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Abstract

In the case where concepts to measure in corpora are known in advance, su-
pervised methods are likely to provide better qualitative results, model selection
procedures, and model performance measures. In this paper, we illustrate that
much of the expense of manual corpus labeling comes from common sampling prac-
tices such as random sampling that result in sparse coverage across classes, and
duplicated effort of the expert who is labeling texts (it does not help your model’s
performance to label a document that is very similar to a document the expert has
already labeled). In this paper we outline several active learning methods for itera-
tively modeling text and sampling articles based on model uncertainty with respect
to unlabeled posts. We show that with particular care in sampling unlabeled data,
researchers can train high performance text classification models using a fraction
of the labeled documents one would need using random sampling. We illustrate
this using several experiments on three corpora that vary in size and domain type
(Tweets, Wikipedia talk sections, and Breitbart articles).
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1 Introduction

In the past few years, automated text analysis methods have gained significant attention
in political science.1 Though automatic text analysis has grown in popularity, this growth
has been lopsided, with very little attention paid to supervised learning approaches. There
are many unsupervised applications in the political science literature: there are 9 pub-
lished political science works listed on the structural topic model (STM) website and there
are dozens of political science papers that use latent dirichlet allocation (Roberts, Stew-
art, Tingley, Airoldi, et al., 2013; Blei, Ng, & Jordan, 2003). Conversely, there are just a
handful of supervised applications: Drutman & Hopkins (2013) classifies corporate emails
as political or non-political; Ceron, Curini, Iacus, & Porro (2014) uses supervised methods
to track public opinion on social media in Europe; and Workman (2015) and Collingwood
& Wilkerson (2012) use supervised models to code policy agendas. The relative scarcity
of supervised applications to automated text analysis is perhaps due to the difficulty and
costliness of labeling texts, which is not necessary for unsupervised models. Costliness of
labeling texts is often advanced as an argument for using unsupervised models in political
science research (Quinn, Monroe, Colaresi, Crespin, & Radev, 2010).

In this paper, we demonstrate that much of the cost that comes from labeling texts is a
result of randomly sampling documents for an expert to label when classes are imbalanced.
For example, a political scientist may wish to identify texts from a newspaper corpus that
reference a terrorist attack. Since terrorist attacks are rare events, we can expect that a
random sample of newspaper articles will contain only a small number of articles about
terrorist attacks and an expert labeler will spend much of his/her time labeling irrelevant
documents. Active learning approaches instead draw samples of documents from a set
of unlabeled documents using an uncertainty measure, usually derived from the decisions
of classifier(s). Documents are coded in batches, with each batch representing the set
of documents the classifier was most ‘uncertain’ of. In this paper, we demonstrate that
active learning approaches to labeling texts reduce the costs of supervised learning in
almost every scenario, with the exception of balanced classification problems, which social
science researchers are unlikely to encounter (Ertekin, Huang, Bottou, & Giles, 2007; Sun,
Wong, & Kamel, 2009). Because the costliness of text labeling has been a barrier to
wider adoption of supervised methods, we hope that wider knowledge of active learning
will result in expanded use of supervised models, which are flexible, easy to validate, and
come with straightforward performance assessments. Active learning approaches to text
analysis are being used to accomplish difficult classification and retrieval tasks in recent
political science work (Mebane Jr, Klaver, & Miller, 2016; Linder, 2017; Miller, 2016). We
hope that this paper can facilitate wider use of these methods.

1.1 Unsupervised vs. Supervised Learning

Automated text analysis methods can be categorized as supervised or unsupervised. Su-
pervised models ‘learn’ from a subset of data that is annotated by experts, while unsuper-
vised models require no annotation, instead learning from correlations and co-occurrences
of text features. While unsupervised models are important research tools, supervised
models are usually a better choice for measuring concepts the researcher has defined a
priori. Conversely, unsupervised models are a better choice for discovering the latent

1Wilkerson & Casas (2017) provide a review of methods and applications for political science, and
Grimmer & Stewart (2013) offer practical applications of several automated text analysis methods.
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topics within large corpora in the absence of a priori knowledge about the structure of
these corpora.

