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Abstract

This paper discusses the detection of edges from two-dimensional truncated Fourier spectral

data. Compared to edge detection from pixel data, this is a more challenging problem since we

seek accurate local information from a small number of often noisy global measurements. We

propose a highly effective algorithm using a specific class of spectral mollifiers which converges

uniformly to sharp peaks along the singular support of the function. We provide theoretical

guarantees and numerical simulations to show that the resulting edge map is free of spurious

edges and oscillations.

1 Introduction

The detection of jump discontinuities in piece-wise smooth functions is an important task in sev-

eral areas of science and engineering. For example, many image and video processing operations

such as segmentation and feature extraction rely on the accurate identification of edges in the

underlying image (see for example [1, Chapter 10] for a discussion). Similarly, high-order meth-

ods for the numerical solution of PDEs often incorporate jump information when the solution is

piece-wise smooth [2, Chapter 9]. Although edge detection is a non-trivial problem (especially

when dealing with discrete and/or quantized data, and in the presence of noise), efficient and

accurate algorithms such as the (W)ENO schemes, [3,4] and the Canny edge detector, [5] exist

for identifying edge locations when we start with physical space or pixel data. Certain applica-

tions, however, require that we extract edge information starting with spectral data. The most

common example is magnetic resonance imaging (MRI), where the underlying physics of nuclear

magnetic resonance implies that the MR scanner collects samples of the Fourier transform of

the specimen being imaged. Identifying edges from such data is a significantly more challeng-

ing problem since we seek accurate local information from a small number of often noisy global

measurements.

We begin by illustrating this problem in one dimension. Consider the piece-wise smooth test
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function f : [0, 1)→ R

f(x) = a(x) sin(πx), a(x) =


1
2 x ∈

[
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4

)
0 x ∈

[
1
4 ,

1
2

)
1 x ∈

[
1
2 ,

3
4

)
−1 x ∈

[
3
4 , 1
)
.

(1.1)

The jump discontinuities in f are completely described by its associated jump function, [f ],

defined as

[f ](x) :=

{
f(x+)− f(x−) x ∈ (0, 1)

f(0+)− f(1−) x = 0.
(1.2)

Given the first 2N + 1 Fourier coefficients of f ,

f̂(k) =

∫ 1

0

f(x)e−2πikxdx, k = −N, . . . , N,

how do we identify the locations and values of its jump discontinuities, i.e., how do we approx-

imate [f ]? The naive approach would be to compute the 2N + 1 mode Fourier partial sum

approximation of f on an equispaced grid

SNf(xj) =
∑
|k|≤N

f̂(k)e2πikxj , xj =
j

N
, j = 0, . . . , N − 1,

followed by the application of a local differencing scheme such as the (undivided) forward dif-

ference operator

D+SNf(xj) =

{
SNf(xj+1)− SNf(xj) j ∈ [0, N − 2]

SNf(x0)− SNf(xN−1) j = N − 1.
(1.3)

The results using such an approach are shown in Fig. 1a, where f, SNf and D+SNf are plotted

using dashed, solid (red) and solid(blue) lines respectively. A simple detector function of the

form

E(xj) =

{
D+SNf(xj) |D+SNf(xj)| >

∣∣D+SNf(x(j±1))
∣∣ , D+SNf(xj) > γ

0 else,
(1.4)

is used to extract jump information from D+SNf , where γ is a detection threshold. Since

SNf (and consequently, D+SNf) is a Fourier approximation of a piece-wise smooth function,

it suffers from non-physical Gibbs oscillations. The largest of these (which are 9% of the cor-

responding jump height) are observed to be of the same order of the smallest jump in Fig.

1a. Unsurprisingly, the detector function (1.4) mistakes these oscillations for legitimate edges.

Therefore, the challenge in detecting jump discontinuities from Fourier data is to distinguish

these non-physical Gibbs oscillations from legitimate edges, or, to eliminate them entirely.

The latter approach was pursued by Cochran et. al. in [6], where the detection of jump

discontinuities from one-dimensional truncated Fourier data using a special class of spectral
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Figure 1: Jump Detection from one-dimensional truncated Fourier data. The jumps in test function
(1.1) are detected using 2N+1 Fourier modes, with N = 32 and a reconstruction grid of 250 points.

mollifiers was discussed. They proposed to approximate [f ] by a sequence of smooth pulses,

