e = y − ỹ

=

r−1
∑

p=0

(

uH
p b

σp

)

vp −
r−1
∑

p=0

φp

(

uH
p b

σp

)

vp −
r−1
∑

p=0

φp

(

uH
p µ

σp

)

vp

e =
r−1
∑

p=0

(1 − φp)

(

uH
p b

σp

)

vp −
r−1
∑

p=0

φp

(

uH
p µ

σp

)

vp (3.11)

The first term is called the regularization error, while the second term is called the perturbation error.

Although performance in the presence of measurement error is important, we are primarily concerned with

the implicit error introduced by non-Cartesian spectral sampling. This manifests as the regularization error

in (3.11). As an illustration, consider reconstruction with no measurement error (µ = 0) using the following

schemes1: jittered sampling and log sampling. Jittered sampling results in a system matrix which is full rank

and well conditioned (κ = O(1)). In this case, minimal or no regularization is required. Log sampling,

however, results in a rank-deficient, highly ill-conditioned system matrix (κ = O(1019)). Figure 3.3 shows

error in recovering the solution2 for either case, when computed using the TSVD. For jittered sampling, a

singular value cut-off equal to machine precision was used, while for log sampling, the singular value cut-off

was set to 10−4. It is observed that for the case of log sampling, high frequency coefficients are recovered

with large error, in agreement with the low sampling density in these regions.

The recovery of Fourier coefficients with differing error orders is a characteristic of all sampling

schemes with variable sampling density. Moreover, regions with undersampling yield interpolated coeffi-

cients with large error. For example, consider recovery of equispaced k-space coefficients from spiral and

radial sampling trajectories. Figure 3.4 illustrates the error in recovered coefficients when the underlying

1These schemes are enumerated in Appendix A.
2We note that these error plots show the error between the regularized solution and the true solution (as

opposed to the least-squares solution).
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Fig. 3.3. Error in recovered coefficients, N = 256

function is a Shepp-Logan phantom. Here, 128 × 128 Cartesian coefficients were recovered from 65536

non-Cartesian measurements. It is conceivable that by formulating a reconstruction method which takes into
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Fig. 3.4. Error in recovered Fourier coefficients of the Shepp-Logan phantom

account the differing accuracy among spectral coefficients, better reconstruction quality can be achieved.

3.2. High Resolution Reconstruction

Given the popularity of sampling schemes such as radial and spiral sampling, it is typical to perform

reconstructionwith a set of Fourier coefficients characterized by high accuracy at lower frequencies and large

error at higher frequencies. Partial Fourier reconstruction without any post-processing yields inaccurate re-

constructions characterized by high-frequency “noise-like” artifacts. The conventional solution is to perform
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filtering which damps the high frequency coefficients. Figure 3.5 shows the resulting reconstruction of our

test function whose Fourier samples have been acquired using the log sampling scheme. The use of large N

in a filtered Fourier reconstruction is therefore open to question, since a large number of those coefficients

are essentially damped by use of the filter. However, use of small N results in poor order of accuracy, which

is expected when Fourier and filtered Fourier methods are used on piecewise-smooth functions.
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Fig. 3.5. Test function reconstruction (log sampling), N = 256

To resolve this apparent quandary, use of a spectral reprojection scheme such as Gegenbauer recon-

struction [5] is suggested. By formulation, these schemes require accurate discontinuity data. Therefore, the

detection of signal discontinuities is elaborately treated in Chapter 4. A brief outline of the intuition behind

use of Gegenbauer reconstruction is provided here, while the reader is referred to [5,34] for detailed treatment

and implementation notes. Spectral reprojection schemes were primarily introduced to overcome the Gibbs

phenomenon, and involve approximating the function in an alternate basis, known as a Gibbs complementary

basis [5]. Approximation is performed in each smooth sub-interval of the function. A Gibbs complementary

basis is orthonormal, supports exponential reconstruction accuracy, and has the property that high modes

of the Fourier basis have exponentially small projections on low modes of the reconstruction basis. This is

exactly our requirement, since we want to minimize the impact of error-filled high frequency Fourier coeffi-

cients on our reconstruction. The Gegenbauer reconstruction is an example of a spectral reprojection scheme,

which has been well studied and possesses computationally attractive properties.
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3.2.1. Gegenbauer Reconstruction

The Gegenbauer polynomials Cλ
n(x) are orthogonal polynomials in [−1, 1] which satisfy

∫

1

−1

(1 − x2)λ− 1
2 Cλ

k (x)Cλ
n (x)dx =











hλ
n k = n

0 k 6= n

(3.12)

where (for λ ≥ 0)

hλ
n =

√
πCλ

n(1)Γ(λ + 1

2
)

Γ(λ)(n + λ)

with

Cλ
n(1) =

Γ(n + 2λ)

n!Γ(2λ)

Gegenbauer polynomials obey the recursive relation

(n + 1)Cλ
n+1

(x) = 2(n + λ)xCλ
n (x) − (n + 2λ − 1)Cλ

n−1
(x) (3.13)

with Cλ
0
(x) = 1 and Cλ

1
(x) = 2λx.

