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Abstract—The concentration method for identifying the loca- The remainder of this paper is organized as follows. Section
tions, magnitudes, and signs of jump discontinuities in an@g || synopsizes the concentration method, the rolecoficen-
signals from truncated Fourier series is well established ni tration factorsin the method. and the method’s foundations
mathematical literature. Its performance in the presence & . . ’ . . .
noise on the Fourier data has only recently started to recews in th_e theory of generallzed conjugate partial Fourier sum_s
attention’ however. This paper examines the performance of Section |l describes a detector based on the concentration
the concentration method in the presence of noise from a method and using Fourier data corrupted by additive Gaussia
detection-theoretic point of view. In particular, receiver operating  noise. Extensions of the basic detector by combining miltip
characteristics for the elemental problem of detecting a uit step concentration factors and by testing a neighborhood of the
discontinuity are developed for this method. Additionally, the . ) . L . .
problem of optimally combining data obtained from multiple putatl\_/e point OT dls_contlnl_uty rathe_r than at a single paire
concentration factors is addressed. also discussed in this Section. Section IV presents pegoom

data and Section V comments on the results obtained to date

|. INTRODUCTION and some avenues for further investigation.
The ability to detect abrupt changes in a signal is of fun-

damental importance in many signal processing application Il. THE CONCENTRATIONMETHOD
Frequently, one collects sampled data from either a spatial Let f be a 27-periodic, piecewise smooth function on
temporal signal and seeks information about abrupt chainges—m, 7). If f(z™) and f(x=~) are well-defined right and left
the frequency spectrum (e.g., the presence of spectra)lindiand limits respectively of at every pointz, the correspond-
Less often, sampled data are collected in the frequency itiomig jump function[f] is defined by
and abrupt changes in the temporal or spatial signal arensoug _
This is the case in magnetic resonance imaging (MRI), for (@) = fa™) = f(a7) (1)
example, where frequency domaink{pace”) samples areWe are interested in computing an approximatioffio given
collected and edges of the physical-space image are oésiterthe Fourier series coefficients

Given a finite collection of Fourier coefficients of a functio . 1 i
containing jump discontinuities, the associated Fourétial fe=g| f( Je ""dx, k € [-N,N] (2)
sum is smooth and exhibits Gibbs oscillations. When the A
number of Fourier coefficients available is relatively dmalWe note that[f] represents a local phenomenon, whjle
the Gibbs phenomenon significantly distorts the signal ia a global measure. To understand how jump data may be
neighborhoods of its discontinuities and thereby pressmse extracted fromf, consider, without loss of generality, tht
challenges in identifying points of discontinuity even imet contains a single jump at = ¢. Integrating (2) by parts, we
absence of noise. Theoncentration methqd[1], [2], is a can show that
linear, non-parametric approach for directly approximgthe R e~ k¢ 1
jump functionassociated with a piecewise smooth function Fk) =) 5 + (ﬁ) 3)
from a truncated Fourier series. Direct approximation & th
jump function from Fourier data allows for significant sayén We observe that the jump value and location are contained
in computational cost when compared to a two step procégsf however, the additionaD () term, which is a man-

of Fourier reconstruction followed by physical space Jumgestatmn of the global nature of Fourier data, complisate

function approximation. Convergence and other fundament§COVery: The concentration method, [1], [2], computes an
mathematical characteristics of the concentration mettzogt  @PProximation to{f] using a partial sum of the form

been studied in the deterministic setting, but its perforoesn k|

the presence of noise has only recently started to receie-at SKIf =1 Z fu sgnk) o ( ) (4)

tion [3], [4]. This paper examines the method’s performance
in the presence of noise from a detection-theoretic petseec This formulation is referred to as the generalized conjeigat

This work was supported in part by National Science Foundatjrants parjual Fourier sum, W'thTImN(n) - .U(_W) kno_Wn asconcen-.
CNS 0324957, DMS 0510813 and FRG 0652833. tration factors For example, substituting (3) in (4), and using
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o(&ly = 75 " we can show that Ill. DETECTORDESIGN

A log N This section presents the design of a detector that uses jump

S @) =155 Y 010 ( ) (5) function approximation in conjunction with a matched filter
k=—N to detect discontinuities in piecewise smooth functionise T

The first term is a Dirichlet kernel, scaled by the jump valugetector operates on a finite set of Fourier coefficiefits

and localized at the jump location, while the second terfh= —X, ..., N, that are assumed to be corrupted by additive

results from the global nature ¢t The concentration methodZero-mean \white (complex) Gaussian noigewith variance

provides a family of concentration factors to minimize the”. Hence, the observed coefficients are complex Gaussian

contribution of this error term, while preserving the jumpandom variableg; given by