When deciding between supervised and unsupervised models, it is important to con-
sider the promises and pitfalls of each approach. While unsupervised models are good
for summarization and exploration of large corpora, they lack agreed-upon model selec-
tion procedures (Wallach, Murray, Salakhutdinov, & Mimno, 2009), are highly unstable
with respect to text preprocessing and hyperparameter choices (Denny & Spirling, 2018),
and require a great deal of human interpretation (Chang, Gerrish, Wang, Boyd-Graber,
& Blei, 2009). Conversely, model selection, hyperparameter/preprocessing choice, and
model evaluation are all straightforward in supervised models. Despite the many benefits
of supervised approaches, the process of supervised learning is cumbersome, expensive,
and labor-intensive. To achieve acceptable performance, supervised models require a
large amount of human-annotated training data, especially in imbalanced classification
problems, where concepts to measure within a corpus are rare. Active learning can help
make this process less cumbersome and expensive, allowing researchers to reap the many
benefits of supervised models of text.

1.2 Active vs. Passive Learning

In most automated classification procedures, an expert2 labels the class membership of a
fixed set of observations in the data. These observations are usually drawn from a random
sample. Expert-labeled data are then used to “train” a learning algorithm to predict the
labels of unlabeled observations in the dataset. While this approach to classification works
quite well in many cases, it is often intractable when labeling is costly or when certain
classes are very rare. The computer science literature has consistently demonstrated that
in these cases, active learning can be quite useful (see e.g. Schohn & Cohn, 2000; Dasgupta,
Kalai, & Monteleoni, 2005; Tong & Koller, 2001; Roy & McCallum, 2001; Ertekin et al.,
2007). In an active learning approach to classification, a learning algorithm suggests
which data points the expert should label. This suggestion usually is made according to
a quantitative metric of the expected performance improvement that could be realized by
each of the unlabeled observations in the data.

In this paper we introduce several active learning approaches to labeling texts and give
guidance to practical applications. We aim to provide an introduction to the concept and
an accessible starting point for political scientists who may benefit from this approach
to labeling texts. We do not provide an exhaustive overview or theoretically rigorous
exposition of the large number of varieties of active learning. For those who want to dive
deeper into the theory and literature, see Settles (2012). In this paper, we suggest that
political scientists could benefit from active learning approaches to supervised learning,
especially when quantitatively analyzing texts.

Supervised machine learning, when applied to texts, can help to extend to the entire
corpus, or sometimes to documents outside of the reference corpus, the annotations of a
sample of documents. In a “passive learning” approach, an expert begins by labeling a
sample of documents according to some predefined concept. This subset of documents
is then used to train a learning algorithm to automatically predict the label of new doc-
uments outside of this “training sample.” This approach breaks down when labeling
documents is costly or the concept to measure is extremely rare. If a concept appears in
only 1 percent of documents, to get a sample of 20 documents, an expert labeler would

2Sometimes referred to as an “oracle,” “labeler,” or “coder.”
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have to label, in expectation, 2000 documents. Even with this time-intensive labeling ef-
fort, a machine learning algorithm trained on only 20 observations is unlikely to perform
well. If this expert were to use an “active learning” rather than “passive learning” ap-
proach, an analyst would iteratively answer a learning algorithm’s queries for documents
the model is uncertain about. After labeling a single document or batch of documents, a
new learning algorithm will be trained and will execute a new query of unlabeled docu-
ments for the expert coder to label. In this paper, we demonstrate that by using active
learning, analysts can train high performance text classification models with a fraction
of the labeled documents one would need using random sampling. In our simulations, we
find that active learning outperforms passive learning approaches in all cases where there
is less than perfect balance between classes.