The Gegenbauer approximation of a function f is given by

gλ
m(x) =

m
∑

l=0

ĝλ(l)Cλ
l (x), x ∈ [−1, 1] (3.14)

where ĝλ are the Gegenbauer expansion coefficients, obtained using the weighted inner product,

g̃λ(l) =
1

hλ
l

∫

1

−1

(1 − η2)λ− 1
2 f(η)Cλ

l (η)dη (3.15)

It has been shown in [5] that f can be replaced by its Fourier expansion in the above expression, while still

retaining exponential reconstruction accuracy.

Consider reconstruction of f(x) in a smooth interval [a, b] ⊂ [−1, 1). We define η ∈ [−1, 1] and

x(η) = ǫη + δ where ǫ = b−a
2

and δ = b+a
2

. The Gegenbauer reconstruction may be computed as

gλ
m(x(η)) =

m
∑

l=0

ĝλ
ǫ (l)Cλ

l (η) (3.16)

where the approximate Gegenbauer coefficients ĝλ
ǫ (l) are given by

ĝλ
ǫ (l) =

1

hλ
l

∫

1

−1

(1 − η2)λ− 1
2 fN(x(η))Cλ

l (η)dη (3.17)
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Here, fN(·) is the partial Fourier reconstruction of f(x). [34] shows that these coefficients may be computed

using the following Fourier-Bessel sum

ĝλ
ǫ (l) = δ0lf̃(0) + Γ(λ)il(l + λ)

∑

0<|k|≤N

J(l+λ)(πkǫ)

(

2

πkǫ

)λ

eikπδ f̃(k) (3.18)

Further, (3.18) can be computed using the FFT algorithm, leading to considerable computational savings.

Selection of m and λ to achieve stable reconstruction is addressed in [35].

3.2.2. Results using Gegenbauer Reconstruction

A comparison of filtered Fourier and Gegenbauer reconstructions is shown in Figure 3.6. The test

function was reconstructed from Fourier samples acquired using log sampling. The URS method was used

to recover equispaced spectral coefficients. In addition to supporting greater reconstruction accuracy in

smooth regions, the Gegenbauer reconstruction is free of smearing artifacts in the neighborhood of jump

discontinuities. This is important in MR reconstruction since important features may be contained at the

edges. Further, we note that the Gegenbauer reconstruction in Figure 3.6 uses a quarter of the coefficients of

filtered Fourier reconstruction.
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Fig. 3.6. Comparison of filtered Fourier (N = 256) and Gegenbauer reconstructions (N = 64, m = λ = 2)

As mentioned in (§3.2), Gegenbauer reconstruction requires information about the location of jump

discontinuities in f . In Figure 3.6, it was assumed that this information was available. Figure 3.7 shows the

resulting reconstruction when jump locations are estimated from the available spectral data. In this example,

N = 64 equispaced coefficients recovered using the URSmethod were used to compute the locations of jump
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discontinuities in f , using variants of the concentration method detailed in [36,37]. Compared to Figure 3.6,

reconstruction using estimated jump locations shows a small reduction in accuracy in the immediate vicinity

of a jump discontinuity. However, the performance is still superior to that of filtered Fourier reconstruction.
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Fig. 3.7: Comparison of filtered Fourier (N = 256) and Gegenbauer reconstructions (N = 64, m = 4, λ =
4) with jump locations estimated using the concentration method



4. DISCONTINUITY DETECTION FROM SPECTRAL DATA

This chapter addresses the detection of jump discontinuities in a piecewise-smooth function from noisy

Fourier data. While detecting jump discontinuities is an important task in its own right, it has been shown

in Chapter §3 that knowledge of jump discontinuities is essential for high-resolution function recovery. The

concentration method [36, 38] of detecting jump discontinuities from spectral data is employed here. After

providing an introduction to this method, its statistical behaviour is studied under the assumption that zero

mean additive complex white Gaussian noise corrupts the spectral samples. A method to improve detector

performance using a combination of concentration factors, first introduced in [39], is further refined, along

with the formulation of a performancemeasure. Examples and receiver operating characteristic (ROC) curves

are provided to demonstrate the efficacy of this method. While the following development assumes a one-

dimensional function, remarks and examples on its extension to multiple dimensions are provided.

Let f be a 2π-periodic, piecewise-smooth function in [−π, π). If the right-hand and left-hand limits of

f , denoted by f(x+) and f(x−) respectively, are defined at every point x, we may define the corresponding

jump function [f ] as

[f ](x) := f(x+) − f(x−) (4.1)

We shall concern ourselves with finding an approximation to [f ] using a finite number of Fourier coefficients

f̂(k) defined by

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikxdx , k ∈ [−N, N ] (4.2)

From (4.1), we see that a jump discontinuity is an essentially local feature; i.e., the jump function at any

point x only depends on the values of f at x+ and x−. However, f̂ is a global representation; i.e., f̂(k) are

obtained using values of f over the entire domain [−π, π). This contrast in definitions makes obtaining a

good approximation to [f ] from f̂ particularly challenging.

