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ABSTRACT

The phase retrieval problem has appeared in a multitude of applications for decades. While ad hoc solu-
tions have existed since the early 1970s, recent developments have provided algorithms that offer promising
theoretical guarantees under increasingly realistic assumptions. Motivated by ptychographic imaging, we
generalize a recent result on phase retrieval of a one dimensional objective vector x ∈ Cd to recover a two
dimensional sample Q ∈ Cd×d from phaseless measurements, using a tensor product formulation to extend
the previous work.
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1. INTRODUCTION

Consider the problem of recovering a 2-dimensional image Q ∈ Cd×d from measurements of the form

yk =

∣∣∣∣∣∣
d∑

i,j=1

QijA
(k)
ij

∣∣∣∣∣∣
2

, (1)

where A(k) is a collection of known measurement vectors. This is known as the phase retrieval problem,1,2

as the system (1) may be seen as a system of linear equations in the variables Qij wherein the phases of
the measurements yk have been discarded by the componentwise | · |2 operation. This problem appears in a
number of imaging scenarios, for example X-ray crystallography,3 electron microscopy,4 and ptychography,5

which shall be the primary motivation for the technique presented here.

In ptychography, a light source applies a sharply focused beam onto a sample, which scatters the incoming
ray onto an array of intensity sensors behind. The light source is then shifted and applied to different parts
of the sample to obtain the measurement redundancy necessary to resolve an accurate image from this data.
We model this as

|(F [Sx0,y0a · q]) (u, v)|2 , (u, v) ∈ Ω ⊂ R2, (x0, y0) ∈ L ⊂ [0, 1]2, (2)

where F denotes the 2 dimensional Fourier transform (arising from the optical diffraction), a : R2 → C

is a known function representing the intensity of the illumination, Sx0,y0 is a shift operator defined by
(Sx0,y0a) (x, y) := a(x− x0, y− y0), Ω is a finite set of sampled frequencies, and L is a finite set of shifts. As
a typical characteristic of ptychography is that the beam is sharply focused, we assume that a is compactly
supported within a smaller region [0, δ′]2 for δ′ � 1.
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Discretizing (2) using periodic boundary conditions yields a finite dimensional problem aimed at recov-
ering an unknown matrix Q ∈ Cd×d from phaseless measurements of the form

y(`,`′,u,v) =

∣∣∣∣∣∣ 1

d2

d∑
j=1

d∑
k=1

Qj,k (S`AS
∗
`′)j,k e

−2πi
d (ju+kv)

∣∣∣∣∣∣
2

=
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`′W

−v)
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2

. (3)

Here A ∈ Cd×d is the discretization of our illuminating beam, S` ∈ Rd×d is the discrete circular shift
operator defined by (S`x)j := xj−` mod d for all x ∈ Cd and j, ` ∈ [d] := {1, . . . , d}, and W = diag(e

2πik
d )

is the modulation operator. Also, (`, `′, u, v) ∈ L2 × Ω2 where L,Ω ⊂ [d] are the index sets for the shifts
and frequencies, respectively. Herein we will make the simplifying assumption that our original illuminating
beam function a is not only sharply focused, but also separable. Specifically, we assume that the discretized
measurement matrix takes the form

1

d2
A := ab∗

where a,b ∈ Cd both have supp(a), supp(b) ⊂ [δ] for some δ ∈ Z+ with δ � d. We leave the generalization
to ”non-separable” matrices A to future work.

We can now rewrite the measurements (3) as

y(`,`′,u,v) =

∣∣∣∣ 1

d2
〈Q,W−uS`AS∗`′W−v〉HS

∣∣∣∣2 (4)

=

∣∣∣∣ 1

d2
e

2πi(`u+`′v)
d 〈Q,S`W−uAW−vS∗`′〉HS

∣∣∣∣2
=
∣∣〈Q,S`W−uab∗W−vS∗`′〉HS

∣∣2
= |〈Q,S`au(S`′bv)

∗〉HS|2 (5)

where au,bv ∈ Cd are defined by (au)j := e
−2πiju

d aj and (bv)k := e
2πikv
d bk for all j, k ∈ [d].