We run a series of simulations of active and passive learning, varying in each simulation
the class balance, document length, sample type, and querying strategy. Our simulations
use one of two querying strategies: 1) distance to margin and 2) query by committee,
which will be explained in detail in Section 2. In simulations, we vary text domain size:
small (tweets), medium (Wikipedia talk comments), and large (news articles from Breit-
bart), preprocessing choices, and class balance. Our simulations can guide researchers in
selecting active learning procedures that are most effective for their specific text domain
and research goals.

2 Active Learning

2.1 General Principles

Given a set of documents with known labels y and a set of features (these can be bag-of-
words features but also document metadata like time stamps or author information) X,
the goal of text classification (or of machine learning in general) is to learn the function y =
f(X) that most accurately maps features to the labels beyond the specific set (training set)
y,X (see e.g. Friedman, Hastie, & Tibshirani, 2001, for an introduction). For simplicity
of exposition we refer only to binary classification in this paper (i.e. yi ∈ {0, 1},∀i)
but all methods described here are applicable (with minor modifications) to multi-class
classification (yi ∈ {0, 1, ..., k}∀i) and continuous outcomes.

It is assumed that the structure of the problem is well defined, that is, it is clear
what the labels for the documents are, and how an expert labeler assigns these labels to
the documents. In this case, supervised learning can be more useful than unsupervised
strategies such as topic models. Consider the example where a researcher is interested
to find all social media posts related to a specific protest movement. In this case, the
structure of the problem is well defined, that is, the researcher knows a priori what the
classes of interest are (posts relevant to the movement and posts not relevant to the
movement), and given a post, she would be able to determine the class membership of
said post. In contrast, an unsupervised method, such as a topic model, would not be
guaranteed to produce a topic that is congruent with the protest movement class. The
supervised method would, therefore, be the more natural choice in such a situation.

However—and this is likely a reason for the bigger popularity of topic models in
political science—the big disadvantage of supervised learning is the cost of labeling data
(Quinn et al., 2010). Huge text corpora are very easily accessible to researchers (e.g. social
media data, websites, legislative documents), but categorizing them into relevant and
non-relevant categories requires costly manual labeling. In the classical machine learning
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approach, data to be labeled are drawn at random from the population of all documents
that have to be classified (we refer to this strategy as passive learning throughout the
paper). In many situations this is a good strategy; however, we see two situations in
which the cost of labeling data ‘passively’ can be prohibitively large:

1. If the distribution of labels or classes in y is imbalanced, that is, if one label occurs
much more often than the other, it can take an enormous amount of labeled data to
get enough information on the minority class for the algorithm to learn to recover
it reliably.

2. If there are many very similar (meaning close in the feature space X) documents,
drawing data for labeling at random can be very inefficient (a lot of data is needed
to learn representations of all relevant areas of the feature space).

Active learning can reduce the cost of labeling data dramatically by reducing the num-
ber of labeled data points (or documents) that are required to get a specified performance
of the classification model. The basic principle of active learning is that the learning
algorithm is involved in the selection of data points to be labeled. In the classical ap-
proach (or passive learning), a random sample of data points is labeled. This labeled
data (the training data) is then used to train a model that helps to classify (or predict
the label/outcome of) a larger population of data points whose label is unknown. With
active learning, in contrast, the training data is not selected at random but iteratively in
interaction with the model. In each iteration, a model is trained on the labeled data that
is available so far, and the model is ‘asked’ or ‘queried’ about which yet-to-be-labeled
data point would help the model learn best.

There are many different implementations of the active learning principle, which differ
in the way the model is queried and what measure is used to determine what data point
would be optimal to be labeled from the current model. Before discussing some of these
variations in depth in Section 2.3, we give intuition on the logic of active learning using
the least complex variant, relying on logistic regression as the classification model and
uncertainty sampling as the querying strategy (Lewis & Catlett, 1994).

