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Abstract—We propose a new phase retrieval algorithm for
recovering 2D discrete signals from the squared magnitudes of
their short-time Fourier transform measurements. The algorithm
works by efficiently inverting (in FFT–time) a Fourier-based,
physics-driven, and highly structured linear system to obtain
relative phase information. The missing phases are subsequently
recovered through the use of an eigenvector-based angular syn-
chronization procedure. In addition to providing a deterministic
measurement mask construction, the efficiency and robustness
of the proposed method are demonstrated through numerical
experiments.

Index Terms—phaseless imaging, phase retrieval, bandlimited
masks, ptychography, angular synchronization.

I. INTRODUCTION

We consider the problem of recovering an unknown signal
X ∈ CN1×N2 given the (phaseless) squared magnitude short-
time Fourier transform (STFT) measurements

Yj1,j2,`1,`2 :=∣∣∣∣∣
N1−1∑
n1=0

N2−1∑
n2=0

(X )n1,n2(M)n1−`1,n2−`2e
−2πi

(
n1j1
N1

+
n2j2
N2

)∣∣∣∣∣
2

.

(1)
Here M ∈ CN1×N2 is a known mask, and j1, `1 ∈ ZN1

,
j2, `2 ∈ ZN2

. Such phase retrieval problems (see [1], [2])
arise in molecular imaging applications such as ptychography
[3], where overlapping regions of an object X are illuminated,
usually by placing a pinhole between the light source and
object, and sequentially moving the pinhole (modeled by shifts
of M; by `1 pixels in the vertical direction and `2 pixels in
the horizontal direction). The resulting diffraction patterns are
then sampled and used to approximate the unknown object.
State of the art methods used by physicists, e.g. [4], offer
no (global) recovery guarantees, while recent mathematically
rigorous methods, e.g. [5], often require the use of highly
random and physically impractical measurement constructions.
In this paper, we propose a 2D phase retrieval framework
motivated by the work of Chapman [6], extending the 1D
results and methods of Perlmutter et al. [7]. In particular, we
show in §II that through careful application of 2D Fourier
transform properties, the nonlinear problem in (1) can be

This research was conducted at the NSF REU Site (DMS-1659203) in
Mathematical Analysis and Applications at the University of Michigan –
Dearborn. We would like to thank the National Science Foundation, National
Security Agency, University of Michigan – Dearborn (SURE 2019), and the
University of Michigan, Ann Arbor for their support.

linearized (see Theorem 1), and that in the case of bandlimited
masks M and careful selection of the number of shifts, this
linear system reduces to a diagonal system. This improves
upon the results in [8] by providing a more direct, explicit,
and efficient linear system construction (for STFT measure-
ments), thereby facilitating the solution of significantly larger
problems. Furthermore, a prescription for a deterministic mask
which allows for such an inversion is provided in §II-D, along
with a recovery algorithm. Numerical results verifying the
efficiency and robustness of the proposed method are provided
in §III, while §IV offers some directions for future research.

II. PROPOSED 2D PHASE RETRIEVAL FRAMEWORK

A. Preliminaries and Notation

We represent discrete, 2-dimensional signals as matrices
X ∈ CN1×N2 and use lowercase letters with bold vector
indexing to denote the components of such a signal. Thus,
for n = [n1 n2]T , the component xn denotes the entry at
the n1

th horizontal row and n2
th vertical column of a signal

X where n1 ∈ ZN1
and n2 ∈ ZN2

. All indexing is implied
to be modulo N1 along columns and modulo N2 along rows.
Occasionally (and with slight abuse of notation), we may refer
to the index n as an ordered pair (i.e., n ∈ ZN1×ZN2 ). Some
elementary definitions and operations on signals are shown in
Table I.