4.1. Concentration Method

To understand how jump information can be extracted from Fourier data, consider, without loss of

generality, a single jump in f at x = ζ1. We start by integrating (4.2) by parts.

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikxdx

1For ease of analysis, we will assume that ζ does not lie near±π, and that f(±π) is continuous.
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=
1

2π

(

∫ ζ−

−π

f(x)e−ikxdx +

∫ π

ζ+

f(x)e−ikxdx

)

=
1

2π

(

f(x)
e−ikx

−ik

∣

∣

∣

∣

ζ−

−π

−
∫ ζ−

−π

f ′(x)
e−ikx

−ik
dx + f(x)

e−ikx

−ik

∣

∣

∣

∣

π

ζ+

−
∫ π

ζ+

f ′(x)
e−ikx

−ik
dx

)

=
1

2π

(

f(ζ−)e−ikζ − f(−π)eikπ

−ik
−
∫ ζ−

−π

f ′(x)
e−ikx

−ik
dx

+
f(π)e−ikπ − f(ζ+)e−ikζ

−ik
−
∫ π

ζ+

f ′(x)
e−ikx

−ik
dx

)

=
(

f(ζ+) − f(ζ−)
) e−ikζ

2πik
+

f(−π)eikπ − f(π)e−ikπ

2πik
+ O

(

1

k2

)

Since f is periodic, f(−π) = f(π) and the second term vanishes. Using (4.1), we obtain

f̂(k) = [f ](ζ)
e−ikζ

2πik
+ O

(

1

k2

)

(4.3)

As can be observed, location of the jump discontinuity is contained in the phase of the leading term, while

the same term also contains the jump magnitude and sign. By suitable design, we can therefore expect to

arrive at an approximation to the jump function. The concentration method for jump detection, [36, 38],

provides us with exactly this framework, by obtaining jump location, magnitude and sign from a finite set

of Fourier coefficients. This method is quite general in formulation – in its most abstract form, we may

interpret it as the use of specifically designed convolutional kernels to extract jump data. However, for our

particular problem formulation, it is useful to interpret this method as a form of spectral filtering, with the

jump function reconstructed using a partial Fourier sum. While the reader is referred to [36,38] for details, it

is illustrative to provide a simple example of the theory behind this method. Consider a partial Fourier sum

of the form,

SN [f ](x) =

N
∑

k=−N

(

iπk

N

)

f̂(k)eikx (4.4)

Substituting for f̂(k) from (4.3), we obtain

SN [f ](x) =

N
∑

k=−N

(

iπk

N

)

f̂(k)eikx

=

N
∑

k=−N

(

iπk

N

)[

[f ](ζ)
e−ikζ

2πik
+ O

(

1

k2

)]

eikx

= [f ](ζ)
1

2N

N
∑

k=−N

eik(x−ζ) +

N
∑

k=−N

O
(

1

k

)

eik(x−ζ) (4.5)
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The first term is a scaled Dirichlet kernel, localized at x = ζ, i.e., it approximates a scaled Dirac delta

distribution at the jump location x = ζ. The second term is a manifestation of the global nature of spectral

data. The concentration method gives us a family of spectral filters specifically designed to minimize this

contribution. It is not difficult to show [36] that the following holds,

SN [f ](x) = [f ](x) + O
(

log N

N

)

(4.6)

Hence, a sum of the form (4.4) provides an approximation to the jump function. As N → ∞, SN [f ](x) →

[f ](x) with a convergence rate O
(

log N

N

)

. The spectral filter used in the above example,
(

iπk
N

)

, is just one

example among a class of filters. In its more general form, (4.4) can be written as

Sσ
N [f ](x) = i

N
∑

k=−N

f̂k sgn(k)σ

( |k|
N

)

eikx (4.7)

This is known as the generalized conjugate Fourier partial sum with σk,N (η) = σ( |k|
N

) known as concentra-

tion factors. These factors determine convergence of the approximation to [f ]. An example of the concen-

tration method is shown in Figure 4.1, where the jump function of the sawtooth signal is approximated. This

function has a single jump at x = 0. This plot also sheds light on the nomenclature of this method, which

arises from the fact that the jump function approximation “concentrates” at the singular support of f .
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Fig. 4.1. Example of the concentration method

Concentration factors have to satisfy certain properties in order to be admissible. These include,

1.

N
∑

k=1

σ

(

k

N

)

sin(kx) be odd
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2.
σ(η)

η
∈ C2(0, 1)

3.

∫

1

ǫ

σ(η)

η
→ −π, ǫ = ǫ(N) > 0 being small

Under these conditions, we have the following relation (concentration property, [38])

Sσ
N [f ](x) = [f ](x) + O(ǫ), ǫ = ǫ(N) > 0 being small (4.8)

While we may synthesize any number of concentration factors satisfying the required conditions, there are

several well studied families available for use, each with specific design principles and convergence re-

sults [38]. Table 4.1 gives expressions for three such concentration factors: trigonometric, polynomial and

exponential. The trigonometric factor emulates physical space divided differences while the pth order poly-

nomial factor is equivalent to an order p differentiated Fourier partial sum. The exponential factor is specifi-

cally designed to have exponentially small moments, thereby driving Sσ
N [f ] to infinitesimally small values in

regions of smoothness. Fig 4.2 provides visual indication of the performance of each of these factors when

applied to a unit step function, while Figure 4.3 plots σk,N (η) in Fourier space. Once the jump function ap-

proximation is computed, decisions on absence or presence of a discontinuity are made by comparing against

an empirically determined, data-dependent threshold.

