
Journal of Coupled Systems and Multiscale Dynamics • December 2017

MOLT Based Fast High-order Three Dimensional A-Stable Scheme for Wave Propagation

M. Thavappiragasam1,2, A. Viswanathan4, and A. Christlieb1,3

1Department of Computational Mathematics Science and Engineering, Michigan State University, MI, United States
2Department of Electrical and Computer Engineering, Michigan State University, MI, United States

3Department of Mathematics, Michigan State University, MI, United States
4Department of Mathematics and Statistics, University of Michigan, MI, United States and

Invited Paper 22/11/17, Accepted 8/12/17

We present a fast (linear-time), high-order, multi-dimensional, A-stable implicit wave solver applicable for elec-
tromagnetic (EM) problems, specifically targeting plasma science. This approach uses a Method Of Lines Trans-
pose (MOLT) formulation combined with an Alternating Direction Implicit (ADI) scheme. In this scheme, a
PDE is first discretized in time, and then the resulting boundary-value problems are solved using a Green’s
function method. In particular, inverse of the resulting modified Helmholtz operator is analytically constructed
and evaluated efficiently using an O(N) recursive fast convolution algorithm. Extension to multi-dimensions is
formed using an ADI scheme, and each line is solved independently. In this work, we propose a higher order 3D
scheme which is able to deal with complicated geometries. The scheme is successfully evaluated using several
3D test problems.

Keywords: Method of Lines Transpose, Transverse Method of Lines, Implicit Methods, Boundary Integral
Methods, Alternating Direction Implicit Methods, ADI Schemes, Higher Order Schemes, Multi-Dimensional
Schemes, Complex Geometry.
PACS: 65M20, 78A40, 35G15
MSC: 41.20.Jb, 52.35.Hr, 96.60.Tf

1. INTRODUCTION

The method of lines transpose (MOLT) methodology
(also known as the transverse method of lines or Rothe’s
method)[1–3] can be used in designing scalable direct im-
plicit methods that are as efficient as explicit solvers, ideal
for multicore computing. These implicit methods are un-
conditionally stable to arbitrary order accuracy and offer
a unique approach to bridging scales in applications such
as plasma science. By making use of clever factorizations
of operators and efficient convolution methods, MOLT

avoids the use of matrices that typically result from the dis-
cretization of the spatial parts of a problem and thus elim-
inates the main bottleneck in scaling implicit methods. In
this approach, a PDE is first discretized in time, and then
the coupled set of resulting boundary-value problems are
solved using a Green’s function method[4]. In particu-
lar, we use an analytic inversion of the associated differ-
ential operator implemented by utilizing an O(N), recur-
sive fast convolution algorithm. Extension to multi dimen-
sion is formed using an alternating direction implicit (ADI)
scheme, and each line is solved independently. In order to
take large time steps in problems we need higher order ac-
curacy in time. The high order scheme is achieved by utiliz-
ing a Lax-Wendroff approach to exchange time derivatives
with spatial derivatives using even powers of the Laplacian
[5]. The inversions of higher derivatives can be performed
analytically, so that the resulting scheme is made explicit,
even at the semi-discrete level. In constructing the ana-
lytical convolution operators, we incorporate the boundary

conditions directly. In this way, without additional com-
plexity Dirichlet and periodic boundary conditions can be
implemented to higher order. Since dealing with outflow
boundary conditions depend on previous time step values
at the boundaries, we need to do little more work to im-
plement it in higher order. In this paper, we give a brief
introduction for the higher order outflow boundary condi-
tions for 1D schemes. A detailed explanation for multidi-
mensional scheme with outflow boundary condition will be
talked in upcoming communications. Complex geometries
are handled via an embedded boundary approach (see [6]
for second order accurate 2D scheme).

In Section 2, we give the implicit semi-discrete solution
for 3D wave equation, in Section 3 we derive the high-
order scheme and deal with outflow boundary condition, in
Section 4 we explain how we can handle multidimensional
problems with complex geometries, and finally we report a
set of test cases in Section 5.

2. THREE-DIMENSIONAL IMPLICIT WAVE
EQUATION SOLVER USING ADI SCHEME

The three dimensional implicit scheme is formed using
an alternating direction implicit (ADI) scheme (see [4] for
one and two dimensional schemes), and each line is solved
independently. The multi-dimensional wave equation can
be represented using the initial boundary value problem

1

c2
∂2u

∂t2
−∇2u = S(k, t), k ∈ Ω, t > 0 (1)

1

Journal of Coupled Systems and Multiscale Dynamics • December 2017

u(k, 0) = f(k), k ∈ Ω

ut(k, 0) = g(k), k ∈ Ω

with consistent boundary conditions. Suppose the domain
Ω = [xa, xb]× [ya, yb]× [za, zb] for three dimensional wave
equation, Dirichlet and outflow boundary conditions can be
defined by,

1. Dirichlet boundary condition:
u(xa, t) = UXa(t), u(xb, t) = UXb(t),
u(ya, t) = UY a(t), u(yb, t) = UY b(t),
u(za, t) = UZa(t), u(zb, t) = UZb(t).

2. Outflow boundary condition:
ut(xa, t) = cux(xa, t), ut(xb, t) = −cux(xb, t),
ut(ya, t) = cuy(ya, t), ut(yb, t) = −cuy(yb, t),
ut(za, t) = cuz(za, t), ut(zb, t) = −cuz(zb, t).