QσN (x) =
∑
ξ∈K

[f ](ξ)σN (x− ξ), where K is the set of jump locations of f . For increasing N , QσN

is increasingly concentrated at the jumps and σ is drawn from an appropriate class of functions

so as to ensure QσN has no oscillations. Further, it was shown that a mollified Fourier derivative

operator of the form

TN [σλN ](x) = 2πi
∑
|k|≤N

k σ̂λN (k) f̂(k)e2πikx (1.5)

converges uniformly to QσN for suitable choice of σ and sequence λN . A representative result

of this method is shown in Fig. 1b, confirming the oscillation-free approximation qualities

of TN [σλN ]. The edge detector function (1.4) applied to TN [σλN ] now contains no spurious re-

sponses as was the case in Fig. 1a. We note that the jump approximation (1.5) is a specialization

of the more general class of concentration edge detectors first introduced by Gelb and Tadmor

in [7,8] and refined in [9–11]. These methods generally begin with a jump approximation of the

form

SσN [f ](x) = 2πi
∑
|k|≤N

ω

(
k

N

)
f̂(k)e2πikx, (1.6)

where ω defines a concentration factor. The corresponding physical-space concentration kernels

are typically odd, suitably scaled, smooth and oscillatory. The oscillatory nature of these kernels

makes it difficult to implement reliable edge detector functions, especially in the presence of

noise.

Needless to say, the same issues exist in two dimensions, as illustrated in Fig. 2, where the

edges of a Shepp-Logan brain phantom are identified using the Canny edge detector. A Fourier

partial sum reconstruction on a 256 × 256 grid and using 50 × 50 Fourier modes serves as the

input to the Canny edge detector. Fig. 2b plots the generated edge map while Fig. 2c shows

a cross-section at the center of the image. The identified edges and the Fourier reconstruction

along this cross-section are plotted using dashed and solid lines respectively. The comments and
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Figure 2: The Canny edge detector applied to a 50 × 50 mode partial sum Fourier reconstruction
of the Shepp-Logan phantom on a 256× 256 grid.

observations regarding the Gibbs phenomena in Fig. 1 apply here too. Our objective in this

paper is to extend the one-dimensional framework introduced in [6] to the detection of edges

from two-dimensional truncated and noisy Fourier data.

It is appropriate at this point to mention other related approaches to this problem and

their relative advantages and disadvantages. We start with popular pixel-space edge detectors

such as the Sobel, Prewitt or Marr-Hildreth edge detectors (see [1, Chapter 10] for a review)

as well as more specialized algorithms such as the Canny edge detector [5]. As mentioned

previously, these pixel- space approaches suffer from the tendency to mistake Gibbs oscillations

for edges when applied to Fourier data. The method proposed here is more closely related to the

two-dimensional concentration kernel approaches discussed in [12] and [13]. [12] uses statistical

hypothesis testing methods to distinguish true edges from Gibbs oscillations, while [13] uses

regularized bump functions and rotation-based post-processing operations to identify edges.

The main contribution of this paper is the use of a specific form of spectral mollifier (and

associated parameters) as well as a rigorous analysis of the same, demonstrating the oscillation-
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free nature of the resulting edge approximation. We note that this framework can be combined

with any other post-processing procedures, including Canny-type hysteresis edge tracking.

The rest of this paper is organized as follows: §2 introduces our two-dimensional edge de-

tection scheme. A rigorous analysis examining the convergence of the scheme and confirming

the absence of oscillaitons in the approximation is presented §3. §4 provides numerical results,

including comparisons to pixel data methods such as the Canny edge detector and existing

Fourier data schemes such as the concentration method. Performance in the presence of noise

is also examined. Some concluding remarks and future directions are presented in §5.

2 Two Dimensional Edge Detection using Gaussian Mol-

lifiers

We first give a brief introduction to the problem of detecting edges from 2-D Fourier data.

Suppose f : R2 → R is a piece-wise smooth and compactly supported on [0, 1]2. We are given

its finite Fourier data: f̂(z) for z = (z1, z2) ∈ SN := [−N,N ]2 ∩ Z2, where

f̂(z) =

∫
(x,y)∈R2

f(x, y)e−2πiz1xe−2πiz2ydxdy.

We would like to identify all of its discontinuities in [0, 1]2 and the corresponding jump heights

that will be defined below.

We next present some assumptions on the function f and define the jump heights at the

discontinuities. We will assume the set Γ of all the discontinuities consists of a few finite and

disjoint smooth curves. In particular, we could write all the discontinuities in the following two

ways:

(αj(y), y), j = 1, 2, . . . , Ny, , y ∈ R,

and

(x, ᾱj(x)), j = 1, 2, . . . ,Mx, x ∈ R,

where Ny is a finite number for all but finitely many y’s and Mx is a finite number for all but

finitely many x’s. We would also assume Mx and Ny are uniformly bounded for all x ∈ R
and all y ∈ R. A simple illustration is shown in Figure 3. Since we assume the discontinuities

are smooth curves, both αj(y) and ᾱj(x) are smooth functions locally by the Implicit Function

Theorem for almost all y’s and for almost all x’s respectively. Let fx and fy denote the partial

derivatives of f at points other than the discontinuities. Note that both fx and fy are again

piece-wise smooth with the same discontinuities of f . Let

[f ]1(x, y) = f(x+, y)− f(x−, y), and [f ]2(x, y) = f(x, y+)− f(x, y−), (x, y) ∈ R2.

