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SHADOW PRICES IN INFINITE-DIMENSIONAL
LINEAR PROGRAMMING

H. EDWIN ROMEIJN AND ROBERT L. SMITH

We consider the class of linear programs that can be formulated with infinitely many variables
and constraints but where each constraint has only finitely many variables. This class includes
virtually all infinite horizon planning problems modeled as infinite stage linear programs. Ex-
amples include infinite horizon production planning under time-varying demands and equipment
replacement under technological change. We provide, under a regularity condition, conditions that
are both necessary and sufficient for strong duality to hold. Moreover we show that, under these
conditions, the Lagrangean function corresponding to any pair of primal and dual optimal solutions
forms a linear support to the optimal value function, thus extending the shadow price interpretation
of an optimal dual solution to the infinite dimensional case. We illustrate the theory through an
application to production planning under time-varying demands and costs where strong duality is
established.

1. Introduction. Consider the following doubly infinite linear programming prob-
lem:

`

min c*x ,(P) ∑ i i

iÅ1

subject to

A x / A x ¢ b ( i Å 1, 2, ···) ,(1) i ,i01 i01 ii i i

x ¢ 0 ( i Å 1, 2, ···) ,i

x √ X ,

and its dual

`

max b *y ,(D) ∑ i i

iÅ1

subject to

A*y / A* y ° c ( i Å 1, 2, ···) ,(2) ii i i/1,i i/1 i

y ¢ 0 ( i Å 1, 2, ···) ,i

y √ Y ,
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where ci , xi √ and bi , yi √ are all column vectors, and Aij is an (mi 1 nj)-matrix,n mi iR R

with A10 å 0 and x0 å 0. The set X (resp. Y) is precisely the set of points in ` ni∏ RiÅ1

for which the primal (dual) objective function is well defined and finite. Note` mj(∏ R )jÅ1

that X and Y are linear subspaces of and` `n mi j∏ R ∏ R .iÅ1 jÅ1

Since every (countable) constraint system having the property that every constraint
contains at most a finite number of variables may be transformed into an equivalent
lower staircase system of the form (1) (see the appendix) , (P ) includes virtually all
infinite horizon planning problems modeled as infinite stage linear programs. Examples
of the latter are infinite horizon production planning under time-varying demand and
cost data, equipment replacement under technological change, and capacity expansion
under nonlinear demand for capacity. In this paper we explore conditions under which
optimal solutions x* and y* exist for (P ) and (D ) which satisfy strong duality. We also
extend the interpretation of y* as a vector of shadow prices to this infinite dimensional
domain.

Although there is an extensive literature on the semi-infinite linear programming case
where either the number of variables or the number of constraints is allowed to be infinite
(see for example Charnes, Cooper, and Kortanek 1963, Borwein 1981, 1983, and Duffin,
Jeroslow, and Karlovitz 1983), there has been correspondingly little published work on
the doubly infinite case. Notable exceptions include Grinold (1971, 1977, 1983), Grinold
and Hopkins (1972), Jones, Zydiak and Hopp (1988), and Romeijn, Smith, and Bean
(1992). Grinold (1971) provides conditions for existence of optimal dual solutions for a
special class of doubly infinite linear programs and Grinold (1977) establishes weak
duality for a stationary infinite stage linear program. The latter work is extended to convex
programs in Ginold (1983). Jones, Zydiak, and Hopp (1988) apply the general theory
developed in Grinold and Hopkins (1972) to a cost stationary infinite horizon equipment
replacement problem with time-varying demand to establish the existence of an optimal
dual solution. Romeijn, Smith, and Bean (1992) establish strong duality for doubly infinite
linear programs with bounded variables under a transversality condition that dual com-
ponent values are asymptotically zero. In this paper, we extend the results of Romeijn,
Smith, and Bean (1992) to the unbounded variable case and provide economic interpre-
tations of the resulting optimal dual solutions. Our approach, as in Grinold (1971, 1977,
1983) and Romeijn, Smith, and Bean (1992) is to derive properties for (P) and (D)
indirectly through their inheritance from finite dimensional approximations (P(N)) and
(D(N)) of (P) and (D) . We form these by truncating (P) and (D) keeping only the first
N vector variables and constraints from each. This approach avoids the potential failure
of interior point or closedness properties to hold in the infinite dimensional space. Viewing
the index i in (P) as corresponding to the i th period in a multiperiod planning problem,
the above truncation of (P) corresponds to a finite horizon approximation to an infinite
horizon problem. Within infinite horizon optimization, this method is termed a planning
or solution horizon approach to approximating the infinite horizon solution (see for ex-
ample Schochetman and Smith 1989, 1992).