Using MOLT , we first perform a temporal discretiza-
tion and then approximate modified Helmotz operator. Let
us consider a scheme for spatial dimension three. The dis-
cretization begins with a time-centered finite different ap-
proximation,

un+1 − 2un + un−1

(c∆t)2
−∇2

(
un +

un+1 − 2un + un−1

β2

)
= Sn(k, t) (2)

where the averaging parameter β > 0 and bounded with
a specific upper limit based on temporal order of accuracy
[5]. It gives us a semi-discrete equation,(

1− 1

α2
∇2
)(
β2un + un+1 − 2un + un−1

)
= β2un +

β2

α2
Sn(k, t) (3)

where α = β
c∆t . Next, we approximate the modified

Helmotz operator using ADI splitting,

1− 1

α2
∇2 = 1− 1

α2

(∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=
(

1− 1

α2

∂2

∂x2

)(
1− 1

α2

∂2

∂y2

)(
1− 1

α2

∂2

∂z2

)
+

1

α4

(∂4

∂x2∂y2
+

∂4

∂x2∂z2
+

∂4

∂y2∂z2

)
− 1

α6

∂6

∂x2∂y2∂z2

Hence the approximation gives,

1− 1

α2
∇2 = LxLyLz +O

(
(c∆t)4

)
(4)

where Lx, Ly , and Lz are one dimensional univariate mod-
ified Helmholtz operators ([4]) applied in the indicated spa-
tial variable,

Lx = 1− ∂xx
α2

, Ly = 1− ∂yy
α2

, and Lz = 1− ∂zz
α2

Now, equation (3) can be expressed by,

LxLyLz
[
β2un + un+1 − 2un + un−1

]
= β2un +

β2

α2
Sn(k, t) (5)

Upon taking the inverse of the modified Helmholtz oper-
ators Lx, Ly , and Lz , we obtain the semi-discrete solution
for three dimensions with second-order temporal accuracy,

un+1 − 2un + un−1

= −β2D(1)
xyz[u

n] + β2L−1
z L−1

y L−1
x

[1

α2
Sn
]
(k, t) (6)

where the three dimensional operator is,

D(1)
xyz[u] := u− L−1

z L−1
y L−1

x [u], (7)

with superscript 1 which denotes first level of computing
or just the second order scheme, while in two dimensions
the scheme is

un+1 − 2un + un−1

= −β2D(1)
xy [un] + β2L−1

y L−1
x

[1

α2
Sn
]
(k, t), (8)

D(1)
xy [u] := u− L−1

y L−1
x [u].

Using the free space Green function, the inverse modified
Helmholtz operator L−1

x in x direction can be defined by,

L−1
x [u] :=

α

2

∫ b

a

e−α|x−x
′|u(x′)dx′︸ ︷︷ ︸

Particular solution

+Ax1e
−α(x−a) +Bx1e

−α(b−x)︸ ︷︷ ︸
Homogeneous solution

(9)

where the Ax1 and Bx1 are homogeneous boundary coeffi-
cients along the x direction. Since subscripts of the coeffi-
cients denote the proper level of computing, Ax1 and Bx1

are dealt in the first level of computing. We can define L−1
y

and L−1
z in the similar way using homogeneous boundary

coefficients (Ay1, By1) and (Az1, Bz1) respectively.
Inversion of the operator L−1

k is performed sequentially
leading to the usual x, y and z “sweeps" of the ADI al-
gorithm that is represented by a combination of the opera-
tor L−1

k . Because the inverse operators are defined along
lines, it is quite natural to discretize 2D and 3D regions
along Cartesian lines. However, the end points of these lines

2

Journal of Coupled Systems and Multiscale Dynamics • December 2017

are not restricted to residing at mesh points and so can al-
ways be chosen to lie on the boundary ∂Ω. For example,
the boundary points for a circle are shown in Figure 1 and
for a sphere in Figure 2. Because the 1D convolution al-
gorithm can incorporate unstructured meshes locally with-
out incurring time-step restrictions, it is of no concern to
have the boundary lie arbitrarily close to a mesh point. Be-
cause inversion along each line only requires the solution
of a two-point boundary-value problem, the usual boundary
integral is never actually constructed. Instead, the effects
of the boundaries are passed throughout the domain via the
ADI sweeps. The multi-D domain decomposition simply
requires that each direction be complete before starting the
next.

(a) x lines (b) y lines

FIG. 1: Boundary points, intersections of the mesh lines with the
boundary of a circle used for the ADI x (a) and y (b) sweeps.

(a) x lines (b) y lines

(c) z lines

FIG. 2: Boundary points, intersections of the mesh lines with the
boundary of a sphere used for the ADI x (a), y (b) and z (b)
sweeps.

Let us see this scheme in a little more detail in two di-
mensions, The two dimensional rectangular domain with

corner nodes (xa, ya), (xa, yb), (xb, yb), (xa, yb) is split
as one dimensional lines in x and y directions as shown
in the Figure 3. Grid points fall in the Cartesian domain
(xa, xb) × (ya, yb) with spatial distance ∆x and ∆y along
x and y lines respectively. The horizontal lines and vertical
lines are solved using the fast convolution line integration
during x sweeps and y sweeps respectively. Those x, y
sweeps should be performed one by one in any order, after
completion of a sweep the result will be saved in an interme-
diate variable which will then be used to do the other sweep.
In order to improve the accuracy of the ADI solve, the in-
version of the x and y Helmholtz operators is symmetrized,
by averaging the results of x—y and y —x solves. That
means we need to apply the operators Dxy and Dyx and
then take the average.