We point out that when they are different, one of them must be zero. In particular, [f ]1(αj(y), y) =

[f ]2(αj(y), y) for all but y’s with α′j(y) = 0 or ∞. Consequently, we define the jump height

[f ](x, y) be either one of them when they are the same, and the nonzero one if they are differ-

ent.
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Figure 3: Edge Detection in two dimensions — Principle

We next introduce our edge detector by using the spectral Gaussian mollifiers. For λ > 0,

we define

IN,λ(x, y) = −2πi
∑
z∈SN

f̂(z)z1e−
‖z‖2

λ2 e2πi(z1x+z2y) (2.1)

and

JN,λ(x, y) = −2πi
∑
z∈SN

f̂(z)z2e−
‖z‖2

λ2 e2πi(z1x+z2y).

We will use the following function to detect the edges of f :

EN,λ(x, y) =
1√
πλ

[
I2
N,λ(x, y) + J2

N,λ(x, y)
]1/2

sgn(IN,λ(x, y)), (x, y) ∈ R2, (2.2)

where sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 otherwise.

We remark that without the Gaussian mollifier (i.e., λ =∞), IN,λ(x, y) and JN,λ(x, y) would

reduce to the partial derivatives of f(x), which would yield spikes at the edges in addition to

non-physical Gibbs oscillations in their vicinity. We will show in next section that with suitably

chosen λ, the function EN,β(x, y) in (2.2) is a robust and accurate edge detector.

3 Convergence Analysis

We will present in this section the convergence analysis of the edge detector EN,λ(x, y) in (2.2).

Specifically, we will present how to choose the parameter λ such that

(1) When (x, y) is away from the edge curves of f , the value of EN,λ(x, y) is close to zero.

(2) When (x, y) is on the edge curves of f , the value of EN,λ(x, y) is an approximation of the

jump height [f ](x, y).
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(3) The function EN,λ(x, y) behaves like sharp “mountains” rather than some oscillated peaks

around the edges. That is, the Gibbs oscillation is controlled.

(4) The edge detector EN,λ(x, y) is robust with respect to small perturbations/noises on the

spectral data f̂(z).

We point out that the convolution of f and a Gaussian function is an important resource

for locating the edges of f , since the partial derivatives of the convolution would show some

singular behaviors (sharp “mountains”) around the edges. To this end, we would define this

convolution and study the relation between its partial derivatives and our edge detector. We

consider the following Gaussian function

φ(x, y) = πe−π
2(x2+y2), (x, y) ∈ R2,

and for λ ∈ R, let

φλ(x, y) = λ2φ(λx, λy), (x, y) ∈ R2. (3.1)

We then convolve f with φλ:

Fλ(x, y) = (f ∗ φλ)(x, y) =

∫
(s,t)∈R2

f(s, t)φλ(x− s, y − t)dsdt, (x, y) ∈ R2. (3.2)

We will next focus on deriving estimates of the edge detector IN,λ. The estimates of JN,λ

could be obtained in a similar way. We shall first show a relation between IN,λ and the partial

derivative ∂Fλ
∂x . To this end, for (x, y) ∈ R2 we let

Qλ(x, y) =
∑
z∈Z2

∂Fλ(x+ z1, y + z2)

∂x
, (3.3)

and

BN (x, y) = 2πi
∑

z∈Z2\SN

f̂(z)z1e−
‖z‖2

λ2 e2πi(z1x+z2y). (3.4)

Proposition 3.1 For (x, y) ∈ R2, there holds

IN,λ(x, y) = Qλ(x, y) +BN (x, y).

Moreover, there exists a positive constant c such that for any (x, y) ∈ R2 and N ∈ N

|IN,λ(x, y)−Qλ(x, y)| ≤ cλ3e−
3N2

2λ2 .

Proof: We will prove the equality by a direct computation. To this end, we define the shift of

the partial derivatives

g(x,y)(s, t) =
∂Fλ(x+ s, y + t)

∂x
, (s, t) ∈ R2.
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It follows that

Qλ(x, y) =
∑
z∈Z2

g(x,y)(z).

On the other hand, a direct computation yields that ĝ(x,y)(ξ) = −2πif̂(ξ)ξ1e−
‖ξ‖2

λ2 e2πi(ξ1x+ξ2y).

By the Poisson summation formula,

Qλ(x, y) =
∑
z∈Z2

ĝ(x,y)(z) =
∑
z∈Z2

−2πif̂(z)ξ1e−
‖z‖2

λ2 e2πi(z1x+z2y)

This combined with the definition of IN,β in (2.1) and the definition of BN in (3.4) implies the

desired equality.

We next show the inequality. It is enough to show BN (x, y) is bounded by the right hand

side of the inequality. Since f ∈ L2[0, 1], there exists a positive constant c0 such that |f̂(z)| ≤ c0.

It follows from (3.4) that

|BN (x, y)| ≤ 2πc0
∑

z∈Z2\SN

z1e−
‖z‖2

λ2 = 2πc0
∑
z1>N

z1e−
z21
λ2

∑
z2>N

e−
z22
λ2 .