2. Mathematical preliminaries. Following Romeijn, Smith, and Bean (1992), we
equip the product spaces and for the primal and dual problems with` `n mi i∏ R ∏ RiÅ1 iÅ1

the corresponding product topologies inherited from their component Euclidean spaces.
Thus the sequence {xn} ⊆ converges precisely when its components converge` n ni∏ R x iiÅ1

in the ordinary Euclidean metric for each i . That is,

n nx r x as n r ` if and only if x r x as n r ` for all i Å 1, 2, . . . .i i

Similarly for {y n } ⊆ We note that this product topology is in fact metrizable` mi∏ R .iÅ1

since we have a countable product of metric spaces ( see Dugundji, 1966, p. 191) . For
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example, we may set d (x , x * ) Å supk min{dk (xk , 1 /k ) where dk (·, ·) is thex* ) ,k

ordinary Euclidian metric on and x , x * √ and similarly for the dual`n nk kR ∏ R ,kÅ1

space Such infinite dimensional spaces share a disturbingly large number` mi∏ R .kÅ1

of what would be viewed as pathological properties in the finite dimensional context.
For example, for any open set, all but finitely many of its projections on the coordinate
spaces ( i Å 1, 2, ···) must equal those spaces ( see, e.g., Dugundji, 1966, p.n ni iR R

99, Example 4) . Therefore, all compact sets, as well as the nonnegative orthant, have
empty interiors. In particular, the unit closed ball is not compact. We intend to avoid
potential difficulties arising from these properties by taking the indirect approach of
approximating (P ) and (D ) by finite dimensional surrogates (P (N ) ) and (D (N ) ) . We
then demonstrate the inheritance of conventional finite dimensional duality properties
for (P ) and (D ) by taking the limit as N converges to infinity. The finite dimensional
subproblems (P (N ) ) and (D (N ) ) are formed by dropping all vector variables and
constraints beyond the first N of (P ) and (D ) , respectively. That is, (P (N ) ) is the
finite dimensional linear program

N

min c*x ,(P(N)) ∑ i i

iÅ1

subject to

A x / A x ¢ b ( i Å 1, . . . , N) ,(3) i ,i01 i01 ii i i

x ¢ 0 ( i Å 1, . . . , N) ,i

and (D(N)) is

N

max b *y ,(D(N)) ∑ i i

iÅ1

subject to

A*y / A* y ° c ( i Å 1, . . . , N 0 1),(4) ii i i/1,i i/1 i

A* y ° c ,(5) NN N N

y ¢ 0 ( i Å 1, . . . , N) .i

As in Romeijn, Smith, and Bean (1992), note that when (P(N)) admits an optimal so-
lution, since (D(N)) is the ordinary linear programming dual of (P(N)) , we have classical
weak and strong duality holding for the pair ((P(N)) , (D(N))) . In the next section, we
develop conditions that, under a regularity assumption, are both necessary and sufficient
for strong and hence weak duality to hold for (P) and (D) .

We end this section with a summary of the notation we will use. It will at times be
convenient to think of the feasible region X ( N ) of (P (N ) ) as embedded in ` nj∏ RjÅ1

instead of This can be accomplished without loss of generality by arbitrarilyN nj∏ R .jÅ1

extending the first N elements to elements of We shall use the notation X ( N )` nj∏ R .jÅ1

for both where the proper interpretation should be clear from the context. Similarly
for the dual feasible region of Y ( N ) of (D (N ) ) . In the same way, feasible elements
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x (N ) and y (N ) of X ( N ) and Y ( N ) , respectively, can be viewed as finite or infinite
vectors.

C(x) Å
`

c*x ,∑ i i
iÅ1

B(y) Å
`

b *y∑ i i

iÅ1

X Å set of points for which C(x) is well defined and finite,

Y Å set of points for which B(y) is well defined and finite,

X Å feasible region of (P) ,

Y Å feasible region of (D ) ,

X ( N) Å feasible region of (P(N)) ,

Y ( N) Å feasible region of (D (N)) ,

C* Å optimal value of (P) ,

B* Å optimal value of (D) ,

X * Å {x √ X : C(x) Å C*},

Y * Å {y √ Y : B(y) Å B*},

C*(N) Å optimal value of (P(N)) ,

B*(N) Å optimal value of (D(N)) ,

X *(N) Å {x √ X ( N) : C(x) Å C*(N)},

Y *(N) Å {y √ Y ( N) : B (y) Å B*(N)}.

3. Weak and strong duality. Romeijn, Smith, and Bean (1992) provide an adap-
tation of the example from Grinold and Hopkins (1973), where a pair of linear programs
of the form (P) and (D) is given for which not only strong duality fails to hold but also
weak duality. We will impose the following assumption on (P ) for most of the results
that follow to help eliminate such pathological cases.

ASSUMPTION 3.1. For all x √ X , y √ Y ,

lim inf y* A x ¢ 0.k/1 k/1,k k
kr`

REMARKS. (1) . All of the results to follow that invoke Assumption 3.1 remain valid
under the alternative assumption that the condition in Assumption 3.1 holds for all y in
some subset Y* ⊆ Y such that Y* > Y * x M.