TABLE I
ELEMENTARY OPERATIONS AND DEFINITIONS

Operation Definition

(Rectangular) Periodicity Matrix N N =

[
N1 0
0 N2

]
Region of Summation RN RN := {n = (n1, n2) :

n1 ∈ ZN1
, n2 ∈ ZN2

}

Conjugate, Transpose, & Conjugate
Transpose

X ,XT ,X ∗

Time Reversal x̃n := x−n

Circular Shift in Time Operator
S` : CN1×N2 → CN1×N2

(S`X )n := xn−`

Modulation Operator
Wk : CN1×N2 → CN1×N2

(WkX )n := xne−2πikTN−1n

Hadamard (Element-wise) product (X ◦ H)n := xnhn

Circular Convolution ~N :
CN1×N2 × CN1×N2 → CN1×N2

(X ~N H)n :=
∑

k∈RN

xkhn−k
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Definition 1. Let X ∈ CN1×N2 . The Discrete Fourier Trans-
form (DFT) FN : CN1×N2 → CN1×N2 and Inverse Discrete
Fourier Transform (IDFT) F−1

N : CN1×N2 → CN1×N2 are
defined as follows (with j,n ∈ ZN1 × ZN2 ):

x̂j = (FNX )j :=
∑

n∈RN

xne
−2πinTN−1j

xn = (F−1
N X̂ )n :=

1

detN

∑
j∈RN

x̂je
2πijTN−1n.

B. Measurement Model and Preliminary Lemmas
Let X ∈ CN1×N2 be the unknown signal and let
M ∈ CN1×N2 denote a known mask. The phaseless
Fourier measurements populate a fourth-order tensor Y ∈
RN1×N2×L1×L2 , where L1, L2 represent the total number of
vertical and horizontal shifts of the mask, respectively. Thus,
Yj1,j2,`1,`2 denotes the measurement corresponding to the `1th

and `2
th vertical and horizontal shifts, and the j1

th and j2
th

Fourier modes, respectively. Letting j,n, ` ∈ ZN1 × ZN2 and
letting Y[j `] correspond to the measurement Yj1,j2,`1,`2 ∈ R,
then we may write

Y[j `] =

∣∣∣∣∣ ∑
n∈RN

xnmn−`e
−2πinTN−1j

∣∣∣∣∣
2

=
∣∣∣(FN (X ◦ S`M))j

∣∣∣2. (2)

We next present some preliminary lemmas which follow from
elementary Fourier transform properties.

Properties. Let X ,H ∈ CN1×N2 and α, β ∈ C. Then for all
n, j,k, ` ∈ ZN1

× ZN2
, the following properties hold:

i. (FN (αX + βH))j = αx̂j + βĥj
ii. (FN (S`X ))j = (W`X̂ )j

iii. (FN X̃ )j = ̂̃xj = ˜̂xj
iv. (S̃`X )n = (S−`X̃ )n
v. (FN (H~N X ))j = (Ĥ ◦ X̂ )j

vi. (FN (H ◦ X ))j =
1

detN
(Ĥ~N X̂ )j

vii. (FNX )j = x̂j = ˜̂xj
viii. (FN (FNX ))j = (FN X̂ )j = (detN) x̃j.

Lemma 1. Let X ∈ CN1×N2 and j, ` ∈ ZN1
× ZN2

, then(
FN (X ◦ S`X )

)
j

=
1

detN
e−2πijTN−1`

(
FN (X̂ ◦ SjX̂ )

)
−`
.

Proof. Using Properties (vi.), (ii.), and (vii.) we obtain,(
FN (X ◦ S`X )

)
j

=
1

detN
(X̂ ~N FN (S`X ))j

=
1

detN
(X̂ ~N W`X̂ )j =

1

detN

∑
n∈RN

x̂n(W`X̂ )j−n

=
1

detN

∑
n∈RN

x̂nx̂j−ne
−2πi`TN−1(j−n)

=
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂nx̂j−ne
2πi`TN−1n

=
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂n
˜̂xn−je2πi`TN−1n.

Using (vii.), ˜̂xn−j = x̂n−j, so the last expression equals

1

detN
e−2πi`TN−1j

∑
n∈RN

x̂nx̂n−je
2πi`TN−1n

=
1

detN
e−2πi`TN−1j

∑
n∈RN

(
X̂ ◦ SjX̂

)
n
e−2πi(−`)TN−1n

=
1

detN
e−2πi`TN−1j

(
FN (X̂ ◦ SjX̂ )

)
−`
.

For notational convenience, we define Y[: `] ∈ RN1×N2 as
the 2-dimensional slice of Y ∈ RN1×N2×L1×L2 for a fixed
vector index ` = [`1 `2]T ∈ ZL1

×ZL2
. And thus, the notation

(Y[: `])k refers to the (k1, k2) entry of Y[: `].