It is direct to observe that
∑
z1>N

z1e−
z21
λ2 ≤

∫∞
N
te−

t2

λ2 dt = λ2

2 e−
N2

λ2 . Moreover, by using

the polar coordinates, it follows from a direct computation that
∑
z2>N

e−
z22
λ2 ≤

√
π

2 λe−
N2

2λ2 .

Substituting these two estimates into the above inequality, we have

|BN (x, y)| ≤ π3/2

2
c0λ

3e−
3N2

λ2 ,

which implied the desired inequality. �

We point out that we could choose appropriate λ depending on N such that BN (x, y) con-

verges to zero uniformly, which avoids the Gibbs oscillation in the edge detectors. More details

will be shown in later results.

We shall next analyze the behavior of Qλ. In particular, we will show that Qλ has peaks at

the edges by using its relation with the partial derivative ∂Fλ
∂x . To this end, we first present a

direct computation of ∂Fλ
∂x . We let

Ĩλ(x, y) =

∫
R

Nt∑
j=1

[f ]1(αj(t), t)φλ(x− αj(t), y − t)dt, (3.5)

and

Hλ(x, y) =

∫
(s,t)∈R2

fx(s, t)φλ(x− s, y − t)dsdt. (3.6)

We have the following result of the partial derivative ∂Fλ
∂x .

Proposition 3.2 For any (x, y) ∈ R2, there holds that

∂Fλ
∂x

(x, y) = Ĩλ(x, y) +Hλ(x, y).
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Moreover, if the edge curves are at least ε away from the boundary of [0, 1]2, that is,
√

(x− x∗)2 + (y − y∗)2 ≥
ε for all (x, y) ∈ [0, 1]2 with either x ∈ {0, 1} or y ∈ {0, 1} and for all (x∗, y∗) on the edge curves,

then there exists a positive constant c such that for (x, y) ∈ [0, 1]2

|Qλ(x, y)− Ĩλ(x, y)| ≤ cπλ2e−π
2λ2ε2 + cπλ2 e−π

2λ2

(1− e−π2λ2)2
+ ‖fx‖∞.

Proof: We first show the equality about the decomposition of ∂Fλ
∂x . From the definition of ∂Fλ

in (3.2), we have
∂Fλ
∂x

(x, y) =

∫
(s,t)∈R2

f(s, t)
∂φλ
∂x

(x− s, y − t)dsdt.

A direct calculation of ∂φλ
∂x from (3.1) yields that

∂Fλ
∂x

(x, y) = λ3

∫
t∈R

[∫
s∈R

f(s, t)φx(λ(x− s), λ(y − t))ds
]
dt.

Note that for t ∈ R, f(·, t) has discontinuities αj(t) for 1 ≤ j ≤ Nt. For simplicity of presenta-

tion, we let α0(t) = −∞ and αNt+1(t) =∞. It follows that

∂Fλ
∂x

(x, y) = λ3

∫
t∈R

[Nt+1∑
j=1

∫ αj(t)

αj−1(t)

f(s, t)φx(λ(x− s), λ(y − t))ds
]
dt.

Apply integration by parts and we have

∂Fλ
∂x

(x, y) = λ2

∫
t∈R

[
−
Nt+1∑
j=1

f(s, t)φ(λ(x−s), λ(y−t))
∣∣∣∣αj(t)
αj−1(t)

+

∫
R
fx(s, t)φ(λ(x−s), λ(y−t))ds

]
dt.

The desires equality follows from a direct calculation from the above equality.

We next estimate the difference of Qλ(x, y) and Ĩλ(x, y). It follows from the definition of Qλ

in (3.3) and the equality shown above that

|Qλ(x, y)− Ĩλ(x, y)| ≤
∑
z 6=0

|Ĩλ(x+ z1, y + z2)|+
∑
z∈Z2

|Hλ(x+ z1, y + z2)|. (3.7)

We will estimate the two terms in the right hand side of the above inequality separately.

We start with an estimate of first term. Note that both Nt and [f ]1(λj(t), t) are uniformly

bounded for all t. It follows from the definition of Ĩλ in (3.5) that there exists a positive constant

c0 such that

∑
z 6=0

|Ĩλ(x+ z1, y + z2)| ≤ c0
∑
z 6=0

∫
R
φλ(x+ z1 − αj(t), y + z2 − t)dt.