(2) . Assumption 3.1 is satisfied in the important special case where the off-diagonal
matrices {Ak/1,k} are (eventually) nonnegative, since xk , yk ¢ 0 for k Å 1, 2, ··· when
x √ X , y √ Y .
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In view of Remark 1, and the fact that we will demonstrate later that optimal dual
vectors can be interpreted as shadow prices, Assumption 3.1 roughly requires that one be
no worse off in the long run with respect to the infinite dimensional problem by ending
the Nth period in any Nth period feasible state than by ending it in the 0-state (see
Schochetman and Smith, 1992, for the formal definition of states in this context) . This
assumption is clearly met for problems where the state variables denote some kind of
inventory, as in production planning problems.

In order to establish weak duality under Assumption 3.1, we begin with a lemma, proven
in the appendix.

LEMMA 3.2. For all x √ X , y √ Y ,

C(x) ¢ B(y) / lim sup y* A x .k/1 k/1,k k
kr`

THEOREM 3.3 (WEAK DUALITY ). Under Assumption 3.1, any feasible value C(x) of
the primal problem (P) is bounded from below by any feasible value B(y) of the dual
problem (D) , i .e .,

B(y) ° C(x) ,

for all x √ X and y √ Y .

PROOF. This follows immediately from Lemma 3.2 and Assumption 3.1. h

REMARK. Theorem 3.3 continues to hold if Assumption 3.1 is relaxed to the require-
ment that

lim sup y* A x ¢ 0,k/1 k/1,k k
kr`

for all x √ X , y √ Y .
Our goal now is to provide conditions that are both necessary and sufficient for strong

duality to hold, i.e., that optimal solutions x* and y* exist to (P) and (D) respectively
with C(x*) Å B(y*). As we shall see, the conditions are analogous to those of finite
dimensional duality (namely, primal feasibility, dual feasibility, and complementary
slackness) but with the exception of an additional necessary condition we term transver-
sality.

DEFINITION 3.4. The pair (x , y) √ X 1 Y is said to satisfy the transversality condition
if

lim inf y* A x Å 0.k/1 k/1,k k
kr`

We begin with a lemma and its corollary.

LEMMA 3.5. For all x √ X , y √ Y the following three statements are equivalent :
( i ) x and y satisfy the complementary slackness conditions , i .e .,

(A x / A x 0 b )*y Å 0 for i Å 1, 2, . . . ,i ,i01 i01 ii i i i

and
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(c 0 A*y 0 A* y )*x Å 0 for i Å 1, 2, . . . .i ii i i/1,i i/1 i

( ii ) C(x) Å B(y) / limkr` y* A x .k/1 k/1,k k

( iii ) C(x) Å B(y) / lim infkr` y* A x .k/1 k/1,k k

PROOF. See Appendix. h

COROLLARY 3.6. For all x √ X , y √ Y that satisfy the transversality condition the
following two statements are equivalent :

( i ) x and y satisfy the complementary slackness conditions ;
( ii ) C(x) Å B(y) .

We are now ready to state conditions for strong duality to hold.

THEOREM 3.7 (STRONG DUALITY ). Let Assumption 3.1 be satisfied . Then for all x*
√ X , y* √ Y the following two statements are equivalent :

( i ) x* is primal feasible , y* is dual feasible , and they satisfy the complementary
slackness and transversality conditions .

( ii ) x* is an optimal solution of (P) , y* is an optimal solution of (D ) , and C(x*)
Å B(y*), i .e ., strong duality holds in (P) and (D) ;

PROOF. ( ii ) c ( i ) . By Corollary 3.6 we have that C(x*) Å B(y*). But then weak
duality implies that x* is optimal for (P ) and y* is optimal for (D) .

( i ) c ( ii ) . By Assumption 3.1, together with Lemma 3.2 and the fact that C(x*)
Å B(y*), we have that

* *0 ° lim inf y** A x ° lim sup y** A x ° C(x*) 0 B(y*) Å 0,k/1 k/1,k k k/1 k/1,k k
kr` kr`

so that

*lim inf y** A x Å 0,k/1 k/1,k k
kr`

i.e., the transversality condition is satisfied. Now by Corollary 3.6 we have that x* and
y* satisfy the complementary slackness relations. h

REMARK. The implication (i) c ( ii ) in Theorem 3.7 continues to hold if Assumption
3.1 is relaxed to the requirement that weak duality holds.

Theorem 3.7 provides a criterion for strong, and hence weak, duality to hold. Using
this theorem, it can be verified that an educated guess of the primal and dual solutions
(obtained using for instance economic insights; see §5 for an example) are indeed optimal
solutions.

We now turn to establishing sufficient conditions for strong duality that are more readily
verifiable from the problem data. The challenge of invoking the criterion in Theorem 3.7
is to propose candidates x √ X , y √ Y for testing the conditions in (ii ) . The following
theorem establishes that strong duality holds for certain accumulation points of finite
dimensional optima for (P(N)) and (D(N)) respectively. These are termed algorithmic
optima by Schochetman and Smith (1992).