TABLE 4.1

POPULAR CONCENTRATION FACTORS

Factor Expression Remarks

Trigonometric σG(η) =
π sin(πη)

Si(π)
Si(π) =

∫ π

0

sin(x)

x
dx

Polynomial σP (η) = −pπηp p is the order of the factor

α is the order

Exponential σE(η) = C · η · exp

(

1

αη(η − 1)

)

C is a normalizing constant

C =
π

∫ 1− 1
N

1
N

exp
(

1

ατ(τ−1)

)

dτ

In the following section, we provide a statistical analysis and quantitative performance measure of the

concentration method in the presence of noise. We also present a linear framework of combining concentra-

tion factors for obtaining improved results, comparable to nonlinear variants described in [36, 37].



42

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4

[f
](

x
)

x

Step Response of Gibbs Concentration Factor

Step Function f(x)
Gibbs Factor

(a) Trigonometric

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4

[f
](

x
)

x

Step Response of Polynomial Concentration Factor

Step Function f(x)
Polynomial (II Order) Factor

(b) Polynomial

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4

[f
](

x
)

x

Step Response of Exponential Concentration Factor

Step Function f(x)
Exponential Factor

(c) Exponential

Fig. 4.2. Step response of different concentration factors (N = 32)

4.2. Statistical Analysis of the Concentration Method

This section provides a statistical analysis of the concentration method, with the intention of designing

a noise robust discontinuity detector. To begin with, we shall assume that the Fourier coefficients f̂(k) are

corrupted by zero-mean, additive complex white Gaussian noise of variance ρ2. The restriction on correla-

tion is purely for ease of development; extension of the ensuing analysis to incorporate correlated noise is

straightforward. Hence,

ĝ(k) = f̂(k) + v̂(k) k ∈ [−N, N ], v̂(k) ∼ CN [0, ρ2] (4.9)

where ĝ denote the observed coefficients and v̂, the noise contribution. Since the concentration method is a

linear operator, we have

Sσ
N [g](x) = i

N
∑

k=−N

(f̂(k) + v̂(k)) sgn(k)σ(
|k|
N

) eikx

= i

N
∑

k=−N

f̂(k) sgn(k)σ(
|k|
N

) eikx + i

N
∑

k=−N

v̂(k) sgn(k)σ(
|k|
N

) eikx
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Fig. 4.3. Concentration factors plotted in Fourier space

Sσ
N [g](x) = Sσ

N [f ](x) + Sσ
N [v](x)

Further,

E [ Sσ
N [g](x) ] = E [Sσ

N [f ](x) + Sσ
N [v](x)]

= Sσ
N [f ](x) + E [Sσ

N [v](x)]

E [ Sσ
N [g](x) ] = Sσ

N [f ](x) (4.10)

Here, we use E [Sσ
N [v](x)] = 0, since v̂ is a zero-mean random variable. In summary, the noise component

does not bias the jump function approximation.

Even though the corrupting noise is white, use of concentration factors (which are Fourier space filters)

result in the jump function approximation acquiring a covariance structure. Entries of the covariance matrix

which describe this structure can be obtained as follows. Let S
σp

N [g](xa) denote the jump function approxi-

mation computed at location xa using the concentration factor σp, and S
σq

N [g](xb) denote the jump function

approximation computed at location xb using the concentration factor σq . Then

(Cv)xa,xb
p,q = E

[(

S
σp

N [g](xa) − E
[

S
σp

N [g](xa)
])

(S
σq

N [g](xb) − E
[

S
σq

N [g](xb)
]

)∗
]

= E
[(

S
σp

N [v](xa)
)

(S
σq

N [v](xb))
∗
]

= E

[(

i

N
∑

l=−N

v̂(l) sgn(l)σp(
|l|
N

) eilxa

)(

−i

N
∑

m=−N

v̂(m)∗ sgn(m)σq(
|m|
N

) e−imxb

)]
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= E

[

N
∑

l=−N

|v̂(l)|2σp(
|l|
N

)σq(
|l|
N

) eil(xa−xb)

]

+E

[

N
∑

m=−N

N
∑

l=−N

v̂(m)∗ v̂(l) sgn(m) sgn(l)σq(
|m|
N

)σp(
|l|
N

) e−imxbeilxa

]

=

N
∑

l=−N

E[|v̂(l)|2] σp(
|l|
N

)σq(
|l|
N

) eil(xa−xb)

+

N
∑

m=−N

N
∑

l=−N

E[v̂(m)∗ v̂(l)] sgn(m) sgn(l)σq(
|m|
N

)σp(
|l|
N

) e−imxbeilxa

where the second equation results from using (4.10). Since v(l), l ∈ [−N, N ], are independent and zero

mean variates , E[v̂(m)∗ v̂(l)] = E[v̂(m)∗] E[v̂(l)] = 0. Hence the second term in the above expression

goes to zero. Further, E[|v̂(l)|2] = ρ2 and

(Cv)xa,xb
p,q = ρ2

N
∑

l=−N

σp(
|l|
N

)σq(
|l|
N

)eil(xa−xb) (4.11)

describes a Hermitian symmetric matrix which is Toeplitz only for identical σp and σq .