Io_clalization.. These factors are re.quired to satisfy cermir_w? 8= futvy k=-N,.. N @)
ditions, [2], in order to be admissible. Under these condi
we have the following (concentration property): Linearity of the concentration method implies

SKf1(@) = [f1(x) + O(e) (6) S¥lgl = SXUf]1+ 5% V] 8

wheree = ¢(N) > 0 is small. Details of the convergenceso that the variat&$;[g](x) is Gaussian with mean
analysis can be found in [1] and [2]. Table | lists three papul

e} _ (e
concentration factors while Figure 1 shows the jump fumrctio E[S%gl(@)] = SKf](=) ©)
approximation for a unit step function using each of theehrgor eachx. In particular, the noise component does not bias
factors. the jump function approximation.
TABLE | The covariance of an approximatisii? [g](z,) at a point
POPULAR CONCENTRATION FACTORS xq USiNg concentration factor, with an approximation
Uq . . .
S Epression SN [g](xp) at another pointz, using concentration factar,
Trigonometric (n) = msin(an) S Ta,T o 4 *
g ) (Cy)ze™ = E[(SRVI(2a)) (ST V] ()]
. sim(x
Si(c) =/0 — Direct calculation yields
Polynomial op(n) = —prn? . %
is the order of the fact
- — p |S_ Ce order or ine 1aC or (C ma,zb _ Z | | | |) ik(zq—xp) (10)
wponent jj“(”’ e <°W‘”d) e
- normallizing constantz - order (Cy)Ze: is Hermitian symmetric, but not Toeplitz, due to
f1 ~ exp (aT(lT 1)) dr the presence of the concentration fact@5$‘k‘) andoy( ‘k‘)

A. Formulation of the detection problem

For the purpose of detector design, the unit step function
with step atz = 0 will be used as the elemental function
and the objective of the detector will be to test at, or in a
neighborhood ofx = 0 to distinguish between its presence
(H1) and absenceH). GivenL > 0 pairs(z;, o;) of pointsz;
and concentration factors, an L-vector M of approximation
- values is formed as

= (SFf(@1), -, SR ) )”

Hoel — Similarly, a random  L-vector Y =
(S gl(x1), ..., (S [gl(xr))T represents the noisy test
data. By virtue of (8), the covariance matriXy of Y is
exactly the covariance matrik,, of the noise componer¥’

of Y, which can be obtained from (10). Hence the detection
problem on the daty’ is

Ho:Y = V ~ CNT0,Cy]
Hi:Y = M+V ~ CN[M,Cy

(a) Trigonometric factor (b) Polynomial factor

1)

(c) Exponential factor

Fig. 1. Jump function approximations for a unit step funetising different W_he.reCJ.\/[A, C] represents a mUItiV_ariate (Complex) Gaussian
concentration factorsN = 32) distribution with meanA and covariance matriK’. To max-
imize the probability of detectio®; for a given false alarm



. . . TABLE Il
rate Pr,, the Neyman-Pearson criterion, [5], yields a detectoty o ce or LocaTIONSz; AND EFFECT ON PERFORMANCE USING ONLY

of the form THE TRIGONOMETRIC CONCENTRATION FACTOR
MTCV‘IY > (11) (L=5,N=32,p%>=1.5)
where~ is a threshold. This is a (generalized) matched filter Choice of z; MTC; M (dB)
whose performance is given by the relation (-0.294, -0.196, 0, 0.196, 0.294) 13.498
maxima/minima locations 5% [f](x)
_ —“1(p. \_ /agT -1 (-0.193, -0.096, 0, 0.096, 0.193) 14.656
Fa=¢@ (Q (Pra) M7 Cy M) (12) grid points spacedm% apart
o q 2 (-0.348, -0.173, 0, 0.173, 0.348) 16.396
with Q(x) — exp( —— ) dt denoting the comple— optimal selection (numerically computed)
2

Uy
mentary cumulative” distribution function. For a given &ls

alarm rate, the quantitp/”C; ' M governs the performance.sses. the parameters used wére= 3, N = 32,02 = 7.5.
of the detector and hence may be interpreted as a signalf@z exponential concentration factor was used and the set

noise ratio (SNR). of z; was chosen to bd—4 0 6} with § = 55. The
B. Factors influencing detector performance SNR for this selection of parameters 950283 dB. Close

agreement between the simulated and theoretical results is

Tl : . .
-l(;hti SNRM CV. ]Vée?'s Ia ftunCt']OV? gf the;gnalgectc;}k/./. observed. Figure 3(b) shows the ROC curve for the same

and the noise varnange. In turn, €pends on the COICE 4o 0 ctor at a noise variang@ = 3.5. The SNR for this case

of pairs (z;,0;) of measurement points and concentrano%1 338 dB

factors that define the measurement data. Results presen
in Section IV show that it is indeed advantageous to use
combination of concentration factors in selecting the aign
vector M. The intuition behind this is illustrated by Figure 1
where each response shows distinctive characteristids asic
mainlobe width and oscillation pattern away from the jum
point.