We denote the population of documents with unknown labels as X∗ = {x∗i |i = 1, ..., N}
where xi is a single document represented by a set of features (for example word counts or
document metadata). Each document xi has a corresponding true label yi ∈ {0, 1} that
can be obtained by asking an expert labeler to label it. We denote the logistic regression
model with a 0.5 probability threshold as f(xi, θ) = I(1/(1 + e−xθ) > 0.5), were I(.) is the
indicator function that returns 1 if the condition is met and 0 otherwise. The most basic
active learning algorithm is then:

1. Start with an initial set of documents X with known labels y

2. Train the model f ∗(., θ∗) using the available training data y,X

3. Produce a predicted probability for each unknown document:
ŷ∗ = f ∗(X∗, θ∗)

4. Use the query function to obtain a new document for labeling:
z = q(ŷ∗) = argmini |ŷ∗i − 0.5|

5. Obtain a label yz for xz from the expert labeler
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6. Add yz and xz to y and X, remove xz from X∗

7. Repeat Steps 2 - 5 until a stopping criterion is reached

To summarize this algorithm: Starting with a population of documents, each of which
is supposed to be classified, and an initial set of labeled data (this can be chosen at ran-
dom or be produced from the domain knowledge of the researcher), a model is trained to
separate the relevant from the non-relevant documents. Each document of the population
is then assigned a predicted probability from the model and the document with a proba-
bility closest to 0.5—that is, the document the model is least certain about—is selected
for annotation. In many cases it makes sense to not only select a single document for
labeling, but the batch of least certain documents. The procedure is then repeated by
re-training the model with the additional labeled data, querying more documents, label-
ing, etc. Usually, the procedure is stopped when either the labeling budget is exhausted
or a satisfactory classifier performance is reached (the definition of satisfactory, of course,
depends on the application).

This strategy intuitively reduces the number of labeled data points that are necessary
to achieve a level of performance in the two situations described above. In the case of
imbalanced classes the model has initially little information about rare classes, given that
the initial y(s) most likely contains few data points belonging to the rare class. The model
will be less certain about this class and therefore produce more samples for labeling from
that class (this is assuming that there is some information about the class membership in
the provided features X).

In the second case, where many documents in X∗ are very similar, intuition on the
potential benefits can be gained from step 3 in the algorithm above. Given three data
points x1,x2,x3 with the distance in the feature space d(x1,x2)� d(x1,x3) ≈ d(x2,x3),
if x1 is labeled, the model will produce a predicted probability closer to 0.5 for x3 as
compared to x2 since it is very different from what the model has ‘seen’ in previous
iterations. Because, x3 will provide more information than x2, the expert labeler will be
presented with x3, thereby reducing inefficiency in the labeling.

2.2 Varieties of Active Learning

There is a large variety of ways to implement the active learning principle described in
Section 2.1. Implementations can differ in several regards depending on the application:
Availability of unlabeled samples, the type of sample that is queried, the model and
outcome, and the querying algorithm. These choices produced a very large technical
literature and make the choice for practical applications difficult. In this section we
will briefly describe the choices a researcher has, without going into technical depth (see
Settles, 2012, for an excellent in depth review of the varieties of active learning).

Availability of Samples: Depending on the data source, documents for annotation
might either be available as a pool of documents (as described above) from which single
documents can be selected for querying and classification, or as a stream of documents,
where not all documents are available at any time (for example in stream based APIs such
as the Twitter Streaming API). For simplicity, we only discuss the former case, leaving
the latter as a special case.

Sample type: In Section 2.1 in Steps 4 and 5, a new labeled document is obtained by
selecting the least certain document from the pool of documents. However, some authors
have suggested to produce a synthetic sample, that is constructed in such a way that the
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model learns best from it after it was labeled. This strategy can lead to multiple problems
in practice. Most importantly, a synthetically generated document will be difficult to label
for an expert labeler. Since unlabeled data samples are so readily available in almost all
applications, we will not investigate this option in more detail.