4.3. Detector Design

We are now in a position to formulate the detection problem. For analysis purposes, we will use the unit

step function with jump at x = 0 (and a 1-sparse jump function) as a template for jumps. Our objective will

be to test at x = 0 and/or in its neighbouring region, and decide between the presence of a jump (hypothesis

H1) or its absence (hypothesisH0). Let M be the L-length vector constructed by stacking the jump function

approximations at points (xl)
L

l=1
obtained using concentration factors σl,

M = (Sσ1

N [f ](x1), ..., S
σL

N [f ](xL) )T (4.12)

This is the true signal vector and is pre-computed from the true Fourier coefficients of the unit step function.

An example signal vector is shown in Figure 4.4, where a single concentration factor (trigonometric) has

been used. Similarly, let Y represent the L-length vector of jump function approximations computed from

the observed (noisy) Fourier coefficients.

Y = (Sσ1

N [g](x1), ..., (S
σL

N [g](xL))T (4.13)
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We note that E[Y] = M (from 4.10). Further, the covariance structure of Y is given by (4.11). From

formulation of the concentration method, (4.8), we may write the detection problem on data Y as

H0 : Y = V ∼ CN [0, CV]

H1 : Y = M + V ∼ CN [M, CV]

where CN [A, C] represents a multivariate Gaussian distribution with mean A and covariance matrix C. To

maximize the probability of detection, Pd for a given false alarm rate Pfa, we apply the Neyman-Pearson

criterion2 [40]

→ H1 :
Pr(Y|H1)

Pr(Y|H0)
> γ

1

(2πCV)L/2 exp
[

− 1

2
(Y − M)T C−1

V (Y − M)
]

1

(2πCV)L/2 exp
[

− 1

2
YT C−1

V Y
] > γ

exp

[

−1

2
(Y − M)T C−1

V (Y − M)

]

exp

[

1

2
YT C−1

V Y

]

> γ

exp

[

−1

2

(

YT C−1

V Y − MT C−1

V Y − YT C−1

V M + MT C−1

V M − YT C−1

V Y
)

]

> γ

exp

[

MT C−1

V Y − 1

2
MT C−1

V M

]

> γ

Incorporating the data independent term exp
[

− 1

2
MT C−1

V M
]

into the threshold γ, we have

exp
[

MT C−1

V Y
]

> γ̄

→ H1 : MT C−1

V Y > γ̇ (4.14)

2Pr(·) denotes the probability density function and γ is a threshold. The notation → H1 stands for
“choose hypothesisH1”.
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where γ̇ = ln γ̄. The above formulation is referred to as a generalized matched filter. To make a decision, we

compute the weighted scalar product described by (4.14) and compare it to a threshold. The term MT C−1

V Y

is also referred to as the test statistic.

4.4. Performance of the Detector

Let us determine the statistical properties of the test statistic, T (Y) = MT C−1

V Y. The test statistic is

a linear combination of independent, identically distributed Gaussian variates, and hence remains Gaussian.

The mean under either hypothesis is

E[T |H0] = E[MT C−1

V V] = 0

and

E[T |H1] = E[MT C−1

V (M + V)] = E[MT C−1

V M ] + E[MT C−1

V V] = MT C−1

V M

Similarly, the variance under either hypothesis can be computed as3

var[T |H0] =E

[

(

MT C−1

V V
) (

MT C−1

V V
)∗
]

=E
[

MT C−1

V VV∗C−1

V M
]

=MT C−1

V E[VV∗]C−1

V M

=MT C−1

V M

and

var[T |H1] =E

[

(

MT C−1

V Y − E
[

MT C−1

V Y
]) (

MT C−1

V Y − E
[

MT C−1

V Y
])∗
]

=E

[

(

MT C−1

V V
) (

MT C−1

V V
)∗
]

= var[T |H0] = MT C−1

V M

Therefore, we have

H0 : T (Y) ∼ N [0, MT C−1

V M ] = N [0, d2]

H1 : T (Y) ∼ N [MT C−1

V M, MT C−1

V M ] = N [d2, d2] (4.15)

3Note that E[VV∗] = CV.
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where, d2 is termed as the signal-to-noise ratio (SNR). The false alarm and correct detection probabilities

may now be computed as the right tail probabilities of the corresponding Gaussian probability distributions:

PFA =

∫ ∞

γ̇

Pr (T |H0)(η) dη

=

∫ ∞

γ̇

1√
2πd2

exp

[

− η2

2d2

]

dη

= Q

(

γ̇

d

)

