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Abstract—The concentration method for identifying the loca-
tions, magnitudes, and signs of jump discontinuities in analog
signals from truncated Fourier series is well established in
mathematical literature. Its performance in the presence of
noise on the Fourier data has only recently started to receive
attention, however. This paper examines the performance of
the concentration method in the presence of noise from a
detection-theoretic point of view. In particular, receiver operating
characteristics for the elemental problem of detecting a unit step
discontinuity are developed for this method. Additionally, the
problem of optimally combining data obtained from multiple
concentration factors is addressed.

I. I NTRODUCTION

The ability to detect abrupt changes in a signal is of fun-
damental importance in many signal processing applications.
Frequently, one collects sampled data from either a spatialor
temporal signal and seeks information about abrupt changesin
the frequency spectrum (e.g., the presence of spectral lines).
Less often, sampled data are collected in the frequency domain
and abrupt changes in the temporal or spatial signal are sought.
This is the case in magnetic resonance imaging (MRI), for
example, where frequency domain (“k-space”) samples are
collected and edges of the physical-space image are of interest.

Given a finite collection of Fourier coefficients of a function
containing jump discontinuities, the associated Fourier partial
sum is smooth and exhibits Gibbs oscillations. When the
number of Fourier coefficients available is relatively small,
the Gibbs phenomenon significantly distorts the signal in
neighborhoods of its discontinuities and thereby presentssome
challenges in identifying points of discontinuity even in the
absence of noise. Theconcentration method, [1], [2], is a
linear, non-parametric approach for directly approximating the
jump functionassociated with a piecewise smooth function
from a truncated Fourier series. Direct approximation of the
jump function from Fourier data allows for significant savings
in computational cost when compared to a two step process
of Fourier reconstruction followed by physical space jump
function approximation. Convergence and other fundamental
mathematical characteristics of the concentration methodhave
been studied in the deterministic setting, but its performance in
the presence of noise has only recently started to receive atten-
tion [3], [4]. This paper examines the method’s performance
in the presence of noise from a detection-theoretic perspective.

This work was supported in part by National Science Foundation grants
CNS 0324957, DMS 0510813 and FRG 0652833.

The remainder of this paper is organized as follows. Section
II synopsizes the concentration method, the role ofconcen-
tration factors in the method, and the method’s foundations
in the theory of generalized conjugate partial Fourier sums.
Section III describes a detector based on the concentration
method and using Fourier data corrupted by additive Gaussian
noise. Extensions of the basic detector by combining multiple
concentration factors and by testing a neighborhood of the
putative point of discontinuity rather than at a single point are
also discussed in this Section. Section IV presents performance
data and Section V comments on the results obtained to date
and some avenues for further investigation.

II. T HE CONCENTRATION METHOD

Let f be a 2π-periodic, piecewise smooth function on
[−π, π). If f(x+) and f(x−) are well-defined right and left
hand limits respectively off at every pointx, the correspond-
ing jump function[f ] is defined by

[f ](x) := f(x+) − f(x−) (1)

We are interested in computing an approximation to[f ], given
the Fourier series coefficients

f̂k =
1

2π

∫ π

−π

f(x)e−ikxdx , k ∈ [−N, N ] (2)

We note that[f ] represents a local phenomenon, whilêf

is a global measure. To understand how jump data may be
extracted fromf̂ , consider, without loss of generality, thatf

contains a single jump atx = ζ. Integrating (2) by parts, we
can show that

f̂(k) = [f ](ζ)
e−ikζ

2πik
+ O

(

1

k2

)

(3)

We observe that the jump value and location are contained
in f̂ ; however, the additionalO

(

1
k2

)

term, which is a man-
ifestation of the global nature of Fourier data, complicates
recovery. The concentration method, [1], [2], computes an
approximation to[f ] using a partial sum of the form

Sσ
N [f ](x) = i

N
∑

k=−N

f̂k sgn(k)σ

( |k|
N

)

eikx (4)

This formulation is referred to as the generalized conjugate
partial Fourier sum, withσk,N (η) = σ( |k|

N
) known asconcen-

tration factors. For example, substituting (3) in (4), and using
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σ( |k|
N

) = π|k|
N

, we can show that

Sσ
N [f ](x) = [f ](ζ)

1

2N

N
∑

k=−N

eik(x−ζ) + O
(

log N

N

)

(5)

The first term is a Dirichlet kernel, scaled by the jump value
and localized at the jump location, while the second term
results from the global nature of̂f . The concentration method
provides a family of concentration factors to minimize the
contribution of this error term, while preserving the jump
localization. These factors are required to satisfy certain con-
ditions, [2], in order to be admissible. Under these conditions,
we have the following (concentration property):

Sσ
N [f ](x) = [f ](x) + O(ǫ) (6)

where ǫ = ǫ(N) > 0 is small. Details of the convergence
analysis can be found in [1] and [2]. Table I lists three popular
concentration factors while Figure 1 shows the jump function
approximation for a unit step function using each of the three
factors.