Lemma 2. Let X ∈ CN1×N2 , M ∈ CN1×N2 , and
Y ∈ RN1×N2×L1×L2 denote the signal to be recovered,
the mask, and the measurements as given by (2), respectively.
Then for a fixed ` ∈ ZL1

× ZL2
and any k ∈ ZN1

× ZN2
,(

FN
(
FNY[: `]

))
k

=

(detN)
[
FN (X ◦ SkX ) ◦ FN (M̃ ◦ S−kM̃)

]
`
.

Proof. From (2), we have that

Y[: `] = [FN (X ◦ S`M)] ◦ [FN (X ◦ S`M)]

=
[
(FN (X ◦ S`M)) ◦ (detN)

(
F−1
N (X ◦ S`M)

)]
.

Therefore, by properties (vi.), (viii.), and (iv.),

FNY[: `] = FN [FN (X ◦ S`M) ◦ (detN)F−1
N (X ◦ S`M)]

=
1

detN

[
FN (FN (X ◦ S`M)) ~N (detN)(X ◦ S`M)

]
=

1

detN

[
(detN)( ˜X ◦ S`M) ~N (detN)(X ◦ S`M)

]
= (detN)

[
(X̃ ◦ S−`M̃) ~N (X ◦ S`M)

]
.

Then,(
FNY[: `]

)
k

= (detN)
∑

n∈RN

x̃n(S−`M̃)n xk−n(S`M)k−n

= (detN)
∑

n∈RN

x−nm̃n+` xk−nmk−n−`

= (detN)
∑

n∈RN

x−nxk−nm̃n+`m̃(n+`)−k.

After the change n = −p,(
FNY[: `]

)
k

= (detN)
∑

p∈RN

xpxp+k m̃`−pm̃(`−p)−k

= (detN)
∑

p∈RN

(X ◦ S−kX )p(M̃ ◦ SkM̃)`−p

= (detN)
[(
X ◦ S−kX

)
~N

(
M̃ ◦ SkM̃

)]
`
.

(3)

Finally, applying Property (v.) yields(
FN
(
FNY[: `]

))
k

=

(detN)
[
FN
(
X ◦ S−kX

)
◦ FN

(
M̃ ◦ SkM̃

)]
`
.
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Definition 2. Let X ∈ CN1×N2 and L1, L2,M1,M2 ∈ N be
such that L1M1 = N1 and L2M2 = N2. Then, we define the
uniform sub-sampling operator ZL : CN1×N2 → CM1×M2 as

(ZLX )n := xLn, ∀n ∈ ZM1
× ZM2

,

where the sub-sampling periodicity matrix is

L =

[
L1 0
0 L2

]
.

We will also make use of the matrix M =

[
M1 0
0 M2

]
.

Lemma 3 (Aliasing in 2D). For any j ∈ ZM1 × ZM2 ,

(FM (ZLX ))j =
1

detL

∑
p∈RL

x̂j−Mp.

Proof. By the definition of DFT of signals with periodicity
M , we have

(FM (ZLX ))j =
∑

n∈RM

xLne
−2πinTM−1j

=
∑

n∈RM

(
1

detN

∑
k∈RN

x̂ke
2πikTM−1n

)
e−2πinTM−1j

=
1

detN

∑
k∈RN

x̂k
∑

n∈RM

e2πikTM−1ne−2πinTM−1j

=
1

detN

∑
k∈RN

x̂k
∑

n∈RM

e2πinTM−1(k−j)

=
1

detL

∑
k∈RN

x̂kδk−j mod M ,

where mod M denotes modulo M1 vertically (first index
component) and modulo M2 horizontally (second index com-
ponent). We have used the Kronecker delta notation, here
p ∈ ZN1 × ZN2 ,

δk−j mod M =

{
1, k = j−Mp

0, otherwise
.

More explicitly, δk−j mod M = 1 exactly when[
k1

k2

]
=

[
j1 − p1N1/L1

j2 − p2N2/L2

]
.

Since this happens for exactly L1 values of p1 and L2 values
of p2, we have

(FM (ZLX ))j =
1

detL

∑
p∈RL

x̂j−Mp.

C. Main Result

Before presenting our main result, we define the following
transposition of a 4−tensor Y: (YT )ijkl := Yklij , which reads
as (YT )[` j] = Y[j `] in bracket notation.