igure 4 illustrates how performance can be improved by
u%ing a combination of concentration factors rather thaina s
gle concentration factor. The common parameters for bath th
detectors ard, = 3, N = 32, andp? = 7.5. The dashed curve
corresponds to the detector using the exponential coratentr
Pactor chosen at pointé—6 0 ¢) with § = ﬁ The
corresponding SNR i8.0283 dB. The solid curve corresponds
to a detector using all three concentration factors with= 0.

Tables 1l and 1l seek to illustrate this behavior. Ta.The SNR in this case i53.434 dB. Finally, Figure 5 shows the

ble 1l :‘shows thrge candidate S'gnal vectors co_mputed USIf8ection of jumps in a test signal with multiple jumps, and
the Trigonometric factor, and their corresponding valués ¢

MTCZ1M. Table Il shows the effect of choice of concentraj-umps of va_lrylng magmtude and S|_gn. This pa_rtu:ular exampl
i fvt hen locati 5 s fixed (Notati d T uses the trigonometric concentration factor withchosen to
ion factors when locatioz;};_, is fixed (Notation used: T |/ (=6 0 4) andd = 53+~ Additional processing in the
- Trigonometric factor, P - Polynomial factor, E - Exponaiti

. 2N+1 . .
factor). For the results shown in Table Ill, the setrpfchosen form of accounting for negative valued jumps and computing
was {—0.193, —0.096, 0,0.096,0.193}.

the jump values have been performed here. Note the presence
of false alarms near some of the correctly characterizeatpoi
of discontinuity, suggesting the need for mitigation ofedtbe

PP —— effects in non-idealized problems: thg, assumption used
T A gl Ve 1 % above in characterizing detector performance is not sadisfi
when testing at points very near a point of discontinuity.

Choice of Signal Vector - An Example

i V. DISCUSSION

This paper has presented an approach for detecting discon-
tinuities in a piecewise-smooth analog signal startingmfro
a finite set of noisy Fourier coefficients. The approach is
based on the concentration method, whose performance in
the presence of noise has only recently started to receive
5| - - - attention. By simultaneously employing data from multiple

()
°

*

*

Fig. 2. Example of a signal vector (N = 32, Trigonometric fajt TABLE Il
CHOICE OF CONCENTRATION FACTORS AND EFFECT ON PERFORMANCE
USING A FIXED SET OF LOCATIONSz; (L = 5, N = 32, p? = 7.5)

IV. RESULTS
. . —
Figure 3(a) shows receiver operating characteristic (ROC) Choice f;f;;g‘;”atiagfg‘ factors | MTC,, "M (dB)
curves for a detector designed as per Section Ill. The solid TPEP T)“’ 11,285
curve was obtained theoretically from (12); Monte Carlowsim (TPETP) 13.123
lations were used to obtain the empirical dashed curve. fh bo (rPPPT) 14.727
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£ os supports the use of the sarftg) model in smooth segments
8 o of the signal. Near discontinuities, however, mitigatioh o
) “sidelobe effects” should be investigated to reduce chsste
£ o of false alarms near genuine jump points.
02 Little comparison of the concentration method to other non-
01 parametric methods known in signal processing (e.g., aigit
of - " " = 1 spectral estimation for spectral line detection) has been u
(b)b;é'—‘?)lf) P2 dertaken. Casting this promising approach, which has dyrea

shown some effectiveness in MRI applications [6], in cohtex
of more well-established signal processing approaches is a

Fig. 3. ROC curve [, = 3, N = 32, Exponential factor) appealing tOpiC for further research.
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concentration factors applied at multiple points in a staial
hypothesis test, the approach described here capitalizes o
the availability of a multiplicity of concentration fact®that
exhibit different behaviors near points of discontinuity.

The SNR introduced in Section lll provides a metric for
selection of sets of test points and concentration factors
that will provide good performance. It should ultimately be
possible to optimize this selection process, possibly fadl t
way back to the stage of concentration factor design, based
on maximizing this objective function.

The rapid convergence &f$[f] to zero in smooth regions