THEOREM 3.8. Suppose Assumption 3.1 holds . Suppose x* √ X , y* √ Y , and (x*,
y*) √ lim supNr`(X *(N) 1 Y *(N)) ( the set of all accumulation points of sequences
drawn from {X *(N) 1 Y *(N)}) , and transversality holds for the pair (x*, y*). Then
x* √ X *, y* √ Y * and C(x*) Å B(y*), i .e ., strong duality holds for (P) and (D) .
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PROOF. It is easily shown that the following result holds. Suppose x*(N) √ X *(N) ,
y*(N) √ Y *(N) are optimal solutions for (P(N)) and (D(N)) , respectively, for N Å 1,
2, . . . . Furthermore, assume that for some subsequence {Nk} of the positive integers that
is independent of i , we have

* *lim x (N ) Å x ( i Å 1, 2, ···) ,i k i
kr`

and

* *lim y (N ) Å y ( i Å 1, 2, ···) .i k i
kr`

Then x* satisfies the primal linear inequality constraints, y* satisfies the dual linear in-
equality constraints, and x* and y* satisfy the complementary slackness conditions. The
desired result now follows immediately from Theorem 3.7. h

The following application of the above result provides sufficient conditions for strong
duality to hold, including a guarantee of existence of primal and dual optimal solutions,
that should in practice be easily checked.

COROLLARY 3.9. Suppose that (P (N)) is feasible for all N and that there exist vectors
ui õ ` such that ∏i [0, ui ] ⊆ X and X *(N) > [0, ui ] x M for all N , and vectorsN∏iÅ1

£i õ ` such that ∏i [0, £i ] ⊆ Y and Y *(N) > [0, £i ] x M for all N . Moreover ,N∏iÅ1

suppose that

lim £ * ÉA Éu Å 0,i/1 i/1,i i
ir`

where ÉAi/1,iÉ is obtained by taking the absolute value of all entries in Ai/1,i . Then strong
duality holds for (P) and (D) , i .e ., there exist optimal primal and dual solutions x* and
y* with C(x*) Å B(y*).

PROOF. Without loss of generality we may assume that X *(N) 1 Y *(N) ⊆ [0,`∏iÅ1

ui ] 1 [0, £i ] . Moreover, since (P (N)) is feasible for all N , X *(N) 1 Y *(N) x M
`∏iÅ1

for all N . Now let {(x*(N) , y*(N))} be a sequence of optimal solutions to (P(N)) and
(D(N)) , i.e., (x*(N) , y*(N)) √ X *(N) 1 Y *(N) for all N . Since this sequence is
contained in the compact set [0, ui ] 1 [0, £i ] , it has a convergent subsequence` `∏ ∏iÅ1 iÅ1

(x*(N ) , y*(N )) r (x*, y*) as k r ` ,k k

so (x*, y*) √ (X 1 Y) > lim supNr`(X *(N) 1 Y *(N)) .
Now consider without loss of optimality the pair x √ X , y √ Y . Then

Éy* A x É ° Éy* É·ÉA É·Éx Éi/1 i/1,i i i/1 i/1,i i

Å y* ÉA Éxi/1 i/1,i i

° £ * ÉA Éui/1 i/1,i i

r 0 as i r ` .

Hence Assumption 3.1 holds without loss of optimality, as well as transversality for the
pair (x*, y*). Now by Theorem 3.8, strong duality holds. h
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Note that while the upperbounds that are used in Corollary 3.9 have to be satisfied by
some primal and dual optimal solution, it is not necessary to explicitly take them into account
in the problem formulation of the primal. This would necessitate the introduction of dual
variables corresponding to the primal upperbounds—with the corresponding complications
in establishing transversality, and thus strong duality (see Romeijn, Smith, and Bean, 1992).

Since the existence guarantee offered by Corollary 3.10 for a pair x* and y* satisfying
strong duality is not constructive, in practice, we are lead to their numerical approximation
by x*(N) and y*(N) respectively. The following theorem provides a condition, which is
satisfied for example when the off-diagonal matrices {Ak/1,k} are eventually nonnegative
(see Remark 2 following Assumption 3.1) , that assures that x*(N) and y*(N) will be
close to x* and y* in value for N large. This result is perhaps surprising since, even when
x*(N) converges to x* in policy, the failure of C(x) to be continuous in general prevents
us from thereby concluding value convergence.

THEOREM 3.10 (VALUE CONVERGENCE). Let x* be an optimal solution of (P) , let
y* be an optimal solution of (D ) , and suppose strong duality holds , i .e ., C(x*)Å B(y*).
Furthermore , suppose that y* √ for some M õ ` . Then`> Y (N)NÅM

lim C*(N) Å C* Å B* Å lim B*(N) ,
Nr` Nr`

i .e ., value convergence holds in both the primal and dual problem .