Classification Model: In principle every classification model can be used in an
active learning approach. Some querying methods have specific requirements for the
model. For instance, the uncertainty sampling strategy used in step 4 in the illustration
above requires the model to produce a measure of uncertainty (for example a predicted
probability), not just a discrete class prediction. There are also active learning varieties
for continuous outcomes. Uncertainty in this case is usually operationalized through
the variance in the prediction on each unlabeled sample, so applications in this case are
relatively straight forward.

Querying Strategy: How to measure the potential information gain for the model
from an unlabeled instance is probably the component of active learning that received the
larges amount of attention. Besides the uncertainty sampling querying strategy described
in Section 2.1, there are a variety of methods to obtain unlabeled documents from the
model. In this paper, we will discuss in detail (see Section 2.3) the two most commonly
applied methods: query by committee and distance to margin sampling (uncertainty
sampling with support vector machines). We note, however, that there are a variety of
other methodologies and refer the reader to the literature for more in depth discussions
of other options.

2.3 Querying Strategies: Distance to Margin and Query by
Committee

Distance to Margin:

Uncertainty sampling as described in the last section is the most intuitive way of doing
active learning, and in the case of the logistic regression model a measure of uncertainty is
immediately available. Logistic regression, however, might not be the model of choice for
text classification. SVM is a very commonly applied model for text classification. SVMs,
like all linear models, work well for classification of high-dimensional and approximately
linearly separable feature spaces.

In this paper, our approach is similar to the simple margin algorithm detailed in Tong
& Koller (2001).3 Essentially, the algorithm, similar to the logistic regression algorithm
above, uses an uncertainty measure to query new points for labeling by an expert labeler.
Because the objective of support vector machines is to find a hyperplane that optimally
separates classes, observations that are closest to that hyperplane represent observations
that the support vector machine is most uncertain of. For the simple margin classifier, at
each iteration, a SVM model is trained and points closest to the hyperplane are returned
to an expert to label.

Below is an overview of the distance to margin algorithm:

1. Let X represent the set of labeled observations with labels y.

3Though Tong & Koller (2001) find that the simple margin algorithm is not optimal in maximally
reducing the “version space,” and offer several superior alternatives, it still works quite well and is useful
as an example due to its simplicity.
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2. Train a regularized support vector machine (SVM) with L2 penalty by minimizing

the following loss function using gradient descent: min 1
2
‖w‖2 + C

2

p∑
i=1

ξ2i subject to

yi(w
′xi + b) ≥ 1 − ξi for i = 1, ..., N where C is the regularization hyperparameter

that us chosen using a cross-validated randomized hyperparameter search that also
chooses text preprocessing methods4

3. The class-separating hyperplane learned above h ⊂ Rp is defined by h = {x̃ :
x′w + b = 0} .

4. With all unlabeled observations X∗, calculate the distance vector d of each point in
x∗i to h

5. Return the m (batch size) points closest to the hyperplane (m can be chosen to suit
the specific coding task)

6. The expert labels each returned document.

7. Repeat Steps 2 - 6 with new labeled data points until a stopping criterion is reached.
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Figure 1: From left to right, top to bottom, the first 5 panels visualize the distance to
margin algorithm. Circles represent queries of unlabeled data points. Once an expert has
labeled the data, they are represented by pluses for the positive class and minuses for the
negative class. The last panel shows the classes of all labeled points.