Motivated by the above model of ptychographic imaging, we propose a new efficient numerical scheme
for solving general discrete phase retrieval problems using measurements of type (5) herein. After a brief
discussion of notation, we will outline our proposed method in §2 below, along with a basic analysis guar-
anteeing the success of the method under appropriate assumptions. A preliminary numerical evaluation of
the method is then presented in §3.

Notation and Preliminaries

For any k ∈ N, we define [k] := {1, 2, . . . , k}. For i, j ∈ N, ei represents the standard basis vector and
Eij = eie

∗
j ; the dimensions of such an Eij will always be clear from context. For a matrix A ∈ Cm×n,

−→
A := (a11, a21, . . . , am1, . . . , amn)T ∈ Cmn

denotes the column-major vectorization of A. A⊗B for arbitrary matrices denotes the standard Kronecker

product. We remark that
−−→
ab∗ = b⊗ a, and in particular

−−→
Ejk
−−−→
Ej′k′

∗ =
−−→
eje
∗
k

−−−→
ej′e

∗
k′ = (ek ⊗ ej)(ek′ ⊗ ej′)∗ = (eke

∗
k′)⊗ (eje

∗
j′) = Ekk′ ⊗ Ejj′ . (6)

We let 〈A,B〉HS := Trace(A∗B) = 〈
−→
A,
−→
B 〉 denote the Hilbert-Schmidt inner product on Cn×n and remark

that, for x,y ∈ Cn,
|〈x,y〉|2 = 〈xx∗,yy∗〉HS. (7)

In addition, indices are always taken modulo d, and for indices we define

|i− j| := min{k : k ≡ i− j mod d or k ≡ j − i mod d, k ≥ 0} (8)

so that |i− j| < ` implies that there is some k, |k| < ` such that j + k ≡ i mod d.



2. AN EFFICIENT METHOD FOR SOLVING THE DISCRETE 2D PHASE
RETRIEVAL PROBLEM

Our recovery method, outlined in Algorithm 1, aims to approximate an image Q ∈ Cd×d from phaseless
measurements of the form (5). In this analysis, we generalize by considering a collection of measurements
given by

y(`,`′,u,v) :=
∣∣〈Q,S∗` au (S∗`′bv)

∗〉
HS

∣∣2 (9)

for all (`, `′, u, v) ∈ [d]2 × Ω2 where Ω ⊂ [d] has |Ω| = 2δ − 1. Thus, we collect a total of D := (2δ − 1)2 · d2
measurements where each measurement is due to a vertical and horizontal shift of a rank one illumination
pattern aub

∗
v ∈ Cd×d. Unlike the example of ptychography, in this analysis we do not require that au and bv

are modulations of fixed vectors a and b; rather au and bv may be chosen arbitrarily (to allow more general
setups). However, we do assume that our measurements are local in the sense that supp(a), supp(b) ⊂ [δ].
Recall that δ � d, so the total number of measurements D is essentially linear in the problem size.

Algorithm 1 consists of first rephrasing the system (9) as a linear system on the space of d2×d2 matrices

(following Candes, et al.6), and then estimating a projection P(
−→
Q
−→
Q∗) of the rank one matrix

−→
Q
−→
Q∗ from

this system. This process is described in §2.1. In §§2.2-2.3 we show how the magnitudes of the entries of

Q are estimated directly from P(
−→
Q
−→
Q∗) and their phases are found from solving an eigenvector problem.

Together, the magnitude and phase estimates provide an approximation of Q.

2.1 The Linear Measurement Operator M and Its Inverse

To produce the linear system of step 1, we observe that

y(`,`′,u,v) =
∣∣〈Q,S∗` au (S∗`′bv)

∗〉
HS

∣∣2 = |〈
−→
Q,S∗`′bu ⊗ S∗` av〉HS|2

=
〈−→
Q
−→
Q∗,

(
S∗`′bu ⊗ S∗` av

) (
S∗`′bu ⊗ S∗` av

)∗〉
HS
,

which allows us to naturally define M : Cd
2×d2 7→ RD as the linear measurement operator given by