(4.16)

and

PD =

∫ ∞

γ̇

Pr (T |H1)(η) dη

=

∫ ∞

γ̇

1√
2πd2

exp

[

−
(

η − d2
)2

2d2

]

dη

= Q

(

γ̇ − d2

d

)

(4.17)

where Q(·) is the complementary (Gaussian) cumulative distribution function, which is available in tabular

form. Using (4.16) and (4.17), we may write

PD = Q

(

Q−1(PFA)d − d2

d

)

= Q
(

Q−1(PFA) −
√

d2

)

(4.18)

The above equation completely describes the performance of the detector, since it relates the probability of

detection to the false alarm probability. We note that, for a given false alarm probability, the performance

only depends on d2, the SNR of the detector. Further, we may use (4.16) to set the optimum threshold, γ̇ in

(4.14), to ensure operation of the detector at the desired false alarm rate; i.e.,

γ̇ = Q−1(PFA) · d

4.5. Choice of Detector Parameters

For a fixed noise variance ρ2, the SNR of the detector depends on the choice of the signal vector M ,

and consequently, the choice of measurement points and concentration factors, (xi, σi). Figure 4.2 indicates

that each concentration factor produces a distinct response, differing in aspects such as jump resolution (or
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mainlobe width) and spurious oscillations away from the jump. If we think of each response as a template

indicative of a jump, appropriately chosen combinations of these responses would provide a stronger indi-

cation of the jump. This is the rationale behind use of multiple concentration factors in a detector. The

strength of each combination is governed by the covariance structure defined by the (xi, σi) pairs, and a

numerical measure of this strength is provided by the SNR d2. As an example, Table 4.2 shows the vari-

ation in the SNR as xi is varied. Here, a single concentration factor (trigonometric) was used. Table 4.3

illustrates the variation in the SNR as σi is varied while keeping xi constant. In this particular example,

xi = (−0.193,−0.096, 0, 0.096, 0.193)were chosen, which are equispaced grid points spaced 1

2N+1
apart.

The notation used in this table is as follows: T - Trigonometric factor, P - Polynomial factor, E - Exponential

factor.

TABLE 4.2

CHOICE OF LOCATIONS xi AND EFFECT ON PERFORMANCE USING ONLY THE TRIGONOMETRIC

CONCENTRATION FACTOR (L = 5, N = 32, ρ2 = 7.5)

Choice of xi Significance MTC−1
V M (dB)

(-0.294, -0.196, 0, 0.196, 0.294) maxima/minima locations in Sσ
N [f ](x) 13.498

(-0.193, -0.096, 0, 0.096, 0.193) grid points spaced 1

2N+1
apart 14.656

(-0.348, -0.173, 0, 0.173, 0.348) numerically computed to maximize the SNR 16.396

TABLE 4.3

CHOICE OF CONCENTRATION FACTORS AND EFFECT ON PERFORMANCE USING A FIXED SET OF

LOCATIONS xi (L = 5, N = 32, ρ2 = 7.5)

Choice of concentration factors (σ1 σ2 σ3 σ4 σ5) MTC−1
V M (dB)

(T P E P T) 11.285

(T P E T P) 13.123

(T P P P T) 14.727

4.6. Results

Receiver operating characteristic (ROC) curves, which plot the probability of detection against false

alarm probability, are shown in Figure 4.5 for two different values of noise variance. The predicted perfor-
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mance was plotted using relation (4.18), while simulation results were obtained fromMonte Carlo trials. For

the Monte Carlo simulations, 2000 i.i.d. Gaussian variates were generated with parameters as per (4.15),

and the number of false alarms and correct detects were counted for a range of thresholds. After converting

these numbers to percentages, the ROC curve was obtained by plotting respective (PFA, PD) points. For

both plots, a three point signal vector utilizing the exponential factor was used with N = 32. The set of

measurement points xi was chosen to be {−δ 0 δ} with δ = 1

2N+1
. The SNR metrics for the two cases

were 9.0283 dB and 12.338 dB corresponding to ρ2 = 7.5 and ρ2 = 3.5 respectively.
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Fig. 4.5. ROC curve (L = 3, N = 32, exponential factor)

Figure 4.6 shows the gain in performance from using a combination of concentration factors. Both

curves represent three-point signal vector detectors with N = 32, operating at a noise level of ρ2 = 7.5.

The dashed curve was generated using the exponential concentration factor at points xi = (−δ 0 δ) with

δ = 1

2N+1
, resulting in a SNR of 9.0283 dB. The solid curve was generated using all three concentration

factors and xi = 0, resulting in a SNR of 13.434 dB.