Note that when z 6= 0, the point (x + z1, y + z2) is not in [0, 1]2. By assumption, it is at

least ε away from the edge curves. In particular, when z ∈ E := {−1, 0, 1}2\(0, 1), we have(
(x + z1 − αj(t))2 + (y + z2 − t)2

)1/2 ≥ ε. On the other hand side, when |z1| ≥ 2, the point

(x + z1, y + z2) is at least |z1| − 1 away from the edge curves. When |z2| ≥ 2, the point

9



(x+ z1, y + z2) is at least |z2| − 1 away from the edge curves. Substituting these estimates into

φλ as in (3.1) yields that∑
z 6=0

|Ĩλ(x+ z1, y + z2)|

≤
∑
z∈E
|Ĩλ(x+ z1, y + z2)|+

∑
z1∈Z,|z2|≥2

|Ĩλ(x+ z1, y + z2)|+
∑

|z1|≥2,z2∈Z

|Ĩλ(x+ z1, y + z2)|

≤ 5c0πλ
2e−π

2λ2ε2 + 4c0πλ
2 1

1− e−π2λ2

e−π
2λ2

1− e−π2λ2 ,

which combined with (3.7) implies

|Qλ(x, y)− Ĩλ(x, y)| ≤ 5c0πλ
2e−π

2λ2ε2 + 4c0πλ
2 e−π

2λ2

(1− e−π2λ2)2
+
∑
z∈Z2

|Hλ(x+ z1, y + z2)|.

To show the desired result on |Qλ(x, y)− Ĩλ(x, y)|, it remains to prove
∑

z∈Z2 |Hλ(x+z1, y+

z2)| ≤ ‖fx‖∞. Note that fx(s, t) = 0 when (s, t) /∈ [0, 1]2. It is direct to observe from the

definition of Hλ in (3.6) that for any z ∈ Z2,

|Hλ(x+ z1, y + z2)| =

∣∣∣∣∫
(s,t)∈[0,1]2

fx(s, t)φλ(x+ z1 − s, y + z2 − t)dsdt
∣∣∣∣

≤ ‖fx‖∞
∫

(s,t)∈[0,1]2
φλ(x+ z1 − s, y + z2 − t)dsdt,

It implies

∑
z∈Z2

|Hλ(x+ z1, y + z2)| ≤ ‖fx‖∞
∑
z∈Z2

∫
(s,t)∈[0,1]2

φλ(x+ z1 − s, y + z2 − t)dsdt

= ‖fx‖∞
∫

(u,v)∈R2

φλ(u, v)dudv

= ‖fx‖∞,

which finishes the proof. �

We will continue with the analysis of Ĩλ. In particular, we will show that it is concentrated

around the edges of f .

Proposition 3.3 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,
there exists a positive constant c such that

|Ĩλ(x, y)| ≤ cλ2e−π
2λ2ε2 .

(ii) When (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) for some j0 ∈ N, if there exists a ε > 0

such that d((αj(y), y), (αj0(y∗), y∗)) =
√

(αj(y)− αj0(y∗))2 + (y − y∗)2 ≥ ε for all j 6= j0

10



and y ∈ [0, 1], then there exists a positive constant c such that∣∣∣∣Ĩλ(x∗, y∗)− [f ]1(x∗, y∗)

√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ c(λe−π
2λ2ε2 + λ2e−π

2λ2ε2 + (λε)2 + (λε)4
)
.

Proof: (i) Note that both Nt and the jump heights [f ]1(αj(t), t) are uniformly bounded. Since

f is compactly supported on [0, 1], it follows from the definition of tIλ in (3.5) that there exists

a positive constant c0 such that

|Ĩλ(x, y)| ≤ c0
∫ 1

0

φλ(x− αj(t), y − t)dt.

By the definition of φλ in (3.1),

|Ĩλ(x, y)| ≤ c0
∫ 1

0

λ2e−π
2λ2((x−αj(t))2+(y−t)2)dt.

When dist((x, y),Γ) ≥ ε, that is, (x− αj(t))2 + (y − t)2 ≥ ε2 for all t ∈ [0, 1],

|Ĩλ(x, y)| ≤ c0λ2e−π
2λ2ε2 .

(ii) By (3.5) we have that

Ĩλ(x∗, y∗) =

∫
R

Nt∑
j=1

[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt. (3.8)

It follows from the same argument in (i) that

∫
|t−y∗|≥ε

Nt∑
j=1

[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt ≤ c0λ2e−π
2λ2ε2 ,

and ∫
R

∑
j 6=j0

[f ]1(αj(t), t)φλ(αj0(y∗)− αj(t), y∗ − t)dt ≤ c0λ2e−π
2λ2ε2 .

These two inequalities combined with (3.8) yields that∣∣∣∣Ĩλ(x∗, y∗)− Ĩλ,ε(x∗, y∗)
∣∣∣∣ ≤ 2c0λ

2e−π
2λ2ε2 . (3.9)

where

Ĩλ,ε(x
∗, y∗) =

∫
|t−y∗|≤ε

[f ]1(αj0(t), t)φλ(αj0(y∗)− αj0(t), y∗ − t)dt. (3.10)

We next estimate the integral Ĩλ,ε(x
∗, y∗). Since both [f ]1 and αj0 are smooth functions

locally, there exist positive constants c1 and c2 such that for |t− y∗| ≤ ε∣∣[f ]1(αj0(t), t)− [f ]1(αj0(y∗), y∗)
∣∣ ≤ c1|t− y∗|, (3.11)
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and

|αj0(t)− αj0(y∗)− α′j0(y∗)(t− y∗)| ≤ c2|t− y∗|2. (3.12)

By the definition of φλ in (3.1),

φλ(αj0(y∗)− αj0(t), y∗ − t) = πλ2e−π
2λ2[(αj0 (y∗)−αj0 (t))2+(t−y∗)2].