Query by Committee:
The query by committee approach to active learning functions similar to uncertainty sam-
pling and class boundary sampling but relies on multiple models instead of a single model

4In our specific application, we use a randomized hyperparameter search (Bergstra & Bengio, 2012)
with all combinations of text preprocessing decisions randomly selected with uniform probability. The
hyperparameter C is drawn from a prior distribution that we define as an exponential distribution with
λ = 50. For our randomized hyperparameter search, we train 20 random models and select the model
with the highest performance according to its 5-fold cross-validated F1 score.
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(Seung, Opper, & Sompolinsky, 1992; Freund, Seung, Shamir, & Tishby, 1997). The prin-
ciple is to have a ‘committee’ of classification models all vote on unlabeled documents,
and then to select documents to label where there exists most disagreement among the
committee members. Disagreement in the committee is measured by entropy in the votes,
choosing the document with maximal entropy for labeling. There are multiple ways of
implementing such a committee. Multiple models can be produced by using the same
type (e.g. SVM, logistic regression or Random Forest) with different hyperparamters.
These methods, also referred to as Bayesian query by committee, draw hyperparameters
from distributions in order to obtain a variety of ‘hypotheses’ about each document (Da-
gan & Engelson, 1995, e.g.). Other options are committees through boosting (Freund
& Schapire, 1997) bagging (Abe & Mamitsuka, 1998), or partially trained convolutional
neural networks (Ducoffe & Precioso, 2015). For the experiments below, we choose a
combination of Bayesian query by committee and bagging of multiple models. We choose
logistic regression, SVM and Naive Bayes (all classifiers commonly employed for text clas-
sification) and draw their hyperparameters randomly from distribution. See Section 4 for
a more detailed description of the approach.

2.4 Biased Training Data, Generalization Error and Intercoder
Reliability

The fundamental principle of active learning is to produce training data that is biased to-
wards documents that the classification model(s) are uncertain about. That is, the dataset
used to train the classification model is not representative of the total corpus. This has
consequences for several aspects of the coding process. First, estimates of generalization
error (i.e. how well the classification model will perform on the general corpus) obtained
from the training data will be biased or inconsistent estimates of the true generalization
error. Because the training data has been selected by querying uncertain documents,
these documents are especially difficult for the model to classify. Estimating the perfor-
mance of the classification model for the general corpus that potentially includes many
‘easy’ documents using this ‘hard’ training data, will most likely underestimate the true
performance of the model (Baram, Yaniv, & Luz, 2004; Ali, Caruana, & Kapoor, 2014).
However, as we demonstrate below, the model still performs better or at least as good as
a model trained on randomly labeled data.

Second, expert labelers are most likely presented with cases that are more difficult to
label. This is a problem that has been, to our knowledge, omitted from the computer
science literature (Zhao, Sukthankar, & Sukthankar (2011) studies the implications of
labeling errors on the performance of active learning algorithms but not the other way
around). This could lead in turn to the complication that the error rate of the expert
coders is likely to be higher as compared to randomly selected labeled data. An additional
point to consider is, that estimates of inter-coder reliability, analogous to the generaliza-
tion error, cannot be extrapolated to the general corpus. In planned simulations (not
yet included in this draft), we will include varying levels of inter-coder reliability in our
experiments presented below to investigate to what extent labeling error influences the
performance of the classification process.
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3 Data

We use three corpora that vary by text length and text style. By varying the text domain,
we hope to demonstrate that active learning works across many of the domains relevant
to political scientists. Accordingly we chose a corpus of tweets, a corpus of Wikipedia
talk page entries, and a complete corpus of news articles from news website Breitbart.
These corpora vary in document size from small, to medium, to large, respectively. The
style of writing in each also varies, with social media, specialized/academic writing, and
news articles respectively.

1. Twitter: This corpus is comprised of 24,420 tweets collected from a random sam-
ple of German Twitter users. The sample of tweets is a subset of a larger random
sample of all Tweets authored by about 80,000 users. Each tweet was labeled as
being about the refugee topic or not by German speaking CrowdFlower workers.
Of the 24 thousand tweets about 700 are labeled as being about the topic. The
dataset is used by Linder (2017) to study public reactions to refugee allocation in
the German refugee crisis.