Theorem 1. Let X ∈ CN1×N2 , M ∈ CN1×N2 , and Y ∈
RN1×N2×L1×L2 denote the signal to be recovered, the mask,
and the measurements, respectively. Suppose N1 = L1M1 and
N2 = L2M2, where L1, L2,M1,M2 ∈ N (i.e., the shifts

L1, L2 divide the signal dimensions N1, N2 respectively).
Then, for any ω ∈ ZL1 × ZL2 and any k ∈ ZN1 × ZN2 ,

(detN)2

detL
(FL(FNY)T )[ω k] =

∑
p∈RM

(
FN

(
X̂ ◦ Sω−LpX̂

))
k

(
FN

(
M̂ ◦ SLp−ωM̂

))
k
.

(4)
Moreover, if supp(M̂) = {n ∈ ZN1

× ZN2
: 0 ≤ n1 ≤

δ1 − 1, 0 ≤ n2 ≤ δ2 − 1} for some δ1, δ2 ∈ N such that
L1 = 2δ1 − 1, L2 = 2δ2 − 1, then the sum above collapses to
exactly one of the four terms:

i.
(
FN (X̂ ◦SωX̂ )

)
k

(
FN (M̂◦S−ωM̂)

)
k

ii.
(
FN (X̂ ◦Sω−[0 L2]T X̂ )

)
k

(
FN (M̂◦S[0 L2]T−ωM̂)

)
k

iii.
(
FN (X̂ ◦Sω−[L1 0]T X̂ )

)
k

(
FN (M̂◦S[L1 0]T−ωM̂)

)
k

iv.
(
FN (X̂ ◦Sω−[L1 L2]T X̂ )

)
k

(
FN (M̂◦S[L1 L2]T−ωM̂)

)
k

(5)

where i. if ω ∈ Zδ1 × Zδ2 , ii. if ω ∈ Zδ1 × ZL2\Zδ2 , iii. if
ω ∈ ZL1

\Zδ1 × Zδ2 , and iv. if ω ∈ ZL1
\Zδ1 × ZL2

\Zδ2 .

Proof. In (3) we saw that

(FNY)k1,k2,`1,`2 = (detN)
[(
X ◦ S−kX

)
~N

(
M̃ ◦ SkM̃

)]
`
.

Equivalently,(
(FNY)T

)
[` k]

=(detN)
[(
X ◦ S−kX

)
~N
(
M̃ ◦ SkM̃

)]
`

for ` ∈ ZL1
× ZL2

.
Define U := (detN)[(X ◦ S−kX ) ~N (M̃ ◦ SkM̃)], ∈

CN1×N2 . Taking `1 ∈ZN1
and `2∈ZN2

at equally spaced L1

vertical and L2 horizontal shifts, respectively, u` corresponds
to sub-sampled elements of U for shifts ` such that

` ∈
{

0,
N1

L1
, . . . ,

(L1 − 1)N1

L1

}
×
{

0,
N2

L2
, . . . ,

(L2 − 1)N2

L2

}
.

Now, we take the 2D L-periodic DFT of 2-dimensional slices
of (FNY)T ∈ CL1×L2×N1×N2 for fixed modes of k ∈ ZN1

×
ZN2

. Then for ω ∈ ZL1
× ZL2

, we have by Definition 2,(
FL(FNY)T

)
[ω k]

= (FL(ZMU))ω.

Thus, by Lemma 3 where M and L are exchanged,(
FL(FNY)T

)
[ω k]

=

1

detM

∑
p∈RM̂

uω−NM−1p =
detL

detN

∑
p∈RM̂

uω−Lp.

Applying Lemma 2, we get(
FL(FNY)T

)
[ω k]

=

(detL)
∑

p∈RM

[FN (X ◦ S−kX )]ω−Lp[FN (M̃ ◦ SkM̃)]ω−Lp.
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Now, we use the fact that time reversal is an involution to
rewrite the second term in the sum.

(FL(FNY)T )[ω k] =

(detL)
∑

p∈RM

[FN (X ◦ S−kX )]ω−Lp
˜

[FN (M̃ ◦ SkM̃)]Lp−ω.

Then, by Properties (iii.) and (iv.),

(FL(FNY)T )[ω k] =

(detL)
∑

p∈RM

[FN (X ◦ S−kX )]ω−Lp[FN (M◦ S−kM)]Lp−ω.