Until now, we have analyzed the performance of our detector on a unit step function, with our only

concern being the presence or absence of a jump at x = 0. Not only did this permit easy development and

analysis of our method, this constitutes a good template since the unit step function has a 1-sparse jump

function. The performance of this method on a synthetic test function is shown in Figure 4.7. To provide

a visual indication of the level of noise (ρ2 = 7.5), the Fourier approximation computed using the noisy
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Fig. 4.6. Single concentration factor versus a combination of factors(L = 3, N = 32, ρ2 = 7.5)

Fourier coefficients is shown in Figure 4.7(a). The function4 f(x) shown in the plot is

f(x) =
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with a jump function

[f ](x) =


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A three-point detector using the trigonometric concentration factor with xi chosen to be (−δ 0 δ) where

δ = 1

2N+1
was used. Some additional processing was required for this example - prior to applying the

4To compare results, the test function used in [39] is used here.
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detector, negative valued jumps were inverted. Further, if the detector called a detect at xi, Sσ
N [g](xi) was

assigned as the jump magnitude. The detected jumps are shown in Figure 4.7(b).
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Fig. 4.7. Performance on a test function (L = 3, N = 128, ρ2 = 7.5)

From the above results, we see that this is a promising method of detecting jump discontinuities in the

presence of noise. The only notable shortcoming is the presence of false alarms in the immediate vicinity of

a discontinuity. This is expected behaviour, as theH0 hypothesis does not apply to regions in the immediate

vicinity of a jump (these regions are not O(ǫ)). Sidelobe mitigation procedures are needed, and are part of

future work on this topic.

4.7. Extensions and Remarks

This method is equally applicable to multi-dimensional functions [41]. For example, in the case of a

two dimensional function, the concentration method is applied to one dimension, holding the other constant.

Sσ
N [f ](x(ȳ)) = i

N
∑

l=−N

sgn(l)σ

( |l|
N

) N
∑

k=−N

f̂k,l ei(kx+lȳ) (4.21)

The overbar represents the dimension held constant. It is obvious that overlapping information will be ob-

tained by applying the method to the other dimension. For completeness, the result of edge detection on

a Shepp-Logan phantom is shown in Figure 4.8. As in previous chapters, the analytic (Cartesian) Fourier

coefficients of the Shepp-Logan phantom were computed using the method outlined in [30]. For a visual

illustration of the amount of noise added, the Fourier reconstruction of the phantom is also shown. The

trigonometric concentration factor was used in conjunction with a seven-point detector.
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The concentration method is also applicable to other spectral expansions such as Chebyshev and Leg-

endre. However, there are no popular applications outside of solving numerical partial differential equations

which demand the detection of discontinuities from Chebyshev or Legendre spectral data. Hence, we have

restricted our discussion to Fourier methods. A similar development for these spectral expansions is possible,

and the interested reader is referred to [36] for details.
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(a) True phantom (b) Noisy Fourier reconstruction

(c) Jump function (d) Edge map
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Fig. 4.8. Edge detection on the Shepp-Logan phantom (trigonometric factor, L = 7, N = 128, ρ2 = 25.5)



5. SUMMARY

The problem of reconstructing support-limited functions from non-Cartesian spectral samples was dis-

cussed. Failure of traditional partial Fourier sums in the case of irregularly sampled data was demonstrated.

Prevalent reconstruction schemes, including convolutional gridding, uniform re-sampling and iterative meth-

ods were surveyed and compared on computational cost, reconstruction quality and implementation steps.

Illustrative examples were given, using different sampling schemes, including those prevalent in magnetic

resonance imaging (MRI).

For variable sampling density schemes, typically encountered in MRI, it was observed that high fre-

quency spectral coefficients were recovered with large error, leading to reduced accuracy in reconstruction.

An alternate reconstruction scheme, based on spectral reprojection, formulated to use only accurate low

frequency coefficients was suggested. Empirical results were provided, showing superior performance com-

pared to traditional filtered Fourier reconstruction, despite use of far fewer coefficients.

Additionally, the recovery of discontinuity data, which is essential for spectral reprojection as well as

other signal processing tasks was discussed. The concentration method was employed to detect magnitude,

location and sign of jump discontinuities in piecewise-smooth functions from a finite number of noisy Fourier

coefficients. Statistical formulation of the concentration method was developed under the assumption that

corrupting noise is zero mean, complex-additive and white. Expressions for mean and covariance of the

resulting jump function approximation were provided and a detection problem formulated. To maximize

detection probability for fixed false alarms, a Neyman-Pearson detection problem was solved, resulting in a

generalized matched filter. A SNR metric was also derived with the measurement point - concentration factor

pair (xi, σi) serving as parameters.

To improve detection performance, a method involving use of multiple concentration factors was de-

veloped. Examples showing improvement in SNR for various choices of (xi, σi) were given. To prove the

efficacy of this method, test results using a template step function as well as a synthetic test function were

provided. Test results for the step function included ROC curves at different noise levels for various choices

of (xi, σi). Finally, the extension of this method to two dimensions was illustrated with the detection of

edges in a noisy Shepp-Logan phantom.
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5.1. Avenues for Further Work

Both spectral sampling and discontinuity detection are topics rich in avenues for further research. Some

of the problems which constitute our immediate research goals are enumerated below,

5.1.1. Spectral Sampling

• Non-uniform FFT methods provide efficient methods to compute non-equispaced sums of the form

f̃(x) =

N−1
∑

k=0

(

αkf̂(ωk)
)

eiωkx

If f̆(x) represents the NEFFT approximation, the error is usually defined as ‖f̃− f̆‖ in a suitable norm.