TABLE I
POPULAR CONCENTRATION FACTORS

Factor Expression

Trigonometric σT (η) =
π sin(α η)

Si(α)

Si(α) =

Z α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp

p is the order of the factor

Exponential σE(η) = C η exp

„

1

α η (η − 1)

«

C - normalizing constant;α - order

C =
π

R 1− 1

N
1

N

exp
“

1
α τ (τ−1)

”

dτ
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Fig. 1. Jump function approximations for a unit step function using different
concentration factors (N = 32)

III. D ETECTORDESIGN

This section presents the design of a detector that uses jump
function approximation in conjunction with a matched filter
to detect discontinuities in piecewise smooth functions. The
detector operates on a finite set of Fourier coefficientsf̂k,
k = −N, ..., N , that are assumed to be corrupted by additive
zero-mean white (complex) Gaussian noisev̂k with variance
ρ2. Hence, the observed coefficients are complex Gaussian
random variableŝgk given by

ĝk = f̂k + v̂k k = −N, ..., N (7)

Linearity of the concentration method implies

Sσ
N [g] = Sσ

N [f ] + Sσ
N [v] (8)

so that the variateSσ
N [g](x) is Gaussian with mean

E [ Sσ
N [g](x) ] = Sσ

N [f ](x) (9)

for eachx. In particular, the noise component does not bias
the jump function approximation.

The covariance of an approximationSσp

N [g](xa) at a point
xa using concentration factorσp with an approximation
S

σq

N [g](xb) at another pointxb using concentration factorσq

is
(Cv)xa,xb

p,q = E
[

(S
σp

N [v](xa))(S
σq

N [v](xb))
∗
]

Direct calculation yields

(Cv)xa,xb
p,q = ρ2

N
∑

k=−N

σp(
|k|
N

)σq(
|k|
N

)eik(xa−xb) (10)

(Cv)xa,xb
p,q is Hermitian symmetric, but not Toeplitz, due to

the presence of the concentration factorsσp(
|k|
N

) andσq(
|k|
N

).

A. Formulation of the detection problem

For the purpose of detector design, the unit step function
with step atx = 0 will be used as the elemental function
and the objective of the detector will be to test at, or in a
neighborhood of,x = 0 to distinguish between its presence
(H1) and absence (H0). GivenL > 0 pairs(xi, σi) of pointsxi

and concentration factorsσi, anL-vectorM of approximation
values is formed as

M = (Sσ1

N [f ](x1), ..., S
σL

N [f ](xL))T

Similarly, a random L-vector Y =
(Sσ1

N [g](x1), ..., (S
σL

N [g](xL))T represents the noisy test
data. By virtue of (8), the covariance matrixCY of Y is
exactly the covariance matrixCv of the noise componentV
of Y, which can be obtained from (10). Hence the detection
problem on the dataY is

H0 : Y = V ∼ CN [0, Cv]

H1 : Y = M + V ∼ CN [M, Cv]

whereCN [A, C] represents a multivariate (complex) Gaussian
distribution with meanA and covariance matrixC. To max-
imize the probability of detectionPd for a given false alarm



ratePfa, the Neyman-Pearson criterion, [5], yields a detector
of the form

MT C−1
v Y > γ (11)

whereγ is a threshold. This is a (generalized) matched filter
whose performance is given by the relation

Pd = Q
(

Q−1(Pfa) −
√

MT C−1
v M

)

(12)

with Q(x) :=

∫ ∞

x

1√
2π

exp

(

− t2

2

)

dt denoting the comple-

mentary cumulative distribution function. For a given false
alarm rate, the quantityMT C−1

v M governs the performance
of the detector and hence may be interpreted as a signal-to-
noise ratio (SNR).

B. Factors influencing detector performance

The SNRMT C−1
v

M is a function of the signal vectorM
and the noise varianceρ2. In turn, M depends on the choice
of pairs (xi, σi) of measurement points and concentration
factors that define the measurement data. Results presented
in Section IV show that it is indeed advantageous to use a
combination of concentration factors in selecting the signal
vectorM . The intuition behind this is illustrated by Figure 1,
where each response shows distinctive characteristics such as
mainlobe width and oscillation pattern away from the jump
point.