FIG. 3: ADI splitting and performs x - y sweeps

The general approach for implementation of the 2D ADI
scheme follows the steps shown below: Assume the number
of x and y lines are nx and ny respectively.

1. Perform the x-sweep
At each time step, solve the result in a temporary vari-
able Linvx(x, yi) for 1 ≤ i ≤ ny . The boundary
conditions are imposed at x = ai and bi.

2. Perform the y-sweep
For 1 ≤ j ≤ nx using Linvy(xj , y), solve for the
equation un+1 = 2un+un−1−β2Dxy , whereDxy =
un−LinvyLinvx. The boundary conditions are now
applied at y = cj and dj .

For the case of three dimensions, The rectangular cuboid
domain with corner nodes (xa, ya, za), (xa, yb, za),
(xb, yb, za), (xa, yb, za), (xa, ya, zb), (xa, yb, zb),
(xb, yb, zb), and (xa, yb, zb) is split as one dimensional
lines in x, y, and z directions as shown in the Figure 4, and
perform z-sweeps in addition to x and y-sweeps.

We give the detailed algorithm for the two dimensional
implicit wave equation solver in Algorithm 1 and relevant
supporting functions in Algorithms 2 and 3. Algorithm 2
computes solution u at time tn+1 using our two dimen-
sional implicit solver that calls the function Linv given in
Algorithm 3 to apply the operator L−1 to perform x and

3

Journal of Coupled Systems and Multiscale Dynamics • December 2017

FIG. 4: ADI splitting and performs x, y, and z sweeps

y sweeps. The functions fastconvol and applyBC called
in Algorithm 3 are used to find the particular solution and
the homogeneous coefficients An and Bn for appropriate
boundary conditions respectively. The function fastconvol
is an implementation of theO(N) recursive compact Simp-
son’s quadrature based approach defined in Algorithm 7.
The boundary coefficients An and Bn are retrieved as the
first and second element of the vector H respectively.

Algorithm 1 Two Dimensional Solver
1: function TwoDiWES(xA, xB , yA, yB , nx, ny,∆t, T, c, β, ps)
xA, xB and yA, yB - boundary points along x and y respec-
tively,
nx, ny - number of grid points along x and y respectively,
∆t - time step size,
T - total time,
c - wave speed,
β - averaging parameter,
ps - order of accuracy in space,

2: x = FormGridV ector(xA, xB , nx)
3: y = FormGridV ector(yA, yB , ny)
4: setInitialvalue(un−1, t0)
5: setInitialvalue(un, t1)
6: α = β

c∆t

7: nt = T
∆t

8: µx = e−α(x(n)−x(0))

9: µy = e−α(y(n)−y(0))

10: expAx = e−α(x−x(0))

11: expBx = e−α(x(n)−x)

12: expAy = e−α(y−y(0))

13: expBy = e−α(y(n)−y)

14: νx = α(x(2 : nx)− x(1 : nx − 1))
15: νy = α(y(2 : ny)− y(1 : ny − 1))
16: expweightx = expWeights(νx, ps)
17: expweighty = expWeights(νy, ps)
18: for tn = 1 to nt do
19: un+1 = computeU(un−1, un, nx, ny, β, µx, µy,

xA, xB , yA, yB , expAx, expBx, expAy, expBy, νx,
νy, expweightx, expweighty, ps)

20: un−1 = un
21: un = un+1

Algorithm 2 Compute u at time tn+1

1: function computeU(un−1, un, nx, ny, β, µx, µy, xA, xB ,
yA, yB , expAx, expBx, expAy, expBy, νx, νy, expweightx,
expweighty, ps)
un−1, un - solution at time tn−1 and tn respectively,
nx, ny - number of grid points along x and y respectively,
β - averaging parameter,
µx = e−α(x(n)−x(0)), µy = e−α(y(n)−y(0)),
xA, xB and yA , yB - boundary points along x and y respec-
tively,
expAx, expBx and expAy , expBy - exponential vector of
grid distance from left and right boundaries along x and y
respectively,
νx, νy - array of weighted nodes along x and y respectively,
expweightx, expweighty - array of exponentially weighted
nodes along x and y respectively,
ps -order of accuracy in space

2: Linvx = Linv(un, ny, β, µx, xA, xB , expAx, expBx,
νx, expweightx, ps, 0)

3: LinvyLinvx = Linv(Linvx, nx, β, µy, yA, yB , expAy,
expBy, νy, expweighty, ps, 1)

4: Dxy = un − LinvyLinvx
5: un+1 = 2un + un−1 − β2Dxy

Algorithm 3 L inverse; L−1

1: function Linv(u, n, β, µ, bdryA, bdryB , expA, expB, ν,
expweight, ps, dir)
un - solution at time tn,
n - number of lines that need to be sweep,
bdryA, bdryB - boundary points along the specific line,
expA expB- exponential vector of grid distance from left and
right boundaries respectively along the line,
ν - array of weighted nodes along the line,
expweight - array of exponentially weighted nodes along the
line,
ps - order of accuracy in space,
dir - determine which sweep is going to do, 0 for along x and
1 for y

2: if dir == 0 then . Do x sweep
3: for i = 1 to n do
4: I = fastconvol(u(i, :), ν, expweight, ps)
5: H = applyBC(u(bdryA), u(bdryB), I(bdryA),

I(bdryB), β, bdryA, bdryB , µ)
6: Linv(i, :) = I +H(1)expA+H(2)expB

7: else . Do y sweep
8: for j = 1 to n do
9: I = fastconvol(u(:, j), ν, expweight, ps)