Window design is performed with the objective of minimizing this error. However, we know that the

Fourier basis gives a slowly converging approximation for piecewise-smooth functions. Hence, better

results can be obtained if window design is performed with the objective of minimizing ‖f − f̆‖

• A hybrid reconstruction method, suitably combining filtered Fourier reconstruction and Gegenbauer

reconstruction is to be implemented. This method promises similar order of accuracy to traditional

Gegenbauer reconstruction, but at reduced computational cost.

• It is conceivable that by suitable window design and density compensation, jump discontinuities can

be approximated using convolutional gridding. This is in contrast to the present method, where jump

detection is performed using coefficients recovered by URS/BURS.

• Use of adaptive mollifiers [42], which promise exponentially accurate reconstructions without the need

for spectral reprojection has to be investigated.

5.1.2. Discontinuity Detection from Spectral Data

• Experimental results with the detector reveal a cluster of false alarms in the immediate neighbourhood

of a true discontinuity. Sidelobe mitigation techniques to arrest their presence would further improve

detector performance.

• Non-linear variants of the concentration method exist such as enhancement of scales [36] and the

minmod algorithm [37]. Although complicated, a statistical analysis of these methods and comparison

with the current method would provide more insight towards design of a robust discontinuity detector.
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• Performance comparison with corresponding physical space discontinuity detection methods would

provide an understanding of the performance gap and relative strengths of global and local discontinu-

ity detection methods.

• The concentrationmethod exploits decay in Fourier coefficients to arrive at a jump function approxima-

tion. However, it is reasonable to expect improved performance if structural features of the underlying

function are exploited. This is particularly true for muti-dimensional functions.
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THE SHEPP-LOGAN PHANTOM AND SAMPLING SCHEMES



61

A.1. Shepp-Logan Phantom

The Shepp-Logan phantom [43] is an analytic test image, commonly used in medical imaging to com-

pare image processing algorithms. It is composed of ten ellipses, each with different major/minor axes,

intensity and orientation. Since it is analytic, its Fourier transform at any point ω ∈ R
2 can be easily com-

puted [30].

Let (xp, yp) denote center of the pth ellipse, νp its intensity, αp the angle between its major axis and

the x-axis, and Ap, Bp the major and minor axis lengths respectively. Then, the Fourier transform of the

phantom at polar co-ordinate ωk = keiθ is given by

f̂(ωk) =
10
∑

p=1

(

e−iπktp cos(γp−θ) νp Ap Bp

J1 (ap(θ)k)

ap(θ)k

)

where,

tp =
√

x2
p + y2

p, γp = arctan

(

yp

xp

)

, ap(θ) =
√

A2
p cos2(θ − αp) + B2

p sin2(θ − αp)

and J1(·) is the first-order Bessel function of the first kind.

The Shepp-Logan phantom and its Fourier transform on a Cartesian grid are plotted in Figure A.1.
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Fig. A.1. Shepp-Logan phantom and its Fourier transform, N = 1282

A.2. Sampling Schemes

Expressions for the different sampling schemes referred to in this thesis are provided below. The jittered

sampling and “log sampling” schemes are formulated in one dimension, while radial and spiral sampling
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schemes are formulated in two dimensions. In all cases, M denotes the total number of non-Cartesian

measurements.

1. Jittered Sampling:

ωk = k ± τk, τk ∼ U [0, .5], k = 0, ..., M − 1

where, U [a, b] denotes a uniform distribution on the interval [a, b]. The τk’s are independent, identi-

cally distributed (iid) random variables, and represent a uniform jitter about the equispaced nodes with

a maximal jitter of .5. Further, both positive and negative jitters are equiprobable, with the sign of jitter

at each node being independent of the sign of jitter at any other node.

2. Log Sampling:

If ωk be the nodes at which measurements are acquired, |ωk| is logarithmically distributed between

10−p and M/2, where M is the total number of samples. A value of p = 1.5 was used.

3. Spiral Sampling:

ωp = C
√

p

2
√

M
(cos θp, sin θp) , p = 0, ..., M − 1

where, θp =
8π

5

√
p and C is a constant.

4. Radial Sampling:

ωr,θ = C(−1)r
( r

R
− .5

)

(

cos
πθ

Θ
, sin

πθ

Θ

)

, r = 0, ..., R − 1; θ = 0, ..., Θ − 1

where, Θ is the total number of rays and R is the number of samples in each ray. Therefore, R × Θ =

M , the total number of samples acquired. C is a constant.

For the two-dimensional schemes, C is a scaling constant which determines the span of measurements in

Fourier space. Typically, C is chosen such that max |ωk| = max |k|, with k denoting Cartesian sampling

points. Illustrations of all sampling schemes can be found in Figure A.2.
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(a) Jittered sampling, M = 32
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(b) Log sampling, M = 32
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(c) Spiral sampling, M = 1024

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

k
x

k
y

Radial Sampling

(d) Radial sampling, M = 1024

Fig. A.2. Sampling schemes
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