(M(Z))(`,`′,u,v) :=
〈
Z,

(
S∗`′bu ⊗ S∗` av

) (
S∗`′bu ⊗ S∗` av

)∗〉
HS

=
〈
Z,

(
S∗`′bubu

∗
S`′
)
⊗ (S∗` ava

∗
vS`)

〉
HS
,

(10)

so that y = M(
−→
Q
−→
Q∗). This allows us to solve for P(

−→
Q
−→
Q∗), the projection of

−→
Q
−→
Q∗ onto the rowspace

P(Cd
2×d2) ofM. For clarity, we will abbreviate P(Cd

2×d2) as P, identifying this subspace with its orthogonal
projection operator.

We observe that the local supports of au and bv ensure that M(
−−→
Ej,k
−−−→
Ej′,k′

∗) = 0 whenever either
|j − j′| ≥ δ or |k − k′| ≥ δ holds (this is clear from (10) and (6)). As a result we can see that P ⊂ B where

B := span{
−−→
Ej,k
−−−→
Ej′,k′

∗ ∣∣ |j − j′| < δ, |k − k′| < δ}. (11)

Algorithm 1 Two Dimensional Phase Retrieval from Local Measurements

Input: Measurements y ∈ RD as per (9)
Output: X ∈ Cd×d with X ≈ e−iθQ for some θ ∈ [0, 2π]

1: Compute the Hermitian matrix P =
( (
M
∣∣
P

)−1
y
)
/2 +

( (
M
∣∣
P

)−1
y
)∗
/2 ∈ P

(
Cd

2×d2
)

as an estimate

of P
(−→
Q
−→
Q∗
)

. M and P are as defined in (10) and §2.1.

2: Form the matrix of phases, P̃ ∈ P
(
Cd

2×d2
)

, by normalizing the non-zero entries of P .

3: Compute the principal eigenvector of P̃ and use it to compute Uj,k ≈ sgn (Qj,k) ∀j, k ∈ [d] as per §2.2.

4: Use the diagonal entries of P to compute Mj,k ≈ |Qj,k|2 for all j, k ∈ [d] as per §2.3.
5: Set Xj,k =

√
Mj,k · Uj,k for all j, k ∈ [d] to form X



In steps 2-4 of Algorithm 1, recovery of Q from P(
−→
Q
−→
Q∗) relies on having P = B exactly; we say in such a

case thatM|B is invertible. Clearly, the invertibility ofM over B will depend on our choice of a and b. We
prove the following proposition, a corollary of which identifies pairs a,b which produce an invertible linear
system:

Proposition 1. Let Tδ : Cd×d → Cd×d be the operator given by

Tδ(X)ij =

{
Xij , |i− j| < δ mod d

0, otherwise
.

If the space Tδ(C
d×d) is spanned by the collection {aja∗j}Kj=1, then B is spanned by

{(aj ⊗ aj′)(aj ⊗ aj′)
∗}(j,j′)∈[K]2 = {(aja∗j )⊗ (aj′a

∗
j′)}(j,j′)∈[K]2 .

Proof. By (6), it suffices to show that

(eke
∗
k′)⊗ (eje

∗
j′) ∈ span{(ana∗n)⊗ (an′a

∗
n′)}(n,n′)∈[K]2

for any |j − j′|, |k − k′| < δ. Indeed, we have that {Ejj′ : |j − j′| < δ mod d} forms a basis for Tδ(C
d×d),

so Ejj′ , Ekk′ ∈ span{ana∗n}n∈[K] and

(eke
∗
k′)⊗ (eje

∗
j′) ∈ span{(ana∗n)⊗ (an′a

∗
n′)}(n,n′)∈[K]2 .

In Theorem 4 of Iwen et al.,7 an illumination function a ∈ Cd with supp(a) ⊂ [δ] is offered such that
{S`aua∗uS∗` }(`,u)∈[d]2 spans Tδ(C

d×d). By proposition 1, this gives the following corollary.

Corollary 1. Choose a constant a ∈ [4,∞) and let the vectors a` be defined by (a`)k =
e−k/a · e

2πik
2δ−1

4
√

2δ − 1
·1k≤δ.