10: H = applyBC(u(bdryA), u(bdryB), I(bdryA),
I(bdryB), β, bdryA, bdryB , µ)

11: Linv(:, j) = I +H(1)expA+H(2)expB

3. HIGHER ORDER SCHEME

The higher order accurate solutions was achieved by ex-
changing time derivation into spatial derivation. As shown
in [5], we can introduce a new operator Cxyz ,

Cxyz = L−1
y L−1

z Dx + L−1
z L−1

x Dy + L−1
x L−1

y Dz

4

Journal of Coupled Systems and Multiscale Dynamics • December 2017

in combined with Dxyz (equation 7) to get high-order
scheme. The 2pth order scheme as presented in [5] is,

un+1 − 2un + un−1

=

∞∑
p=1

p∑
m=1

(−1)m
2β2m

(2m)!

(
p− 1

m− 1

)
CmDp−m[un]. (10)

This scheme unconditionally stables for all ∆t (the 2D
scheme was proved in [5]), and the same range for β as
given in [5].
The fourth order version in three dimensions cab be ex-
pressed by,

un+1 − 2un + un−1

= −β2C(1)
xyz[u

n]−
(
β2D(2)

xyz −
β4

12
C(2)
xyz

)
C(1)
xyz[u

n] (11)

where superscripts of the operators C andD denote level
numbers over the computation. The fourth order scheme
has to be implemented in two levels (p = 2). At the first
level, we compute C(1)

xyz[un] and apply the operators C(2)
xyz

and D(2)
xyz on the computed C(1)

xyz[un] at the second level.
Using these level numbers, we can define boundary coef-
ficients related to level 2 computing, (Ax2, Bx2), (Ay2,
By2), and (Az2, Bz2) along x, y, and z directions respec-
tively.

Now we consider the variable speed scheme, suppose the
wave speed cxyz is bounded with c1 ≤ cxyz ≤ c2, we first
normalize it by cxyz/c2 and use it during the higher order
treatment with the term of spatial derivatives for the deriva-
tive exchange from time to spatial. This approach gives,

un+1 − 2un + un−1 = −β2c2xyzC(1)
xyz[u

n]

−

(
β2c2xyzD(2)

xyz −
β4c4xyz

12
C(2)
xyz

)
C(1)
xyz[u

n] (12)

3.1. Higher Order Outflow Boundary Condition

In order to obtain higher order outflow boundary con-
ditions, we consider more terms in the Taylor series than
second order equation in [4]. For this procedure, we need
to know the solution at time steps, tn+1, tn+2, and so on,
if we choose the centred finite difference stencil to derive
equations with higher order accuracy. Instead we prefer to
use one-sided backward finite difference stencils to obtain
higher order accuracy and obtain boundary coefficients ex-
plicitly. In this paper, we give a higher order scheme for out-
flow boundary conditions in one dimension only. Because
of the extension to multi-dimensions should require addi-
tional works, we will see a scheme for higher order outflow

in multi-dimensions in our following communications.
Let us derive fourth order outflow boundary conditions in
one dimension. First, we construct a time interpolant at the
right boundary (x > b) using a Taylor series expression of
the form

u(b, tn − z∆t) ≈ u(b, tn)− z∆tut(b, tn)

+
z2∆t2

2
utt(b, tn)− z3∆t3

6
uttt(b, tn) +

z4∆t4

24
utttt(b, tn)

By truncating higher order error terms, we only need to
approximate the first time derivative to fourth order accu-
racy, second time derivative to third order accuracy, and
so on. To perform this approximation, we use a five point
backward finite difference stencil to approximate ut, utt,
uttt, and utttt to the desired order of accuracy. We obtain,

u(b, tn − z∆t) ≈ un(b)− z
(25

12
un(b)− 4un−1(b)

+ 3un−2(b)− 4

3
un−3(b) +

1

4
un−4(b)

)
+
z2

2

(35

12
un(b)− 26

3
un−1(b) +

19

2
un−2(b)

− 14

3
un−3(b) +

11

12
un−4(b)

)
− z3

6

(5

2
un(b)− 9un−1(b)

+ 12un−2(b)− 7un−3(b) +
3

2
un−4(b)

)
+
z4

24

(
un(b)

− 4un−1(b) + 6un−2(b)− 4un−3(b) + un−4(b)
)

(13)

We need to integrate this expression analytically using
lemma 3.0.1 (see [4] for a proof) to compute the boundary
coefficientBn at the right boundary from the equation given
in [4],

Bn =
β

2

∫ 1

0

e−βzu(b, tn − z∆t)dz + e−βBn−1,

The equation was derived form the outflow boundary
condition at the right boundary ut(b, t) = −cux(b, t) by
extending it to b + ctn after time t = tn, and switch the
spatial integrals into time integrals at b.

Lemma 3.0.1 For integers m ≥ 0 and real v > 0,

Em := v

∫ 1

0

zm

m!
e−vzdz =

1

vm

(
1− e−vPm(v)

)

where Pm(v) =

m∑
l=0

vl

l!
is the Taylor series expansion of or-

der m of ev .