PROOF. Since B*(N) Å C*(N) for all N by ordinary finite dimensional duality, we have

lim B*(N) Å lim C*(N)
Nr` Nr`

° lim C(x*; N)
Nr`

(since x* √ X *(N)) ,

Å C*

Å B*

Å lim B(y*; N)
Nr`

° lim B(y*(N) ; N)
Nr`

(since y* √ for some M õ `) ,`> Y ( N)NÅM

Å lim B*(N) ,
Nr`

so that all of the above relations are satisfied as equalities. h

In instances where strong duality holds, one is led to ask whether the standard economic
interpretations of dual variables as prices continues to hold. The answer is affirmative as
we prove in the next section.

4. Optimal dual solutions as shadow prices. Much of the power of duality in linear
programming derives from the insights provided from the economic interpretation of dual
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solutions as bounds on optimal buying and selling prices of resources or, as in this case,
requirements. The precise statement of this property in the finite dimensional context is that
the Lagrangean functional is a linear support to the optimal value function of the problem.
We now state and prove the corresponding relationship in the infinite dimensional case.

Define the Lagrangean function corresponding to (P) and (D) as follows:

`

L(x , y) Å C(x) 0 y* (A x / A x 0 b ) ,∑ i i ,i01 i01 ii i i

iÅ1

for (x , y) √ S , where S is the subset of pairs in 1 where L is well` `n mi i∏ R ∏ RiÅ1 iÅ1

defined on the extended reals. Note that X 1 {y : y ¢ 0} ⊆ S , since x √ X assures that
C(x) is well defined and finite, while y ¢ 0, together with feasibility of x , assures that
the sequence of partial sums in the definition of L(x , y) is nondecreasing.

We may also replace the right-hand side vector b of (P) by the vector variable z and implicitly
incorporate dependence of the Lagrangean on z so that, in an abuse of notation, we also write

` `

L(x , y ; z) Å c*x 0 y* (A x / A x 0 z ) ,∑ ∑i i i i ,i01 i01 ii i i

iÅ1 iÅ1

for (x , y , z) √ T , where T is the subset of triplets of 1 1` ` `n m mi i i∏ R ∏ R ∏ RiÅ1 iÅ1 iÅ1

for which L is well defined. L(x , y ; b) will simply be denoted by L(x , y) .
Now define, for all z √ the optimal value function of (P) as` mi∏ R ,iÅ1

£(z) Å inf{C(x) : x √ X },z

where Xz Å {x √ X : x ¢ 0, Ai ,i01xi01 / Aiixi ¢ zi for all i} and inf M å ` .

LEMMA 4.1. The optimal value function is convex .

PROOF. Define the function V : X 1 r R < {/`} as follows:` mi∏ RiÅ1

C(x) if x √ X ,z

V (z , x) Å H
/` otherwise.

Then the value function can be written as:

£(z) Å inf V (z , x) .
x√X

The result now follows immediately if V is jointly convex in x and z .
First, note that the domain of V is convex. Now let x 1 , x 2 √ X , z 1 , z 2 √ and` mi∏ RiÅ1

0 õ l õ 1. Then

1 2 1 2V (lz / (1 0 l)z , lx / (1 0 l)x )

1 2 1 2C(lx / (1 0 l)x ) if lx / (1 0 l)x √ X ,
Å H

/` otherwise.

Now first suppose that x 1 √ x 2 √ Then, for all i ,1 2X , X .z z

1 2 1 2A (lx / (1 0 l)x ) / A (lx / (1 0 l)x )i ,i01 i01 i01 ii i i

1 1 2 2Å l(A x / A x ) / (1 0 l)(A x / A x )i ,i01 i01 ii i i ,i01 i01 ii i

1 2¢ lz / (1 0 l)z .i i

Hence lx 1 / (1 0 l)x 2 √ and1 2X ,lz /(10l)z
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1 2 1 2 1 2V (lz / (1 0 l)z , lx / (1 0 l)x ) Å C(lx / (1 0 l)x )

1 2° lC(x ) / (1 0 l)C(x )

1 1 2 2Å lV (z , x ) / (1 0 l)V (z , x ) .

If x 1 then V ( x 1) Å /` , so we have1/√ X ,z

1 2 1 2 1 1 2 2V (lz / (1 0 l)z , lx / (1 0 l)x ) ° lV (z , x ) / (1 0 l)V (z , x )

and similarly for x 2 Thus V is jointly convex, and the desired result follows. h2/√ X .z

THEOREM 4.2. Let x* √ X , y* √ Y , satisfy transversality and complementary slack-
ness . Moreover , let Assumption 3.1 be satisfied . Then the function L(x*, y*; z) is a linear
support of the optimal value function £ at z Å b , i .e .,

L(x*, y*; z) ° £(z) ,

for all z such that (x*, y*, z) √ T , and

L(x*, y*; b) Å £(b) .

PROOF. Fix z √ such that (x*, y*, z) √ T , and fix x √ Xz . We will first` mi∏ RiÅ1

show that L(x*, y*; z) ° C(x) for all x √ Xz .