Then
{S∗` auau∗S` ⊗ S∗`′ava∗vS`′}(u,v,`,`′)∈[d]2×p[2δ−1]2

spans B.

Towards application in ptychography, we remark that the vectors listed in 1 may be achieved as mod-
ulations of a with ak = e−k/a/ 4

√
2δ − 1 if 2δ − 1 divides d. This condition may be met by zero padding

Q as needed. The next corollary provides an example of measurement vectors that span B, but are not
produced by modulations. The authors of this work also constructed another collection of vectors (Example
2 of the previous work10), yielding another spanning set for Tδ. By the same reasoning as above, we have
the following corollary.

Corollary 2. Let a1 = e1 and for k ∈ [δ],a2k = e1 + ek,a2k+1 = e1 + iek. Then

span
(
S`aua∗uS` ⊗ S`′ava∗vS∗`′

)
= B.

2.2 Computing the Phases of the Entries of Q after Inverting M
∣∣
B

Assuming that P = B (as defined in (11); this condition may be satisfied according to Corollaries 1 and 2)

so that we can recover P(
−→
Q
−→
Q∗) = B(

−→
Q
−→
Q∗) from our measurements y, we are still left with the problem of

how to recover
−→
Q from B(

−→
Q
−→
Q∗). Our first step in solving for

−→
Q will be to compute all the phases of the



entries of
−→
Q from B(

−→
Q
−→
Q∗). Thankfully, this can be solved as an angular synchronization problem8 as in

BlockPR.9,10 Let 1 ∈ Cd2×d2 be the matrix of all ones, and sgn : C 7→ C be

sgn(z) =

{ z

|z|
, z 6= 0

1, otherwise
.

We now define Q̃ ∈ Cd2×d2 by Q̃ = B(sgn(
−→
Q
−→
Q∗)) (i.e. Q̃ is B(

−→
Q
−→
Q∗) with its non-zero entries normalized).

As we shall see, the principal eigenvector of Q̃ will provide us with all of the phases of the entries of
−→
Q .

Indeed, we may note that

Q̃ = diag
(

sgn
(−→
Q
))
B (11∗) diag

(
sgn

(−→
Q
))

(12)

where sgn is applied component-wise to vectors, and where diag(x) ∈ Cd2×d2 is diagonal with (diag(x))j,j :=

xj for all x ∈ Cd2 and j ∈ [d2]. As diag(sgn(·)) always produces a unitary diagonal matrix, we can further see

that the spectral structure of Q̃ is determined by B (11∗). The following theorem completely characterizes
the eigenvalues and eigenvectors of B (11∗).

Theorem 1. Let F ∈ Cd×d be the unitary discrete Fourier transform matrix with Fj,k := 1√
d
e2πi

(j−1)(k−1)
d ∀j, k ∈

[d], and let D ∈ Cd×d be the diagonal matrix with Dj,j = 1 + 2
∑δ−1
k=1 cos

(
2π(j−1)k

d

)
∀j ∈ [d]. Then,

B (11∗) = (F ⊗ F ) (D ⊗D) (F ⊗ F )
∗
.

In particular, the principal eigenvector of B (11∗) is 1 and its associated eigenvector is (2δ − 1)2.

Proof. From the definition of B we have that

B (11∗) =

d∑
j=1

∑
|j−j′|<δ

d∑
k=1

∑
|k−k′|<δ

−−→
Ej,k

(−−−→
Ej′,k′

)∗
=

d∑
j=1

∑
|j−j′|<δ

d∑
k=1

∑
|k−k′|<δ

Ekk′ ⊗ Ejj′

=

 d∑
k=1

∑
|k−k′|<δ

Ekk′

⊗
 d∑
j=1

∑
|j−j′|<δ

Ejj′


= Tδ (11∗)⊗ Tδ (11∗) .

Thankfully the eigenvectors and eigenvalues of Tδ(11
∗) are known (see Lemma 1 of our previous work10).

Specifically, Tδ(11
∗) = FDF ∗ which then yields the desired result by Theorem 4.2.12 of Horn and Johnson.11

Theorem 1 in combination with (12) makes it clear that sgn(
−→
Q) will be the principal eigenvector of Q̃.