Therefore, by Lemma 1, we have

(detN)2

detL

(
FL(FNY)T

)
[ω k]

=∑
p∈RM

e2πi(ω−Lp)TN−1k
[
FN

(
X̂ ◦ Sω−LpX̂

)]
k
·

e2πi(Lp−ω)TN−1k
[
FN

(
M̂ ◦ SLp−ωM̂

)]
k

=∑
p∈RM

(
FN

(
X̂ ◦ Sω−LpX̂

))
k

(
FN

(
M̂ ◦ SLp−ωM̂

))
k
,

as desired.
To show the second part of Theorem 1, we want to find

conditions where

supp
(
M̂
)
∩ supp

(
SLp−ωM̂

)
6= ∅. (6)

We consider bandlimited masks1 M, whose Fourier transform
satisfies the following support constraint:

supp
(
M̂
)

= {n ∈ ZN1 × ZN2 : 0 ≤ n1 ≤ δ1 − 1,

0 ≤ n2 ≤ δ2 − 1}.
(7)

Under this constraint, (6) is satisfied if and only if

|p1L1 − ω1| ≤ δ1 − 1 and |p2L2 − ω2| ≤ δ2 − 1.

It is now easy to verify that these two inequalities are satisfied
only when p1 = 0 for ω1 ∈ Zδ1 and p1 = 1 for ω1 ∈ ZL1\Zδ1 ,
and similarly only when p2 = 0 for ω2 ∈ Zδ2 and p2 =
1 for ω2 ∈ ZL2

\Zδ2 . This leads to the following piecewise
definition of p = [p1 p2]T :

p =


[0 0]T , if ω ∈ Zδ1 × Zδ2
[0 1]T , if ω ∈ Zδ1 × ZL2

\Zδ2
[1 0]T , if ω ∈ ZL1

\Zδ1 × Zδ2
[1 1]T , if ω ∈ ZL1

\Zδ1 × ZL2
\Zδ2 .

Substituting in (4) collapses the sum to yield the four terms
enumerated in (5) as desired.

Intuitively, this result establishes the decoupling of the
unknown signal from the known mask; furthermore, this
decoupling is achieved by means of a highly structured (and

1Such masks have applications in coded diffraction pattern (CDP) based
imaging setups and Fourier ptychography. Equivalent results can be developed
for support-limited masks – we leave this extension to future research.

efficient to invert) linear system. Indeed, this linear system can
be inverted efficiently by computing a small (proportional to
L1L2) number of FFTs.

D. Mask Design and Angular Synchronization

From Theorem 1, we see that recovery of FN
(
X̂ ◦ SωX̂

)
requires componentwise (for all k ∈ ZN1 × ZN2 ) division
by FN (M̂◦S−ωM̂). This requires the second terms in each
of the four cases in (5) to be nonzero for all k ∈ ZN1

×
ZN2

. The design of masks M which satisfy this criteria (in
addition to the bandlimitedness constraint imposed by (7)) is
an open research problem. Here, we present one such mask
– motivated by the 1D mask prescription in [9] – which has
been empirically verified to satisfy these conditions.

Let a ∈ [4,∞) and define the support-constrained 1D
vectors xm̂ ∈ RN1 and ym̂ ∈ RN2 by

(xm̂)k =
e−k/a

4
√

2δ1 − 1
· 1k<δ1 , (ym̂)k =

e−k/a

4
√

2δ2 − 1
· 1k<δ2 .

Then, using ⊗ to denote the tensor product,

M = F−1
N (xm̂⊗ ym̂) (8)

defines an admissible 2D mask.
Having recovered FN

(
X̂ ◦ SωX̂

)
using Theorem 1, com-

puting a series of IDFTs allows for the estimation of(
X̂ ◦ SωX̂

)
k

for all ω ∈ ZL1 ×ZL2 and all k ∈ ZN1 ×ZN2 .
These can be interpreted as (scaled) relative phase estimates
(since each of the entries is of the form x̂nx̂n−ω). Recovering
individual phase information (x̂n) amounts to solving an angu-
lar synchronization problem [10]; this can be done efficiently
and robustly by computing the (normalized) eigenvector cor-
responding to the largest eigenvalue (see [11] and [8] for a
detailed discussion). We note that the leading eigenvector can
be computed in essentially linear time using the power method
(or one of its variants) due to the highly structured (and sparse)
nature of the matrices involved. The complete pseudocode for
this phase recovery method is provided in Alg. 1.

