Definition 0.1. A triangle in a metric space consists of three points and a geodesic segment between each pair.

Definition 0.2. A metric space is said to be δ-hyperbolic if it satisfies the thin triangle condition, namely, if there is some δ such that any triangle is contained within the δ radius of any two of its sides. A group is said to be δ-hyperbolic if the Cayley graph is δ-hyperbolic under the metric in which each edge has length 1.

Exercise 0.1. Trivially all finite groups are δ-hyperbolic. Give an example of an infinite δ-hyperbolic group. Show that \mathbb{Z}_2 is not one.

Remark 0.2. δ-hyperbolicity is preserved under quasi-isometries. We have a proof for this and we were going to make a Fermat’s last theorem joke about it, but fortunately our group voted against it.

Definition 0.3. A K-local geodesic is a path with the property that every subpath of length $\leq K$ is a geodesic.

Proposition 0.3. If G is δ-hyperbolic there is some constant K such that no K-local geodesic in G is a loop. (Hint: Let γ be a loop that is a K-local geodesic and pick a point x on γ whose distance from the basepoint is maximal. Show that for K large enough there is a point on the geodesic containing x that is further away from the basepoint than x.)

Definition 0.4. A Dehn presentation for a group G is a presentation of the form $\langle X | u_1v_1^{-1}, u_2v_2^{-1}, \ldots, u_nv_n^{-1} \rangle$ where $l(u_i) < l(v_i)$ for all $1 \leq i \leq n$ and every word in X that represents the identity contains at least one of the u_i.

Theorem 0.4. Every hyperbolic group can be given a Dehn presentation.

Corollary 0.5. Every hyperbolic group is finitely presented.

Definition 0.5. Let G be a group with finite presentation $\langle X | R \rangle$. Let $w \in F(X)$ be a word representing $1 \in G$. w can be expressed as a product of n conjugates of elements of R and their inverses. There are in general infinitely many such expressions; the least value of n among these is the area of w.

This definition appears rather abstruse, but may be interpreted geometrically. For example the area of a word in \mathbb{Z}_2 corresponds to the actual area of the loop in the Cayley graph when it is isometrically embedded in \mathbb{R}^2.

Definition 0.6. A group has a linear isoperimetric inequality if there is some constant K such that the area of any word w representing the identity is $\leq Kl(w)$.

Theorem 0.6. Every hyperbolic group has a linear isoperimetric inequality.

In fact the converse is true as well. Any group satisfying a linear isoperimetric inequality is δ-hyperbolic.

Definition 0.7. Given a group $G = \langle X | R \rangle$, the word problem in G consists of trying to determine whether a given word in X is the identity in G. A solution to the word problem is an algorithm that, given an arbitrary word in X, will determine whether or not that word is the identity in a finite amount of time.

It appears that the property of having a solvable word problem depends on the presentation for a group, but this is not the case.

Lemma 0.7. Let $\langle X | R \rangle$ and $\langle Y | S \rangle$ be finite presentations for a group G. Then G has a solvable word problem with respect to X and R if and only if it has a solvable word problem with respect to Y and S.

Proposition 0.8. Every hyperbolic group has a solvable word problem.