Hence we arrive at

Bn = e−βBn−1 + γ0u
n(b) + γ1u

n−1(b) + γ2u
n−2(b)

+ γ3u
n−3(b) + γ4u

n−4(b) (14)

5

Journal of Coupled Systems and Multiscale Dynamics • December 2017

where,

γ0 = E0(β)− 25

12
E1(β) +

35

12
E2(β)− 5

2
E3(β) + E4(β),

γ1 = 4E1(β)− 26

3
E2(β) + 9E3(β)− 4E4(β),

γ2 = −3E1(β) +
19

2
E2(β)− 12E3(β) + 6E4(β),

γ3 =
4

3
E1(β) +

14

3
E2(β) + 7E3(β)− 4E4(β),

γ4 = −1

4
E1(β) +

11

12
E2(β)− 3

2
E3(β) + E4(β). (15)

Likewise, by considering the left boundary x < a, we get

An = e−βAn−1 + γ0u
n(a) + γ1u

n−1(a) + γ2u
n−2(a)

+ γ3u
n−3(a) + γ4u

n−4(a). (16)

Now we have equations to compute homogeneous
boundary coefficients An and Bn to fourth order accuracy.
Note that the boundary constants corresponding to operator
D(1)[u] (denoted byAn1 , B

n
1) are independent of the bound-

ary constants corresponding to operatorD(2)[u] (denoted by
An2 , B

n
2). Therefore, our fourth order wave solution can be

constructed in two levels.

• Level 1
Compute D(1)[u] using u; An1 and Bn1 are obtained
by second order solution implicitly [4] or explicitly,

An1 = e−βAn−1
1 + γ0u

n(a) + γ1u
n−1(a) + γ2u

n−2(a)

Bn1 = e−βBn−1
1 + γ0u

n(b) + γ1u
n−1(b) + γ2u

n−2(b)

where γ0 = E0(β) − 3
2E1(β) + E2(β), γ1 =

2E1(β)− 2E2(β), γ2 = − 1
2E1(β) + E2(β).

• Level 2
Compute D(2)[u] using D(1)[u]; An2 and Bn2 are ob-
tained by fourth order solution using (14) and (16)
explicitly,

An2 = e−βAn−1
2 + γ0u

n(a) + γ1u
n−1(a) + γ2u

n−2(a)

+ γ3u
n−3(a) + γ4u

n−4(a)

Bn2 = e−βBn−1
2 + γ0u

n(b) + γ1u
n−1(b) + γ2u

n−2(b)

+ γ3u
n−3(b) + γ4u

n−4(b)

Now, we provide an algorithm for fourth order outflow
boundary conditions in one dimension (Algorithm 4). This
algorithm computes u at time tn+1 which works for outflow
boundary conditions with fourth order accuracy in time.
The algorithm computes γ coefficients (see 15) using sec-
ond order centered, and fourth order backward finite dif-
ferent stencils in Level 1 and Level 2 computations respec-
tively. For this purpose we use the function gamma that
computes the γ coefficients for any order based on a given
finite difference stencil. The function LinvOut defined in

Algorithm 5 is used to apply L−1 operator on un at a spe-
cific computing level k. This algorithm utilizes the function
fastconvol to compute particular solution, and another func-
tion applyBCoutflow defined in Algorithm 6 is used to ob-
tain homogeneous boundary coefficients. Initially outflow
boundary coefficients (vector H) are set to zero, meaning
boundary coefficients at time step t0 is zero, and previous
solutions at boundaries are maintained (ubpA and ubpB) for
the computation.The function polyHO computes the poly-
nomial of coefficients, AP (β) defined in [5].

Ap(β) = 2

p∑
m=1

(−1)m
β2m

(2m)!

(
p− 1

m− 1

)
.

Algorithm 4 Compute u at time tn+1 with fourth order
accuracy in time using outflow boundary conditions

1: function computeUHOO(un, un−1, β, xA, xB ,
expA, expB, ν, expweight,H, ubpA, ubpB , ps, pt)
un, un−1 - solution at time tn and tn−1 respectively,
β - averaging parameter,
xA, xB - left and right boundary points respectively,
expA expB- exponential vector of grid distance from left and
right boundaries respectively,
ν - array of weighted nodes along the line,
expweight - array of exponentially weighted nodes,
H - value of boundary coefficients for each level at time tn,
ubpA, ubpB - solution at the boundary points at previous time
steps,
ps - order of accuracy in space,
pt - order of accuracy in time.

2: simp2 = 1 : −1 : 1 . 2nd order centered FD stencil
3: sexp4 = 0 : −1 : −4 . 4th order backward FD stencil
4: g(1, :) = gamma(β, 2, simp2)
5: g(2, :) = gamma(β, 4, sexp4)
6: P = pt

2
. Number of levels

7: Dterms = 0
8: for k = 1 to P do
9: D = u− LinvOut(un, β, xA, xB , expA, expB,

ν, expweight, ps, k,H, ubpA, ubpB , g,maxit, tol)
10: Dterms = Dterms+ polyHO(β, P)D
11: u = D

Update previous solutions at the boundary points
12: for j = 0 to pt-1 do
13: ubpA(j, k) = ubpA(j + 1, k) . Left shift
14: ubpB(j, k) = ubpB(j + 1, k)

15: ubpA(pt, k) = u(xA)
16: ubpB(pt, k) = u(xB)

17: un+1 = 2un − un−1 +Dterms

4. DOMAINS WITH COMPLEX GEOMETRIES

We now consider domains with complex geometries such
as a model for A6M (we hope to show a simulation of this
model in our next paper) that has a set of arch areas join
together in 2D. We chose embedded boundary method to