III. NUMERICAL EVALUATION

We now present numerical results verifying the efficiency
and noise robustness of the proposed method. Fig. 1 shows the
reconstruction of a synthetic 230×230 pixel complex test im-
age X = ΨeiΘ (with Ψ and Θ chosen to be the cameraman
and circuits test images respectively), using phaseless
measurements generated as per (2), L1 = L2 = 23 shifts,
and the deterministic mask prescription from (8). The relative
(Frobenius norm) error in recovering X was 1.834 × 10−11,
with an execution time2 of 19.55s. We next investigate the
robustness of Alg. 1 to measurement errors by adding zero
mean i.i.d. random Gaussian noise to the measurements in
(2) at various signal to noise ratios (SNR, measured in dB).
The errors in the reconstruction (up to a global phase factor,

2Implemented in Matlab R2018b on a laptop computer with an Intel Core
M-5Y10c CPU, 8 GB RAM, and running Ubuntu 18.04 (64-bit).
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Algorithm 1 2D Phase Retrieval for Bandlimited Masks
Inputs

1) Tensor
(
Y[j `]

)
j∈ZN1

×ZN2
,`∈ZL1

×ZL2

of measurements
as in (2).

2) Known bandlimited mask M (see, for example, (8)).
Steps

1) Estimate
(
FN

(
X̂ ◦ SωX̂

))
k

for ω ∈ ZL1
× ZL2

and
k ∈ ZN1

× ZN2
from (5).

2) Invert the Fourier transforms above to recover estimates
of the L1 · L2 matrices X̂ ◦ SωX̂ .

3) Vectorize the recovered matrices to N1·N2 length vectors.
4) Form a banded matrix X by populating the vectorized es-

timates from Step 3 on its L1L2 diagonals, each diagonal
corresponding to a single distinct ω value.

5) Hermitianize by setting X← [ (X + X∗)/2.

6) Estimate
∣∣∣∣(vec(X̂ )

)
j

∣∣∣∣ ≈ ηj =
√
|Xj,j |.

7) Normalize (the non-zero entries of) X component-wise
to form the relative phase matrix X̊.

8) Compute the leading normalized eigenvector of X̊, u.
Output
Estimate of X (converted from a vector to matrix form),
Xrec := F−1

N X̂rec, where X̂rec derives from(
vec
(
X̂rec

))
j

:= ηjuj .

Recovered Magnitude

(a) Recovered Magnitude

Recovered Phase

(b) Recovered Phase

Fig. 1. Recovered magnitude and phase of a test image using Alg. 1.
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0

Fig. 2. Robustness to Additive Measurement (Gaussian) Noise

measured in dB, averaged over 100 trials) are plotted in Fig.
2. Here, we define

SNR (dB) = 10 log10

(
‖vec(Y)‖22

(N1N2L1L2)σ2

)
, and

Error (dB) = 10 log10

(
minθ

∥∥eiθX −Q∥∥2

F

‖X‖2F

)
,

where vec(·) denotes tensor vectorization (consistent with
Matlab’s colon operator), σ2 is the variance of added noise,
and Q, X denote the recovered and true images, respectively.
As expected, the reconstruction accuracy improves with in-
crease in SNR, with improved accuracy offered by masks
with larger support (larger δ1, δ2 values). Finally, Table II lists
execution times for Alg. 1 (in sec., averaged over 100 trials)
for various problem sizes. The execution time grows approx-
imately log-linearly (in N1N2), with room for improvement
through code optimization and use of compiled code.

TABLE II
EXECUTION TIME (IN SEC.) VS. PROBLEM SIZE

(N1, N2) (22, 18) (75, 45) (152, 102) (209, 119)
Exec. Time (s) 0.06 0.64 3.48 5.85

IV. FUTURE DIRECTIONS

Several compelling avenues for further research exist, in-
cluding developing error guarantees in the presence of noise,
designing more (practicable) families of measurement masks,
performing more elaborate empirical evaluations, and imple-
menting this algorithm with real-world datasets.
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