`

*L(x*, y*; z) Å (c*x 0 y** (b 0 z )) (by complementary slackness)∑ i i i i i

iÅ1

k

*Å lim (c*x / y** (z 0 b ))∑ i i i i i
kr` iÅ1

k

*° lim sup (c*x / y** (A x / A x 0 b ))∑ i i i i ,i01 i01 ii i i
kr` iÅ1

k

Å lim sup y** (A x / A x )∑ i i ,i01 i01 ii i
kr` iÅ1

k

Å lim sup (y**A x / y** A x ) 0 y** A x∑ i ii i i/1 i/1,i i k/1 k/1,k kS D
kr` iÅ1

k

° lim sup (y**A x / y** A x ) 0 lim inf y** A x∑ i ii i i/1 i/1,i i k/1 k/1,k k
kr` kr`iÅ1

k

° lim sup c*x∑ i i
kr` iÅ1

Å C(x) .

Thus, L(x*, y*; z) ° inf{C(x) : x √ Xz} Å £(z) . Moreover,
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`

*L(x*, y*; b) Å c*x∑ i i

iÅ1

Å C(x*) Å C*,

from the first equality above. h

We can also extend the standard saddle point property to the infinite dimensional setting.

THEOREM 4.3 (SADDLE POINT PROPERTY ). Let x* √ X , y* √ Y , satisfy transversality
and complementary slackness . Moreover , let Assumption 3.1 be satisfied . Then (x*, y*)
is a saddle point of the Lagrangean L , i .e .,

L(x*, y) ° L(x*, y*) ° L(x , y*) for all (x*, y) , (x , y*) √ S .

PROOF. By Theorem 3.7 strong duality holds, so x* is optimal for (P ) , y* is optimal
for (D) , and C(x*) Å B(y*). First observe that, by complementary slackness,

L(x*, y*) Å C(x*) Å B(y*),

and in particular (x*, y*) √ S . Now, for (x , y*) √ S ,

`

L(x , y*) Å (c*x 0 y**A x 0 y**A x / y**b )∑ i i i i ,i01 i01 i ii i i i

iÅ1

k

* *Å lim ((c 0 A*y 0 A* y )*x / y**b ) / y** A x∑ i ii i i/1,i i/1 i i i k/1 k/1,k kS D
kr` iÅ1

` `

* *Å (c 0 A*y 0 A* y )*x / y**b / lim y** A x∑ ∑i ii i i/1,i i/1 i i i k/1 k/1,k k
kr`iÅ1 iÅ1

`

¢ y**b∑ i i

iÅ1

Å B(y*)

Å L(x*, y*).

Similarly, it can be proven that, for all (x*, y) √ S ,

L(x*, y) ° C(x*) Å L(x*, y*). h

5. An application to infinite horizon production planning. Consider the following
linear programming infinite horizon production planning problem (see Denardo, 1982):

`
i01min a (k P / h I )(P) ∑ i i i i

iÅ1

subject to
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I / P 0 I ¢ d ( i Å 1, 2, ···) ,i01 i i i

P ¢ 0 ( i Å 1, 2, ···) ,i

I ¢ 0 ( i Å 1, 2, ···) ,i

(P , I) √ X ,

where X is the set of points where the objective function is well defined. We assume that
(d , 0) √ X , so that X x M. Furthermore, Ii is the net inventory ending period i , with I0

å 0, Pi is the production in period i , di ¢ 0 is the demand for production in period i , ki

ú 0 is the production cost and hi ¢ 0 is the inventory holding cost for period i Å 1, 2,
. . . . The factor a is the discount factor reflecting the time value of money, where 0 õ a
õ 1. The dual (D ) becomes

`

max d w(D) ∑ i i

iÅ1

subject to

i01w ° a k ( i Å 1, 2, ···) ,i i

i010w / w ° a h ( i Å 1, 2, ···) ,
(6)

i i/1 i

w ¢ 0 ( i Å 1, 2, ···) ,i

w √ W ,

where W is the set of points where the dual objective function is well defined. As (d , 0)
√ X , it is feasible to produce the demand in every period, and to never hold any inventory,
and its cost

`
i01a k d ,(7) ∑ i i

iÅ1

exists and is finite. This, together with (6) , implies that the constraint w √ W in (D) is
redundant, i.e., the dual objective function is well defined for all solutions satisfying the
first inequality constraints in (D) .

In this section we will analytically derive the optimal solution to (D ) . Next we will
construct a feasible solution to (P) such that the pair of solutions satisfies the comple-
mentary slackness and transversality conditions. We then conclude from Theorem 3.7 and
the remark following that strong duality holds, and thus that the primal feasible solution
thereby constructed is optimal.