2. Wikipedia: This corpus of 159,571 Wikipedia talk page comments includes anno-
tations of different kinds of toxic comments. The database was released as part of
a machine learning competition, “Toxic Comment Classification Challenge” on the
website Kaggle that is sponsored by ConversationAI, a team organized by Jigsaw
and Google to build “tools to help improve online conversation.” The goal of this
competition is to classify the types of toxic comments using the provided expert an-
notations. For our simulations, we chose the label “toxic” because it has the most
support of all represented classes. “Toxic” comments are aggressive comments, vi-
olent comments, personal attacks, etc. that do not contribute to a healthy and
productive discussion on talk pages.

3. Breitbart: This corpus of 174,847 news articles represents the population of arti-
cles on the Breitbart news website. These articles each come with meta tags that are
chosen by Breitbart authors and editors. For this dataset, we use the label “Mus-
lim identity,” which indicates whether a specific reference to Muslim identity was
made in the article tags. This corpus is used to measure how moral and emotional
frames in news media can increase support for violence against out-groups in Javed
& Miller (2018).

4 Design

In our simulations, we sample 20 documents at a time and stop our simulation once
we have processed 25% of documents in the corpus. Even though all documents are
labeled, we treat all documents in the corpus as unlabeled and add each 20 sampled
documents to a set of labeled observations. At each iteration of our simulation we train
a regularized linear support vector machine with L2 norm using labeled documents. We
use gradient descent to train the SVM.5 We set values of the hyperparameters and decide

5For larger datasets, we provide an option in our simulation script for stochastic gradient descent.
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on text preprocessing using a cross-validated randomized hyperparameter search.6 For
all conditions in our simulation, we use this SVM model to measure performance by
calculating the F1 score on a held-out development set.

We test two sampling conditions: active and random. For random sampling, we sample
20 documents randomly from the set of unlabeled documents at each iteration and refit
the SVM model. For active learning we sample documents using one of 2 approaches: 1)
distance to margin and 2) query by committee.

For the distance to margin approach, we sample documents based on their proximity
to the SVMs class-separating hyperplane. This sampling procedure selects documents
that the classifier is most ‘uncertain’ of. This form of active learning is similar to the
simple margin classifier detailed in Tong & Koller (2001). A more detailed description of
the distance to margin procedure can be found in Section 2.3.

For query by committee sampling, we fit 5 random logistic regression, SVM, and
naive Bayes classifiers. These classifiers are ‘random’ as they are trained using random
hyperparameters drawn from distributions centered on sensible values. These 15 classifiers
will serve as our committee. The 20 documents with the highest disagreement among our
committee of classifiers are then selected for ‘labeling’ in the next iteration.

Finally, we simulate these sampling approaches by artificially inducing various degrees
of class imbalance. We create new datasets with different levels of class imbalance by
over- and undersampling the positive class from the original corpora. In our simulations
we simulate active and passive learning with the following positive class proportions: 0.01,
0.05, 0.10, 0.30, and 0.50.

5 Results

[Note: All results are from the uncertainty sampling strategy. The query by
committee results are in progress and not available yet.]

In this section, we present the results of the experiments described above. Figure 2
displays the results for all three datasets.7 Each panel of the figures represents a level
of class imbalance. ‘Balance: 0.01’ means that there are 1% relevant labels and 99%
non-relevant labels. The lines are generalized additive model fits across replications of
the same conditions. The grey solid line represents the active learning models, the yellow
dashed line displays average performance for the models relying on randomly annotated
data (or passive learning models). All Figures display the performance of the model
(defined as the F1-Score) for different amounts of available training data (ranging from
20 documents to 6000 documents). Note that there are different amounts of training data

6Model selection (algorithm and tuning parameters) with active learning is non-trivial. Ali et al. (2014)
discuss the problem, that the data points selected with active learning are highly biased, therefore making
generalization error estimates obtained from this training data (e.g. via cross validation) invalid. Labeled
data points are chosen to maximize the uncertainty of the classifier which leads to the performance of
the classifier on this sample being much lower than on a true random sample from the population. In our
experiments, we choose to still apply a standard model selection step because we did not intend to make
generalization errors using estimates at each step. We also believed that this approach kept as many
factors constant as possible between conditions.