Tables II and III seek to illustrate this behavior. Ta-
ble II shows three candidate signal vectors computed using
the Trigonometric factor, and their corresponding values of
MT C−1

v M . Table III shows the effect of choice of concentra-
tion factors when location{xi}5

i=1 is fixed (Notation used: T
- Trigonometric factor, P - Polynomial factor, E - Exponential
factor). For the results shown in Table III, the set ofxi chosen
was{−0.193,−0.096, 0, 0.096, 0.193}.
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Fig. 2. Example of a signal vector (N = 32, Trigonometric factor)

IV. RESULTS

Figure 3(a) shows receiver operating characteristic (ROC)
curves for a detector designed as per Section III. The solid
curve was obtained theoretically from (12); Monte Carlo simu-
lations were used to obtain the empirical dashed curve. In both

TABLE II
CHOICE OF LOCATIONSxi AND EFFECT ON PERFORMANCE USING ONLY

THE TRIGONOMETRIC CONCENTRATION FACTOR

(L = 5, N = 32, ρ2 = 7.5)

Choice of xi MTC
−1
v M (dB)

(-0.294, -0.196, 0, 0.196, 0.294) 13.498
maxima/minima locations inSσ

N
[f ](x)

(-0.193, -0.096, 0, 0.096, 0.193) 14.656
grid points spaced 1

2N+1
apart

(-0.348, -0.173, 0, 0.173, 0.348) 16.396
optimal selection (numerically computed)

cases, the parameters used wereL = 3, N = 32, ρ2 = 7.5.
The exponential concentration factor was used and the set
of xi was chosen to be{−δ 0 δ} with δ = 1

2N+1 . The
SNR for this selection of parameters is9.0283 dB. Close
agreement between the simulated and theoretical results is
observed. Figure 3(b) shows the ROC curve for the same
detector at a noise varianceρ2 = 3.5. The SNR for this case
is 12.338 dB.

Figure 4 illustrates how performance can be improved by
using a combination of concentration factors rather than a sin-
gle concentration factor. The common parameters for both the
detectors areL = 3, N = 32, andρ2 = 7.5. The dashed curve
corresponds to the detector using the exponential concentration
factor chosen at points(−δ 0 δ) with δ = 1

2N+1 . The
corresponding SNR is9.0283 dB. The solid curve corresponds
to a detector using all three concentration factors withxi = 0.
The SNR in this case is13.434 dB. Finally, Figure 5 shows the
detection of jumps in a test signal with multiple jumps, and
jumps of varying magnitude and sign. This particular example
uses the trigonometric concentration factor withxi chosen to
be (−δ 0 δ) and δ = 1

2N+1 . Additional processing in the
form of accounting for negative valued jumps and computing
the jump values have been performed here. Note the presence
of false alarms near some of the correctly characterized points
of discontinuity, suggesting the need for mitigation of sidelobe
effects in non-idealized problems: theH0 assumption used
above in characterizing detector performance is not satisfied
when testing at points very near a point of discontinuity.

V. D ISCUSSION

This paper has presented an approach for detecting discon-
tinuities in a piecewise-smooth analog signal starting from
a finite set of noisy Fourier coefficients. The approach is
based on the concentration method, whose performance in
the presence of noise has only recently started to receive
attention. By simultaneously employing data from multiple

TABLE III
CHOICE OF CONCENTRATION FACTORS AND EFFECT ON PERFORMANCE

USING A FIXED SET OF LOCATIONSxi (L = 5, N = 32, ρ2 = 7.5)

Choice of concentration factors MTC
−1
v M (dB)

(σ1 σ2 σ3 σ4 σ5)
(T P E P T) 11.285
(T P E T P) 13.123
(T P P P T) 14.727
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Fig. 3. ROC curve (L = 3, N = 32, Exponential factor)
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concentration factors applied at multiple points in a statistical
hypothesis test, the approach described here capitalizes on
the availability of a multiplicity of concentration factors that
exhibit different behaviors near points of discontinuity.

The SNR introduced in Section III provides a metric for
selection of sets of test points and concentration factors
that will provide good performance. It should ultimately be
possible to optimize this selection process, possibly all the
way back to the stage of concentration factor design, based
on maximizing this objective function.

The rapid convergence ofSσ
N [f ] to zero in smooth regions
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Fig. 5. Performance on a test function (L = 3, N = 128, ρ2 = 3.5)

supports the use of the sameH0 model in smooth segments
of the signal. Near discontinuities, however, mitigation of
“sidelobe effects” should be investigated to reduce clusters
of false alarms near genuine jump points.

Little comparison of the concentration method to other non-
parametric methods known in signal processing (e.g., digital
spectral estimation for spectral line detection) has been un-
dertaken. Casting this promising approach, which has already
shown some effectiveness in MRI applications [6], in context
of more well-established signal processing approaches is an
appealing topic for further research.
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