First observe that we can regroup and rewrite the dual constraints as follows:

w ° k ,1 1

and
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i01 i02w ° min(a k , a h / w ) ( i Å 2, 3, ···) .i i i01 i01

Then the optimal solution to (D) is clearly given recursively by

*w Å k ,1 1

and

i01 i02* *w Å min(a k , a h / w ) ( i Å 2, 3, ···) .i i i01 i01

The objective is now to find a solution (P*, I*) √ X which, together with w*, satisfies
the complementary slackness relations. That is, we wish to find a (P*, I*) satisfying

i01 * *(a k 0 w )P Å 0,(8) i i i

i01 * * *(a h / w 0 w )I Å 0,(9) i i i/1 i

and

* * * *(I / P 0 I 0 d )w Å 0,(10) i01 i i i i

for i Å 1, 2, . . . . Since ú 0 for all i (since ki ú 0 for all i) , by equation (10) (P*,*wi

I*) needs to satisfy

* * *I / P 0 I Å d ,(11) i01 i i i

for all i . So (P*, I*) will satisfy the primal inequalities as strict equalities. Hence if we
solve equation (8) for P*, then I* is determined by (11). Now define N1 å å 1 and,N*1
recursively,

i02* *N Å arg min{i ¢ N / 1 : w õ a h / w } ( l Å 2, 3, ···) ,l l01 i i01 i01

and

i01*N* Å arg min{i ¢ N* / 1 : w Å a k } ( l Å 2, 3, ···) .l l01 i i

Furthermore, let

N Å {N , N , ···},1 2

and

N* Å {N* , N* , ···}.1 2

Clearly, from the definition of *w ,i

N ⊆ N*.

Now define a production epoch associated with a feasible production schedule P as a
period i where Pi ú 0, i.e., a period where we produce.
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THEOREM 5.1. Let M be the set of production epochs corresponding to a feasible
production schedule P* where N ⊆ M ⊆ N *. Then P* is an optimal production schedule .
Moreover , all optimal production schedules to (P) can be characterized by such a
set M .

PROOF. Let

M 01l/1

*P Å d ,∑M il

iÅMl

be the production associated with production epoch Ml ( l Å 1, 2, ···) and

*P Å 0 ( i /√ M) .i

The corresponding inventories follow from equations (11):

M 01l/1

*I Å d ( i Å M , . . . , M 0 1; l Å 1, 2, ···) .∑i j l l/1

jÅi/1

Note that Å 0 for l Å 1, 2, . . . . It is easy to check (since N ⊆ M) that I* satisfies*IM 01l/1

equation (9). Using M ⊆ N * we can also explicitly write the dual solution w*:

i01
j01 M01l*w Å a h / a k ( i Å M , . . . , M 0 1; l Å 1, 2, ···) .(12) ∑i j M l l/1l

jÅMl

What remains to be shown is that (a) (P*, I*) √ X , and (b) w* and (P*, I*) satisfy
transversality. We will show both of these simultaneously by rewriting the objective func-
tion value of w* in such a way that it can easily be seen to be equal to the primal objective
function value of (P*, I*):

` ` M 01 i01l/1
j01 M01l*d w Å d a h / a k∑ ∑ ∑ ∑i i i j MH S DJl

iÅ1 lÅ1 iÅM jÅMl l

` M 01 M i01l/1 l/1
M01 j01lÅ d a k / d a h∑ ∑ ∑ ∑i M i jHS D Jl

lÅ1 iÅM iÅM/1 jÅMl l l

` M 01 M 01l/1 l/1
M01 j01l *Å a k P / d a h∑ ∑ ∑M M i jH S D Jl l

lÅ1 jÅM iÅj/1l

` M 01l/1
M01 j01l * *Å a k P / a h I∑ ∑M M j jH Jl l

lÅ1 jÅMl

`
i01 * *Å a (k P / h I ) .∑ i i i i

iÅ1

So we can conclude that (P*, I*) √ X . Furthermore, Lemma 3.5 now says that w* and
(P*, I*) satisfy the transversality condition. Thus (P*, I*) is an optimal solution for (P) .
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The second part of the claim follows easily from Theorem 3.7, which states that any
optimal solution of (P) , together with w*, must satisfy the complementary slackness
conditions. h

As in the finite dimensional variant of the production planning problem studied in this
section, the optimal primal solutions turn out to have the property that production only
takes place when inventories are zero, and always takes place for an integer number of
periods ahead.

Theorem 4.2 allows us to interpret the i th component of the optimal dual solution*wi

as an upper bound on the optimal cost of meeting one more unit of demand in period i .
In the case that di ú 0, it also represents a lower bound on the optimal cost reduction
resulting from one less unit of demand in period i .
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Appendix.

LEMMA A.1. Every countable constraint system having the property that every con-
straint contains at most a finite number of variables may be transformed into an equivalent
lower staircase system of the form (1) .