Since αj0 is smooth, there exists a positive constant c3 such that |αj0(t)−αj0(y∗) +α′j0(y∗)(t−
y∗)| ≤ c3|t−y∗|. This combined with (3.12) yields that

∣∣(αj0(t)−αj0(y∗))2−(α′j0(y∗))2(t−y∗)2
∣∣ ≤

c2c3|t− y∗|3. Substituting it into the above equality and putting

ψλ(t) = πλ2e−π
2λ2[1+(α′j0

(y∗))2](t−y∗)2 , (3.13)

we have ∣∣∣∣φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t)

∣∣∣∣ ≤ ψλ(t)
(
1− e−π

2λ2c2c3|t−y∗|3
)
.

Since 1− e−x ≤ x for x ≥ 0,∣∣∣∣φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t)

∣∣∣∣ ≤ ψλ(t)π2λ2c2c3|t− y∗|3.

We can now estimate Ĩλ,ε(x
∗, y∗) as in (3.10) following from the above inequality and (3.11)∣∣∣∣Ĩλ,ε(x∗, y∗)− ∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣
≤

∣∣∣∣∫
|t−y∗|≤ε

(
[f ]1(αj0(t), t)− [f ]1(αj0(y∗), y∗)

)
ψλ(t)dt

∣∣∣∣
+

∣∣∣∣∫
|t−y∗|≤ε

[f ]1(αj0(y∗), y∗)(φλ(αj0(y∗)− αj0(t), y∗ − t)− ψλ(t))dt

∣∣∣∣
≤ c1

∣∣∣∣∫
|t−y∗|≤ε

|t− y∗|ψλ(t)dt

∣∣∣∣+ c2c3|[f ]1(αj0(y∗), y∗)|
∣∣∣∣∫
|t−y∗|≤ε

ψλ(t)π2λ2|t− y∗|3dt
∣∣∣∣.

It is direct to observe from (3.13) that ψλ(t) ≤ πλ2e−π
2λ2(t−y∗)2 . Moreover, there exists a

positive constant c4 such that c2c3|[f ]1(αj0(y∗), y∗) ≤ c4 for all y∗ ∈ [0, 1]. Substituting these

into the above inequality and having a change of variable u = t− y∗ yields that∣∣∣∣Ĩλ,ε(x∗, y∗)−∫
|t−y∗|≤ε

[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣ ≤ 2c1πλ
2

∫ ε

0

ue−π
2λ2u2

du+2c4π
3λ4

∫ ε

0

u3e−π
2λ2u2

du.

Since e−π
2λ2u2 ≤ 1 for all u ≥ 0, it follows from a direct computation of the above integrals that∣∣∣∣Ĩλ,ε(x∗, y∗)− ∫

|t−y∗|≤ε
[f ]1(αj0(y∗), y∗)ψλ(t)dt

∣∣∣∣ ≤ c1π(λε)2 +
1

2
c4π

3(λε)4. (3.14)
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We next estimate the integral in the above inequality. To this end, we let F (a) =
∫ a
−a e−x

2

dx.

A direction computation from (3.13) gives that∫
|t−y∗|≤ε

ψλ(t)dt =
λ√

1 + (α′j0(y∗))2
F
(
πλ
√

1 + (α′j0(y∗))2ε
)
.

Note that by using the polar coordinates in the integral, we have the following estimates of

F (a): π(1− e−a
2

) ≤ F 2(a) ≤ π(1− e−2a2), which implies |F (a)−
√
π| ≤

√
πe−a

2

. Substituting

it into the above equation, we have∣∣∣∣∫
|t−y∗|≤ε

ψλ(t)dt−
√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ √
πλ√

1 + (α′j0(y∗))2
e−π

2(1+(α′j0
(y∗))2)λ2ε2 ≤

√
πλe−π

2λ2ε2 .

Since [f ]1 is continuous, there exists a positive constant c5 such that |[f ]1(x∗, y∗)| ≤ c5 for all

y∗ ∈ [0, 1]. It implies∣∣∣∣∫
|t−y∗|≤ε

[f ]1(αj0(y∗), y∗)ψλ(t)dt− [f ]1(αj0(y∗), y∗)

√
πλ√

1 + (α′j0(y∗))2

∣∣∣∣ ≤ c5√πλe−π
2λ2ε2 .

The desired result follows from this combined with (3.9) and (3.14). �

We remark that we could choose appropriate λ and ε such that Ĩλ(x, y) will be arbitrarily

small when the point (x, y) is away from the edge curves and it will blow up when the point

(x, y) is on the edge curve. That is, Ĩλ(x, y) behaves like a “sharp mountain” around the edge

curves. We will present the specific choices of λ and ε in the later results.