As a result, we can rapidly compute the phases of all the entries of
−→
Q by using, e.g., a shifted inverse power

method12 in order to compute the eigenvector of Q̃ corresponding to the leading eigenvalue (2δ − 1)2.

2.3 Computing the Magnitudes of the Entries of Q after Inverting M
∣∣
B

Having found the phases of each entry of
−→
Q using B(

−→
Q
−→
Q∗), it only remains to find each entry’s magnitude

as well. This is comparably easy to achieve. Note that B trivially contains
−−→
Ej,k
−−→
Ej,k

∗ = eke
∗
k ⊗ eje∗j for

all j, k ∈ [d], so B(
−→
Q
−→
Q∗) is guaranteed to always provide the diagonal entries of

−→
Q
−→
Q∗, which are exactly

the squared magnitudes of the entries of
−→
Q . Combined with the phase information recovered in step 2 of

Algorithm 1, we are finally able to reconstruct every entry of
−→
Q up to a global phase as in step 5.



3. NUMERICAL EVALUATION

We will now demonstrate the efficiency and robustness of Algorithm 1. Figures 1b and 1d plot the recon-
struction of two 256 × 256 test images (shown in Figures 1a and 1c respectively) from squared magnitude
local measurements of the type described in (3). Here both a and b are chosen to be the deterministic
measurement vectors of Corollary 2, detailed in Example 2 of [10, Section 2], with δ chosen to be 2. The
reconstructions were computed using an implementation of Algorithm 1 in Matlabr running on a Laptop
computer (Ubuntu Linux 16.04 x86 64, Intelr CoreTMM-5Y10c processor, 8GB RAM, Matlabr R2016b).
More specifically, the linear measurement operator M|P was constructed by passing the standard basis el-
ements Ei,j , i, j ∈ [d], |i − j| < δ mod d through (10). An LU decomposition of this sparse and structured
matrix was pre-computed and stored for different values of d, δ for use in the numerical simulations below. We
note that an FFT-based implementation of Step 1 of Algorithm 1 is likely to yield improved efficiency; we de-

fer such an implementation to future work. The relative errors, defined by the expression
minθ ‖eiθX −Q‖F

‖Q‖F
(where X denotes the reconstruction (up to a global phase factor) of Q), were 4.288×10−16 and 2.857×10−16

for the reconstructions in Figures 1b and 1d respectively. The reconstructions were computed in 16.318 and
16.529 seconds respectively.

We next plot the execution time (in seconds, averaged over 50 trials) required to implement Algorithm 1
for different values of d in Fig. 2a. In each case, δ was chosen to be dlog2(d)e, with the same choice of measure-
ment vectors as for the reconstruction in Fig. 1b. The plot confirms that the proposed method is extremely
efficient; indeed, the plot reveals an FFT-time empirical computational complexity of O(d2 log2(d2)).

Finally, Fig. 2b illustrates the robustness of the proposed method to measurement errors (an analysis
of noise robustness is omitted from the paper and should follow from an appropriate generalization of the
techniques used for the analysis of BlockPR10 in the one-dimensional case). The figure plots the reconstruc-
tion error (averaged over 50 trials) in reconstructing a 64× 64 random matrix with i.i.d zero-mean complex
Gaussian entries from phaseless measurements (with δ = 6, and with the same measurement construction
as with Fig. 1b). An additive noise model with i.i.d. zero-mean Gaussian noise was used to corrupt the
measurements. The added noise as well as reconstruction error are reported in decibels, with

SNR (dB) = 10 log10

(
‖y‖22
Dσ2

)
, Error (dB) = 10 log10

(
minθ ‖eiθX −Q‖2F

‖Q‖2F

)
.

We observe that the proposed algorithm (indicated by the dashed line) demonstrates robustness across a
wide variety of SNRs. Additionally, the results from utilizing an improved (eigenvector-based) magnitude
estimation method (detailed in [10, Section 6.1]) in place of Step 4 of Algorithm 1 is plotted using the solid
line. In both cases, we observe that the test signals are reconstructed to (almost) the level of added noise.
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