PROOF. First transform all inequality constraints to equality constraints by adding
slack and surplus variables. Note that this does not destroy the property that every con-
straint contains at most a finite number of variables. Suppose that the constraints and
variables are labelled by the positive integers. The following algorithm accomplishes the
desired transformation (where index £ denotes the current variable, index c the current
constraint, index i the largest index of a variable having nonzero coefficient encountered
so far, and index k is the number of variable blocks created so far) :

Transformation
Step 0. Set £ Å 1, c Å 1, i Å 0, k Å 0.
Step 1. Find the first constraint in the set {c , c / 1, ···} such that the coefficient of

x
£

is nonzero. Without loss of generality, assume that this is constraint c .
Step 2. If the last variable having nonzero coefficient in constraint c is xj , with j ° i ,

continue with Step 3. Otherwise, set k Å k / 1 and define the k th variable
block to contain variables i / 1, . . . , j (and thus nk Å j 0 i) , and set i Å j and
mk Å 0.

Step 3. Use constraint c to eliminate x
£

from constraints {c / 1, c / 2, ···}. Set £
Å £ / 1, c Å c / 1, mk Å mk / 1, and return to Step 1.

It is clear that all steps of the algorithm are well defined. In particular, in Step 2 there
is a last variable having nonzero coefficient in constraint r , since every constraint contains
at most a finite number of variables. Furthermore, since it is clear that the transformed
constraint matrix is lower block triangular, and also upper triangular (with respect to the
actual elements of the matrix) , the matrix is lower staircase. This can also be seen from
the fact that in Step 3, the variable xc is always in the last or one before last vari-
able block.

Finally, if desired, the equality system can be rewritten as an inequality constraint
system of the form (1). h

LEMMA 3.2. For all x √ X , y √ Y ,
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C(x) ¢ B(y) / lim sup y* A x .k/1 k/1,k k
kr`

PROOF. We have

`

C(x) Å c*x∑ i i

iÅ1

k

Å lim c*x∑ i i
kr` iÅ1

k

¢ lim sup (A*y / A* y )*x from (2)∑ ii i i/1,i i/1 i
kr` iÅ1

k

Å lim sup (x*A*y / x*A* y )∑ i ii i i i/1,i i/1
kr` iÅ1

k

Å lim sup (x* A* y / x*A*y ) / x*A* y∑ i01 i ,i01 i i ii i k k/1,k k/1S D
kr` iÅ1

k

Å lim sup (A x / A x )*y / x*A* y∑ i ,i01 i01 ii i i k k/1,k k/1S D
kr` iÅ1

k

¢ lim sup b*y / x*A* y from (1)∑ i i k k/1,k k/1S D
kr` iÅ1

Å B(y) / lim sup x*A* y ,k k/1,k k/1
kr`

which proves the lemma. h

LEMMA 3.5. For all x √ X , y √ Y the following three statements are equivalent :
( i ) x and y satisfy the complementary slackness relations , i .e .,

(A x / A x 0 b )*y Å 0 for i Å 1, 2, . . . ,i ,i01 i01 ii i i i

and

(c 0 A*y 0 A* y )*x Å 0 for i Å 1, 2, . . . .i ii i i/1,i i/1 i

( ii ) C(x) Å B(y) / limkr` x*A* y .k k/1,k k/1

( iii ) C(x) Å B(y) / lim infkr` x*A* y .k k/1,k k/1

PROOF. ( i) c ( ii ) . Consider the proof of Lemma 3.2. If the complementary slackness
relations are satisfied, both inequalities are satisfied as equalities. Moreover, all infinite
sums converge, implying that ‘lim sup’ can everywhere be replaced by ‘lim’, yield-
ing (ii) .

( ii ) c ( i ) . Once again consider the proof of Lemma 3.2. By (ii) , both inequalities
have to be satisfied as equalities. The first inequality is satisfied as an equality if
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k

lim inf (c 0 A*y 0 A* y )*x Å 0,∑ i ii i i/1,i i/1 i
kr` iÅ1

which can only hold if (ci 0 0 Å 0 for all i Å 1, 2, ··· since each ofA*y A* y )*xii i i/1,i i/1 i

these terms is nonnegative by (2) and the fact that xi ¢ 0 for all i . We also have that ‘lim
sup’ in the proof of Lemma 3.2 may be replaced by ‘lim’, so that the second inequality
is satisfied as an equality only if

k

lim (A x / A x 0 b )*y Å 0,∑ i ,i01 i01 ii i i i
kr` iÅ1

which can only hold if (Ai ,i01xi01 / Aiixi 0 bi )*yi Å 0 for all i Å 1, 2, . . . , i.e., the
remaining complementary slackness relations are satisfied.

( ii ) c ( iii ) . Obvious.
( iii ) c ( ii ) . ( iii ) is equivalent to

lim inf x*A* y Å C(x) 0 B(y) .k k/1,k k/1
kr`

By Lemma 3.2,

C(x) 0 B(y) ¢ lim sup x*A* y ,k k/1,k k/1
kr`

so

lim inf x*A* y ¢ lim sup x*A* y ,k k/1,k k/1 k k/1,k k/1
kr` kr`

and thus

lim inf x*A* y Å lim sup x*A* y Å lim x*A* y . hk k/1,k k/1 k k/1,k k/1 k k/1,k k/1
kr` kr` kr`
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