6

Journal of Coupled Systems and Multiscale Dynamics • December 2017

Algorithm 5 Compute L−1 for outflow boundary
condition

1: function LinvOut(u, β, xA, xB , expA, expB, ν,
expweight, ps, k,H, ubpA, ubpB , g)
u - solution u at time tn,
β - averaging parameter,
xA, xB - boundary points,
expA, expB- exponential vector of grid distance from left
and right boundaries respectively along the line,
ν - array of weighted nodes along the line,
expweight - array of exponentially weighted nodes along the
line,
ps - order of accuracy in space,
k - current level of computation.
H - boundary coefficients at time step tn,
ubpA, ubpB - solution at the boundary points at previous time
steps,
g - a vector of γ coefficients for a given order of accuracy.
Compute particular solution

2: I = fastconvol(u, ν, expweight, ps)
Compute boundary coefficients

3: H = applyBCOutflow(u(xA), u(xB), β,H, ubpA,
ubpB , g, k)

Operate L−1

4: Linv = I +H(k, 0)expA+H(k, 1)expB

Algorithm 6 Compute boundary coefficients by applying
outflow boundary conditions

1: function applyBCOutflow(uA, uB , β,H, ubpA, ubpB , g, k)
uA, uB - solutions at boundary points,
H - boundary coefficients at time step tn,
ubpA, ubpB - solution at the boundary points at previous time
steps,
g - a vector of γ coefficients for a given order of accuracy,
β - averaging parameter,
k - current level of computation.

2: p = 2 ∗ k
3: H(k, 0) = H(k, 0)e−β + g(k, 0)uA
4: H(k, 1) = H(k, 1)e−β + g(k, 0)uB
5: for j = 1 to p do
6: H(k, 0) = H(k, 0) + g(k, j)ubpA(p− j, k)
7: H(k, 1) = H(k, 1) + g(k, j)ubpB(p− j, k)

solve such complex problems. This paper mainly focuses
on varying wave speed over the domains instead of embed-
ding solutions of the domains along their interfaces. The
complex geometries in higher dimensional problems may
be even harder. In our approach, however, since the higher
dimensional problems are solved with ADI schemes, we
need to worry about one dimensional lines. Thus, we need
to know all relevant properties of each line in order to solve
it. However, these lines are going to be broken into several
segments due to boundary lines of complex objects. First
of all, intersection points (can be felt in off-grid), where the
grid line intersects with presenting object boundaries, need
to be computed using proper geometrical functions.
We give a detail explanation for 3D complex geometries in

Algorithm 7 Fast Convolution
1: function fastconvol(un, ν, expweight, ps)
un - solution at time tn,
ν - array of weighted nodes along the specific direction,
expweight - array of exponentially weighted nodes along the
specific direction,
ps - order of accuracy in space

2: for j = 1 to n do
3: Compute JL(j + 1) and JR(j) using quadrature

defined in [4] and expweight based on ps.
4: d = e−ν

5: for j = 1 to n do
6: IL(j + 1) = d(j)IL(j) + JL(j + 1)
7: IR(n− j + 1) = d(n− j + 2)IR(n− j + 2)

+JL(n− j + 1)

8: for j = 1 to n do
9: I(j) = 1

2

(
IL(j) + IR(j)

)

this section. In our approach, first we decompose higher di-
mensional geometry to 2D slices and then represent it using
2D graphs with a set of vertices and edges. The edges can
be classified as straight line edges and curves or arches. The
graph G can be given as,

G(V,E(ES , EA)), (17)

with edges ES ≡ (vsi, vsj), and EA ≡ (Oij , vai, vaj)
where vsi, vsj , vai, and vaj are the vertices and Oij is

center of the arch (vai, vaj) which may be a circular arch
(Figure 5 (a)) or an elliptical arch (Figure 5 (b)). In Figure
5, each object has three vertices (v1, v2, v3), two straight
edges es1(≡ (v1, v2)), es2(≡ (v3, v1)), and one arch edge
ea1(≡ (v2, v3, Oa1)) that can be represented as a graph
G([v1, v2, v3], [[es1, es2], [ea1)]])

(a) with circular arch (b) with elliptical arc

FIG. 5: 2D graph with 2 straight edges and 1 circular arch (a) or
elliptical arch (b) edge

4.1. Pre-computing

Before begining the PDE evolution, we need to perform a
pre-computation to identify key characteristics of the geom-
etry such as boundary and relevant parameter values along
the grid lines in each direction. The flow diagram in Fig-
ure 6 shows major tasks performed in pre-computation and
results obtained at the end of each task.

7

Journal of Coupled Systems and Multiscale Dynamics • December 2017

FIG. 6: Flow diagram of pre-computation for 3D problems with
complex geometries

1. Slicing
This task decomposes a given 3D object into a set
of 2D objects by slicing along the grid lines. We
can form three set of 2D slices Syz , Sxz , and Sxy
in each direction x, y, and z respectively, but two
sets are sufficient for our computation (if the object
is uniform along any direction, we need to process
slicing in that direction only - yielding a set of
slices). Suppose we apply slicing along z and y
directions, we will have a set of xy slices, Sxy placed
along z with distance ∆z apart and a set of xz slices,
Sxz placed along y with distance ∆y

2. Graphing
This task defines the geometry of each 2D slice us-
ing 2D graphs as expressed in equation 17. We have
two sets of 2D slices, Sxy of size nz and Sxz of size
ny where nz and ny are number of spatial grid points
along the z and y directions respectively. Each slice
should have at least one 2D object. Suppose we as-
sume a 3D object has only convex surfaces along pri-
mary directions x, y, and z, then 2D objects in the
slices will be defined by

Gxy(k), k = 1, 2, ...nz

Gxz(j), j = 1, 2, ...ny

Therefore, we will obtain, nz + ny graphs.