We are now ready to present the edge detection behavior of IN,λ.

Theorem 3.4 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,

there exists a positive constant c such that∣∣∣∣IN,λ(x, y)√
πλ

∣∣∣∣ ≤ c(λ2e−
3N2

2λ2 + λe−π
2λ2ε2 + λ

e−π
2λ2

(1− e−π2λ2)2
+
‖fx‖∞
λ

)
.

(ii) When (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) for some j0 ∈ N, if there exists a ε > 0

such that d((αj(y), y), (αj0(y∗), y∗)) ≥ ε for all j 6= j0 and y ∈ [0, 1], then there exists a

positive constant c such that∣∣∣∣IN,λ(x∗, y∗)√
πλ

− [f ]1(x∗, y∗)√
1 + (α′j0(y∗))2

∣∣∣∣ ≤ c(λ2e−
3N2

2λ2 +λ
e−π

2λ2

(1− e−π2λ2)2
+
‖fx‖∞
λ

+(λ+1)e−π
2λ2ε2+λε2+λ3ε4

)
.

Proof: It follows immediately from Propositions 3.1, 3.2, and 3.3. �

Similarly, we could obtain the following estimates on JN,λ.

Theorem 3.5 (i) When (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε,
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there exists a positive constant c such that∣∣∣∣JN,λ(x, y)√
πλ

∣∣∣∣ ≤ c(λ2e−
3N2

2λ2 + λe−π
2λ2ε2 + λ

e−π
2λ2

(1− e−π2λ2)2
+
‖fy‖∞
λ

)
.

(ii) When (x∗, y∗) is on the edge, that is, y∗ = ᾱl0(x∗) for some l0 ∈ N, if there exists a ε > 0

such that d((x, ᾱl(x)), (x∗, ᾱl0(x∗))) ≥ ε for all l 6= l0 and x ∈ [0, 1], then there exists a

positive constant c such that∣∣∣∣JN,λ(x∗,y∗)√
πλ

− [f ]2(x∗, y∗)√
1 + (ᾱ′l0(x∗))2

∣∣∣∣ ≤ c(λ2e−
3N2

2λ2 +λ
e−π

2λ2

(1− e−π2λ2)2
+
‖fy‖∞
λ

+(λ+1)e−π
2λ2ε2+λε2+λ3ε4

)
.

Proof: It follows immediately from Propositions 3.1, 3.2, and 3.3. �

Consequently, we will present the main result of this paper below. In particular, we will

show the specific choices of λ and ε such that the edge detector EN,λ as in (2.2) behaves like

oscillation-free sharp “mountains” around the edges.

Theorem 3.6 If λ = c0
N

logN and ε = c1( N
logN )−p for some positive constants c0, c1 and 3

4 <

p < 1, then for large enough N ,

(i) when (x, y) is at least ε away from the edges, that is, dist((x, y),Γ) ≥ ε, there exists a

positive constant c such that

|EN,λ(x, y)| ≤ c logN

N
;

(ii) when (x∗, y∗) is on the edge, that is, x∗ = αj0(y∗) and y∗ = ᾱl0(x∗) for some j0, l0 ∈ N,

if there exists a ε > 0 such that d((αj(y), y), (αj0(y∗), y∗)) ≥ ε for all j 6= j0 and y ∈ [0, 1]

and d((x, ᾱl(x)), (x∗, ᾱl0(x∗))) ≥ ε for all l 6= l0 and x ∈ [0, 1], then there exists a positive

constant c such that

∣∣EN,λ(x∗, y∗)− [f ](x∗, y∗)
∣∣ ≤ c( logN

N

)4p−3

.

Proof: (i) It follows from a direct computation from substituting the choices of λ and ε into

Theorems 3.4, 3.5 and the definition of EN,λ in (2.2).

(ii) Note that when x∗ = αj0(y∗) and y∗ = ᾱl0(x∗), we have [f ](x∗, y∗) = [f ]1(x∗, y∗) =

[f ]2(x∗, y∗) and

(
1√

1+(α′j0
(y∗))2

)2

+

(
1√

1+(ᾱ′l0
(x∗))2

)2

= 1. The desired result follows immedi-

ately from a direct computation from substituting the choices of λ and ε into Theorems 3.4, 3.5

and the definition of EN,λ in (2.2). �

4 Numerical Results

We now present numerical results demonstrating the accuracy of the proposed formulation.