7[Note: The difference in amounts of data across datasets is due to the fact that at
the time of this draft fewer replications of the experiment with the Breitbart data were
completed.]
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Figure 2: F1 score for experiments. The panel columns correspond to the datasets the
rows to the different levels of class imbalance. Dots represent single replications of the
experiment, smoothed lines are fits (and standard errors) of a generalized additive model.

in the different balance levels. This is due to the fact that, for example, for a balance of
0.5, the total data set size is constrained to two times the number of relevant documents
in the corpus. The original Twitter data has about 3% relevant tweets, which means that
creating a balanced dataset reduces the total size of the data considerably.

The gains in performance and reduction in cost resulting from the active learning
approach are clearly visible in the imbalanced conditions. The model trained on the
randomly labeled data does not achieve the same performance as the active learning
model, even with almost one-fourth of the total corpus being labeled. The active learning
algorithm, on the other hand, reaches its best performance very quickly—at about 500
labeled documents. The relationship of the performance differential with the balance of
the data is striking. With 1% of the data being relevant the difference is dramatic, while
for the balanced data, there is virtually no difference in performance.
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The length of documents seems to matter as well. The difference between the active
and random labeling strategies is less evident for the Breitbart corpus as compared to the
other two. The Twitter data, which is comprised of the shortest documents, show the
largest differences.

Figure 3: Performance by number of labeled examples for classifiers trained with active
and passive learning (with class balance 0.01). Dots represent the average classifier per-
formance across replications. Dot size is proportional to the average number of positively
labeled data points in the training sample across replications.

To illuminate further why the active learner performs so much better in the imbalanced
conditions, we zoom in on the 1% relevant data condition and additionally display the
number of positive (or minority class) documents in the training data. These results are
displayed in Figure 3.8 In this figure, each dot represents the average f1-score across ex-
perimental replications. The size of the dots represents the average number of positively
labeled documents in the training data. The following pattern can be observed: The
active learning algorithm acquires positively labeled documents much faster than the ran-
dom learner. While the proportion of positive sample increases linearly—proportionally
increasing with the size of the training data—for the random learner, the active learner
acquires almost all its positive samples within the first 1000 training data samples. This
explains the performance difference: The active learner has much more information on

8[Note: The larger variance in the Breitbart results is due to the fact that at the time
of this draft fewer replications of the Breitbart experiment were completed.]
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the minority class much earlier, allowing it to perform better more quickly.9

6 Conclusion

To illustrate the benefits of active learning approaches to labeling texts for supervised
learning, we ran several simulations with three datasets, varying the class balance, docu-
ment length, sample type, and querying strategy. We found that active learning produces
high-performance classification models with fewer labeled documents when compared to
passive learning approaches. In all simulations, except for those with perfect class bal-
ance, active learning significantly reduced the time spent labeling documents. We hope
our findings will serve to promote the use of supervised learning approaches to automated
text analysis by making the process less costly and less time-intensive for researchers. In
order to facilitate use of these methods for social scientists, we are developing software
systems to simplify the process of labeling documents, tracking progress of expert coders,
and checking inter-coder reliability.

9Figures 4 and 5 in the Appendix display precision and recall separately. From these figures it is
evident, intuitively, that the availability of samples of the minority class increases recall on this class
dramatically, which causes the much larger f1-scores observed in Figure 2.
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7 Appendix

7.1 Precision Results

Figure 4: Precision score for experiments. The panel columns correspond to the datasets
the rows to the different levels of class imbalance. Dots represent single replications of the
experiment, smoothed lines are fits (and standard errors) of a generalized additive model.
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7.2 Recall Results

Figure 5: Recall score for experiments. The panel columns correspond to the datasets the
rows to the different levels of class imbalance. Dots represent single replications of the
experiment, smoothed lines are fits (and standard errors) of a generalized additive model.
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