3. Segmentation
This task generates line segments along each grid line
in each direction x, y, and z using intersections be-
tween the grid lines and surface of the object. The
segments along x and y can be computed using the
graph Gxy and along x and z can be computed using
the graph Gxz , but we should avoid unneeded dupli-
cate computations for x in order to reduce computing
cost. In the final stage of the pre-computation all rel-
evant parameters/properties Px of size nx × nsx, Py
of size ny × nsy and Pz of size nz × nsz for each
line segment will be computed. Here nsx, nsy and
nsz are number of line segments along x, y, and z
respectively. Since, however, each line in the same
direction does not need to have the same amount of
segments, nsx, nsy and nsz are not single variables,
they are vectors/arrays to keep track of the number
of segments in each line. Now, the sizes of Px, Py ,

and Pz are
nx∑
i=1

nsx(i),
ny∑
j=1

nsy(j) , and
nz∑
k=1

nsz(k)

respectively.

After we are done with the pre-compution, we will have
three set of line segments with their properties (Px, Py , and
Pz) for each direction. These segments will be utilized by
our higher order solver to obtain a solution with higher or-
der accuracy. Actually, during each sweep, each line seg-
ment is treated individually with their own piecewise con-
stant wave speed, and then the 3D higher order equation 11
is applied to compute the solution un+1 at next time step
tn+1.

5. NUMERICAL RESULTS

We present a set of test cases that evaluates our
framework; specifically we consider problems with vari-
able/piecewise constant wave speed in one, two, and three
dimensions, using a Gaussian pulse as an initial source or
a point source. For 3D, we obtain fourth order convergent
graphs for Dirichlet boundary conditions.

5.1. Waves with variable speeds

5.1.1. One Dimensional Case

A one dimensional wave travels through two different
consecutive domains, Ω1 ∈ [−1, 0] and Ω2 ∈ [0, 1] with
piecewise constant speed c1 = 1.0 and c2 = 2.0 respec-
tively. The solution until the wave reaches the location of
discontinuity, x = 0 is,

u(x, t) = aie
−η(x−c1(t−t0))2 (18)

where ai is the initial amplitude, η is the Gaussian shape
parameter, and t0 is a time offset which delays the Gaus-
sian pulse.
A portion of the travelling wave in domain one, Ω1 will
be reflected at the location of interface, x = 0, while the re-
maining waves are transmitted to domain two, Ω2. Thus, we
need to consider the combination of transmitted, reflected,
and incident waves from the location of interface, x = 0
and onward. The left domain (Ω1) will have components of
incident and reflected waves, and the right domain (Ω2) will
have the transmitted component of the original wave.
In this way, the solution obeys the following equations,

u1(t) = aie
η(x−c1(t−t0))2 + are

η(x+c1(t−t0))2 x < 0

u2(t) = ate
η̄(x−c2(t−t0))2 x ≥ 0,

where, ar and at are amplitudes of the reflected and trans-
mitted wave respectively and η̄ is the shape parameter of the
transmitted Gaussian pulse. Because of the zero transverse

8

Journal of Coupled Systems and Multiscale Dynamics • December 2017

displacement at the interface, u1(0, t) = u2(0, t), that gives
us,

(ai + ar)e
ηc21(t−t0)2 = ate

η̄c22(t−t0)2 .

By equating the coefficients we get,

ai + ar = at and ηc21 = η̄c22. (19)

From energy conservation (energy of the incident wave
should be equal to sum of the energy of reflected and trans-
mitted waves), we have

√
ηa2

i =
√
ηa2

r +
√
η̄a2

t . (20)

Upon solving equations (19), and (20), we obtain

at =
2aic2

(c1 + c2)
, ar = ai − at.

For our first numerical example, we choose ai = 1,
so at = 2c2

c1+c2
, and ar = 1 − at. Further, we chose

c1 = 1.0 and c2 = 2.0, and apply our solver along the
domain Ω1 ∪ Ω2 with 1024 uniform grid points of size
∆x = 0.002, while maintaining a CFL of 2.5 by choosing
time step ∆t = 0.005. Figure 7 shows time snapshots of
the moving wave using outflow boundary conditions at
the left and right boundaries. The numerical results agree
closely with the theoretical solutions as can be seen in the
figure.

FIG. 7: Piecewise constant speed (c1 = 1.0 and c2 = 2.0) wave
in 1D

5.1.2. Two Dimensional Case

In this section, we consider the two dimensional variable
speed solver. A square domain with a square patch is

chosen to assess the two dimensional variable speed solver.
Due to the material properties of the patch, waves travel
with different speeds through the patch than in the remain-
ing area. We choose a Gaussian pulse e−25(x2+y2) as an
initial solution and apply outflow boundary condition along
the border of the square domain (Ω = [−1, 1] × [−1, 1]).
Since we use spatial grid size ∆x = ∆y = 0.02 and
time step size ∆t = 0.005, applicable CFL is 0.25. We
demonstrate a test case with one patch placed as shown in
the Figure 8

FIG. 8: Geometrical view of one square patch in the square do-
main

A 0.5 x 0.5 square patch is placed at the left top
corner centered at, (-0.5, 0.5). The wave speed is set
to be c2(= 0.1) on the patch, and c1(= 1.0) in the re-
maining area. Figure 9 shows time snapshots of the solution

FIG. 9: Time evolution of a Gaussian field with a square patch.