Matlab code used to generate the figures in this section can be found at [14]. We begin with

Figure 4, where we plot the edge map of a Shepp-Logan phantom on a 256× 256 grid given its
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Figure 4: Edge Detection — Shepp-Logan Phantom; SN = [−50, 50]2 ∩ Z2 while the equispaced
reconstruction grid is of size 256× 256 in [0, 1]2.
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first 50× 50 Fourier modes. Low-resolution measurement acquisitions such as this are common

in MR imaging applications For reference, the partial Fourier sum reconstruction (showing

significant Gibbs oscillations) is plotted in Figure 4a. Applying the proposed spectral mollifier,

the resulting jump funtion approximation is shown in Figure 4b, while the resulting edge map

is shown in Figure 4c. Hysteresis edge tracking (similar to that implemented in the Canny edge

detector) was used to obtain Figure 4c from Figure 4b. For comparison, we also plot in Figure

4d the results of applying the standard Canny edge detector. Note the presence of a significant

number of false positives (see also Figures 4e and 4f for cross-section plots) — these are due to

the Gibbs oscillations being spuriously identified as edges by the Canny algorithm. Finally, we

note that the proposed method also provides approximations to the jump height (as illustrated

in Figure 4e) which may be useful in certain applications such as the solution of PDEs.

Next, we present a higher resolution example in Figure 5, where the edges in the Shepp-

Logan are identified starting with the first 200× 200 Fourier modes. As before, the results are

plotted on a 256× 256 equispaced grid. Figure 5a plots the Fourier partial sum reconstruction

for reference while Figure 5b plots the jump function approximation. Figures 5c and 5d plot the

edge maps generated by the proposed method and the Canny edge detector respectively, while

Figures 5e and 5f show the corresponding cross-section plots. In this case, Gibbs oscillations in

the Fourier reconstruction are localized to regions close to the true edge locations. Moreover, the

standard Canny edge detector does a good job of recognizing and suppressing spurious Gibbs

oscillations from true edges. However, note that some of the closely spaced edges are either

missing or spuriously identified by the Canny edge detector (see the cross- section plots for an

illustration), while the proposed method accurately identifies these.

Figures 4 and 5 have illustrated the performance of the method when we have perfect (noise-

less) measurements. We now consider the case where the Fourier modes are corrupted by

additive (complex) Gaussian noise; i.e.,

ĝ(z) = f̂(z) + n̂(z), z = (z1, z2) ∈ SN := [−N,N ]2 ∩ Z2,

where f̂ an ĝ denote the true and noise corrupted Fourier coefficients respectively, and n̂ denotes

additive noise in Fourier space. In Figure 6, the first 50× 50 Fourier modes of the Shepp-Logan

phantom are corrupted by i.i.d. additive complex Gaussian noise of variance 1
2N2 = 2 × 10−4.

The equivalent PSNR is

PSNR (dB) = 20 log10

max. image intensity√
Mean Square Error

=
maxi,j |f(xi, yj)|√√√√ 1

MxMy

Mx−1∑
i=0

My−1∑
j=0

[SNf(xi, yj)− SNg(xi, yj)]
2

,

where Mx,My are the number of points in the reconstruction grid (Mx = My = 256 in Figure

6) and SNf, SNg are the Fourier partial sum reconstructions of f and g respectively:

SNf(x, y) =
∑
z∈SN

f̂(z)e2πi(z1x+z2y), SNg(x, y) =
∑
z∈SN

ĝ(z)e2πi(z1x+z2y).

As before the jump function approximation, edge maps using the proposed method and the
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Figure 5: Edge Detection — Shepp-Logan Phantom; SN = [−200, 200]2 ∩ Z2 while the equispaced
reconstruction grid is of size 256× 256 in [0, 1]2.
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Figure 6: Noisy Edge Detection — Shepp-Logan Phantom; SN = [−50, 50]2 ∩ Z2 while the equis-
paced reconstruction grid is of size 256× 256 in [0, 1]2. Additive complex white Gaussian noise of
variance 2× 10−4 (PSNR 36.93 dB) was added to the Fourier modes.
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Canny edge detector, and the cross sections of the edge maps are shown in Figures 6a – 6f

respectively. We observe that the addition of noise to pre-existing Gibbs oscillations results

in the Canny edge detector generating numerous spurious edges, while the proposed method

suppresses almost all of these artifacts and generates a near-perfect edge map.

5 Concluding Remarks

In this paper, we have introduced a class of spectral mollifiers for the detection of edges from

two-dimensional truncated Fourier data. Recall that the problem of detecting edges from Fourier

spectral data is different from and more challenging than the problem of detecting edges from

pixel data. Indeed, distinguishing between true edges and Gibbs oscillations is a non-trivial task,

especially when we start with a small number of (possibly noise corrupted) Fourier coefficients.

We have shown through rigorous analysis that the jump approximations generated using the

proposed spectral mollifier are guaranteed to be free of spurious oscillations and edges. Numer-

ical results show that the resulting edge maps are accurate and outperform standard methods

such as the Canny edge detector, especially in cases where we have truncated and/or noisy data.

Several interesting avenues for future research exist, including the extension of these results

to the case of non-harmonic Fourier data, investigation of the performance of this method for

highly incomplete or interrupted data, and the extension of the method to the case of distributed

data acquisition.
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