5.1.3. Three Dimensional Case

In this section, we discuss the three dimensional vari-
able speed wave solver. A cubic domain with cubic
patches is chosen to assess the three dimensional variable
speed solver. Due to the material property of patches,
waves travel with different speed through these patches
than the remaining area. We place a Gaussian pulse
e−36(x2+y2+z2) as an initial solution and apply outflow

9

Journal of Coupled Systems and Multiscale Dynamics • December 2017

boundary conditions along the border of the cubic domain
(Ω = [−1, 1]× [−1, 1]× [−1, 1]). Since we use spatial grid
size ∆x = ∆y = ∆z = 0.0625 (32× 32× 32 grid points)
and time step size ∆t = 0.0313, applicable CFL is 0.5. We
demonstrate two test cases: one, and four patches for case-i
and case-ii respectively as shown in the Figure 10

(a) Single patch (b) 4 patches

FIG. 10: Geometrical view of (a) one and (b) four square patches
in the square domain

Case-i - Single patch
A 0.5 × 0.5 × 0.5 cubic patch is placed at the left top
corner centered at, (-0.5, 0, 0.5). The wave speed is set to
be c2(= 0.1) on the patch, and c1(= 1.0) in the remaining
area. Figure 11 shows snapshots of the wave at different
time instants

(a) t = 0.3756 (b) t = 0.7512

(c) t = 1.1268 (d) t = 1.5024

FIG. 11: Time evolution of a Gaussian field with a cubic patch.

Case-ii - Four patches
There are four 0.5×0.5×0.5 cubic patches are placed at the

four corners; i.e., centered at (-0.5, 0, 0.5), (-0.5, 0, -0.5),
(0.5, 0, 0.5), and (0.5, 0, -0.5). The wave speed is set to be
c2(= 0.1) on every patch, and c1(= 1.0) in the remaining
area. Figure 12 shows snapshots of the wave at different
time instants.

(a) t = 0.3756 (b) t = 0.7512

(c) t = 1.5024 (d) t = 1.8780

FIG. 12: Time evolution of a Gaussian field with four cubic
patches.

5.2. Refinement Studies

We show fourth order convergence by performing a re-
finement study on a cubic domain Ω = [−1, 1]× [−1, 1]×
[−1, 1] with a point source cos(ωt) at center of the domain,
(0, 0, 0). This runs up to time T = 2.0, with a fixed spatial
resolution of 160 × 160 × 160 spatial points. The discrete
L2 norm of the error is constructed at each time step and
maximum error over all time step is used to graph Figure
13 for ∆t = 6.25

2k , k = 1 to 5, with Dirichlet boundary
conditions.

6. CONCLUSIONS

In this paper, we have proposed a Higher order 3D
scheme for wave propagation which deals with complex
geometries. This A-stable implicit scheme is developed
based on MOLT approach and it utilizes a fast convolu-
tion recursive algorithm [4] which consumes O(N) opera-
tions for a line segment with N grid points. We evaluated
the performance of the fourth order 3D scheme using wave

10

Journal of Coupled Systems and Multiscale Dynamics • December 2017

(a) ω = 0.1

(b) ω = 1

FIG. 13: Fourth order convergence of 3D wave solver using
Dirichlet boundary conditions with ∆x = ∆y = ∆z = 1.25 ×
10−2 for (a) ω = 0.1 and (b) ω = 1

guides on cubic patches and refinement studies for conver-
gent tests. We are focusing with higher order embedded
Neumann boundary scheme for complicated geometries as
our immediate following work, and multi-scale adeptness
of this scheme should support us to bring it on multi-core
architectures such as GP 2Us which is our next target.

References

[1] Ascher, U. and Mattheij, R. and Russell, R., Numerical So-
lution of Boundary Value Problems for Ordinary Differential
Equations, Society for Industrial and Applied Mathematics,
(1995).

[2] R. Coifman and V. Rokhlin and S. Wandzura, The fast mul-
tipole method for the wave equation: a pedestrian prescrip-
tion, IEEE Antennas and Propagation Magazine 35, 3, pp. 7-
12 (1993).

[3] Annamaria Mazzia and Francesca Mazzia, High-order trans-
verse schemes for the numerical solution of PDEs, Journal of
Computational and Applied Mathematics, 82, 1 , pp. 299 -

311, (1997).
[4] Matthew F. Causley and Andrew J. Christlieb, and Ong, B. and

VanGroningen, L., Method of Lines Transpose: An Implicit
Solution to the Wave Equation, Mathematics of Computation.
83, 290, pp. 2763-2786 (2014).

[5] Matthew F. Causley and Andrew J. Christlieb, Higher Order
A-Stable Schemes for the Wave Equation Using a Successive
Convolution Approach, SIAM Journal on Numerical Analysis.
52, 1, pp. 220-235 (2014).

[6] Matthew F. Causley and Andrew J. Christlieb, and Wolf, Eric
Method of Lines Transpose: An Efficient Unconditionally Sta-
ble Solver for Wave Propagation, Journal of Scientific Com-
puting. 70, 2, pp. 896-921 (2017).

11

	Introduction
	Three-Dimensional Implicit Wave Equation Solver using ADI Scheme
	Higher Order Scheme
	Higher Order Outflow Boundary Condition

	Domains With Complex Geometries
	Pre-computing

	Numerical Results
	Waves with variable speeds
	One Dimensional Case
	Two Dimensional Case
	Three Dimensional Case

	Refinement Studies

	Conclusions
	References
	References

